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Abstract 

Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutri‑
tion in a world with a growing population is also a significant problem. The introduction of new protein sources into 
the diet, such as newly developed innovative foods or foods produced using new technologies and production 
processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for devel‑
opment of new food allergies, and this in turn has driven the need to develop test methods capable of character‑
izing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the 
identification and characterization of food allergens would be valuable tools for safety assessment. However, although 
various animal models have been proposed for this purpose, to date, none have been formally validated as predic‑
tive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal 
models are reviewed, including among others considerations of species and strain, diet, route of administration, dose 
and formulation of the test protein, relevant controls and endpoints measured.
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Background
Food allergy affects a significant proportion of the popu-
lation and is associated with important health effects. 
In addition, food allergy has an impact on quality of life 
and represents a substantial economic burden [1, 2]. The 
exponential growth of the human population means that 
existing protein sources, such as soy, are being consumed 
by a wider population, while novel protein sources, such 
as insect and algae, are currently being examined for 
inclusion in human foodstuffs. The introduction of new 
proteins into the diet inevitably creates a potential oppor-
tunity for the development of new food allergies. There 

is a need, therefore, for the development and applica-
tion of appropriate strategies for evaluating the allergenic 
potential of existing and new food proteins as an impor-
tant component of safety assessment. A crucial question 
in food allergy research is what characteristics confer 
on proteins the ability to cause sensitization and allergy. 
Current understanding of this is incomplete and this has 
limited the development of predictive methods based on 
in silico analysis of protein sequence and structure, and 
in vitro methods most often based on the measurement 
of a single parameter. For this reason, there is a continued 
interest in the development of suitable animal models 
that provide a more holistic approach to the assessment 
of the allergic potential of proteins. Although there is a 
variety of animal models for evaluating allergenicity, 
none of the existing models has been validated, is predic-
tive, or widely accepted [3]. Because the choice of animal 
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experimental design as well as the selection of appropri-
ate endpoints and evaluation parameters may lead to 
contradictory results, there is an enormous impact on 
performance and predictive accuracy of animal models. 
Here, we review the experimental design and interpreta-
tion of animal models for the assessment of the allergenic 
potential of novel food proteins (Fig. 1).

Reference proteins
To assess the relative allergenicity of novel proteins, it is 
essential to use known allergens in humans as reference 
proteins. It is unknown why certain proteins are aller-
genic, compared to the large majority of non-allergenic 
food proteins. As reviewed extensively elsewhere [4], 
most plant allergens belong to the prolamin superfamily, 
including the lipid transfer proteins (LTP) and 2S albu-
mins or to the cupin superfamily, which include the 11S 
and 7S globulins. Animal food allergens predominately 
belong to the parvalbumin, tropomysin and casein pro-
tein families. The shared conserved structure and biolog-
ical activity among proteins in these families contribute 
to their allergenicity. However, protein homology alone 
does not guarantee allergenicity [5]. Sensitizing rats with 
7S globulins from peanut, hazelnut, soy or pea induced 
IgE with different biological activities [6]. In addition, 
patients allergic to goat’s milk, but who tolerate cow’s 
milk, show an absence IgE-binding to bovine b-casein 
by IgE specific to caprine b-casein, despite a sequence 
identity of 91 % between the respective proteins [7]. This 
suggests that subtle differences in physical or biological 
properties are modulators of allergic responses even to 
well-described food allergens.

Initial studies by Astwood et al. [8] proposed that sta-
bility of proteins to in vitro gastric digestion significantly 
discriminated known allergens from non/low-allergens. 
However, subsequent studies with a wider range of pro-
teins did not support these findings [9, 10]. Thus, addi-
tional tests, including those in animal models, may be 
useful in the assessment of the allergenic potential of 
novel proteins. Dearman and Kimber [11] showed that 
known allergenic proteins (peanut agglutinin and oval-
bumin (OVA)) induced specific IgE upon intraperi-
toneal (i.p.) injection of mice, while presumed non/
low-allergenic proteins (potato agglutinin, potato acid 
phosphatase) were immunogenic, but induced only low 
IgE titer responses. In contrast, a multi-laboratory study 
was unable to accurately differentiate between known 
allergens and putative non/low-allergens, including spin-
ach rubisco and soy lipoxygenase [12]. Oral exposure to 
allergens under specific experimental conditions was able 
to distinguish allergenic from non/low-allergenic food 
extracts, while systemic exposure did not [13].

There is a significant need to validate a toolbox of ref-
erence proteins, which contain potent allergenic, weak 
and non/low-allergenic proteins. Published data, to date, 
demonstrate a lack of reproducible and predictive meas-
urements, which emphasizes the need for in vivo models, 
that are thoroughly tested with a wide range of well-char-
acterized, purified, and endotoxin-free potent, weak or 
non/low-allergenic proteins.

Animal species and strain
The species most commonly employed in food allergy 
research is the mouse. In addition to their small size and 
short breeding cycle, the sequence of immunological 
events involved in the development of sensitization and 
the elicitation of allergic reactions is similar, although 
not identical to humans [14]. Moreover, the availability 
of various immunological and molecular reagents and 
transgenic animals makes them a powerful tool for inves-
tigating immunological mechanisms related to food aller-
gies and evaluating the sensitizing potential of new food 
proteins.

As for humans, genetic predisposition in mice is impor-
tant for measuring in  vivo sensitization to novel food 
proteins. Smit et al. [15] examined three different murine 
strains following oral administration of peanut extract. 
Higher concentrations of peanut-specific IgE were found 
in BALB/c mice compared with other strains. In con-
trast, Berin et  al. [16] reported no differences between 
BALB/c and C3H/HeOuJ mice in their IgE response to 
β-lactoglubulin (BLG) and C3H/HeOuJ mice produced 
higher peanut protein-specific IgE levels. These disparate 
results were attributed to the use of different protocols 
for inducing sensitization. Both Berin et al. [16] and Smit 

Fig. 1 Factors which influence animal model design. Important 
considerations in the design, conduct and interpretation of animal 
models for assessment of the allergenic potential of food proteins are 
shown
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et  al. [15] reported that spleen cells from peanut sensi-
tized BALB/c mice secreted more IL-4, IL-5, IL-13 and 
IFN-γ than those from C3H/HeOuJ mice, suggesting that 
BALB/c mice might be the preferable strain.

As an alternative to the mouse, Brown Norway (BN) 
rats mount strong IgE antibody responses and due to 
their size, it is possible to monitor kinetics of serum 
specific antibody responses within individual animals. 
Another advantage is that the test protein can be deliv-
ered by daily gavage over a period of weeks in the absence 
of adjuvant [17]. On the downside, oral dosing of rats 
requires a larger amount of protein, compared to mice, 
which influences the cost of the experiment and fewer 
immunological reagents are available than for mouse.

In contrast to murine models, dogs spontaneously 
develop allergies [18]. Thus, it is a good species for 
evaluating food allergy. Moreover, it is also possible to 
immunize the same animal with multiple allergens. Fur-
thermore, it is possible to do repeated endoscopy of the 
gut, to identify high IgE responder animals and their 
larger organ size and blood volume allows for more 
analyses and longitudinal studies. Although dogs are 
well suited for mechanistic studies, it is not feasible to 
use them for routine testing for safety assessment. They 
are expensive to maintain, there are a limited number 
of strains, they have greater inter-animal variation than 
rodents, and commercially available immunological rea-
gents are lacking [17]. Similar drawbacks are present in 
swine with the addition of long dosing times needed for 
sensitization [12].

Other potential animal species are guinea pigs and rab-
bits. However, guinea pigs do not produce IgE. Allergic 
responses in guinea pigs are IgG1a mediated and possi-
bly other mechanisms are also involved, thereby making 
the translation to humans more difficult. Rabbits gener-
ate high levels of IgE after subcutaneous sensitization, 
but are poorly characterized and thereby rarely used as a 
model species for food allergy [19].

In conclusion, mice are currently the most commonly 
used in  vivo model for evaluating potential sensitizing 
capacities of food proteins. Notably, when using mouse 
models, it is important to wisely select an optimal strain 
and sensitization protocol, depending on the allergen 
source and specific research question.

Route of sensitization
There are multiple routes used to induce allergic sensi-
tization to food allergens including i.p., oral, intranasal 
(i.n.) and cutaneous administration [20, 21]. However, the 
route of administration may alter the resulting immune 
response. For example, i.p. sensitization with wheat 
proteins induced a specific IgE response with simi-
lar IgE-binding epitopes to humans [22], whereas i.p. 

sensitization with OVA led to more OVA-specific IgE-
binding epitopes compared to oral sensitization [23].

Sensitization to food allergens such as peanut or cow’s 
milk (CM) may occur in the gut with oral sensitization. 
Over the last few years, several oral food allergy models 
were established in rodents [24, 25] and are useful for 
investigating the mechanisms underlying sensitization 
and clinical reactions to food proteins. For example, Li 
et  al. [26] demonstrated that oral exposure of C3H/HeJ 
mice to peanut extract (PE) in combination with cholera 
toxin (CT) induced PE-specific IgE in serum and sys-
temic anaphylactic symptoms upon oral challenge. Alter-
natively, the skin may also be a route for sensitization to 
food allergens [27]. For example, in a human study it was 
found that cutaneous exposure, rather than maternal or 
infant allergen consumption, led to peanut sensitization 
[28]. Recently, Spergel et al. [29] started to decipher cuta-
neous sensitization mechanisms with food allergens in 
mice. These authors found that epicutaneous (e.p.) sen-
sitization with OVA, in the absence of aluminum hydrox-
ide, resulted in higher antibody levels compared to i.p. 
administration of OVA with aluminum hydroxide [29], 
suggesting that e.p. sensitization is a robust sensitiza-
tion route. Furthermore, Strid et al. [30] reported that an 
aqueous solution of either peanut allergen or OVA, when 
applied to abraded skin of mice, induced the production 
of antigen-specific IgE. Notably, the most effective route 
of food allergen sensitization varies significantly between 
mouse strains [15, 31].

Therefore, the route of allergen sensitization is an 
important and necessary consideration for the use of any 
relevant animal model of food allergy. Oral sensitization 
may be required to mimic the effect of digestion and the 
gut epithelium on sensitization to food proteins. How-
ever, it is not yet known which route of sensitization is 
best to predict the allergenic potency of food proteins in 
the human population.

Dose–sensitization relationships
Risk assessment for food allergens does not fundamen-
tally differ from assessing the risk of chemical substances 
or microbiological agents as they often include similar 
methodologies [32–34]. In the hazard characterization 
of food allergens, a qualitative, and, wherever possible, 
quantitative description of the sensitizing property of 
a food allergen is made, together with its relationship 
to dose, where possible. These dose–sensitization data 
are helpful to classify food allergens by creating thresh-
old values below which the risk of inducing a new food 
allergy is considered to be negligible or acceptable.

In humans, knowledge on dose–sensitization relation-
ships to food allergens is extremely limited. Probably 
both low- and high- dose tolerance induction may be 
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relevant mechanisms for explaining the fact that just a 
small percentage of the human population develops food 
allergy [35]. Since many variables (e.g. exposure route 
and frequency, food-related factors, host-related factors, 
matrix effects) are likely to be of importance, the doses 
required for sensitization might prove highly variable.

No animal model has been adopted for use in the gen-
eration of dose–sensitization data. Ideally, an appropriate 
animal model should be (a) validated by dose–response 
curves with different sensitizations and (b) be sensitive 
for distinguishing a threshold beyond which significant 
sensitization would be predicted and (c) potentially be 
sensitive for producing graded responses comparable to 
what is known regarding their prevalence and severity of 
responses in humans, e.g. peanut  >  egg  >  spinach [12]. 
Previously, animal studies demonstrated dose–response 
relationships within a restricted dose range for only a 
limited number of proteins [12, 13, 36]. Using these ani-
mal studies one can only conclude that there is a hazard 
connected to a given protein, because the mechanistic 
knowledge to interpret the dose–sensitization profile 
in terms of risk assessment is lacking. This was nicely 
illustrated by Kroghsbo et al. [36] where dose–sensitiza-
tion data of two related proteins (gluten and enzymati-
cally hydrolysed gluten) were compared to determine 
which protein is the strongest sensitizer. Enzymatically 
hydrolysed gluten gave the highest immune response, 
which was dose-related. Gluten showed no dose-related 
responses. However, in contrast to the hydrolysed gluten, 
gluten showed a response at the low dose. Thus, one can 
conclude that both forms of this protein possess sensitiz-
ing capacity and the doses relevant for human exposure 
should be taken into consideration when qualifying the 
potential risks for humans.

In conclusion, dose–sensitization studies in animals 
can be used to enhance our mechanistic knowledge on 
the sensitization process and characterize the allergenic 
hazard of novel food proteins. However, the current lack 
of dose–sensitization data in food allergy makes it dif-
ficult to perform a risk assessment. In addition, dose-
dependent effects on immunological responses are not 
always linear, which further complicates interpretation.

Protein preparation
Ideally, an animal model should assess the sensitizing 
capacity of the individual novel proteins, as well as the 
novel protein in the context of the whole food. How-
ever, the choice of how the proteins are prepared prior 
to sensitization assessment may have significant implica-
tions on the predictive value of the model. Should puri-
fied proteins, protein extracts or the complex whole food 
be used as test materials? Could the use of whole foods 
predict the sensitizing potential of individual proteins? 

Will purified proteins fold into the correct structure in 
the absence of the food matrix? Are there matrix proteins 
that modify (potentiate or inhibit) sensitizing capacity? 
These are only a few of the considerations that should 
be addressed before choosing a predictive animal model. 
Studying the sensitizing capacity of an allergen, as a con-
stituent of different protein preparations is a major task 
that requires well-conducted and controlled animal stud-
ies [37].

For novel foods where there is no prior knowledge of 
the potential allergenicity of proteins contained herein, 
whole food allergenicity assessment might be the only 
option to identify potential de novo sensitizing proteins. 
The use of whole foods has the advantage of present-
ing the proteins to the immune system in the context 
of lipids, sugars and other proteins, and matrix factors 
known to influence the sensitizing capacity of a given 
protein [37, 38].

When using protein extracts, proteins may be lost or 
the relative amounts may be changed during the extrac-
tion process [37], because extraction is dependent on 
protein solubility and may be influenced by the process-
ing of the foods [39]. This could result in the testing of an 
incomplete panel of proteins.

Additionally, the purity and quality of purified pro-
teins must be of a high standard, because the predictive 
value of the animal model may be greatly influenced by 
contaminants. Both protein and endotoxin contamina-
tion can confuse allergenicity assessments. This issue was 
highlighted following the use of commercially “purified” 
OVA, where contamination with ovomucoid (OVM) 
resulted in an overestimation of the intrinsic sensitiz-
ing potential of OVA [40],. This indicates that the pres-
ence of small amounts of a potent sensitizer may obscure 
the sensitizing capacity of the intended study protein. 
Immune-modulating effects occur with endotoxin con-
tamination, which may potentially lead to an overesti-
mation of the protein-specific sensitizing capacity [41]. 
Thus, purified proteins should ideally be free of all pos-
sible modifying contaminants.

Protein processing
Foods are subjected to a wide variety of different process-
ing methods before being consumed. Processing may 
affect the inherent allergenicity of the proteins contained 
within the food, by either decreasing or increasing their 
allergenic properties [39, 42]. However, there are no gen-
eral rules on how and to what degree different forms of 
processing impact the allergenic properties of the food 
[39, 42].

Processing methods that affect the allergenic prop-
erties of food include heating, hydrolysis, pH and pres-
sure treatment, which may modify the chemical and 
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structural features of the proteins. The impact of heating 
on the sensitizing capacity of peanut was described by 
Ladics et al. [12] who compared the sensitizing capacity 
of raw and roasted peanut extract and observed no clear 
differences after oral or i.p. dosing of BN rats. Addition-
ally, Bowman and Selgrade [13] showed similar results 
after oral administration to C3H/HeJ mice. In contrast, 
Kroghsbo et al. [37] demonstrated that oral dosing of BN 
rats with roasted peanut, but not whole blanched peanut, 
resulted in Ara h 1- and 2-specific IgE responses. These 
studies show that heating intensity can influence the sen-
sitizing capacity of peanut proteins.

Hydrolysis usually reduces allergenicity, however, a 
study by Kroghsbo et al. [36] showed that acid hydroly-
sis of gluten proteins resulted in a significantly higher 
specific IgE response than unmodified gluten, in con-
trast to enzymatically hydrolyzed gluten, after i.p. 
immunization of BN rats. In  vitro digestion abolished 
the sensitizing capacity of the CM protein BLG, but the 
same procedure did not affect sensitization to the pea-
nut protein Ara h 1, even though Ara h 1 was digested 
to smaller peptides than BLG [9]. These studies col-
lectively showed that hydrolysis may affect individual 
proteins differently and that the type of hydrolyses may 
affect the outcome.

Food matrix
Foods are composed of proteins, fat, carbohydrates, 
micronutrients and various contaminants, all of which 
may have various effects on intrinsic allergenicity of pro-
teins by changing protein digestibility, bioaccessibility 
and/or bioavailability, or due to adjuvant or immune-
modulatory effects. These factors should be considered 
in the in  vivo allergenicity assessment of new proteins/
protein sources.

Various food constituents can alter the digestibility of 
proteins, thus affecting the form and the way they will 
reach the site where immune responses are induced. This 
can simply result from a buffering effect of the whole food 
or from the presence of protease inhibitors. Additionally, 
emulsion of protein with lipids will modify their struc-
ture and the accessibility of enzymes to cleavage sites, 
with various effects on digestibility [43]. Similar effects 
were observed for added constituents such as stabiliz-
ers, thickeners or emulsifiers [44]. Competitive effects of 
other proteins for enzymatic digestion and active epithe-
lial transport can also impact allergen digestibility and 
bioavailability [45]. Sequestration of protein in low acces-
sible substructures, such as within protein body orga-
nelles as observed in seeds, can delay their release and 
limit their digestion [46]. High fat food increases gastric 
residence in humans, thus leading to an increased thresh-
old for the occurrence of objective symptoms [47].

Proteins can co-localize with other food constituents 
such as pro-Th2 or modulating factors, whereby the cor-
responding microenvironment will determine the polari-
zation of the specific immune response. Some studies 
have reported a lack of intrinsic immunogenicity/aller-
genicity of certain major allergens from milk, peanut or 
Brazil nuts [48–50]. The immune response was prompted 
by the adjuvant effect of other food constituents, as 
demonstrated by (defatted) extract from peanut [48] or 
with lipids from Brazil nuts that will activate iNKT cells 
to produce IL-4 [50]. Other proteins (lectins) or con-
taminants such as aflatoxin present in the food matrix 
influence sensitization [51], whereas ω-3 PUFA-derived 
metabolites decrease mast cell activation [52].

Lastly, the quantity of any new protein(s) in food items 
should be considered. For example, the newly expressed 
protein Cry1Ab (MON810 maize) was demonstrated to 
be highly immunogenic when administered as a purified 
protein, but no Cry1Ab-specific immune response was 
evident after experimental sensitization with maize flour, 
probably due to the low levels of Cry1Ab within the flour 
[50].

Adjuvants
T cell sensitization to allergenic proteins requires fully 
activated professional antigen presenting cells (APC) 
that not only present relevant peptides in the context of 
MHCII, but also express a range of costimulatory signals 
[53]. Importantly, the lack of appropriate costimulatory 
signals results in anergy or tolerance. Substances that 
can induce costimulation are considered adjuvants, being 
defined as components that are able to potentiate and/or 
modulate adaptive immune responses.

It is not well understood to what extent adjuvants are 
needed to promote an allergic response, but adjuvant sig-
nals appear crucial at least in a range of animal studies. 
Adjuvants influence both the activation and subsequent 
migration of dendritic cells (DCs) to a draining lymph 
node, which reside in the vicinity of the first exposure 
site to potential allergens. It is increasingly realized that 
signals coming from epithelial cells can instruct DC to 
become activated APC. These epithelium-derived signals 
together are referred to as a danger associated molecu-
lar pattern (DAMP) and include innate cytokines and 
chemokines or alarmins [54–56]. Together with a range 
of immune cells such as innate lymphoid cells, intraepi-
thelial lymphocytes (IELs) [57–59], eosinophils and mast 
cells, DAMPs determine the outcome of the immune 
response. The importance of the epithelial barrier in con-
trolling Th2 immune responses has been reviewed more 
extensively elsewhere [56, 60].

In animal models of food allergy, sensitization by the 
i.p. route with the use of aluminum hydroxide as an 
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adjuvant is common [61]. The mechanisms behind the 
adjuvant effect of aluminum hydroxide are still not fully 
understood [62], but stimulation of DC antigen presen-
tation [63] and a IL-4-driven Th2 response have been 
described [64]. Additionally, changes in specific antibody 
responses to aluminum hydroxide-adsorbed antigens 
have been observed [62, 65, 66] and is probably due to 
the modulation of antibody responses related to struc-
tural changes of the antigens [67].

One of the best known mucosal adjuvants used to sen-
sitize animals to food proteins is CT [26]. The adjuvant 
effect of CT depends on CD11b DCs and cAMP [68]. 
Importantly, because Vibrio cholera infection is relatively 
rare in humans, CT should be regarded as an experimen-
tal model adjuvant and is not relevant for promoting food 
allergy in man.

Additional modulating substances may influence 
sensitization to food proteins. Staphylococcus aureus 
enterotoxin B (SEB), a bacterial superantigen relevant to 
humans, promotes sensitization to OVA [69]. The NSAID 
diclofenac causes epithelial damage in the intestinal tract 
and stimulates the allergic response to peanut extract, 
but only in combination with CT [57, 58]. Medium 
chain triglyceride (MCT), but not long-chain triglycer-
ides induce sensitization to peanut in mice, without CT 
[70]. The role of endotoxin as a possible adjuvant remains 
unclear because data are not consistent across different 
experimental models and doses [16, 71]. Uric acid is a 
DAMP produced by epithelial cells and administration of 
monosodium urate can replace CT as an adjuvant [72].

Occasionally, allergy in test animals can be induced 
without adjuvant. Birmingham et  al. [73] and Gonipeta 
et al. [74] sensitized mice to hazelnut and milk whey pro-
tein, by transdermal application of the allergen, for 6 con-
secutive weeks. Although they did not add an adjuvant, 
they clipped the hair from skin and used mild occlusion 
for 1 day, which may cause mild inflammatory responses 
and release DAMPs [75]. Others [54, 76], have used tape 
stripping methods to promote epicutaneous sensitization 
to food allergens. Noti et al. [54] showed that this route 
of exposure requires the TSLP-basophil axis, indicating 
activation of innate immune responses. Guinea pigs have 
also been used as a model to investigate the allergenic-
ity of specifically CM without adding adjuvant by expos-
ing the guinea pigs to the CM via their drinking water for 
several weeks [77]. However it is difficult to translate this 
model to the human setting due to differences in immune 
physiology and limited knowledge and tools to study 
their immune system. Lastly, the BN rat model for food 
allergy is performed without added adjuvant, but in this 
model the allergen is gavaged for 35 to 42 days [78], again 
possibly inducing epithelial stress (in the oesophagus) 
with associated adjuvant effects.

In conclusion, primarily based on mouse data, adju-
vants or at least adjuvant-like activation of innate 
immunity seems to be important for the induction of 
sensitization to food proteins. However, addition of an 
adjuvant will not always be necessary in an animal model 
when testing sensitizing capacity of novel proteins, espe-
cially when the novel protein/food has inherent sensitiz-
ing capacity.

Environmental factors
Not everyone becomes allergic to foods. This suggests 
that other factors like lifestyle and environmental factors, 
interacting with a genetic predisposition, play a role. To 
accurately predict the allergenic potential of novel food 
proteins using animal models, it is essential to consider 
the various environmental factors that could influence 
sensitization in humans.

Firstly, unintended dietary pre-exposure to the food 
protein under investigation or to a cross-reactive protein 
could lead to the induction of allergen-specific oral tol-
erance, which would prevent further sensitization in the 
animal model and lead to false negative results. Dietary 
control in parental generations before mating or during 
suckling [79, 80] and monitoring other dietary factors 
such as the quantity of bioactive lipid components or 
non-digestible fibers in animal diet, which influence the 
immune response, can help minimize potential bias in 
sensitization profiles [81–83]. However, other currently 
unknown dietary factors, may also influence immune 
responses within the gut and further research is needed 
to identify these factors.

Protein modifications (e.g. due to environmental pollu-
tion or during food processing) have a substantial impact 
on the elicitation of protein-specific immune responses. 
In addition, interference with the physiological digestion 
capacity of the GI tract contributes to food allergy. Phar-
macological gastric acid suppression is associated with 
food allergy development via the oral route in experi-
mental mouse models [84, 85]. While animal age seems 
to play a minor role in many models [86], the use of new-
born/weaned animals can be relevant when using a dif-
ferent experimental approach to induce sensitization or 
if the protein being investigated is ultimately intended for 
consumption by human infants [87].

The composition of the gut microbiome may influence 
the outcome of food allergy models and may contribute 
to inter-laboratory variation. There is increasing evidence 
that gut microbiota plays a critical role in allergic sensitiza-
tion and tolerance induction in humans and rodents [88, 
89]. The fetal immune system favors a Th2 response that 
is related to an increased risk of developing allergic dis-
ease. Bacterial colonization after birth provides a microbial 
stimulus affecting the maturation and modulation of the 
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intestinal and systemic immune system [90]. Commen-
sal bacteria can stimulate tight junction-related proteins 
thereby reducing epithelial permeability, while also pro-
moting immunoregulatory responses within mucosal tis-
sue which protects against allergic sensitization [91–94]. 
Germ-free mice display a characteristic increased immune 
response to allergens with a remarkable Th2 bias. Thus, 
these animals could represent a highly sensitive model to 
study allergenicity of new proteins [95, 96], but are difficult 
to maintain. The gut microbiome of different animal facili-
ties will be influenced by the breeding environment (e.g. 
specific pathogen free (SPF) versus specific and opportun-
istic pathogen free (SOPF), diet and water). In particular, 
microbiome alterations associated with ω-fatty acids and 
obesity should be controlled. Lastly, there are indications 
that vitamin A and D deficiencies, which modify intesti-
nal homeostasis, might moderate intestinal immunity via 
interaction with the microbiome [79, 97].

Breeding environment and experience of the experi-
menter should be taken into consideration, since stress 
responses may influence the immune response to the 
administered protein/food [98]. In conclusion, breed-
ing conditions (parental generations, housing, stress), 
diet and other environmental factors must be carefully 
adjusted between different laboratories and standard-
ized whenever possible to develop a reproducible ani-
mal model to study protein sensitization. Unfortunately, 
many published manuscripts still do not describe these 
parameters in detail and therefore, currently, it is not 
possible to recommend a specific dietary regimen, other 
than the protein of interest should not be included in the 
diet before testing the animals.

In vivo readouts
Common food allergy signs and symptoms in patients 
include itching, swelling of lips, tongue, face and throat, 
abdominal pain, diarrhea, nausea, or vomiting, while 
anaphylactic reactions involve constriction of airways, 
cardiovascular shock with a severe drop in blood pres-
sure, rapid pulse and/or loss of consciousness [99]. Upon 
exposure to food allergens, a number of allergy signs that 
mimic clinical symptoms in patients can be observed in 
animal model systems [3, 100]. Such in vivo parameters 
are useful to study allergenicity of food proteins, the 
impact of genetics or microbial colonization [101]. To 
model food allergy, animals are typically sensitized with 
an allergenic food or protein (with or without adjuvant) 
by feeding or other routes, followed by challenges to the 
GI tract, circulation (intravenous (i.v.), i.p.), or skin (sub-
cutaneous), which then manifests in an organ-specific 
distinct readout.

Repeated oral food allergen challenges of previously 
sensitized animals results in measureable clinical signs 

including diarrhea, piloerection, changes in activity, 
mobility and behavior or most often a combination of all 
signs that can be enumerated in a clinical allergy score 
[54].

Systemic food allergen challenges often result in severe 
allergic reactions mimicking anaphylaxis in patients. 
Such reactions are evaluated using anaphylaxis scoring 
protocols that assess severity including scratching, diar-
rhea, piloerection, labored respiration, cyanosis around 
mouth and tail, reduced activity, tremors, convulsion or 
death [26]. Measuring hypothermia (rectal temperature 
or subcutaneously (s.c.) implanted programmable tem-
perature transponder) or vascular leakage (i.p allergen 
challenge immediately followed by i.v. Evan’s blue injec-
tion and animals are monitored for blue color accumu-
lation in the extremities) are additional in vivo readouts 
[102, 103].

To measure airway hyperreactivity (AHR) in the con-
text of food allergen sensitization, allergen challenge may 
be intranasal, intra-tracheal or via nebulization [104]. 
Upon allergen challenge, animals are assessed for airway 
resistance and compliance in response to methacholine 
and not by allergen exposure using invasive or enhanced 
pause (PenH) non-invasive techniques [105]. Notably, 
this read out may be more dependent upon changes in 
the airways (e.g., inflammation and increased airway 
smooth muscle) than to the mast cell-IgE-histamine axis.

Passive cutaneous anaphylaxis (PCA) is an immedi-
ate dermal response to an allergen-IgE interaction that 
is typically characterized by increased vascular leak-
age within the skin that can be assessed by i.v. injection 
of Evans blue. In  vivo PCA readouts include ear swell-
ing (thickening of skin) and skin color [103]. Alterna-
tively animals are injected intradermally (i.d.) in the ear 
pinnae with the allergen and ear swelling is measured 
within 1 h. This acute allergic skin response can be used 
to asses an immediate type hypersensitivity (ITH) [106, 
107]. Delayed type hypersensitivity (DTH) represents an 
additional skin test to assess late-phase cutaneous food 
allergic reactions, in which animals are injected s.c. with 
allergen into the hind footpads or in the ear pinnae and 
edema measured [108].

While in  vivo readouts allow for a rapid assessment 
of allergic responses, a caveat of these readouts is that 
measures of allergy are often subjective and thus, require 
blinding of experimental groups. In  vivo readouts pro-
vide more information than just sensitization potential as 
allergy effector mechanisms become activated, although 
not all of these responses are IgE-dependent. Lastly, one 
should ensure that ethical concerns are considered, par-
ticularly when inducing severe allergic reactions. The 
advantages and disadvantages of the different in  vivo 
readouts are summarized in Table 1.
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Ex vivo readouts
A wide range of ex vivo readouts can be utilized to assess 
or support the sensitizing capacity of novel proteins. 
The most common readout consists of measuring spe-
cific IgE antibody levels from exposed animals by ELISA 
[112]. However, allergen-specific IgG may obscure the 
analysis as allergen-specific IgG generally is present at 
100 to 1000-fold higher concentrations than allergen-
specific IgE. IgE detection can be improved by deplet-
ing IgG or by employing a capture ELISA [48, 113, 114]. 
In addition, new technologies such as rapid evanescent 
biosensor technology would be useful to avoid the influ-
ence of IgG when measuring allergen-specific IgE [115]. 
Although total IgE may be correlated with specific IgE in 
controlled experimental settings [116], identification of 
allergen-specific IgE is required for allergenic assessment 
of novel foods. It is also important to assess the biological 
activity of antigen-specific IgE. For example, functional-
ity of serum IgE may be assessed in vitro as the ability to 
induce specific degranulation of basophils or mast cells 
[117].

Allergic sensitization starts with activation of innate 
cells, including epithelial cells, DCs and ILC2  s, T cells 
and Th2 cytokines [118, 119]. Cytokine production and 
immune cell proliferation are typically measured after 
ex  vivo stimulation of cells from the lymph node or 
spleen with the allergen or with T cell mitogens [113, 
120]. While intracellular cytokine production on the 
single cell level can be determined by flow cytometry, 
cytokine secretion from cell suspensions is measured 
as supernatant concentrations by ELISA or multiplex 

assays. The Th1/Th2/Th17/Treg cytokine balance, rather 
than the absolute cytokine levels, is thought to be impor-
tant [121]. Current models suggest that cytokine and 
proliferation responses during the induction phase of 
sensitization in the draining lymph node may be useful 
in predicting sensitizing capacity [122–124]. Measuring 
TSLP, IL-25 and IL-33, along with ILC2 s, in the intestine 
during food allergy sensitization may provide additional 
predictive markers of sensitizing potential [26, 55].

Determination of cell phenotypes, subsets and co-stim-
ulatory molecules on innate and adaptive immune cells in 
the lymph node, spleen or intestines are readouts possi-
bly useful to support a sensitizing potential. Such meas-
urements can be performed by high throughput flow 
cytometric or mass spectrometry-based assays. Determi-
nation of gene expression (e.g. mRNA) and cytokine gene 
epigenetics, co-stimulatory molecules or inflammatory 
markers are also ex vivo endpoints currently applied.

Many animal models for food allergy investigate the 
anaphylactic response to a food allergy challenge [24, 
76, 107, 110]. Ex vivo endpoints for anaphylaxis include 
serum mast cell proteases (mMCP-1), [125] and hista-
mine release assays.

Future perspectives and conclusions
Considerable progress has been made in using animal 
models to better understand the basic mechanisms and 
environmental influences contributing to food allergen 
sensitization. Researchers intending to utilize animal 
models of food allergy should be aware of the experimen-
tal parameters outlined in this review, which may have 

Table 1 In vivo readouts

Test Advantages Disadvantages

Gastrointestinal [54] Non‑invasive, does not harm animals, qualitative and quan‑
titative allergy scoring, blinded scoring possible

No standardized scoring system, lab to lab variations, subjec‑
tive, diarrhea as only GI specific sign

Systemic

 Anaphylaxis score [76] Non‑invasive, qualitative and quantitative allergy scoring, 
blinded scoring possible

Subjective, ethical consideration

Hypothermia [109, 110] Rectal temperature (semi‑invasive), quantitative readout, 
blinded scoring possible

Accuracy of rectal measurements, transplanted responders 
(invasive), ethical consideration

 Vascular leakage  
[24, 110]

Qualitative readout, blinded scoring possible Invasive

Airways

 AHR [105] Qualitative and quantitative, objective readout, blinded 
measurements are possible, anesthesia not required for 
non‑invasive AHR

Invasive and anesthesia required (only for invasive AHR), 
usually endpoint measurement, expensive equipment 
required

Skin [111]

 PCA Quantitative measurement of skin thickness, qualitative 
assessement of vascular leakage

Invasive, blinded scoring not possible

 ITH Quantitative measurement of skin swelling Invasive, blinded scoring not possible

 DTH Quantitative measurement of skin/tissue swelling Invasive, blinded scoring not possible
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an impact on their results. In addition, published reports 
should include sufficient details concerning all of these 
parameters, to allow for reproduction in other laborato-
ries. The Pros and Cons of the experimental parameters 
discussed in this review are summarized in Table 2. The 
ideal animal model for assessing the potential sensitiz-
ing capacity of new proteins has yet to be developed, but 
the ideal model must predict known strong and weak 
food allergens. The development of a reference protein 
toolbox is essential and would revolutionize the use of 
animal models in the future risk assessment of potential 
allergens. Ideally, the sensitization route would be oral 
or via the skin and not only IgE measurements, but also 
functional or symptomatic responses should be recorded. 
In addition, more research is required to determine 
why only some proteins are allergenic in contrast to the 
majority of proteins. The identification of certain protein 
characteristics such as structural similarities or intrinsic 
activities will greatly assist the development of animal 
models for the screening of allergenic potential. However, 
even known food allergens do not induce food allergy in 
all exposed individuals and therefore, host and environ-
mental factors also need to be explored further, which 
can be achieved through the use of animal models.
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