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Aim: We performed an epigenome-wide association study within the Finnish Health 
in Teens cohort to identify differential DNA methylation and its association with 
BMI in adolescents. Materials & methods: Differential DNA methylation analyses of 
3.1 million CpG sites were performed in saliva samples from 50 lean and 50 heavy 
adolescent girls by genome-wide targeted bisulfite-sequencing. Results: We identified 
100 CpG sites with p-values < 0.000524, seven regions by ‘bumphunting’ and five CpG 
islands that differed significantly between the two groups. The ten CpG sites and 
regions most strongly associated with BMI substantially overlapped with obesity- and 
insulin-related genes, including MC2R, IGFBPL1, IP6K1 and IGF2BP1. Conclusion: Our 
findings suggest an association between the saliva methylome and BMI in adolescence.
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The worldwide prevalence of obesity has 
more than doubled since 1980, and in 2013 
there were 2.1 billion overweight and obese 
people worldwide [1]. Obesity rates have 
increased in most populations and in all age 
groups worldwide, and Finland is no excep-
tion [2,3]. Overweight and obese children are 
likely to stay obese into adulthood, and they 
tend to develop conditions such as Type 2 
diabetes and cardiovascular diseases more 
frequently and at a younger age [4]. Herita-
bility of obesity has been estimated at about 
50–70% [5], and more than 90 genetic loci 
have been associated with obesity-related 
traits [6]. However, these genetic loci account 
for only 2.7% of variation in BMI [6]. This 
suggests that nongenetic factors, such as epi-
genetics, may be important determinants of 
obesity. DNA methylation (DNAm) varies 
by genotype, sex, age [7,8], cell type [9] and 
environmental influences, such as smok-
ing [10]. DNAm is more plastic in utero and 
early life, potentially in response to environ-

mental factors [11,12]. DNAm is cell type spe-
cific and can vary in samples of mixed cell 
types, such as saliva and blood samples [13,14]. 
However, most sites in the genome have 
a common methylation profile across cell 
types [15–17].

Associations between epigenetic marks 
and adiposity have been shown in animal 
models [18,19] and humans [14,20], although it 
is not always clear if these epigenetic changes 
preceded obesity, or vice versa [14]. Differen-
tial DNAm between lean and heavy indi-
viduals in metabolically important genes 
has also been identified in several different 
cell types [14], and consistent findings have 
been shown for altered methylation in the 
IGF2/H19 imprinted region [21,22]. Genome-
wide studies of peripheral blood cells have 
shown extensive, but small DNAm altera-
tions in genes related to obesity, immune 
response, cell differentiation and regulation 
of transcription [14,23–24]. Tissue-specific dif-
ferential DNAm has been found in leptin, 
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pro-opiomeanocortin, glucose transporter-4 and 
insulin [20,25,26]. A large epigenome-wide association 
study (EWAS) on whole blood from European cohorts 
showed obesity-associated DNAm in HIF3A, which 
was replicated in other studies and tissues [27,28].

In adolescents, five gene regions showed differential 
DNAm between those that lost weight in an inter-
vention study and those that did not [29]. One study 
reported that DNAm at the RXRA locus at birth 
accounted for 26% of the variation in obesity at age 
9 years [30]. Moreover, DNAm in cord blood has been 
associated with body size and composition in child-
hood, although few CpG sites were significant after 
correcting for multiple testing [31].

We performed an EWAS study of saliva DNAm 
in lean and heavy adolescent girls from the Finnish 
Health in Teens (Fin-HIT) cohort with the aim to 
identify differential DNAm and its association with 
body size. In addition, we aimed to show the usefulness 
of saliva as a source of DNA in EWAS studies.

Materials & methods
Participants
The Fin-HIT study included about 11,000 adolescents 
aged 9–12 years from schools throughout Finland. 
Within the framework of the Fin-HIT study, all ado-
lescents received a measuring tape and written detailed 
instructions, including pictures, on how to measure 
and report height, weight and waist circumference at 
home with the assistance of an adult. We used this 
information to calculate BMI (weight in kg/height 
in m2). For the present analysis, we randomly selected 
100 Fin-HIT cohort members aged 11 years: 50 from 
the tenth percentile of BMI (<15 kg/m2) and 50 from 

the 90th percentile of BMI (>21.9 kg/m2), referred 
to as lean and heavy girls, respectively (Table 1). The 
Fin-HIT participants reported their menarcheal status 
in the baseline electronic questionnaires, answered at 
school on tablets. Of the girls included in this study 
60 had reached puberty (menarche = yes), 35 had not 
(menarche = no) and five did not answer the question 
(missing). The menarche status was included as a 
covariable in the model to adjust for weight differences 
due to puberty.

The Coordinating Ethics Committees of the Hos-
pital Districts of Helsinki and Uusimaa approved the 
study, and informed consent was obtained from all 
adolescents and one of their legal guardians.

Procedures
All Fin-HIT cohort members provided saliva samples 
at baseline using the Oragene DNA Self-Collection 
Kit (OG-500, DNAgenotek). DNA was extracted 
from these samples using an automated protocol and 
chemagic DNA Saliva Kit (PerkinElmer, MA, USA). 
Three μg of DNA were used as an input in the targeted 
bisulfite sequencing (TBS) protocol. The SureSelectXT 
Human Methyl-Seq (Agilent, CA, USA) protocol, 
including DNA shearing, ligation of methylated adapt-
ers, capturing by hybridization, bisulfite conversion 
using Zymo Research’s EZ DNA Methylation-Gold 
Kit (Zymo, CA, USA), PCR amplification, indexing 
and sample pooling, was used according to the man-
ufacturer’s recommendations. The predesigned tar-
get system captured a 84 Mb target and 3.7 million 
CpG sites. This includes CpG islands (20 Mb), can-
cer and tissue specific differential methylated regions 
(10 Mb), Gencode promoters (37 Mb), CpG island 

Table 1. Overview of the characteristics of the 100 11-year-old girls from the Finnish Health in Teens 
study and corresponding saliva samples.

Phenotype data Mean (min/max) Lean mean (n = 50) 
(min/max)

Heavy (n = 50) 
(min/max)

p-value

BMI (kg/m2)  14.4 (12.8/15) 24.1 (21.9/32.1) <2.2 × 10-16 

Waist circumference (cm)  58.2 (52/64) 79.6 (70/93) <2.2 × 10-16

Menarche  0.64 0.614 1

Sequencing data Mean Min Max  

High-quality sequencing pairs 42 mill 19 mill 80 mill  

Cytosine position analyzed 1647 mill 49 mill 2922 mill  

CpG at 10× coverage 3.1 mill 2.3 mill 6.7 mill  

CpG at 50× coverage 1.2 mill 0.1 mill 2.2 mill  

CpG at 100× coverage 0.4 mill 3481 1.0 mill  

Methylated CpG autosomal (%) 49.2 43.5 60.8  

Methylated CpG mitochondria (%) 2.3 0.63 20.6  

Max: Maximum; Mill: Million; Min: Minimum.
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Figure 1. Manhattan plot of CpG sites with differential 
DNA methylation in lean and heavy adolescents.
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shores and shelves, DNase I hypersensitive sites, Ref-
seq genes and Ensembl regulatory features (48 Mb) 
(Supplementary Information 1). The libraries were 
sequenced on a HiSeq (Illumina, CA, USA) with a 2 × 
93-101 bp length and an average depth of 13 gigabases 
per sample. TBS produces DNAm values for all CpGs 
within its target, yielding a consecutive high-resolution 
view of the DNAm over entire regions.

Bioinformatics & statistical analyses
A custom script produced β-methylation values from 
raw sequencing data by combining open-source soft-
wares. First, low-quality sequences and adaptors were 
removed using the Nesoni clip (version 0.115) [32]. 
After removal of duplicate sequences, the bisulfite-con-
verted sequence reads were then mapped to the human 
genome (hg19) using Bismark (version 0.10) [33]. This 
software transformed the sequences into a C–T and 
G–A version and each of the transformed sequences 
were aligned to equivalently preconverted reference 
genome using four parallel instances of the short read 
aligner Bowtie2 (version 2.0.5) [34]. The Bismark meth-
ylation extractor and custom formatting scripts were 
used to calculate β-methylation values for CpG sites. 
The first seven bases of each sequence were ignored, as 
a strong bias toward nonmethylation was caused by the 
insertion of unmethylated cytosines during end-repair 
in the sequencing library preparation. CpG sites at 
which more than 25% of the samples had less than 10× 
coverage were discarded. Cytosines in a non-CpG con-
text and mitochondrial DNA is only methylated to a 
small extent, thus hypermethylation can be interpreted 
as less than optimal efficiency of the of bisulfite con-
versation reaction. Methylation of non-CpG cytosines 
and mitochondrial CpG were highly correlated among 
the samples (r2 = 0.99) (Supplementary Information 2). 
We used the average level of mitochondrial DNAm in 
the sample as a measurement of bisulfite conversation 
efficiency in the model.

Differential DNAm at CpG sites between lean and 
heavy girls was identified using a logistic regression 
model adjusting for puberty status and mitochondrial 
DNAm. The accumulation of the samples at the extreme 
end of the waist circumference or BMI range makes lin-
ear regression unsuitable. Thus, a case–control design 
with logistic regression was found most appropriate 
to identify differentially methylated CpG sites. After 
adjustment for multiple testing with a false discovery 
rate, no individual CpG site was significant.

To identify differentially methylated regions by 
combining near-by CpG sites, we used two different 
approaches: Bumphunter and Fisher’s method [35,36]. 
Bumphunter was used to identify differentially meth-
ylated regions independent of gene annotation, as 

implemented in R by Aryee et al. [37]. We used the 
same covariates as in the logistic regression model 
described above, and set a cut-off for the first screening 
step at the top 0.1% of signals. The maximum allowed 
distance between CpG sites within the same regions 
was set to 1500 bp, and the number of bootstraps to 
500. Since this approach is independent of gene anno-
tation, and can give results that are difficult to inter-
pret in a biological setting, we also tested each CpG 
island for any enrichment of p-values. This was done 
by aggregating the p-values from all CpG sites within 
each island, and applying an extension of Fisher’s 
method [36], to summarize the individual CpG-wise 
p-values in to one p-value for each CpG Island. The 
correlation between the p-values was assumed to be the 
same as the correlation between the methylation val-
ues, estimated using the Spearman’s rank correlation 
coefficient. The qq-man application in R was used to 
produce Manhattan plots and QQ-plots [38].

Pathways enriched for differential DNAm were eval-
uated using the improved gene set enrichment analysis 
for genome-wide association studies (i-GSEA4GWAS 
v1.1) [39]. Predefined biological pathways and processes, 
including Biocarta, KEGG, Reactome pathways and 
gene ontology gene sets were assessed for enrichment. 
CpG sites up to 10 kb upstream and downstream of 
a given gene were mapped to the gene and the maxi-
mum -log (p-value) of all the CpG sites mapped to that 
gene was used to represent the gene. i-GSEA4GWAS 
uses site label permutation. We report the p-value and 
false discovery rate for the statistically significant gene 
sets < 0.001 and the associations for each CpG site and 
island for the outcome variable BMI.

Results
The difference in mean BMI between lean and heavy 
girls was 9.7 kg/m2, and the difference in waist cir-
cumference was 21.4 cm. Menarche was reported by 
64% of lean girls and 78% of heavy girls (Table 1). 
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We sequenced 3.1 million CpG sites with the mini-
mum 10× coverage, and 1.2 million of these sites had 
more than 50× coverage. The mean DNAm on auto-
somal CpG sites for all samples was 49.2%, and we 
could not identify a statistically significant difference 
between the global autosomal DNAm levels between 
the groups. As expected, most mitochondrial CpGs 
were hypomethylated.

The genome-wide differential DNAm analyses 
between lean and heavy girls, adjusted for menar-
cheal status and bisulfite conversion, resulted in a top 
list of 100 CpG sites with p-values below 5.28 × 10-4 
(Figure 1), but none that were genome-wide significant. 
More than 300 CpG had a p-value lower than 10-3. The 
two differential CpG sites (chr12: 78227663; p-value 
4.90 × 10-5 and chr18: 13868825; p-value 9.53 × 10-05) 
most strongly associated with BMI were located within 
the NAV3 intronic region and within the CpG island 
upstream of the obesity-related MC2R gene (Table 2). 
For both sites a significant hypermethylation in heavy 
relative to lean girls was observed (Figure 2A & B). The 
difference in DNAm varied across the groups in at 
least three closely related sites between 13868800 and 
13868800 on chromosome 18 (MC2R region), with 
position 13868825 (cg27031837) showing the stron-
gest association (Figure 2D). No notable difference 
in DNAm was observed surrounding chromosome 
12 position 78227663 (Figure 2C). The top ten list of 
strongest associated CpG sites included four sites that 
were located in or nearby obesity-related genes (MC2R, 
TMOD1, SLC35D3 and IGFBPL1), and two sites 
(MICAL2 and NRP2) were located in or nearby genes 
of interest in obesity research. Four CpG sites over-

lapped with targets on the 450K array (cg27031837, 
cg24371251, cg02203665 and cg01154445).

Significant differences in DNAm were observed 
in genomic regions and CpG islands associated with 
BMI. Seven regions, independent of annotation, were 
identified with the software bumphunter to have a 
significant aggregation of closely located differential 
DNAm sites (Table 3). The region with the strongest 
association with BMI was located in a gene-dense 
region upstream of the diabetes-related IP6K1 gene. 
‘Bumphunting’ also identified a region including 
18 CpG sites within the CpG island upstream of the 
MPL gene to be significantly different methylated in 
lean and heavy girls. The annotation specific analy-
ses using the extended Fishers method identified five 
CpG islands to have genome-wide significant differ-
ential DNAm associated with BMI (Table 3). Notably, 
the CpG islands upstream of the IGF2BP1 gene was 
among the top five hits (Table 3). The TBS allowed 
a detailed view of correlation between differential 
DNAm within genomic locations. A consecutive 
mean difference in DNAm throughout the regions 
was observed in proximity of NXN, MPL, ABLIM2 
and IGF2BD1 (Figure 3C, E, F & J, respectively). A few 
colocalized sites were driving the DNAm difference 
over the regions close to MYO1E/LDHAL6B and 
TRPV5 (Figure 3B & D, respectively). No clear correla-
tion in differential DNAm could be observed in prox-
imity of AMIGO03, CpG island 24 (6512) on chro-
mosome 5, PCDH19 and GRK4 (Figure 3A, G, H & I, 
respectively).

Gene set enrichment analysis identified pathways 
enriched for genes in a 10-kb range of CpG sites with 

Table 2. The ten DNA methylation sites most strongly associated with BMI.

Chr Pos p-value 
adjusted

Heavy relative 
to lean

n Mean 
coverage

Close genes Obesity 
related† 

Ref.

12 78227663 4.90 × 10-05 ↑ 93 34 NAV3   

18 13868825 9.53 × 10-05 ↑ 93 45 MC2R, CpGi:37, 
cg27031837

Yes [40]

2 180728399 1.08× 10-04 ↑ 94 111 ZNF385B/mir1258, 
cg24371251

  

12 5153954 1.33 × 10-04 ↑ 94 77 KCNA5, CpGi:125   

11 12114874 1.36 × 10-04 ↓ 94 255 MICAL2 Potentially [41]

9 100262507 1.51 × 10-04 ↑ 94 115 TMOD1, cg02203665 Yes [42]

3 122720613 1.54 × 10-04 ↑ 94 101 SEMA5B   

6 137244696 1.62 × 10-04 ↑ 93 49 SLC35D3, CpGi:270 Yes [43]

2 206548172 1.66 × 10-04 ↓ 93 41 NRP2, cg01154445 Potentially [44]

9 38487226 1.67 × 10-04 ↑ 93 63 IGFBPL1/FAM95C Yes [45]

↑ Hyper- and ↓ hypo-methylation in heavy relative to lean girls. ↑↓ No consistent directionality.
†Examples are referred.
Chr: Chromosome; Pos: Position.
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Figure 2. Detailed overview of DNA methylation of the two associated CpG sites with the strongest association 
with BMI and the surrounding regions. A boxplot of DNAm values for the lean and heavy group for: (A) position 
chr12:78227663 and (B) chr18:13868825. The targeted bisulfite sequencing also captures DNAm of the surrounding 
regions, here showing difference in mean DNAm in the lean group (dashed line) and heavy group (solid line) 
for: (C) chr12:78227586–78227757 and (D) chr18:13868730–13868997. 
chr: Chromosome; DNAm: DNA methylation.
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differential DNAm. Pathways such as metabolism of 
androgen and estrogen, starch and sucrose, and por-
phyrin and chlorophyll were enriched with nominally 
significant CpG sites (Table 4). All these gene sets 
contained the genes UGT1A1–10.

Discussion
We identified genomic sites, regions and pathways that 
differed in saliva DNAm between 11-year-old lean and 
heavy Finnish girls by investigating 3.1 million CpG 
sites. Many of the sites and regions were colocated with 
known obesity-related genes, predominantly in the 
insulin-melanocotin pathway. Considering the limited 

sample size of 50 girls in each group, we identified a 
number of noteworthy CpG sites and regions. Coloca-
tion of the ten CpG sites most strongly associated with 
BMI and obesity-related gene regions [40–45], as well as 
the fact that our results replicate previous findings [31], 
strengthening the probability that the observed asso-
ciations were true associations. We observed differen-
tial DNAm at chr12:78227663 nearby the gene NAV3, 
which, to our knowledge, has not been previously asso-
ciated with body size. It is plausible that differential 
DNAm at chr12:78227663 may affect the expression of 
SYT1, which is located 500 kb downstream of NAV3. 
SYT1 is a regulator of exocytosis and endocytosis of 
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insulin-containing vesicles [46] and is associated with 
eating behavior in pigs [47].

The MC2R CpG island harbored the second stron-
gest signal from a CpG site. The melanocortin system 
plays an important role in the pathogenesis of obe-
sity and in metabolic syndrome [40]. Mutations in the 
MC4R gene are the most common cause of monogenic 
obesity in humans, and play a role in regulating energy 
expenditure and energy intake through the control of 
satiety. MC3R has a more subtle role in energy homeo-
stasis [48], whereas MC2R is involved in the regulation of 
steroidogenesis and has recently been indicated to have 
a direct effect on adipose insulin sensitivity, endocrine 
function and thermogenesis [40]. Our findings support 
a role for MC2R in key adipose functions and further 
suggest that all melanocortin receptors play crucial 
roles in the regulation of energy balance [48]. Our data 
show that DNAm differs in at least three CpG sites 
within the CpG island upstream of MC2R, thus these 
entire regions should be investigated further. Most of 
the genes with the strongest associations (MICAL2, 
TMOD1, SLC35D3, NRP2, IGFBPL1) have been 
linked to obesity either directly or as a receptor of an 
obesity-related gene. IGF has consistently been iden-
tified as a differentially methylated region associated 
with BMI regardless of cell type [21,22], which we have 
now replicated in saliva.

TBS enables DNAm association analyses of single 
CpG sites, but also enables assessment of aggregated 
or correlated methylation within genes and regulatory 
regions, or regional assessment independent of annota-
tion. With increased statistical power from aggregation 
of DNAm independently of annotation using ‘Bump-
hunting’ the strongest association was found upstream 
of the insulin-stimulated gene IP6K1 [49]. We repli-
cated the findings of Relton et al., which showed asso-
ciations between core blood MPL differential DNAm 
and childhood obesity [31], using ‘Bumphunting’. Since 
our results based on saliva DNA replicated associations 
identified in core-blood DNAm [31], we might specu-
late that the differential DNAm found in saliva cells 
may already be present in utero. A detailed look at this 
region (Figure 3E) showed that lean adolescents had 
lower DNAm throughout a 200 bp region. A recent 
study indicated that a variant in the GRK4 gene and 
high intake of sodium increase the risk of obesity [50]. 
Our CpG island association results, also benefitting 
from increased statistical power due to aggregation 
of methylation at CpG islands, indicate that DNAm 
in the upstream CpG island GRK4 (Figure 3I) might 
also be of interest. The CpG island nearby IGF2BP1 
also demonstrated an association between the insulin 
pathway and DNAm in saliva. This finding replicates 
previous associations between IGF2BP1 DNAm and Ta
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Figure 3. The mean CpG DNA methylation in lean (dashed line) and heavy (solid line) throughout the five regions with the 
strongest associations with BMI identified by Bumphunter and CpGi analyses. The difference in DNA methylation means are due to 
a consecutive difference in the same direction (C), (E), (F) and (J), differences with intermediate non-different CpGs in (D) and (I), 
DNA methylation difference in a few CpGs illustrated by (B), or alternating methylation levels illustrated by (A), (G) and (H). 
chr: Chromosome; DNAm: DNA methylation.

20

30

40

50

70

chr3:49755876–49756190

M
ea

n
 D

N
A

m

49
75

62
00

60

49
75

61
50

49
75

61
00

49
75

60
50

49
75

60
00

49
75

59
50

49
75

59
00

80
87

20
0

80
87

19
5

80
87

19
0

80
87

18
5

80
87

18
0

80
87

17
5

80
87

17
0

80

85

90

95

M
ea

n
 D

N
A

m

100

59
49

92
00

59
49

91
00

59
49

90
00

59
49

89
00

59
49

88
00

59
49

87
00

70

75

80

85

95

chr4:8087171–8087220

M
ea

n
 D

N
A

m

100

90

60

70

80

chr15:59498717–59499229

M
ea

n
 D

N
A

m

100

90

chr5:3324770–3324967

33
24

95
0

33
24

90
0

33
24

85
0

33
24

80
0

90

100

80

70

60

M
ea

n
 D

N
A

m

14
26

25
90

0

14
26

26
00

0

14
26

26
10

0

14
26

26
20

0

14
26

26
30

0

14
26

26
40

0

14
26

26
50

0

chr7:142625882–142626550

43
81

50
50

43
81

51
00

43
81

51
50

43
81

52
00

43
81

52
50

43
81

53
00

45

40

20

50

35

30

25

M
ea

n
 D

N
A

m
chr1:43815128–43815324

60

20

70

50

40

30M
ea

n
 D

N
A

m

47
09

20
00

47
09

20
50

47
09

21
00

47
09

21
50

47
09

22
00

chr17:47091975–47092197

30
43

25
0

30
43

30
0

30
43

35
0

30
43

40
0

30
43

45
0

30
43

50
0

30
43

55
0

25

10

30

20

15M
ea

n
 D

N
A

m
chr4:3043200–3043540

82
15

50

82
15

60

82
15

70

82
15

80

82
15

90

chr17:821592–821596

90

100

80

70

60

M
ea

n
 D

N
A

m

99
66

61
50

99
66

62
00

99
66

62
50

99
66

63
00

99
66

63
50

chrx:99666133–99666378

50

10

60

40

30

20M
ea

n
 D

N
A

m

Heavy Lean

future science group

Epigenome-wide association study of body size in adolescent girls    Research Article



1502 Epigenomics (2016) 8(11) future science group

Research Article    Rounge, Page, Lepistö, Ellonen, Andreassen & Weiderpass

body mass [51], as well as a recent study on monozy-
gotic twins, which indicated that the differences in 
DNAm are due to nonshared environmental factors 
that influence body weight [52].

Three pathways were enriched for differential DNAm, 
and previous studies have also shown obesity-related epi-
genetic changes in some of these pathways [53,54]. How-
ever, the enrichment in all three pathways was driven 
mainly by DNAm differences in the genes UGT1A1–10; 
thus further studies on these genes are warranted.

Several studies have identified associations between 
BMI and DNAm in the H19/IGF2 region on chro-
mosome 11 [21,22] and more recently in the ABCG1 
gene region on chromosome 21 [27,55]. None of these 
gene regions had signals among our top 100 findings, 
although two signals downstream of H19 (chromo-
some 11, 2020577 and 2020553) were nominal sig-
nificant (both with p-value = 0.002). We also identi-
fied a signal downstream of the ABCG1 CpG island 
(p-value = 0.003). Lack of power and difference in tis-
sue type (blood vs saliva) may explain why we did not 
replicate these findings.

All individuals in this study were girls born in the 
same year, removing potential confounding by age [8] 
and sex. 11-year-olds are also less likely to have a his-
tory of potential DNAm confounders such as diet-
ing, medication use and smoking than older girls and 
adults [56,57]. Menarche was used as an indicator of 
puberty onset and likely effects DNAm levels [58,59]; 
hence, menarche status was included in the analyti-
cal models. This adjustment might conceal associa-
tions with regions such as the CYP19A1 promoter 
CpG island, which has previously been found to be 
associated with puberty [58]. The study design used 
the extremes of the BMI curve. This design was cho-
sen to compensate for the relatively small sample size 
but may mask similarities in DNAm among lean and 
heavy girls that differ in normal-weight adolescents. 
Although BMI is only an indicator of body fat in ado-
lescents [60], it is likely that the substantial difference in 
BMI between the tenth and 90th percentiles indicates 
a clear distinction in body size between these groups.

Gene expression in saliva and DNAm may be influ-
enced by factors such as diet. However, evaluating the 
potential role of reverse causation is an issue outside 
the scope of this study. Varying cell-type composition 
is a challenge in analyses of the saliva methylome, as 
it is in analyses of the blood methylome. There is a 
good reference cell-type composition for the blood 
methylome. A similar good reference does not exist 
for the saliva methylome. This, in combination with a 
lack of knowledge on the CpG sites outside the 450K 
array target [61], made a reference-free cell-type adjust-
ment approach [62] impossible. A correlation between 
BMI in adolescents and cell-type composition in saliva 
is unlikely, thus we believe the results without this 
adjustment are valid.

Most recent EWAS studies were based on the Infin-
ium human Methylation 450K or the older 27K array. 
However, our study used a TBS approach, which cov-
ered 84 Mb of the genome and enabled the detection 
of differential DNAm with high genomic resolution. 
While the 450K covers about approximately 1.7%, 
the TBS covered about 11.1% of the CpG sites in the 
human genome. Considering that most of the identi-
fied regions of interest presented here are not covered 
by 450K, this difference in resolution is important. It 
will be of great clinical interest to confirm the saliva 
DNAm associations to body size and the directionality 
of these findings. Further investigations of the epigen-
etic mechanisms of body mass regulation for each of 
the associations are warranted.

Conclusion & future perspective
In summary, the saliva methylome EWAS of 50 lean 
and 50 heavy Finnish girls identified differentially 
methylated CpG sites. The two strongest signals were 
located near NAV3 and MC2R. The substantial over-
lap with obesity- and insulin-related genes, including 
MC2R, IGFBPL1, IP6K1 and IGF2BP1, and the repli-
cation of MPL, indicate true associations between the 
saliva methylome and BMI. Saliva is a readily available 
source of DNA that can shed light on the etiology of 
DNAm and obesity. In the future, saliva DNAm could 

Table 4. Gene set enrichment analyses of CpG sites and islands associated to BMI and waist 
circumference.

Pathway p-value FDR Significant/selected/all genes

HSA00150 androgen and estrogen 
metabolism

0.0010 0.060 40/40/54

HSA00860 porphyrin and chlorophyll 
metabolism

<0.001 0.084 31/32/41

Starch and sucrose metabolism 0.0020 0.141 32/32/44

Distance between gene and CpG site or island were 10 kb.
FDR: False discovery rate.
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be used as a biomarker to identify persons at risk of 
developing obesity.
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Executive summary

•	 An epigenome-wide association study between lean and heavy 11-year-old girls identified differential DNA 
methylation in 100 CpG sites with p-values below 5.28 × 10-4.

•	 The two differential DNA methylation sites with the strongest association with BMI were located within the 
NAV3 and MC2R genes.

•	 Our finding support a role for MC2R in key adipose functions.
•	 ’Bumphunting’ identified seven associated regions; the region with the strongest association with BMI was 

located close to the diabetes-related IP6K1 gene.
•	 Associations between the MPL gene region and childhood obesity, previously shown in blood, were replicated 

in saliva.
•	 The CpG islands upstream of IGF2BP1 were among those that were most significantly associated with body size.
•	 Gene set enrichment analysis identified diet-related pathways associated with body size.
•	 Associations between body size and methylation of CpG sites close to obesity- and insulin-related genes 

indicate an effect of the saliva methylome on BMI or vice versa.
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