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Abstract
With case–parent triad data, one can frequently deduce parent of origin of the child's

alleles. This allows a parent-of-origin (PoO) effect to be estimated as the ratio of

relative risks associated with the alleles inherited from the mother and the father,

respectively. A possible cause of PoO effects is DNA methylation, leading to genomic

imprinting. Because environmental exposures may influence methylation patterns,

gene–environment interaction studies should be extended to allow for interactions

between PoO effects and environmental exposures (i.e., PoOxE). One should thus

search for loci where the environmental exposure modifies the PoO effect.

We have developed an extensive framework to analyze PoOxE effects in genome-wide

association studies (GWAS), based on complete or incomplete case–parent triads with

or without independent control triads. The interaction approach is based on analyz-

ing triads in each exposure stratum using maximum likelihood estimation in a log-

linear model. Interactions are then tested applying a Wald-based posttest of parame-

ters across strata. Our framework includes a complete setup for power calculations.

We have implemented the models in the R software package Haplin.

To illustrate our PoOxE test, we applied the new methodology to top hits from our

previous GWAS, assessing whether smoking during the periconceptional period mod-

ifies PoO effects on cleft palate only.

K E Y W O R D S
case–parent triad, gene–environment interaction, hybrid design, imprinting, parent-of-origin, power and

sample size calculation, trios

1 INTRODUCTION

A large number of human traits can be classified as com-

plex, in the sense that they are assumed to be influenced

by multiple genes and their interactions with environmen-

tal or behavioral factors (Pasaniuc & Price, 2016). Although

thousands of genome-wide association studies (GWAS) have
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been conducted since the turn of the millennium, for most

complex traits the genetic variants identified thus far explain

only a small fraction of the phenotypic variation attributed to

genetic effects (Manolio et al., 2009). This has underscored

the need to investigate disease mechanisms beyond simple

genetic effects alone. One example is gene–environment inter-

actions (GxE), where the genetic effects are modified by
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environmental exposures. For instance, Shi et al. (2007) have

shown that maternal cigarette smoking in the periconceptional

period can modify the association between single nucleotide

polymorphisms (SNPs) and orofacial clefts.

With access to case–parent triad data, where an offspring

and his/her parents have been genotyped, other genetic effects

such as parent-of-origin (PoO) effects can be assessed. A PoO

effect refers to the situation where the effect of a particular

allele in the child depends on whether it is inherited from

the mother or the father (Lawson, Cheverud, & Wolf, 2013;

Connolly & Heron, 2014). For example, an allele might be

protective when inherited from the mother but detrimental

when inherited from the father. One example of a PoO effect is

genomic imprinting, an epigenetic phenomenon where one of

the inherited parental alleles is expressed whereas the other

is silenced (Bartolomei & Tilghman, 1997; Reik & Walter,

2001). Although PoO effects are often used interchangeably

with imprinting (Lawson et al., 2013), we here define PoO

effects in statistical terms to mean an interaction effect; a PoO

effect occurs if the phenotypic risk varies according to the

parental origin of the variant allele.

In recent years, a growing number of studies have aimed

to identify PoO and GxE effects separately for a wide range

of diseases. However, it is reasonable to assume that the

combined interaction effect (PoOxE effect) may also play an

important role in complex traits. In our context, this means

that the observed PoO effect may vary across environmen-

tal strata, which is plausible from a biologic perspective.

A known cause of imprinting is DNA methylation in the

germline. It is possible that maternal environmental expo-

sures influencing methylation patterns might also influence

the effects of maternally and paternally inherited alleles in

unequal measures.

Conceivably, PoOxE effects may appear in different ways.

The allele in question might increase risk only when trans-

mitted from exposed mothers. A PoOxE effect may also be

observed if the allele is protective to the child only when inher-

ited from unexposed mothers but with no particular effect in

the other situations. In principle, there might even be a “qual-

itative” interaction where the genetic effect is reversed. For

instance, an allele might increase risk when inherited from

exposed mothers and decrease risk when inherited from unex-

posed mothers, and concurrently decrease risk when inherited

from exposed fathers and increase risk when inherited from

unexposed fathers.

Another factor that needs to be controlled for in PoOxE

models is the possible presence of maternal genetic effects.

Maternal genetic effects occur when the genotype of the

mother affects the phenotype of the child, regardless of the

genetic material that has been transferred from mother to child

(Connolly & Heron, 2014). Alleles carried by the mother may

influence fetal development directly, for example, through

maternal metabolic factors (Guilmatre & Sharp, 2012). This

effect is distinct from PoO effects, in which we compare the

effect of alleles in the child, depending on whether they were

inherited from the mother or the father (Howey et al., 2015).

Maternal genetic effects must therefore be estimated primar-

ily from the nontransmitted allele of the mother, and appro-

priate models for PoOxE effects should allow maternal and

PoO effects to be estimated simultaneously. Clearly, mater-

nal effects are particularly important to studies of perinatal

disorders.

Wang, Yu, Miller, Tang, and Perera (2011) previously

introduced a test to screen for interactions between imprinted

genes and environmental exposures. Still, there is a need to

develop more general methods to investigate the joint effects

of PoO and GxE (Lawson et al., 2013, p. 616). To address

this gap in knowledge, we propose a novel approach that

enables a full investigation of PoOxE effects. We develop

our model for PoOxE within a flexible maximum-likelihood

framework based on log-linear models (Gjessing & Lie, 2006;

Skare et al., 2012; Jugessur, Skare, Harris, Lie, & Gjessing,

2012a), originally described in Wilcox, Weinberg, and Lie

(1998), Weinberg, Wilcox, and Lie (1998), and Gjessing and

Lie (2006). Our main study unit is the case-parent triad, but

it can be extended to include independent control children

or control triads in a hybrid design (Weinberg & Umbach,

2005). Note that control triads are optional because the non-

transmitted parental alleles implicitly serve as pseudocontrols

(Knapp, Seuchter, & Baur, 1993; Schaid & Sommer, 1993;

Cordell, Barratt, & Clayton, 2004; Cordell, 2004). Moreover,

we use an expectation maximization (EM) algorithm (Demp-

ster, Laird, & Rubin, 1977) to accommodate missing parents

in mother–offspring or father–offspring dyads. A full imple-

mentation of our models is provided in Haplin, a flexible

R package for genetic association analyses of single SNPs

or haplotypes (Gjessing & Lie, 2006). The implementation

uses parallel processing of SNPs, which makes GWAS anal-

yses feasible. Haplin performs both testing and estimation of

genetic effects. The framework also incorporates analyses of

X-chromosome SNPs in a natural way.

In statistical terms, PoO analyses are interaction analy-

ses; the effect of an allele in the child may be modified by

its parent of origin. In contrast, regular fetal-effect analyses

assume that the effect of an allele in the child is indepen-

dent of whether it is transmitted from the mother or the father,

that is, the effect is estimated without stratifying on parental

origin. Higher sample sizes are thus required for PoO analy-

ses to achieve the same statistical power as in regular fetal-

effect analyses. Accordingly, PoOxE analyses can be seen as

second-order interaction analyses. Hence, an even larger sam-

ple size is needed for a PoOxE analysis than for the corre-

sponding PoO or GxE analysis to obtain the same statisti-

cal power. We therefore provide a thorough discussion of the

power for PoOxE analyses and provide software to compute

power for all relevant scenarios.
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The article is structured as follows. In the Methods sec-

tion, we first provide relevant background information and

present the sampling and penetrance models. Next, we intro-

duce our PoOxE test and derive the statistical methodology

for single-SNP analysis, and we also explain how PoOxE anal-

yses can be carried out for SNPs on the X-chromosome. We

conclude the Methods section by presenting a previously pub-

lished case triad study of orofacial clefts. In the Results sec-

tion, we illustrate our PoOxE approach by using Haplin to

analyze genetic triad data from the cleft study. We then assess

the operating characteristics of the PoOxE test by investigat-

ing its power and attained significance level. The appendix

includes a detailed discussion of PoOxE effects for haplotypes

(Appendix A.1). Additionally, issues pertaining to sample size

and power calculation are considered, and we present formu-

lae and algorithms for our power computations (Appendix

A.2). Haplin commands for estimating PoO, GxE and PoOxE

effects on candidate genes are provided in the Supporting

Information (S1). Statistical power calculations in Haplin are

also covered in detail.

2 METHODS

2.1 Sampling and penetrance model
The likelihood model is based on a log-linear model for the

observed triad frequencies, conditional on the child being a

case. Optionally, independent controls or control triads can be

added to improve estimation of allele/haplotype frequencies.

In this section, we describe the underlying sampling and pen-

etrance model. A more detailed derivation of the log-linear

model is provided elsewhere (Gjessing & Lie, 2006).

We consider a single, multi-allelic locus with 𝐾 alleles 𝐴1,

𝐴2,… , 𝐴𝐾 , with corresponding population allele frequencies

𝑝1, 𝑝2,… , 𝑝𝐾 . The genotypes for the mother, father, and

child are denoted by 𝑀 , 𝐹 , and 𝐶 , respectively, and the full

triad as (𝑀,𝐹 , 𝐶) = (𝐴𝑖𝐴𝑗 , 𝐴𝑘𝐴𝑙, 𝐴𝑗𝐴𝑙). For notational

convenience, we assume that the second allele from the

mother and the second allele from the father are transmitted

to the child; that is, the full triad (𝑀,𝐹 , 𝐶) can thus be

described by the mating type (𝑀 , 𝐹 ) = (𝐴𝑖𝐴𝑗 , 𝐴𝑘𝐴𝑙).

The sampling model should describe the distribution of

(𝑀,𝐹 , 𝐶), conditional on the child being a case. If 𝐷 denotes

the event that the child is a case, Bayes' theorem allows our

sampling model to be written as

𝑃 (𝑀,𝐹 , 𝐶|𝐷) = 𝑃 (𝐷|𝑀,𝐹 , 𝐶)𝑃 (𝑀,𝐹 , 𝐶)∕𝑃 (𝐷). (1)

The disease prevalence, 𝑃 (𝐷), cannot be observed directly

from the case triad distribution and serves as a normaliz-

ing constant only. Assuming a population in Hardy–Weinberg

equilibrium (HWE) with random mating and Mendelian

transmission, we have

𝑃 (𝑀,𝐹 , 𝐶) = 𝑃 (𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙) = 𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙.

Although the HWE assumption can be avoided using a more

detailed parameterization (Weinberg et al., 1998; Gjessing &

Lie, 2006), its inclusion in the model is convenient for com-

putational efficiency and useful for reconstructing haplotypes.

However, analyses should always include a strategy for check-

ing large deviations from HWE because such deviations may

be indicative of data issues. Top hits from a GWAS analysis

should always be further investigated; Haplin performs a test

for HWE on all SNPs.

The penetrance model, 𝑃 (𝐷|𝑀,𝐹 , 𝐶), describes the prob-

ability of a child having the disease, conditional on the triad

genotype. Assigning different effects to the alleles depending

on parental origin, a penetrance model for PoO effects is

𝑃 (𝐷|𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙) = 𝐵⋅RR𝑀,𝑗RR𝐹 ,𝑙RR∗
𝑗𝑙
,

where RR𝑀,𝑗 and RR𝐹 ,𝑗 are the risk increase (or decrease)

associated with allele 𝐴𝑗 , relative to the baseline risk level

𝐵, depending on whether the allele is transmitted from the

mother or the father. The fraction RR𝑀,𝑗∕RR𝐹 ,𝑗 is then a

measure of the extent of the risk associated with allele 𝐴𝑗 ,

depending on parental origin. The parameter RR∗
𝑗𝑙

is included

to allow homozygous individuals to have a risk that deviates

from what would be expected from a multiplicative model

(e.g., dominant or recessive patterns). To incorporate this

deviation, we have that RR∗
𝑗𝑙
= RR∗

𝑗
when 𝑗 = 𝑙 and that

RR∗
𝑗𝑙
= 1 when 𝑗 ≠ 𝑙. Thus, if RR∗

𝑗
= 1 for all 𝑗, the pene-

trance model is purely multiplicative. Note that 𝐵 is typically

associated with the reference allele and functions only as a

normalizing constant. Moreover, this model also applies to

multi-allelic markers. The full sampling model (1) can then

be parameterized as

𝑃 (𝑀,𝐹 , 𝐶|𝐷) = 𝑃 (𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙|𝐷)

= 𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙 ⋅ 𝐵⋅RR𝑀,𝑗RR𝐹 ,𝑙RR∗
𝑗𝑙
∕𝑃 (𝐷).

Conditional on the child being a case, the triad type frequen-

cies follow a multinomial distribution, and the parameters

from the relevant sampling model are readily estimated by the

method of maximum likelihood. The EM algorithm can be

used to accommodate missing information, including recon-

structing unknown haplotype phase from multiple markers.

To ensure that the model is not overparameterized, one com-

monly sets 𝑅𝑅 = 1 for a reference allele. Alternatively, pop-

ulation or reciprocal references can be used (Gjessing & Lie,

2006). Notice that throughout this article we assume a multi-

plicative dose–response relationship.

An important feature of the log-linear model is the possibil-

ity to incorporate and adjust for maternal effects. Specifically,
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PoO and maternal genetic effects can be addressed simultane-

ously by the model

𝑃 (𝐷|𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙) = 𝐵 ⋅ RR𝑀,𝑗RR𝐹 ,𝑙RR∗
𝑗𝑙

×RR
(𝑀)
𝑖

RR
(𝑀)
𝑗

RR
(𝑀)∗
𝑖𝑗

,

where RR
(𝑀)
𝑖

is the relative risk associated with allele 𝐴𝑖 car-

ried by the mother, and RR
(𝑀)∗
𝑖𝑗

is interpreted analogously

to RR∗
𝑖𝑗

. We thus assume that the maternal alleles have a

multiplicative effect on top of the fetal alleles. Note specifi-

cally that in a combined model, the PoO effect is estimated

essentially by contrasting allele frequencies of transmitted

alleles, depending on parental origin, whereas the maternal

effect is estimated by contrasting the frequencies of nontrans-

mitted alleles in case mothers with that of nontransmitted alle-

les in case fathers.

Note that the PoO model requires information on parental

origin, which is not available for ambiguous (uninforma-

tive) triads. However, the EM algorithm is implemented in

our software and uses maximum likelihood to account for

unknown parental origin in ambiguous triads. Additionally,

it will account for missing information on individuals, such

as when some triads are reduced to mother–child dyads due

to missing data on the father. The basic model relates to a sin-

gle multi-allelic locus. In combination with the EM algorithm

it extends directly to haplotypes over multiple loci by statis-

tically reconstructing unknown haplotype phase (Gjessing &

Lie, 2006).

2.2 Parent-of-origin-environment
interactions
Our PoOxE approach seamlessly integrates the PoO model

with that of GxE. We therefore start by presenting and inter-

preting the PoO and GxE analyses separately, before com-

bining them in the PoOxE test. The theory for PoOxE is

here derived for a single SNP, but the extension to haplo-

types is provided in Appendix A.1. We conclude the sec-

tion by illustrating how PoOxE effects can be assessed on the

X-chromosome. Relevant Haplin commands for investigating

PoO, GxE, and PoOxE effects are provided in S1.

For a single SNP, let RR𝑀 and RR𝐹 denote the relative

risks associated with the variant allele (i.e., the nonreference

allele) if it is inherited from the mother or from the father,

respectively. We define the PoO effect as the relative risk ratio

RRR = RR𝑀∕RR𝐹 . This fraction is a measure of the magni-

tude of the risk associated with the allele under study, depend-

ing on whether it is maternally or paternally derived. A ratio

larger than one indicates a higher risk when the variant allele

is inherited from the mother versus the father. If it is equal

to 1, the variant allele increases (or decreases) the risk by

the same amount regardless of parental origin, and there is

no PoO effect. For instance, if the variant allele doubles the

risk of disease independently of parental origin, this is a stan-

dard fetal association; as such, it would have been identified

in a traditional search for fetal gene effects. Note that one can

assume a priori that, for instance, the paternal allele has no

effect (i.e., RR𝐹 = 1) and try to detect a “pure” imprinting

effect RR𝑀 . This effect is, however, confounded with a stan-

dard fetal effect whenever the assumption RR𝐹 = 1 does not

hold. Accordingly, we prefer to define our PoO test as a con-

trast between maternally and paternally derived allele risks.

Under the weak assumption of independence between

exposure and child genotype conditional on parental mating

type (Shi, Umbach, & Weinberg, 2010), interactions between

genes and a categorical exposure variable can be incorporated

into the log-linear framework. Our GxE analyses fit the log-

linear model separately in each exposure stratum and con-

sequently do not assume that allele frequencies are constant

across strata. The model uses a Wald test to detect whether

the relative risk estimates differ significantly across the expo-

sure levels. In the situation of two exposure categories (1 =
unexposed, 2 = exposed), we define RR1 and RR2 as the rel-

ative risks in the unexposed and exposed strata, respectively.

The relative risk ratio RRR = RR2∕RR1 is a measure of the

extent of the risk associated with the allele, depending on the

exposure status of the case. For instance, a ratio larger than 1

implies that an exposed child carrying the variant allele has

a higher risk than the unexposed child carrying the variant

allele.

The PoO effect can be seen as a statistical interaction

between the transmitted allele and its parental origin, whereas

the GxE effect is an interaction between a main fetal effect

with an external environment. It is thus natural to consider a

PoOxE effect as a two-way interaction that takes into account

both parent of origin and environmental exposure in the same

estimate. At a locus with two alleles and a dichotomous envi-

ronmental exposure, the ratio

RRR = (RR𝑀,2∕RR𝐹 ,2)∕(RR𝑀,1∕RR𝐹 ,1) (2)

is the PoO effect in the second stratum compared with the PoO

effect in the first stratum. If RRR = 1, it means that there may

well be PoO effects, but that they, when measured on a mul-

tiplicative scale, are the same in both environmental strata.

Similarly, since Eqn (2) may also be expressed as

RRR = (RR𝑀,2∕RR𝑀,1)∕(RR𝐹 ,2∕RR𝐹 ,1),

we will have RRR = 1 if a GxE effect is the same for alle-

les of both parental origins. It is worth noting that the actual

direction of an effect (i.e., RRR > 1 or RRR < 1) depends on

which allele and exposure group are chosen as reference.
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2.2.1 The Wald test for interaction
In the log-linear model, statistical inference is performed on

log-transformed relative risks and relative risk ratios. Thus, in

the PoOxE situation, we would like to test the full interaction

hypothesis

β𝑀,1 − β𝐹 ,1 = β𝑀,2 − β𝐹 ,2 = ⋯ = β𝑀,𝑆 − β𝐹 ,𝑆 ,

where β𝑀,𝑠 and β𝐹 ,𝑠 are the log relative risks within stra-

tum 𝑠, depending on whether the allele is derived from the

mother or the father. Within each mutually exclusive expo-

sure stratum, 𝑠 = 1, 2,… , 𝑆, we calculate β̂𝑠 = β̂𝑀,𝑠 − β̂𝐹 ,𝑠,

the difference between parental relative risks estimated on

a log-scale. From the asymptotic theory of log-linear mod-

els (Christensen, 1997, Ch. 1 2.3), �̂� follows approximately a

multivariate normal distribution with mean 𝛃 and variance–

covariance matrix 𝚺,

�̂� =

⎡⎢⎢⎢⎢⎣
β̂1
β̂2
⋮
β̂𝑆

⎤⎥⎥⎥⎥⎦
∼ MVN(𝛃,𝚺).

Because the strata are independent, the estimate of 𝚺 is

�̂� =

⎡⎢⎢⎢⎢⎣
σ̂21 0 ⋯ 0
0 σ̂22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ σ̂2

𝑆

⎤⎥⎥⎥⎥⎦
= diag

([
σ̂21, σ̂

2
2,… , σ̂2

𝑆

])
,

where σ̂2
𝑠
= σ̂2

𝑀,𝑠
+ σ̂2

𝐹 ,𝑠
− 2ρ̂𝑀,𝐹 ,𝑠σ̂𝑀,𝑠σ̂𝐹 ,𝑠, with ρ̂𝑀,𝐹 ,𝑠

being the correlation between β̂𝑀,𝑠 and β̂𝐹 ,𝑠 within stratum 𝑠.

The Wald test can then be used to conduct post-hoc infer-

ence on the β parameters, based on the asymptotic normality

(Agresti, 2013, Ch. 1.3). Let 𝑫 be an appropriate 𝑟 × 𝑆 con-

trast matrix for the β parameters, with 𝑟 ≤ 𝑆 − 1. It follows

that asymptotically,

𝑫�̂� ∼ MVN(𝑫𝛃,𝚺𝑫 ),

where �̂�𝑫 = 𝑫�̂�𝑫𝑇 . The Wald test statistic is then

𝑇 = (𝑫�̂�)𝑇 �̂�−1
𝑫
(𝑫�̂�).

Under the null hypothesis of 𝑫𝛃 = 𝟎, 𝑇 has an approximate

chi-squared distribution with 𝑟 degrees of freedom, χ2(𝑟).
In the PoOxE test, our null hypothesis can be seen as a test

of all strata 𝑠 = 2,… , 𝑆 against the first stratum 𝑠 = 1; that is,

the test takes the form

𝑫𝛃 =

⎡⎢⎢⎢⎢⎣
1 −1 0 ⋯ 0
1 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 ⋯ −1

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎣
β𝑀,1 − β𝐹 ,1
β𝑀,2 − β𝐹 ,2

⋮
β𝑀,𝑆 − β𝐹 ,𝑆

⎤⎥⎥⎥⎥⎦
= 0.

Hence, the Wald test statistic has an approximate χ2 distribu-

tion with 𝑟 = 𝑆 − 1 degrees of freedom under the null hypoth-

esis of no PoOxE effect. This is an overall test for any differ-

ence in PoO effects across strata when measured on a log risk

scale.

Interactions with a continuous exposure variable can be

incorporated in our framework by categorizing the variable

into an appropriate number of categories and testing for a

trend-type association of the resulting ordinal variable. This

approach is outlined for GxE effects in Skare et al. (2012), and

a test for trend is included in Haplin.

2.2.2 PoOxE analysis of X-linked markers
Genetic association analyses of X-linked markers are espe-

cially relevant if the prevalence of a complex trait differs

systematically for males and females. Various penetrance

models in Haplin address different causal scenarios that

apply to an X-linked disease locus. The models depend

on the assumptions made regarding allele-effects in males

versus females, and might include sex-specific baseline risks,

shared or distinct relative risks for males and females, and

X-inactivation in females. A detailed description of param-

eterization models is provided in a previous study (Jugessur

et al., 2012b). Haplin also allows for PoOxE analyses of X-

linked markers. Separate PoOxE analyses on males only are

not possible; females are needed to obtain a contrast between

maternally and paternally derived X-chromosome alleles.

However, fathers and male children contribute to estimating

allele frequencies, and importantly, to facilitate haplotype

reconstruction. Relevant Haplin commands for analyzing

PoOxE effects on the X-chromosome are provided in 𝑆1.

2.3 Case triad study: Cleft palate–only data
analysis
Cleft palate only (CPO) is a common craniofacial birth defect

in humans, occurring with (nonisolated) or without (isolated)

other congenital anomalies or identifiable malformation syn-

dromes. The prevalence rate for isolated CPO is 5 per 10,000

births worldwide (Mossey & Castilla, 2003). A wide array

of genetic variants and environmental risk factors have been

reported to increase the risk of CPO (Mossey, Little, Munger,

Dixon, & Shaw, 2009; Dixon, Marazita, Beaty, & Murray,

2011; Rahimov, Jugessur, & Murray, 2012). However, as with

many other complex traits, the genetic variants discovered so

far only explain a minor fraction of the phenotypic variabil-

ity. From our previously published GWAS (Beaty et al., 2010,

2011; Shi et al., 2012), the genotypes for 1575 individuals

from 550 isolated CPO families were available, including 466

complete case–parent triads. These families were mainly of

European and Asian ancestry, but a small number of families

of other ethnicities were also present.
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We considered three SNPs from the GWAS data to illus-

trate our PoOxE approach. On these SNPs, we conducted

pooled analyses using all ethnicities, as well as separate anal-

yses for Europeans only. The environmental factor was mater-

nal cigarette smoking during the periconceptional period, that

is, from 3 months before conception until 3 months into preg-

nancy, a window of exposure of 6 months in total. In the self-

administered questionnaire of the Norway Facial Clefts Study

(https://www.niehs.nih.gov/research/atniehs/labs/epi/studies/

ncl/index.cfm), this was evaluated as a simple yes/no response

to ever having smoked during this period. The GWAS data set

is available at the dbGAP database (http://www.ncbi.nlm.nih.

gov/gap) under accession ID phs000094.v1.p1. Information

on quality control and detailed characterizations of study

participants and environmental exposure have been pro-

vided elsewhere (Haaland et al., 2017). Ethics approvals were

obtained from the respective ethics committees for all the data

in the cleft consortium. Background information on the study

is provided in the original publication (Beaty et al., 2010).

3 RESULTS

3.1 Case triad study: Illustration of PoOxE
data analysis
To illustrate our PoOxE test, we considered three SNPs from

our GWAS data on CPO (Beaty et al., 2010, 2011; Shi et al.,

2012). We only used top hits from previous studies, employing

the same genetic triad data. Hence, the examples serve only as

an illustration of our PoOxE test and not as independent repli-

cations of previous findings. Because our PoOxE approach

integrates the PoO and GxE models, we start with examples

of PoO effects (Table 1a) and GxE effects (Table 1b) before

looking at the combined PoOxE effects (Table 1c).

The SNP rs7516430, located in the gene for “chromod-

omain helicase DNA binding protein 1-like” or CHD1L on

chromosome 1, had one of the most distinct signals in a pre-

vious PoO GWAS analysis of CPO by Shi et al. (2012). We

re-analyzed the data for this SNP on Europeans only, apply-

ing a Wald test. Table 1a (first row) presents the PoO esti-

mates RR𝑀 , RR𝐹 and RRR = RR𝑀∕RR𝐹 . The most frequent

allele, 𝐴, was used as reference. If allele 𝑇 is inherited from

the mother, it increases the risk of CPO. If, on the other hand,

𝑇 is inherited from the father, the risk of CPO is nearly halved.

As a result, RRR = 3.42. There is a qualitative PoO effect

with P-value 5.6 × 10−5. Note that the PoO effects were esti-

mated without stratifying on the exposure, smoking. Hence,

by assumption, the estimates do not differ between strata. We

still included the corresponding rows in the table to facili-

tate comparison with the following analyses. Table 1a also

includes tests for GxE and PoOxE effects for this SNP (second

and third row, respectively). However, no significant interac-

tions were found.

The SNP rs470563 is associated with a higher risk of CPO

in the presence of maternal smoking (Beaty et al., 2011). It

is located in the gene “zinc finger protein 236” (ZNF236)

on chromosome 18, and the re-analyzed GxE results are pre-

sented in Table 1b (second row). Relative to allele 𝐶 , allele

𝐺 is associated with a decreased risk of CPO among smok-

ers and an increased risk among nonsmokers. Consequently,

RRR = 0.42, and this qualitative effect has a P-value of 4.5−4.

It is important to note that although maternal smoking appears

to be beneficial at first sight, this apparent risk-reducing effect

of smoking is contingent on the choice of reference allele.

Switching the reference and variant allele inverts the esti-

mated value of the RRR. Obviously, the main effect of smok-

ing cannot be assessed from case-triad designs alone, without

independent controls. Therefore, the GxE RRR measures only

how smoking modifies the estimated fetal genetic effects. For

rs470563, we did not detect any significant PoO or PoOxE

effects (Table 1b, first and third row, respectively). Note that

the GxE effects were estimated without stratifying on parental

origin. The columns in Table 1b, related to RR𝑀 and RR𝐹 , are

therefore equal by assumption.

In a separate study, we used the PoOxE test presented

herein to perform a GWAS analysis of PoO interactions with

maternal smoking and other exposures in Haplin (Haaland

et al., 2017). The SNP rs2964137, located in the gene “inter-

actor of little elongation complex ELL subunit 1” (ICE1), had

one of the strongest signals in our search for PoOxE effects,

and the PoO, GxE, and PoOxE results are shown in Table

1c. The risk estimates are relative to allele G, which is the

most frequent. For this SNP, there is no evidence of a PoO

effect independent of strata (first row) or of any GxE effect for

fetal genes independent of parental origin (second row). Nev-

ertheless, we found a qualitative PoOxE effect, RRR = 0.09,

with P-value 6.5 × 10−7 (Table 1c, third row). The relative

risk associated with allele C is nearly halved if derived from

exposed mothers, and it is more than doubled if derived from

exposed fathers. An opposite effect is seen in nonsmokers.

Haplin uses parallel processing of its analyses, and the

run time of a GWAS analysis is therefore manageable. Our

genome wide search for PoOxE effects was performed on

Europeans only, comprising 762 individuals from 269 case

families (mostly triads). Altogether 424,401 SNPs passed the

quality controls and were included in our PoOxE analysis. We

used eight CPU cores with 2.5 GHz per core, and the approx-

imate run time of Haplin was 58 hours.

3.2 Operating characteristics and small
sample behavior of the PoOxE test
We investigated the performance of our PoOxE test by evalu-

ating its power in various settings. Power and sample size can

be computed from the asymptotic variance–covariance struc-

ture underlying the Wald test; this approach is implemented in

https://www.niehs.nih.gov/research/atniehs/labs/epi/studies/ncl/index.cfm
https://www.niehs.nih.gov/research/atniehs/labs/epi/studies/ncl/index.cfm
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
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T A B L E 1 PoO, GxE and PoOxE effects for cleft palate-only example SNPs

a) rs7516430, CHD1L1

Test effect Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

PoO effects* RRS 1.79 0.52 3.42 (1.86, 6.15)

RRNS 1.79 0.52 3.42 (1.86, 6.15)

RRS∕RRNS 1 (–) 1 (–) 1 (–)

GxE effects** RRS 1.22 1.22 1 (–)

RRNS 1.06 1.06 1 (–)

RRS∕RRNS 1.15 (0.51, 2.61) 1.15 (0.51, 2.61) 1 (–)

PoOxE effects RRS 1.88 0.66 2.83 (0.90, 8.63)

RRNS 1.76 0.48 3.68 (1.80, 7.37)

RRS∕RRNS 1.07 (0.43, 2.69) 1.40 (0.40, 4.83) 0.77 (0.20, 2.91)

b) rs470563, ZNF2362

Test effect Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

PoO effects* RRS 0.95 1.07 0.89 (0.67, 1.17)

RRNS 0.95 1.07 0.89 (0.67, 1.17)

RRS∕RRNS 1 (–) 1 (–) 1 (–)

GxE effects** RRS 0.48 0.48 1 (–)

RRNS 1.15 1.15 1 (–)

RRS∕RRNS 0.42 (0.26, 0.68) 0.42 (0.26, 0.68) 1 (–)

PoOxE effects RRS 0.44 0.52 0.86 (0.39, 1.87)

RRNS 1.09 1.22 0.89 (0.66, 1.20)

RRS∕RRNS 0.41 (0.21, 0.79) 0.42 (0.23, 0.80) 0.96 (0.41, 2.24)

c) rs2964137, ICE13

Test effect Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

PoO effects* RRS 1.42 1.06 1.34 (0.90, 1.97)

RRNS 1.42 1.06 1.34 (0.90, 1.97)

RRS∕RRNS 1 (–) 1 (–) 1 (–)

GxE effects** RRS 1.16 1.16 1 (–)

RRNS 1.25 1.25 1 (–)

RRS∕RRNS 0.93 (0.54, 1.60) 0.93 (0.54, 1.60) 1 (–)

PoOxE effects RRS 0.53 2.57 0.21 (0.09, 0.46)

RRNS 1.88 0.85 2.22 (1.41, 3.43)

RRS∕RRNS 0.28 (0.13, 0.58) 3.03 (1.45, 6.35) 0.09 (0.04, 0.24)

*PoO effects were estimated without stratifying on exposure. The rows corresponding to environmental strata are therefore equal by assumption.

**GxE effects were estimated without stratifying on parental origin. The columns related to RR𝑀 and RR𝐹 are therefore equal by assumption.

- The estimates are relative to the most frequent allele

- RR𝑀 and RR𝐹 are the relative risks depending on parental origin

- RRNS and RR𝑆 are the relative risks depending on exposure status (nonsmokers or smokers)
1Overall allele frequencies: A 0.88; T 0.12; Europeans only
2Overall allele frequencies: C 0.57; G 0.43; Whole sample
3Overall allele frequencies: G 0.52; C 0.48; Europeans only

Haplin. The Haplin framework also includes a complete setup

for power calculations through simulations, which is a robust

way of checking software implementations, power, small-

sample behavior, and attained significance level. A detailed

derivation of our asymptotic approximation formulae is given

in Appendix A.2. Relevant example code for power calcula-

tions in Haplin is provided in S1.

We examined the power of the PoOxE test using the above-

mentioned asymptotic approximations. We first analyzed the

power for a single SNP at the 5% nominal significance level.

Power calculations for increasing relative risk ratios, RRRs,

are shown in Figure 1. For simplicity, we set RR𝑀,1= RR𝐹 ,1
= RR𝐹 ,2 = 1 in all scenarios so that the value of RRR in Equa-

tion (2) is equal to the value of RR𝑀,2. Moreover, we assumed

equally sized exposed and unexposed groups. The left panel of

Figure 1 shows the statistical power for an increasing number

of case–parent triads and a minor allele frequency (MAF) of

0.2. The black solid line is equal in all panels and is based on
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F I G U R E 1 Single-SNP power analysis for the PoOxE test for increasing relative risk ratios (increasing values of RR𝑀,2; RR𝑀,1 = RR𝐹 ,1 =
RR𝐹 ,2 = 1) at the 0.05 nominal significance level. Equally sized exposure groups are assumed. Left panel: Increasing number of case–parent triads, and

MAF = 0.2; Middle panel: Increasing MAFs, and a total of 1500 case–parent triads; Right panel: Power comparison of the PoOxE, GxE (increasing

values of RR2; RR1 = 1), PoO (increasing values of RR𝑀 ; RR𝐹 = 1), and fetal effect (increasing values of RR) tests, MAF = 0.2, and a total of 1500

case–parent triads [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 GWAS power analysis for the PoOxE test for increasing relative risk ratios (increasing values of RR𝑀,2; RR𝑀,1 = RR𝐹 ,1 = RR𝐹 ,2 =
1) and increasing number of case-parent triads, assuming equally sized exposure groups and MAF = 0.2. Left panel: Nominal significance level 10−4;

right panel: Nominal significance level 5 × 10−8 [Colour figure can be viewed at wileyonlinelibrary.com]

a total of 1500 case–parent triads, that is, 750 case–parent tri-

ads in both exposure categories. The middle panel depicts the

power for increasing MAFs, using a total of 1500 case–parent

triads. The right panel compares the power for various dis-

ease mechanisms (PoOxE, GxE, PoO, and fetal effects), using

a total of 1500 case–parent triads and MAF = 0.2. Here, the

fetal genetic effect is the direct risk associated with the child's

allele, regardless of parent of origin or environmental expo-

sures.

The power to detect PoOxE effects for a single SNP is suffi-

cient for RRRs above 1.6–1.7 and a total sample size of 1500

case–parent triads with equally sized exposure groups. Nev-

ertheless, larger sample sizes are needed if the MAF < 0.2 or

if the ratio of exposed versus unexposed is highly skewed (the

latter result is not shown). Because the PoOxE test stratifies on

both parent of origin and exposure, detecting a PoOxE effect

requires a larger sample size than detecting a PoO effect or a

GxE effect. Naturally, greatest power is achieved in a search

for fetal effects.

We also examined the power using nominal significance

levels more relevant to GWAS settings. Figure 2 shows

power analyses for increasing RRRs (i.e., increasing values

of RR𝑀,2) with nominal significance levels 10−4 (left panel)

and 5 × 10−8 (right panel). The power is demonstrated for

an increasing number of case–parent triads using equally

sized exposure groups and a MAF of 0.2. With a nominal

significance level of 10−4, approximately 5000 case–parent

triads are required to detect RRRs of 1.6–1.7 with 80% power.
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F I G U R E 3 Simulated P-values under the null hypothesis of no

PoOxE effects based on 100,000 replications of data sets. The cumulative

density plots compare the attained significance level with an expected

uniform distribution under the null hypothesis (diagonal sloping line). A

total of 1000 case–parent triads were divided into two exposure strata,

and a MAF of 0.2 was assigned throughout. The distribution of case-

parent triads in each stratum was as follows: 100–900 (dark grey line) and

300–700 (light grey line). If no bias is present, the observed significance

levels should equal the nominal level of 0.05 (black dashed lines). The

dark and light grey dashed horizontal lines show the attained significance

levels corresponding to the simulated scenarios

With a nominal significance level of 5 × 10−8, a sample size

of 10,000 case-parent triads suffices for RRRs above 1.6.

Our PoOxE test is asymptotically unbiased. However, the

asymptotic approximations underlying log-linear models may

be suboptimal when the number of cases or controls is too

small in one or more strata. When testing for GxE and PoOxE

effects, one may occasionally encounter highly skewed expo-

sure distributions. For example, in our CPO example, only

8 women of Asian ancestry answered “yes” to the ques-

tion of maternal smoking during pregnancy, whereas the

remaining 245 answered “no.” In such situations, the nominal

significance level of the tests may be incorrect; the actual sig-

nificance level is most easily assessed through simulations.

In Figure 3, cumulative density plots were used to exam-

ine the attained significance level of our PoOxE test. We

obtained P-values from 100,000 simulated data sets under

the null hypothesis (RR𝑀,1 = RR𝑀,2 = RR𝐹 ,1 = RR𝐹 ,2 =
1). The P-values should be uniformly distributed when the

null hypothesis is true. Hence, if no bias is present, the P-

values would fall close to the diagonal line. Throughout, a

total of 1000 case–parent triads were divided into two expo-

sure groups, and an MAF of 0.2 was assigned to both strata.

Two scenarios were investigated according to the distribution

of exposed and unexposed triads. In the first scenario (100–

900), the smallest stratum comprised 100 case–parent triads.

In the second scenario (300–700), the smallest stratum com-

prised 300 case–parent triads.

As expected, we observed a small bias for the PoOxE test

when the number of cases in one exposure group was low,

obtaining larger P-values than expected. At the 0.05 nomi-

nal level, the attained significance level is 0.045 in the 100–

900 setting. For lower significance levels, typically occurring

in genome wide analyses, this bias might become substan-

tial. Each exposure group should be large enough so that the

asymptotic approximation of the estimator, �̂�, is sufficiently

precise. Hence, the bias would be less pronounced for skewed

exposure distributions at larger sample sizes (such as in a

1000–9000 setting). In other words, the unbalanced exposure

design itself is not the cause of the observed deflation. The

bias is negligible in the 300–700 setting, verifying that our

PoOxE test attains the nominal significance level when the

sample size of the smallest stratum increases.

4 CONCLUDING REMARKS

In this study, we have proposed a statistical method for

detecting PoOxE effects. Postestimation in the log-linear

framework, incorporated into the Haplin software, allows us

to combine the theory on PoO and GxE effects to test for the

second-order PoOxE effect. Although PoO and GxE studies

abound, the combination has hardly been analyzed, in spite of

its obvious biological relevance. Wang et al. (2011) proposed

an interesting test to screen for interactions between imprinted

genes and environmental exposures in a more restricted set-

ting than our approach. Specifically, when testing for

imprinted genes, Wang et al. assume that either the maternally

or the paternally inherited allele is silenced so that only the

other allele has an effect. This is in contrast to our PoO effect,

which measures the difference between the effects of mater-

nally and paternally derived alleles. Although the assumption

of imprinted genes may increase testing power when it is true,

it has the drawback of being more easily confused with ordi-

nary fetal effects. For instance, if RR𝑀 = RR𝐹 = 1.5 > 1,

this would trigger a test for imprinted genes but not for PoO.

Wang et al. (2011) use conditional logistic regression to

analyze birth cohort designs with mother–offspring pairs. Our

log-linear framework is a general approach to the full hybrid

design with complete or incomplete case triads possibly com-

bined with control triads. We are therefore able to separate

the effects of maternal alleles from the effect of maternally

derived fetal alleles, which is particularly important in peri-

natal epidemiology, where the phenotype of the fetus can be

influenced by either of the two sources (Hager, Cheverud, &

Wolf, 2008). Additionally, our model provides a full maxi-

mum likelihood setup that allows us to estimate allele fre-

quencies, haplotyping of multiple SNPs, and imputation of
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missing genotypes. Ambiguous (heterozygous) mother–

offspring combinations need not be excluded as in the condi-

tional logistic setup; they incorporate naturally into the model

and provide data for the allele frequency estimation. Simi-

larly, within the Haplin framework, PoOxE effects may also

be detected on the X-chromosome, where female offspring

provide a contrast between maternally and paternally derived

alleles; fathers and male offspring contribute to allele fre-

quency estimation and precise haplotyping (Jugessur et al.,

2012b). Finally, the data handling in Haplin enables a full

genome-wide screen for PoOxE effects.

Detailed study planning typically requires calculating the

sample sizes needed to obtain sufficient power. Because

statistical power depends on multiple factors including hap-

lotype frequencies, penetrance model, and so on, published

power tables for genetic studies are typically too restrictive,

and software often covers only basic genetic models. As illus-

trated in S1, Haplin provides extensive power simulations,

even covering the complex setup of PoOxE analyses. By enter-

ing the necessary parameters, the user can easily perform

either “raw” simulations of power or use a very fast power cal-

culation based on the asymptotic distribution of the parameter

estimates.

In a GWAS analysis, the power to detect PoOxE effects

is generally low. However, a candidate gene approach would

reduce the complexity of multiple comparisons and enable a

search for PoOxE effects when the sample size is limited. Spe-

cific environmental exposures that relate directly to the puta-

tive cause of the PoO effect of a candidate gene should be

used in a PoOxE test. For example, one might assume that a

detected PoOxE effect has a better chance of revealing a causal

relationship involving genomic imprinting due to methylation

than the standard PoO or GxE searches. A selection of rel-

evant candidate genes might therefore be based on a GWAS

screen for PoO or GxE effects.

Tracking the different etiologic mechanisms underlying

complex diseases is crucial in improving diagnosis, prognosis,

and prevention. The test for PoOxE effects and the compre-

hensive framework for assessing statistical power for genetic

association analyses presented in this article are thus impor-

tant contributions in advancing our understanding of the dif-

ferent etiologic mechanisms that underlie complex traits.

5 ELECTRONIC DATABASE
INFORMATION

Haplin is implemented as a standard package in the statistical

software𝑹 (R Core Team, 2016) and can be installed from the

official R package archive, CRAN (https://cran.r-project.org).

Our website (http://folk.uib.no/gjessing/genetics/software/

haplin) provides further information.
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APPENDIX A
A.1 PoOxE effects in the haplotype situation
The majority of existing methods to investigate PoO and GxE

effects are performed using a single-marker approach in which

each SNP is analyzed individually. However, haplotype anal-

ysis should enhance the possibility of “bracketing” a causal

variant if the haplotype has a SNP on each side of the variant.

The theory of PoOxE effects for the single-marker setting can

easily be extended to haplotypes. We here present a detailed

derivation of the PoOxE test.

https://doi.org/10.1111/ahg.12224


MIRIAM GJERDEVIK ET AL. 71

We assume a multiplicative dose–response effect and

a reference haplotype approach. Without loss of gen-

erality, the first haplotype in arbitrary order is cho-

sen as reference. Let 𝐻 denote the number of haplo-

types and 𝑆 the number of independent exposure strata.

We define �̂�𝑀,𝑠 = [β̂2,𝑀,𝑠, β̂3,𝑀,𝑠,… , β̂𝐻,𝑀,𝑠]𝑇 and �̂�𝐹 ,𝑠 =
[β̂2,𝐹 ,𝑠, β̂3,𝐹 ,𝑠,… , β̂𝐻,𝐹 ,𝑠]𝑇 , the relative risk estimates on a

log-scale for each haplotype within exposure stratum 𝑠 (𝑠 =
1, 2,… , 𝑆), depending on parental origin. We calculate the

difference �̂�𝑠 = �̂�𝑀,𝑠 − �̂�𝐹 ,𝑠 and the corresponding asymp-

totic variance–covariance estimate

�̂�𝑠 =
[

�̂�𝑀,𝑠 �̂�𝑀,𝐹 ,𝑠

�̂�𝑀,𝐹 ,𝑠 �̂�𝐹 ,𝑠

]
,

in which each element is a combined (𝐻 − 1) × (𝐻 − 1)
variance–covariance matrix for haplotypes 2, 3, ...,𝐻 .

We would like to test the null hypothesis

𝛃𝑀,1 − 𝛃𝐹 ,1 = 𝛃𝑀,2 − 𝛃𝐹 ,2 = ⋯ = 𝛃𝑀,𝑆 − 𝛃𝐹 ,𝑆 .

This can be reformulated as

𝑫𝛃 =

⎡⎢⎢⎢⎢⎣
𝑰 −𝑰 𝟎 ⋯ 𝟎
𝑰 𝟎 −𝑰 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝑰 𝟎 𝟎 ⋯ −𝑰

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎣
𝛃𝑀,1 − 𝛃𝐹 ,1
𝛃𝑀,2 − 𝛃𝐹 ,2

⋮
𝛃𝑀,𝑆 − 𝛃𝐹 ,𝑆

⎤⎥⎥⎥⎥⎦
= 𝟎.

Here, 𝑰 is the (𝐻 − 1) × (𝐻 − 1) identity matrix. From basic

asymptotic theory of log-linear models, we have that asymp-

totically

�̂� =

⎡⎢⎢⎢⎢⎣
�̂�1
�̂�2
⋮
�̂�𝑆

⎤⎥⎥⎥⎥⎦
∼ 𝑀𝑉𝑁(𝛃,𝚺),

where

�̂� = diag
([

�̂�1, �̂�2,… , �̂�𝑆

])
.

Consequently, under the null hypothesis, the Wald statistic,

𝑇 = (𝑫�̂�)𝑇 �̂�−1
𝑫
(𝑫�̂�), has an approximate χ2 distribution with

(𝐻 − 1)(𝑆 − 1) degrees of freedom.

A.1.1 Haplotype example
Our Haplin framework allows a straightforward PoOxE analy-

sis of haplotypes. As an illustration, we formed haplotypes by

using one SNP on each side of the previously analyzed SNP

rs2964137 in ICE1 (i.e., rs2964447-rs2964137-rs6868526).

We excluded haplotypes with frequencies below 1%, which

left us with three haplotypes for our analysis. The results are

displayed in Table 2, and the risk estimates are relative to the

reference A-C-C haplotype. The first two SNPs are in strong

linkage disequilibrium (𝑟2 = 0.996); the first SNP is there-

fore redundant and the same information can be obtained by

using only the two last SNPs (𝑟2 = 0.427). Both the T-G-

C and T-G-G haplotypes display PoOxE effects when ana-

lyzed separately against the reference, using the Wald test with

one degree of freedom (P-value = 2.1 × 10−5 and P-value =
9.9 × 10−4). The PoOxE effect is stronger when both haplo-

types are analyzed jointly, with 2 degrees of freedom (P-value

= 8.5 × 10−6). The separate relative risk estimates are fairly

similar for the two haplotypes, indicating that the haplotype

risks are driven by rs2964447 and rs2964137, which have the

largest individual effect.

The joint haplotype analysis loses some power compared to

the single-SNP analysis of rs2964137 due to haplotype recon-

struction (P-value 8.5 × 10−6 versus 6.5 ⋅ 10−7). Moreover,

the Wald test statistic has 2 degrees of freedom. Nonetheless,

we do not know a priori which approach, single-marker or

haplotype, will have the best likelihood of identifying an asso-

ciation.

A.2 Statistical power
The power of a genetic association analysis depends on

numerous factors, such as significance level, allele/haplotype

frequencies, effect size, and family design. A sample size cal-

culation will typically involve computing the number of fam-

ilies needed to be genotyped to achieve a preset power for a

given effect size. For instance, one might wish to achieve 80%

power to detect a fetal effect of RR = 2. The standard simula-

tion approach to power calculations is the following. First, a

sufficiently large number of data sets is simulated with appro-

priate parameter choices, such as effect size, sample size, fam-

ily design, and so on. Then, the test is performed on each data

set, and the power is the proportion of rejected null hypothe-

ses. For a range of disease mechanisms, including PoO, GxE,

and PoOxE effects, such power simulations are readily done

in Haplin through the functions hapRun and hapPower. Rel-

evant example code is provided in S1.

“Brute-force” simulations are especially useful for small to

moderate data sets. In such situations, only simulation stud-

ies can indicate the extent and direction of the possible bias.

Nevertheless, both power and sample size can be computed

much more efficiently directly from the asymptotic distribu-

tions underlying the Wald test. Such calculations have been

implemented for a number of genetic effects in the Haplin

function hapPowerAsymp. The principles behind the asymp-

totic calculations are standard; we will in the following para-

graphs outline the specifics of our model implementations.

All tests described in this paper are performed as Wald

tests, using the asymptotic normal distribution of the log-scale

parameters. In general, the power γ of the Wald test with level

α is

γ = 1 − 𝐹𝑟,λ(χ2α(𝑟)), (A.1)
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T A B L E 2 PoOxE effects for cleft palate–only example haplotypes

rs2964447-rs2964137-rs6868526, ICE1
Haplotype Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

T-G-C RRS 1.99 0.49 4.04 (1.75, 9.25)

RRNS 0.52 1.04 0.50 (0.31, 0.82)

RRS∕RRNS 3.79 (1.74, 8.22) 0.47 (0.21, 1.05) 7.98 (3.07, 20.77)

T-G-G RRS 1.30 0.24 5.35 (1.51, 18.19)

RRNS 0.68 1.30 0.52 (0.29, 0.96)

RRS∕RRNS 1.89 (0.70, 5.07) 0.19 (0.06, 0.62) 10.13 (2.55, 40.19)

-Reference haplotype: A-C-C

-Overall haplotype frequencies: A-C-C 0.48; T-G-C 0.36; T-G-G 0.16; Europeans only

-RR𝑀 and RR𝐹 are the relative risks depending on parental origin.

-RRNS and RR𝑆 are the relative risks depending on exposure status (nonsmokers or smokers)

where χ2α(𝑟) is the α quantile of the chi-squared distribution

with 𝑟 degrees of freedom, 𝐹𝑟,λ is the cumulative distribu-

tion function of a noncentral chi-squared distribution χ2(𝑟, λ),
and λ is the noncentrality parameter. To compute λ, consider

first the simplest situation where we estimate a single effect,

such as a fetal gene effect or a parent-of-origin effect, within

a single stratum. Let 𝑛 be the number of case children in the

stratum. As 𝑛 changes, we assume the composition of fam-

ily structures within the stratum remains the same, relatively

speaking. That is, we assume the ratio of control families to

case families, the ratio of case mother–child dyads to com-

plete case triads and so on, all remain the same. As before,

we assume β = log(RR) is the log effect size in the stratum,

and σ(𝑛) is the standard error of β̂ when estimated from all

data in the stratum, with 𝑛 case children. If the family struc-

tures are kept fixed as 𝑛 increases, observe that σ(𝑛) ≈ ω∕
√
𝑛,

where ω is the asymptotic standard error computed from the

Fisher information in the maximum likelihood model. The

value of ω is scaled to correspond to a sample with only one

case child (𝑛 = 1) in a stratum. For instance, in a setting with

200 case triad and 100 control triads, ω would, theoretically,

correspond to a stratum with one case triad and half a control

triad. Note that the ω parameter typically depends in a rela-

tively complex way on the family design and allele/haplotype

frequencies, and also on the effect sizes.

The noncentrality parameter λ is then the squared standard-

ized log effect size (Agresti, 2013, Ch. 6.6), that is,

λ =

(
log(RR)

ω∕
√
𝑛

)2

. (A.2)

When the value of ω, corresponding to the appropriate model,

has been determined, the power γ for a given sample size 𝑛 is

readily computed from Eqn (A.1), with 𝑟 = 1 and using the

λ value computed from Eqn (A.2). Equivalently, for a given

power γ, the necessary sample size can be computed by first

finding the corresponding non-centrality parameter λ from

Eqn (A.1), and then solving Eqn (A.2) for 𝑛 to obtain

𝑛 = λω2∕ log2 (RR). (A.3)

The relationship between γ and λ is illustrated in Figure 4

when 𝑟 = 1. Note that the lower significance levels are rel-

evant in situations where multiple testing must be accounted

for.

A.2.1 Sample size calculation for the PoO test
To ease the derivation of sample size estimation for the PoOxE

test, we first illustrate the approach for our PoO test. When

searching for PoO effects in a diallelic situation, the test statis-

tic has one degree of freedom. Equations (A.1), (A.2), and

(A.3) apply, with RR = RR𝑀∕RR𝐹 . To facilitate power cal-

culations “by hand” in simple situations, Table S1 provides

the values of ω for selected PoO settings. Without loss of gen-

erality, in the following examples and derivations, we let the

first allele in arbitrary order be the reference, with allele fre-

quency 1 − 𝑃 . Note that if 𝑃 > 0.5, the reference allele is the

minor allele.

Consider an example of sample size calculation for the PoO

test. Let RR𝑀 = 2, RR𝐹 = 1, and 𝑃 = 0.1. From Table S1,

we find thatω2 = 19.5. With level α = 0.05 and desired power

γ = 80%, Figure 4 yields λ = 7.85. Applying Eqn (A.3), we

need roughly 320 case–parent triads or, equivalently, 344

case–mother dyads or 404 case–father dyads (the ω2 values

for case–father dyads are not included in Table S1). Note that

the values of ω2 depend not only on the ratio RR but also on

the individual values of both RR𝑀 and RR𝐹 . These calcula-

tions can be verified directly by power calculations in Haplin,

as shown in S1.

Although a limited selection of values of RR𝑀 and RR𝐹 are

included in Table S1, several symmetry relationships allow us

to use the simple approach also in other scenarios. The power

for testing PoO effects in case–parent triads for RR𝑀 = 𝑥

and RR𝐹 = 𝑦 is the same as when RR𝑀 = 𝑦 and RR𝐹 =
𝑥. Moreover, the power for testing PoO effects in triads if
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F I G U R E 4 Power, γ, as a function of the noncentrality parameter,

λ, for differing values of the nominal significance level, α. Here, λ =
( log(RR)

ω∕
√
𝑛
)2, where log(RR) is the log effect size, 𝑛 is the number of case

children, andω is the asymptotic standard error of the log-parameter. The

number of degrees of freedom is equal to 1 [Colour figure can be viewed

at wileyonlinelibrary.com]

RR𝑀 = 𝑥, RR𝐹 = 𝑦, and𝑃 = 𝑝 is identical to the power when

RR𝑀 = 1∕𝑥, RR𝐹 = 1∕𝑦, and 𝑃 = 1 − 𝑝. Finally, testing for

PoO effects in case–mother dyads for RR𝑀 = 𝑥, RR𝐹 = 𝑦,

and 𝑃 = 𝑝 is equivalent to testing for PoO effects in case–

father dyads when RR𝑀 = 1∕𝑦, RR𝐹 = 1∕𝑥 and 𝑃 = 1 − 𝑝.

A.2.2 Sample size calculation for the PoOxE test
We now consider two independent strata with sample size

(number of case children) 𝑛1 and 𝑛2, respectively, where

we want to compare RR1 = RR𝑀,1∕RR𝐹 ,1 in the first stra-

tum with RR2 = RR𝑀,2∕RR𝐹 ,2 in the second stratum. The

variance of β = (β𝑀,2 − β𝐹 ,2) − (β𝑀,1 − β𝐹 ,1) is σ21 + σ22,

where σ21 ≈ ω2
1∕𝑛1 and σ22 ≈ ω2

2∕𝑛2 are the variances in the

first and second stratum, respectively. The power to detect

PoOxE effects is thus fully determined by the power to

assess PoO effects in each stratum. Given power γ, signif-

icance level α, the stratum-specific effects RR1 and RR2,

and allele frequencies 𝑃1 and 𝑃2, as well as the ratio of

sample sizes in the two strata, δ = 𝑛2∕𝑛1, the PoOxE sam-

ple size calculation can be summarized in the following

procedure:

1. Calculate ω2
1 and ω2

2 for the two exposure strata.

2. Calculate the sample size in the second stratum from the

formula

𝑛2 =
λ(δω2

1 + ω2
2)

log2(RR2∕RR1)
,

where λ corresponds to the power γ.

3. Calculate the sample size in the first stratum, 𝑛1 = 𝑛2∕δ.

Note that with two exposure strata, the number of degrees

of freedom still equals one.

As an example, let RR1 = 1, 𝑃1 = 0.3, RR2 = 2.5, and

𝑃2 = 0.1, assuming RR𝐹 = 1 in both strata. For a given dis-

ease and environmental exposure, assume that it is reasonable

to recruit twice as many case-parent triads in the first stra-

tum as in the second (i.e., δ = 1∕2). From Table S1a, we find

that ω2
1 =12.1 and ω2

2 =18.6. Hence, it is sufficient to enroll

approximately 460 triads in the first stratum and 230 triads

in the second stratum to achieve 80% power at the 5% nomi-

nal significance level. The full power calculations for PoOxE

effects have also been implemented in the Haplin function

hapPowerAsymp.


