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Abstract
Datasets comprising twins and their children can be a useful tool for understanding the nature of intergenerational associa-
tions between parent and offspring phenotypes. In the present article we explore structural equation models previously used 
to analyse Children-of-Twins data, highlighting some limitations and considerations. We then present new variants of these 
models, showing that extending the models to include multiple offspring per parent addresses several of the limitations dis-
cussed. Accompanying the updated models, we provide power calculations and demonstrate with application to simulated 
data. We then apply to intergenerational analyses of height and weight, using a sub-study of the Norwegian Mother and 
Child Cohort (MoBa); the Intergenerational Transmission of Risk (IToR) project, wherein all kinships in the MoBa data 
have been identified (a children-of-twins-and-siblings study). Finally, we consider how to interpret the findings of these 
models and discuss future directions.

Keywords Children-of-twins · Extended family design · Intergenerational transmission · Parent · Offspring · The 
Norwegian Mother and Child Cohort Study (MoBa) · The Intergenerational Transmission of Risk (IToR) project

Studying samples of twin pairs with children can provide 
valuable insight into the nature of intergenerational associa-
tions. Using samples of monozygotic (MZ) and dizygotic 
(DZ) twins with children (or indeed any samples of differen-
tially related siblings/cousins with offspring), it is possible to 
evaluate hypotheses regarding the nature of intergenerational 

transmission and ask whether associations between parent and 
child remain after accounting for their genetic relatedness.

The use of samples of twins with children to examine 
intergenerational associations has been discussed in depth 
elsewhere (D’Onofrio et al. 2003; Fischer 1971; Gottes-
man and Bertelsen 1989; McAdams et al. 2014; Silberg and 
Eaves 2004).1 However, briefly, the offspring of MZ twins 
are as related to their parent’s co-twin as they are to their 
own parent (they share 50% of their DNA). In contrast, the 
offspring of DZ twins share 25% of their genetic variance 
with their parent’s co-twin. By comparing MZ avuncular 
correlations (correlations between uncle/aunt and niece/
nephew) with DZ avuncular correlations, it is possible to 
estimate the role of genetic factors in explaining intergenera-
tional associations. It is also possible to estimate the extent 
to which parent–child associations remain after accounting 
for genetic transmission.

While twins with children have most often been the focus 
of genetically informed intergenerational studies, it is also 
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possible to use siblings or even cousins with children, wher-
ever samples are large enough. That is, rather than (or as 
well as) comparing avuncular relationships in MZ and DZ 
families, siblings, half-sibling and cousins can be used. Chil-
dren share 25, 12.5 and 6.25% of their genetic variance with 
their parent’s sibling, half-sibling and cousin respectively. 
These differences in relatedness can be used to estimate the 
role of genetic factors in explaining intergenerational asso-
ciations in the same way that twin data is used (e.g. Kuja-
Halkola et al. 2014).

A variety of techniques can be used to analyse children-
of-twin (CoT) and/or children-of-sibling (CoS) data and 
investigate the nature of intergenerational associations. 
While various multilevel regression models have been 
applied to such data, in keeping with behavioural genetic 
tradition, structural equation models (SEMs) have been most 
widely used, and it is these models that we focus on in this 
article. Biometric SEMs are advantageous in that they allow 
researchers to quantify the relative importance of genetic 
and environmental influences in explaining variance on a 
trait and covariance between traits. Our intention in this 
article is to describe the SEMs thus far applied to CoT data, 
discuss their limitations, and suggest extensions to the mod-
els that help to overcome these limitations. We then apply 
these extended models, first demonstrating their power using 
simulated data, and then using real data originating from the 
Norwegian Intergenerational Transmission of Risk (IToR) 
project, a sub study of the Norwegian Mother and Child 
Cohort Study (MoBa) (Magnus et al. 2016). Throughout, 
we highlight and discuss remaining limitations and issues to 
consider for those interested in making use of CoT models 
and those interested in collecting CoT and/or CoS data. We 
provide OpenMx scripts for all models via the Supplemen-
tary Materials section of this article.

We believe that now is a good time to revisit and explore 
extensions to these models for two reasons. First, inter-
generational datasets now exist that are appropriate for the 
application of CoT models, but that are also larger and more 
complex than previous datasets (e.g. registry data, ITOR). 
Second, many on-going twin studies have participants who 
are in, or are entering, adulthood. When these participants 
begin having children, such datasets will have the potential 
to teach us a great deal about the nature of intergenerational 
transmission. It is therefore worthwhile exploring how best 
to model these associations, and how best to collect data for 
this purpose.

Children of twins structural equation models

Several CoT SEMs have previously been published. In 
Fig. 1a, we present a path diagram of the model applied in 
several published articles to data from the Twin Offspring 

Study in Sweden (TOSS) (Eley et al. 2015; McAdams et al. 
2015, 2017). TOSS is a study of adult twins and their ado-
lescent children (Neiderhiser and Lichtenstein 2008). The 
TOSS sample comprises data collected on one child per 
twin, these children being cousins to one another. The model 
in Fig. 1a decomposes variance on the parental (twin) pheno-
type into additive genetic influences (A1; MZ twins share all 
genetic influences, DZ twins share half), common or shared 
environmental influences (C1; environmental influences 
shared between MZ and DZ twins alike), and non-shared or 
unique environmental influences (E1; environmental influ-
ences that make twins different to one another). Variance in 
the offspring phenotype is decomposed into genetic influ-
ences shared in common with the parental phenotype (A1′), 
genetic influences specific to the offspring phenotype (A2), 
and non-shared environmental influences (E2). A path also 
runs from parent phenotype to offspring phenotype (p). Par-
ent–child covariance is therefore explained by a combination 
of p, a1′ and a1. Genetic transmission is modelled via the a1 
and a1′ path, and a path fixed to 0.50. This is because par-
ents pass on half of their DNA to their children. Where a1′ 
is significant, this indicates that genetic factors influencing 
the parental phenotype also explain variance in the offspring 
phenotype, and the association between parent and child 
phenotype is (at least partially) attributable to shared genes. 
Where p is significant, this indicates that the parent–child 
association (at least partially) persists after accounting for 
shared genes.

The model in Fig. 1a and other CoT/CoS models like it 
decompose the intergenerational association into a genetic 
component and a phenotypic component (Eley et al. 2015; 
Hannigan et al. 2016; McAdams et al. 2015, 2017; Silberg 
et al. 2010, 2012). In Fig. 1b we adapt this model to allow 
for the possibility that shared environmental influences on 
the parent generation may influence the offspring genera-
tion as well, via a new path, c1′, that captures the effect of 
the extended family environment. Parent–child covariance 
is thus explained by a combination of p, a1′, a1, c1′ and c1. 
The effects of the extended family environment have been 
included in suggested CoT models previously (D’Onofrio 
et al. 2003). Indeed, it is possible to model multiple sources 
of shared environment using CoT/CoS data. Intergenera-
tional models including a variety of shared environmental 
factors have previously been applied to CoS data derived 
from the Swedish national population registries (Chang 
et al. 2014; Kuja-Halkola et al. 2014; Latvala et al. 2015). 
In the present study we include one intergenerational shared-
environment path and explore the impact that significant 
extended family environmental effects may have on CoT 
models.

A key limitation of the models presented in Fig. 1a, b is 
that they have low power to accurately estimate offspring 
aetiology. This is because the offspring of twins are cousins 
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with one another so share, on average, 25% of their genetic 
variance (where their parents are MZ twins), or 12.5% of 
their genetic variance (where their parents are DZ twins). 
These relatedness coefficients (0.25 and 0.125), and the dif-
ference between them, are lower than those of twins (1.00 
and 0.50) and result in considerably less power to detect 
genetic effects unique to the offspring generation than there 
is for the parent generation. Similarly, the estimation of A1′ 
(genetic effects shared between parent and child) relies upon 
comparisons between MZ and DZ avuncular (aunt/uncle-to-
niece/nephew) relationships, comprising relatedness coeffi-
cients of 0.50 and 0.25, so again, there is less power to detect 
these paths than there is to detect e.g. a genetic correlation 
between two phenotypes in the parent generation. Because 
cousins do not share a nuclear family environment it is also 
not possible to estimate the role of environmental effects 
shared by siblings in the offspring generation (C2).

Multiple‑children‑of‑twins structural 
equation models

In Fig. 2 we present an extension of the CoT model in 
Fig. 1b that allows for the inclusion of 2 or more children 
per parent—the multiple-children-of-twins (MCoT) model.2 
In this model, the inclusion of siblings in the offspring gen-
eration provides sibling covariances with which to estimate 
the influence of the shared environment on the offspring 
phenotype (C2). Siblings also share more genetic variance 
than cousins, increasing power to detect genetic effects in 
the offspring generation. Including two or more children per 
parent also provides much more information with which to 
estimate offspring aetiology: In the MCoT model with two 
offspring there are two sibling covariances and four cousin 
covariances per family, compared to one cousin covariance 
in the standard CoT model. Similarly, the MCoT model 

Fig. 1  Children-of-twins structural equation models—for use with 
samples comprising twin pairs with a single child per twin. Note: 
A1 = additive genetic effects on parental phenotype; C1 = shared-
environmental effects on parental phenotype; E1 = nonshared envi-
ronmental effects on parental phenotype; A1′ = genetic effects com-
mon to parental phenotype and offspring phenotype; C1′ = extended 
family effects whereby the shared environment of the parents influ-
ences offspring phjenotype; A2 = familial effects specific to offspring 
phenotype; C2 = shared-environmental effects on offspring pheno-
type (not estimable using cousin data); E2 = nonshared environmen-

tal effects on offspring phenotype; p = phenotypic effect of parent on 
offspring; rE = within-parent correlation between E1 for parenting of 
child 1 and 2. Allows parenting of each child to differ (when neces-
sary this should be allowed to vary according to offspring zygosity). 
NB the pathway between A1 and A1′ is fixed to 0.50 because parents 
and children share 50% of their genome. To avoid over complicating 
path diagrams, variance paths have been omitted, but for all latent 
factors variance = 1. For A1′ this means that residual variance (after 
accounting for the path between A1 and A1′) is 0.75

2 In the figures and examples we provide, our MCoT models include 
two children per parent. However, it is perfectly possible to include 
three or more offspring per parent by simply extending the accompa-
nying matrices (see OpenMx scripts for more details).
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with two offspring includes twice as many intergenerational 
covariances per family (parent-offspring and avuncular) as 
the CoT model. As such, the MCoT model should have more 
power to decompose intergenerational associations into a1′, 
c1′ and p, and to estimate offspring aetiology (see Table 1 
for actual power calculations, introduced below). It is worth 
noting here that in the MCoT model, offspring correlate at 
0.25 on the A1′ factor. This is because although both chil-
dren are equally related to their parent, each child shares a 
random 50% of their genes with their parent. Importantly, 
where siblings in the offspring generation are MZ twins they 
will correlate at 1 on the A1′ factor because they share all 
of their genes, including the 50% shared with their parent. 
Such data will need to be modelled accordingly.

The MCoT model presented in Fig. 2 will be useful to 
researchers interested in associations between parent and 
offspring phenotypes where the parental phenotype in ques-
tion is invariant across children (e.g., certain diagnoses, or 
‘historic’ parental phenotypes such as history of juvenile 

delinquency). However, many parental phenotypes have the 
potential to vary between children within the same family 
(e.g. many parenting phenotypes, psychopathology meas-
ured at different time points). As such, the MCoT model 
in Fig. 2 (hereon referred to as MCoT-inv) must be further 
extended to deal with parent phenotypes that are variant 
across offspring.

In extending the MCoT model for use with parent pheno-
types that vary between offspring, it is important to consider 
how to specify the ‘within-person’ correlation that occurs 
between, for example, Twin 1’s parenting of their first and 
second child. In some CoT models (Narusyte et al. 2008) 
such correlations have been specified as A1 + C1, meaning 
that differences in e.g. the parenting of child 1 and parenting 
of child 2 are explained by unique environmental influences 
(E1). This specification is straightforward and makes a cer-
tain amount of sense (i.e. it is the same parent). However, it 
also has the undesirable consequence of constraining within-
person correlations to be the same as MZ correlations, and 

Fig. 2  Multiple-children-of-twins structural equation model. Parent 
phenotype is invariant across offspring (MCoT-inv). Note: A1 = addi-
tive genetic effects on parental phenotype; C1 = shared-environmental 
effects on parental phenotype; E1 = nonshared environmental effects 
on parental phenotype; A1′ = genetic effects common to parental 
phenotype and offspring phenotype; C1′ = extended family effects 
whereby the shared environment of the parents influences offspring 
phjenotype; A2 = familial effects specific to offspring phenotype; 
C2 = shared-environmental effects on offspring phenotype (not esti-
mable using cousin data); E2 = nonshared environmental effects on 

offspring phenotype; p = phenotypic effect of parent on offspring; 
rE = within-parent correlation between E1 for parenting of child 1 
and 2. Allows parenting of each child to differ (when necessary this 
should be allowed to vary according to offspring zygosity). NB the 
pathway between A1 and A1′ is fixed to 0.50 because parents and 
children share 50% of their genome. To avoid over complicating path 
diagrams, variance paths have been omitted, but for all latent factors 
variance = 1. For A1′ this means that residual variance (after account-
ing for the path between A1 and A1′) is 0.75
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thus brings within-person correlations into the estimation 
of A, C and E. Another alternative would be to specify the 
within-person correlation as a Cholesky decomposition, thus 
freely estimating the association between A, C and E on the 
first parent phenotype and the second. This may be of use 
to researchers interested in the effects of parity, e.g. aetio-
logical differences in the parent phenotype for the first vs. 
second child where data is sorted by birth-order. However, 
for most situations we advocate a third option, presented 
in Fig. 3 (MCoT-var). Here, the within-person association 
is estimated as a combination of A, C, and E, where the 
correlation between E for e.g. the parenting of child 1 and 
child 2, is freely estimated (see rE in Fig. 3), thus allow-
ing for differences between the two phenotypes. This does 
not affect the estimation of A, C or E and does not involve 
as many assumptions, or require the estimation of as many 
additional paths, as the Cholesky decomposition. Where the 
offspring generation comprises multiple zygosities (MZ, 
DZ, sibs etc.), and where the within-person correlation on 
the parent phenotype is known to differ by child zygosity 
(e.g. parenting and any other phenotypes where child-driven 
evocative rGE is present), a separate rE correlation should 
be estimated for each zygosity to ensure that estimates are 
unbiased. Yet another alternative specification would be to 
include an additional latent factor (N for nuclear family)3 to 
capture the within-person correlation. This would have the 
benefit of distinguishing between the unique environmental 
component that makes parents’ behaviour consistent for each 
of their children (N) vs. the unique environmental compo-
nent that makes their behaviour different for each child (E1). 
Such an approach could be useful if the parent phenotype 
varies between offspring because it was assessed at different 
time points. However, it would not be appropriate for data 
in which child zygosity predicts within-person differences 
in parent phenotype.

While previous studies have not included multiple off-
spring per twin parent in CoT models, some researchers 
(Hannigan et al. 2016; Silberg et al. 2010, 2012) have taken 
another approach to increase their ability to accurately esti-
mate the aetiology of the offspring phenotype, by combin-
ing a CoT dataset with data from a children-as-twins (CaT) 
dataset. In these studies, the CaT dataset comprised data on 
twins who were of the same age group as the offspring in 
the CoT dataset, collected using the same instrument. The 
introduction of the CaT dataset increases power to detect 
genetic effects in the offspring generation (A2), and allows 
shared environmental effects to be estimated (C2). A CaT 
dataset also has the advantage that twins are always the same 
age as one another, whereas cousins are often not. However, 
the children-as-twins data inform only on the variance of the 

child phenotype, they provide no direct information on the 
nature of parent–child covariance. As such, wherever possi-
ble we would advise researchers who are considering setting 
up a CoT/CoS study to collect information on multiple chil-
dren per parent, as doing so will provide additional sources 
of covariance with which to decompose intergenerational 
associations. That said, the use of a CaT dataset does offer 
obvious advantages in terms of increased power to estimate 
genetic and environmental effects in the offspring genera-
tion, and avoids complications of age difference between sib-
lings/cousins attenuating the estimates if they change with 
age. It is worth noting here that DZ twinning is heritable, so 
MCoT studies will generally have the advantage of including 
twins in both generations.

Application to simulated data: the power 
to distinguish routes of intergenerational 
transmission

The CoT models we present are typically used to assess the 
extent to which an intergenerational correlation of inter-
est may be attributable to genetic relatedness, and whether 
an association remains after accounting for relatedness. 
As discussed, they can also be used to assess the role of 
the extended family environment, but first we focus on the 
distinction between genetic vs. phenotypic transmission in 
the absence of extended family effects. The ability of the 
model to accurately distinguish phenotypic transmission (i.e. 
transmission of a social or other nature not involving the 
passing of genes from parent to child) from genetic trans-
mission is dependent upon the power to detect each of these 
pathways. For phenotypic transmission, this means the p 
path. For genetic transmission, this involves genetic effects 
in the parent generation (a1) and the transmission of these 
effects to the next generation (a1′). Of all these paths (p, 
a1, a1′), there is least power to detect a1′. Power to detect 
the a1′ pathway is dependent upon many factors, includ-
ing the magnitude of the parent-offspring correlation; the 
proportion of the correlation that is attributable to genetic 
overlap; the size of the avuncular relatedness coefficients 
(0.50 and 0.25 for families in which parents are MZ and DZ 
twins respectively); the size of the sample; the size of the 
families within the sample, the MZ:DZ ratio; and the herit-
ability of the phenotypes. In the following power analyses 
we use simulated data to first demonstrate how the power to 
detect a1′ is increased by increasing the number of offspring 
included per parent. We then introduce shared environmental 
effects into parent and child phenotypes, and explore models 
including significant extended family effects (c1′) as these 
are often omitted from CoT models.

In Table 1 we present the results of power analyses of the 
models presented in Figs. 1, 2 and 3 in scenarios in which 3 Credit goes to an anonymous reviewer for this suggestion.
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intergenerational associations are attributable to genetic and 
phenotypic effects (models 1-1a, 2-2b, and 3-3b in Table 1); 
genetic, extended family and phenotypic effects (models 1c, 
2c, and 3c); and to extended family and phenotypic effects 
(models 1d, 2d, and 3d). We present these power analyses 
with the caveat that in complex SEMs, varying the magni-
tude of any path can have an impact on the power to detect 
any other path, so interpretation is not straightforward. We 
therefore present these analyses simply as an aid to under-
stand how the power to detect the paths of intergenerational 
transmission (a1′, c1′, p) varies for each of our models. 
Scripts for running all of the models and power analyses 
presented in this paper are provided via the supplementary 
materials. Scripts are designed to simulate data according 
to given model parameters, so as well as exploring issues 
of power, readers can explore the covariance structure that 
might be expected in particular scenarios.

In all power analyses we simulated data comprising a 
sample of 1000 twin pairs (40% MZ) with children. We have 
tried to simulate a scenario that we believe to be representa-
tive of a real-world situation—two moderately heritable 
traits with an intergenerational correlation of 0.35. In the 

first few power analyses (1-1a, 2-2b, and 3-3b) in Table 1 
we specify this association to be 40% attributable to genetic 
transmission, and 60% attributable to phenotypic transmis-
sion. That is, although this association is primarily pheno-
typic, it would be useful for researchers to be able to identify 
that over one-third of the association is genetic in origin.

In Table 1 it can be seen that power to detect a1′ was 
lowest in the 4 variable CoT model (model 1a: one-child-
per-twin), was greater in the six variable MCoT-inv model 
(model 2a: two-children-per-twin with invariant parent 
phenotype), and greater still in the 8 variable MCoT-var 
model (model 3a: two-children-per-twin with variant par-
ent phenotype). To achieve 80% power to detect a1′ in our 
example required 947 twin families (twin pairs with chil-
dren) if using the CoT model, but only 551 when using the 
MCoT-inv model, and 469 families when using the MCoT-
var model. Of course, there are more individuals per family 
in the MCoT-inv model than the CoT model, but still fewer 
were required in total (3306 vs. 3788). It is also worth con-
sidering that asking twin parents enrolled in a study to pro-
vide data on 2+ of their children is likely to be less challeng-
ing for researchers than is the recruitment of entirely new 

Fig. 3  Multiple-children-of-twins structural equation model. Parent 
phenotype is variant across offspring (MCoT-var). Note: A1 = addi-
tive genetic effects on parental phenotype; C1 = shared-environmental 
effects on parental phenotype; E1 = nonshared environmental effects 
on parental phenotype; A1′ = genetic effects common to parental 
phenotype and offspring phenotype; C1′ = extended family effects 
whereby the shared environment of the parents influences offspring 
phjenotype; A2 = familial effects specific to offspring phenotype; 
C2 = shared-environmental effects on offspring phenotype (not esti-
mable using cousin data); E2 = nonshared environmental effects on 

offspring phenotype; p = phenotypic effect of parent on offspring; 
rE = within-parent correlation between E1 for parenting of child 1 
and 2. Allows parenting of each child to differ (when necessary this 
should be allowed to vary according to offspring zygosity). NB the 
pathway between A1 and A1′ is fixed to 0.50 because parents and 
children share 50% of their genome. To avoid over complicating path 
diagrams, variance paths have been omitted, but for all latent factors 
variance = 1. For A1′ this means that residual variance (after account-
ing for the path between A1 and A1′) is 0.75
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twin families. The MCoT-var model comprises just as many 
individuals as the MCoT-inv model, but includes more data 
(e.g., additional measurement occasions, or child-specific 
parenting questionnaire responses). However, the increase 
in power in the MCoT-var model was such that it required 
considerably fewer individuals than the MCoT-inv model. 
In Fig. 4 we illustrate the number of twin pairs required to 
reach 80% power to detect a1′ of varying magnitude using 
each of these 3 models. The numbers required decrease as 
genetic transmission explains an increasing proportion of the 
correlation between parent and child.

Previously it has been noted that some CoT models have 
difficulty converging on a correct solution when parental 
shared environment is non-zero (Narusyte et al. 2008). For 
this reason we also ran models in which parental shared 
environment was non-zero (C1 = 0.20: models 1a, 2a, 3a 
in Table 1). In our simulations these models did converge 
on a correct solution. However, power to detect a1′ was 
reduced, with double the number of families required to 
achieve the same power as simulations where C1 = 0. In 
simulations where C1 = 0.20 the power was reduced more 
in the CoT model (1a) than MCoT-inv (2a), than MCoT-
var (3a). A non-zero influence of shared environmental 
effects in the offspring generation (models 2b and 3b) had 

a far smaller impact upon the ability to detect a1′, dem-
onstrating that this effect is specific to the parental shared 
environment.

In models 1c, 2c, and 3c we further explored the effect of 
the shared environment on these models by also including 
c1′ as a significant contributor to the parent–child associa-
tion. In these simulations we specified the intergenerational 
association (rPh = 0.35) to be 40% attributable to genetic 
transmission, 40% attributable to extended family effects, 
and 20% attributable to phenotypic transmission. As with 
all of our analyses, results showed that MCoT-var had more 
power than MCoT-inv, which had more power than CoT. 
The inclusion of c1′ further reduced power to detect a1′ in 
all models. In order to reach 80% power to detect a1′, the 
CoT, MCoT-inv and MCoT-var models required 2697, 1452, 
and 1218 families respectively. Power to detect c1′ was far 
greater than was power to detect a1′, with ~ half or fewer 
families required to achieve 80% power. Models 1d, 2d, 
and 3d (in which the intergenerational association was 40% 
attributable to extended family effects, and 60% attributable 
to phenotypic transmission) confirm that in the absence of 
a1′, power to detect c1′ remained very high and considerably 
higher than a1′ of a similar magnitude.

Fig. 4  Power to detect genetic transmission using children-of-twin 
data: Applying three different models to simulated data. Note: Data 
was simulated such that the parent–child phenotypic correlation was 
always 0.35. Datasets comprised 1000 complete twin pairs where 

40% were monozygotic. Only the path a1′ was directly manipulated. 
Only paths a1′, p and e2 varied. Other specifications were as follows: 
A1 = 0.50, C1 = 0.00, E1 = 0.50, A2 = 0.33, C2 = 0.00, E2 = residual 
child variance
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In the supplementary materials we explore the conse-
quences of not modelling c1′ where it does in fact play a 
role in intergenerational associations (Table S1). We also 
explore the consequences of unmodelled dominance effects 
(Table S2). These analyses are discussed towards the end 
of this article.

Application to real data

To further demonstrate the power gained by including mul-
tiple children per family in CoT/CoS SEMs, we applied 
two of the above models to data from the Intergenerational 
Transmission of Risk (ITOR) project. The ITOR project is 
based on the Norwegian Mother and Child Cohort Study 
(MoBa) (Magnus et al. 2016). The MoBa is a prospec-
tive population-based pregnancy cohort study conducted 
by the Norwegian Institute of Public Health. Participants 
were recruited from all over Norway from 1999 to 2008. 
The women consented to participation in 41% of the preg-
nancies. The cohort now includes 114,500 children, 95,200 
mothers and 75,200 fathers. The IToR project has linked 
data from portions of the MoBa to registry pedigrees (i.e. 
the Norwegian Population Registry and the Medical Birth 
Registry of Norway), and zygosity information (i.e. based 
on genotyping, questionnaires, and linkage to the Norwegian 
Twin Registry). These pedigrees include unique identifica-
tion numbers for all grandparents, parents, and children that 
have been listed in the Norwegian Population Registry or 
Medical Birth Registry.

We examined the association between maternal and off-
spring height and weight in ITOR. Maternal height and 
weight prior to pregnancy was self-reported in the 15th 
week of gestation, and offspring height and weight was 
obtained via maternal report at age 18 months. The cor-
relation between maternal and child height was 0.28, for 
weight it was 0.20. First, we fitted a four variable (one child 
per mother) CoT model to the data. We then fitted MCoT 
models to the data, allowing for two children per mother. 
We chose the MCoT-inv model for the analysis of height 
because maternal height did not differ by offspring. To the 
weight data we fitted an MCoT-var model, because maternal 
weight did differ by offspring.

The sample for analysis comprised 10,610 mothers on 
whom we had data. These included MZ and DZ twin pairs, 
siblings, and half-siblings (see Supplementary Materials 
Table S3 for a complete sample breakdown). These indi-
vidual mothers constituted 4875 complete sibling pairs, and 
860 incomplete pairs (i.e. singletons). We had data on 8281 
children. In the first analysis (one child per mother), 7090 
of these children were included. In the second analysis (up 
to two children per mother), all were included. In the sec-
ond analysis there were 1191 complete sibling pairs in the 

offspring generation. The sibling pairs in the offspring gen-
eration also included MZ twin pairs (35), and half-sibling 
pairs (9).

Parameter estimates from all analyses are displayed in 
Table 2. For both height and weight, the estimates of paren-
tal aetiology were very similar when comparing across the 
CoT and MCoT models, as should be expected. However, the 
same was not true for the offspring aetiology, with notice-
able differences in parameter estimates and their significance 
(i.e. confidence intervals).

For height, the results of model fitting (see Table S4 and 
accompanying text in supplementary materials) revealed 
that it was possible to drop A1′, C1′ or the p path from the 
CoT model, indicating that it was not possible to distinguish 
between the different routes of intergenerational transmis-
sion in this analysis. Conversely, in the MCoT model, it was 
not possible to drop the A1′ path or the C1′ path, indicating 
that both of these routes were significant. Examination of 
the MCoT model confirms the importance of genetic fac-
tors, with 87% of the mother–child covariance being attrib-
utable to genetic transmission. These results would strongly 
suggest that genetic transmission is the primary reason for 
correlations between maternal height and the height of their 
18-month-old children.

For weight, model fitting results led to the same con-
clusion for the CoT and MCoT analysis, whereby genetic 
transmission explained the covariance between mater-
nal pre-pregnancy weight and that of their child at age 18 
months. The results of model fitting and confidence intervals 
highlights the greater power of the MCoT model to detect 
a1′. While the participation rate of 41% in the MoBa study 
gives some cause for caution in interpreting these findings, 
we are not aware of any reason to expect the mechanisms 
underlying the correlation between mother and child height 
and weight to vary by participation.

Discussion

In this article we have demonstrated how to expand CoT 
models to include multiple children per twin, and how doing 
so can increase power and solve some of the shortcomings 
of previous models. Using real data, we have shown that 
the inclusion of more than one offspring per parent can 
have a substantive impact on results, even when only a 
small proportion of the overall sample has more than one 
child in the study. For the association between mother and 
child height, the (one child per parent) CoT model could 
not distinguish genetic from phenotypic transmission. How-
ever, once we included complete sib-ships in the offspring 
generation, our MCoT model clearly demonstrated that this 
association could best be understood as primarily genetic 
in nature.
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We believe that our extensions to existing CoT models, 
and findings regarding the associated increases in statisti-
cal power, constitute an important step forward and will 
be informative to researchers as they make use of available 
CoT and family data. It is also our desire that this article be 
of use to researchers interested in collecting new data on 
twins and their children. Our findings emphasise the ben-
efits of collecting data on multiple children per parent. It 
is also worth considering other ways in which researchers 
might get the most out of CoT data. For example, the inclu-
sion and retention of childless twins and incomplete pairs 
in CoT databases is advisable. In typical twin studies (i.e. 
twins without offspring), the inclusion of incomplete pairs 
means that twins without a co-twin in the sample can still 
contribute to the estimation of means and variances, even if 
they do not contribute information to the estimation of twin 
covariance and aetiological decomposition. In a CoT study, 
if only one member of a twin pair has a child, including 
data on the childless co-twin will also allow this family to 
contribute to avuncular correlations. Thus, such families can 
also inform on the nature of intergenerational associations. 
This is preferable to only including families in which both 
twins have offspring, and will increase the generalizability of 
the sample (although of course the inclusion of childless co-
twins may not make sense/be possible for all phenotypes).

It is also worth highlighting that the models we present 
are not only suitable for use with twin data but can eas-
ily be adapted for use with population or family databases, 
where comparisons between MZ and DZ twin families can 
be accompanied or replaced by comparisons between sib-
lings, half-siblings, cousins, and half-cousins (e.g. as in the 
ITOR sample in this article). That is, comparisons between 
any groups of differentially related families can be used in 
this way. Power will be lower where relatedness coefficients 
are smaller, but the potential for larger sample sizes will 
often mitigate this.

Below we attempt to expand and clarify upon the inter-
pretation of the CoT models we have presented, discuss 
some nuances, and highlight future directions:

Interpreting CoT models: the phenotypic pathway

The path that we have labelled ‘p’ in Figs. 1, 2, and 3 is 
intended to capture any association between parent and 
child phenotype not attributable to genetic relatedness (i.e. 
not captured by the genetic route of transmission; a1′) or 
the extended family environment (c1′). We would interpret 
a significant phenotypic pathway as indicative that one or 
more of the following is true (conditional on the power 
considerations discussed earlier in this article): (1) Paren-
tal phenotype causally influences the offspring phenotype 
above and beyond effects attributable to genetic related-
ness and extended family effects. (2) Offspring phenotype 

causally influences parent phenotype above and beyond 
effects attributable to genetic relatedness and extended fam-
ily effects. (3) Parent and offspring phenotype are each asso-
ciated with a third variable, not included in the model and 
not captured by shared genetic or extended family effects, 
that has a causal influence on each, thus creating/inflating 
their statistical association. Note that these interpretations 
do not entirely preclude genetic effects from playing a role in 
parent–child associations—parent and child phenotype can 
each be under genetic influence, so e.g. the genetically influ-
enced behaviour of a child could have an influence on their 
parent’s behaviour (and/or vice versa). Such effects would 
constitute an evocative rGE and in the models presented 
would load onto the phenotypic pathway. The phenotypic 
pathway suggests that there may be a role for exposure—that 
is, after accounting for genetic relatedness, the parent pheno-
type may influence child phenotype, and/or vice versa. The 
p path has previously been described using several different 
terms including ‘non-genetic’, ‘environmental’, and ‘social’. 
We have chosen to use the term ‘phenotypic’, as this carries 
fewer implications about the origin of the association.

In terms of the way that the SEMs in Figs. 1, 2 and 3 
are specified, the phenotypic ‘p’ pathway is a causal path. 
That is, it is a single-headed arrow running from parent to 
child. However, it is important to note that no assumptions 
should be made regarding the direction of causation unless 
the data permits (e.g. by temporal precedence). Previously, 
these models have been used on cross-sectional data, so any 
association should be interpreted as correlational—not nec-
essarily indicative of a causal influence of parent on child 
(or indeed vice versa). The path is modelled as causal (i.e. 
a single headed arrow) because it is not possible in SEM to 
model a path between two endogenous variables as corre-
lational (i.e. a double headed arrow). It is however possible 
to re-specify these models such that the direction of causa-
tion runs from child to parent. Doing so will result in the 
same conclusions as using the specifications and models we 
present here.

Interpreting CoT models: the A1′ pathway

The A1′ pathway in the CoT models presented captures 
covariance between the parent and child phenotypes that is 
attributable to their genetic relatedness. That is, this path-
way is intended to estimate intergenerational genetic trans-
mission. It is worth noting here that in recent years several 
papers have included reports of non-significant A1′ path-
ways where some genetic transmission might have been 
expected. For example, if depression is heritable, why is 
none of the intergenerational association between parent 
and child depression attributable to genetic transmission 
(McAdams et al. 2015; Silberg et al. 2010; Singh et al. 
2011)? There are several reasons that CoT models may find 
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no genetic associations where they are expected: First, the 
models may be underpowered. The identification of inter-
generational genetic transmission in a CoT model relies upon 
differences between MZ avuncular correlations, and DZ 
avuncular correlations. The genetic relatedness coefficients 
in these relationships are 0.50, and 0.25 respectively. This 
means that statistical power is lower than, for example, when 
conducting multivariate genetic analyses within a generation 
of twins, in which correlations are decomposed using dif-
ferences between MZ and DZ correlations (where related-
ness coefficients are 1.00 and 0.50 respectively). We have 
demonstrated in this article that this is a reason to include 
multiple children per parent wherever possible.

Second, there is perhaps less reason to expect the inter-
generational associations examined to be attributable to 
genetic relatedness than may commonly be assumed. For 
example, when studying the intergenerational transmission 
of psychopathology, datasets often comprise adult twins 
with child/adolescent offspring. Given that genetic innova-
tion is a common finding in the literature (i.e. the genetic 
architecture of traits changes across the lifespan) (e.g. Han-
nigan et al. 2017), it is perhaps not surprising that genetic 
factors involved in psychopathology in adults do not always 
correlate perfectly with those involved in child or adolescent 
psychopathology. It is also possible that cohort effects play 
a role—i.e. genetic factors involved in psychopathology in 
one generation may not be the same as those in subsequent 
generations. It is known that the genetic architecture of a 
trait can be dependent upon the environment in which it is 
expressed (Rutter et al. 2006). So, given the differences in 
environmental experiences of e.g. somebody who grew up 
in the 1960s and their offspring who grew up in the 1990s, it 
should perhaps not be too surprising if we find that genetic 
overlap between parent and child is not perfect, even if we 
measure ostensibly the same phenotype in each generation.

Previously, when presenting findings from CoT studies 
we have encountered questions from some reviewers and 
researchers along the lines of “if children-as-twin stud-
ies report that the association between, for example, par-
enting and behavioural problems is partially genetic (e.g. 
McAdams et al. 2013), then why is the A1′ pathway often 
non-significant in CoT models assessing similar associa-
tions?” This is a common query based on a common mis-
understanding, so we thought it worthwhile outlining a 
response. It is important here to consider the differences 
in information included in CaT vs. CoT studies. In a CaT 
sample, if a parenting measure is found to be heritable, then 
this indicates that child genes influence/correlate with the 
parenting that they receive. Often, in these studies, child 
genes associated with the parenting they receive are also 
associated with child behaviour (McAdams et al. 2013). In 
a CoT sample, if a parenting phenotype is heritable, then 
this indicates that parent genes influence parenting. In the 

CoT models presented in the preceding Figures, where off-
spring phenotype is heritable, this indicates that child genes 
influence offspring phenotype. So in CaT models, genetic 
correlations between parenting and child behaviour indicate 
that children’s genes influence both. In the above CoT mod-
els, genetic correlations would demonstrate an association 
between parent genes involved in parenting, and child genes 
involved in child phenotype. As such, these models are not 
directly comparable and tell us different things about the 
nature of parent–child associations. It is also worth noting 
here that in CaT studies, the aetiology of parenting vari-
ables can be greatly affected by the reporter, with parents 
reporting that they treat their children very equally (result-
ing in large C estimates), and children reporting otherwise 
(resulting in far smaller C estimates). In CaT studies the 
heritability of parenting is calculated based on how similarly 
individual parents parent their MZ vs. DZ twin children. In 
contrast, CoT studies involve comparing how similar MZ 
vs. DZ twins are in parenting their own children. As such, 
estimates of the heritability of parenting derived from CoT 
samples are less susceptible to reporter effects.

The shared environment in CoT models

The shared environment is typically described as “environ-
mental effects that make members of a family similar to 
one another” or “environmental effects that make siblings 
similar to one another”. Such definitions are straightfor-
ward when working with standard twin datasets, but less 
so with CoT and CoS datasets, where several sib-ships can 
be nested within nuclear families, which in turn are nested 
within extended families. It is possible with extended family 
data to specify several types of shared environment. In the 
above models we have included C1—environmental effects 
that makes siblings in the parent generation similar to one 
another, and C2—environmental effects that make siblings 
in the offspring generation similar to one another (besides 
those going via the p path). We have also included a c1′ 
path, via which extended family effects can be transmitted 
that can explain some or all of the correlation between par-
ent and child phenotypes. Other possible shared environ-
mental effects are possible, and several have been modelled 
in Swedish population registry data using intergenerational 
models similar to those we present here (Chang et al. 2014; 
Kuja-Halkola et al. 2014; Latvala et al. 2015).

While working with simulated data, we found that when 
parental shared environment (C1) was non-zero, power to 
detect A1′ reduced substantially, even when the shared envi-
ronment played no role in explaining the intergenerational 
association. This finding aligns with reports by Narusyte 
et al. (2008), that their bidirectional model had problems 
converging on the correct solution when parental shared 
environment was present. Nonetheless, as highlighted by 



409Behavior Genetics (2018) 48:397–412 

1 3

Narusyte et al. (2008), this is unlikely to be a major concern 
for most researchers using CoT/CoS data, as a majority of 
parental phenotypes likely to be included in these models 
(parenting, personality, psychopathology) are not under the 
influence of shared environmental influences in adulthood. 
That said, it is of course possible to think of exceptions to 
this rule (e.g. education, SES).

We also explored models designed for those situations in 
which the shared environment may play a role in explaining 
intergenerational associations via the pathway c1′. Where 
genetic and extended family environment effects explained 
equal portions of the intergenerational association, power 
to detect c1′ was higher than power to detect a1′. The pres-
ence of c1′ also led to a slight reduction in power to detect 
a1′ relative to models in which c1′ was held at zero. Impor-
tantly, failing to allow for a possible role of c1′ when it did in 
fact play a role in explaining intergenerational associations 
led to an overestimation of a1′ and underestimation of p. 
This is an important finding given that many CoT models to 
date have not allowed for the possibility of an effect of the 
extended family environment. To ensure accurate results we 
would encourage researchers to include c1′ paths (or similar) 
in their models. If clearly non-significant then these paths 
can be dropped from models in order to maximise power to 
detect a1′.

Dominance

In the models presented in Figs. 1, 2 and 3 we have not 
included latent factors to account for the potential effects 
of non-additive genetic effects, or genetic dominance. In 
twin models, latent factors can be added to capture effects 
attributable to interactions between alleles at a locus (e.g. 
dominance; D). Such interactions increase the similarity 
between siblings whenever they share the same alleles at a 
given locus. That is, when siblings inherit the same genes 
as one another from both their mother and their father. MZ 
twins are genetically identical, so they share all dominance 
genetic effects with one another. Full siblings inherit the 
same genes from both their mother and their father at a given 
locus 25% of the time on average. Thus, for MZ twins the 
correlation for D (rD) is 1.00, whereas for DZ twins and full 
siblings rD = 0.25. For other family dyads (cousins, half-
siblings, parent–child etc.) rD = 0.00 because they do not 
share both parents. In this paper we have focussed on the 
use of CoT/CoS data in understanding the nature of inter-
generational associations. We have therefore omitted domi-
nance effects from our models because such effects are not 
directly transmitted from one generation to the next. This is 
because children only inherit one copy of each gene from 
each parent. It is also generally not possible using twin data 
to estimate the effects of dominance and the shared environ-
ment at the same time. However, in the scripts provided in 

the supplementary materials we do allow for parent (D1) 
and child (D2) dominance effects for use with phenotypes 
in which dominance is present. In simulations included in 
the supplementary materials we explored the consequences 
of omitting significant parental dominance effects from our 
models. Generally, the models we present appear to deal 
with unmodelled dominance well, and conclusions regard-
ing the nature of intergenerational associations should not 
be biased except for instances in which the extended family 
environment also plays a role (see Supplementary Materials 
and Table S2 for more details).

Limitations and considerations

As with all models, CoT and MCoT models have limita-
tions that should be taken into consideration. Many of these 
limitations have been discussed elsewhere. For example, a 
CoT-specific version of the equal environments assumption 
(EEA) is that the children of MZ twins are not exposed to 
their parent’s co-twin any more than are the children of DZ 
twins. Although, unlike the EEA in standard twin studies, in 
CoT studies it is quite easy to account for this by measuring 
the amount of avuncular contact and including in the model 
(Koenig et al. 2010). Eaves et al. (2005) have discussed the 
“dyadic variables issue”, whereby CoT models may not work 
when parental phenotypes are the product of the interaction 
between people (e.g. divorce) rather than the characteristic 
of a single parent.

Other considerations involve the fact that age differ-
ences between cousins and siblings in the offspring genera-
tion could lead to biases in estimates of offspring aetiology 
where age is associated with aetiology. To counter this, 
studies can be designed so that data is collected only when 
offspring reach a particular age. Alternatively, constraints 
can be applied to data included in models to minimise age 
differences (e.g. only including relatives within 5 years of 
each other). It would also be possible to regress the effects 
of age out of phenotypes before entering into SEMs, or to 
include age as a covariate. While we have not explored the 
possibility of modelling sex differences in our models, it 
would be possible to do so, although we would anticipate 
that power considerations would mean that very large sam-
ples are required to accurately identify any differences.

Alternative methods

In the present article we have followed others (e.g. 
D’Onofrio et al. 2003; Keller et al. 2009; Narusyte et al. 
2008, 2011; Silberg and Eaves 2004; Silberg et al. 2010, 
2012) in adapting well-established biometric SEMs that have 
previously been applied to extended twin family data. We 
are hopeful that by adapting this already well-established 
approach to intergenerational analyses, our models will 



410 Behavior Genetics (2018) 48:397–412

1 3

prove useful to the field. For example, previously research-
ers have demonstrated how to add spouses to these models 
to account for the effects of assortative mating (Keller et al. 
2009; Silberg and Eaves 2004; Silberg et al. 2010, 2012) so 
it would be possible to include spouses in the models that we 
have presented. However, as is always the case with complex 
data, it is possible to model CoT/CoS data in many different 
ways. Kuja-Halkola et al. (2014) have previously applied 
biometric SEMs to intergenerational CoS data extracted 
from Swedish population registries (see also Chang et al. 
2014; Latvala et al. 2015). The models that they have used 
are specified differently to those we have presented in this 
article, in that instead of estimating a1′, c1′ and p, they esti-
mate correlations between parent A and child A, parent C 
and child C (additional shared environmental factors are 
often estimated as well), and parent E and child E. They 
interpret a significant E correlation as indicating that an 
association between parent and child phenotypes remains 
after accounting for shared genetic and familial environ-
mental effects. We don’t see any reason why the conclu-
sions regarding the nature of intergenerational associations 
should differ dependent upon whether researchers use the 
models presented by Kuja-Halkola and colleagues or those 
we present here.

While the focus of this article has been on SEM tech-
niques, there are of course alternative approaches that can 
be used with MCoT/CoS data, including a range of multi-
level regression models with modelled genetic relatedness. 
Previously such approaches have been taken with CoT/
CoS data to explore whether associations between parent 
and child persist after accounting for familial confounding 
(D’Onofrio et al. 2005; Jundong et al. 2012; Slutske et al. 
2008). It may also be possible to decompose covariance into 
genetic and environmental components using such methods 
(i.e. Rabe-Hesketh et al. 2008), although to our knowledge 
this has not been done with CoT data. Another possible way 
to model multiple children per twin in CoT data would be to 
use multi-level SEM techniques (Rabe-Hesketh et al. 2007). 
Such techniques combine the advantages of SEM (ability to 
specify/identify latent variables, and to graphically represent 
and explore complex relationships between many variables) 
with those of multilevel modelling (ability to deal with com-
plex data structures, and explore relationships at different 
levels within a dataset). To our knowledge, such models have 
yet to be developed or applied to CoT/CoS data, but it is pos-
sible that this will happen in the future.

Future directions

Because our focus for this paper was on the benefits of 
including multiple offspring in CoT models, we did not 
include spouses in the models that we have presented. How-
ever, it is possible to incorporate spousal information. For 

example, several extended twin-family models include the 
spouses of twins (Keller et al. 2009), and spouses have been 
included in CoT models (Silberg and Eaves 2004; Silberg 
et al. 2010, 2012). In many instances, it may be of impor-
tance to incorporate spouses into intergenerational mod-
els, as aetiological estimates may be biased by assortative 
mating, and it is known that assortative mating is common 
across physical, behavioural, and cognitive phenotypes (Nor-
dsletten et al. 2016; Plomin and Deary 2015; Stulp et al. 
2017). In the nuclear twin family model and stealth model, 
twin-spouse correlations are modelled as ‘primary assort-
ment’, meaning that twins choose spouses who are pheno-
typically similar to them. However, alternative explanations 
for twin-spouse similarity exist, including social homogamy, 
whereby partners are chosen based on sociocultural similar-
ity; and phenotypic convergence, whereby partners become 
more alike over time. Assortative mating is a complex issue, 
the implications of which have yet to be fully explored 
(Heath et al. 2014; Plomin et al. 2016). In the future, it will 
be important to consider the impact of assortative mating on 
the parameter estimates obtained using CoT models.

Besides incorporating assortative mating into CoT mod-
els, future model developments should focus on the crea-
tion of multivariate CoT models. At present, CoT models 
are focussed on the decomposition of associations between 
one parent phenotype and one child phenotype. However, for 
many research questions, it would be informative to include 
additional phenotypes. For example, when studying associa-
tions between parent and child psychopathology, it would be 
of interest to incorporate parenting behaviours or relation-
ship measures that are hypothesised to mediate or moder-
ate associations. It is also known that many parental mental 
health phenotypes are predictive of multiple outcomes in off-
spring. For example, parental depression is associated with a 
host of negative outcomes in children (Natsuaki et al. 2014). 
Likewise, most child outcomes are associated with multiple 
predictors in the parent generation. Being able to simulta-
neously model such associations would be beneficial and 
may aid attempts to identify key intervention targets with 
which to maximise impact. While it is possible to assess 
the direction-of-effects between parent and child phenotypes 
using cross-sectional CoT data (Narusyte et al. 2008), being 
able to make use of longitudinal CoT data should also be a 
priority for future model development.

In summary we have demonstrated that by incorporating 
multiple offspring per parent, the power of CoT and chil-
dren-of-sibling models can be increased. Improving such 
models will aid in future efforts to disentangle potential 
social influences from genetic transmission in the study of 
intergenerational effects. Understanding the nature of inter-
generational transmission has the potential to inform both on 
our understanding of genetics and on the influence that par-
ents and children have on one another. For example, where 
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researchers establish that parent and offspring phenotypes 
are linked genetically, then we learn something about the 
genetic factors involved: They persist into adulthood (if off-
spring are children), they are pleiotropic (if the phenotypes 
are distinct), they persist across time (i.e. they associate with 
the same phenotype in cohorts born in different eras), and 
they explain a portion of familial similarity. Where well-
powered studies indicate that genetic transmission does not 
play a role, then it will be important to consider what pro-
cesses might explain associations. And while it is not the 
case that associations under genetic influence are not ame-
nable to intervention, when effects do remain after account-
ing for relatedness, it will be possible to guide intervention 
efforts to focus on those familial risk factors that constitute 
true environmental influences on child development.
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