Accepted Manuscript

Epigenome-wide Meta-analysis of DNA Methylation and Childhood Asthma

Sarah E. Reese, Ph.D., Cheng-Jian Xu, Ph.D., Herman T. den Dekker, M.D., Ph.D., Mi Kyeong Lee, Ph.D., Sinjini Sikdar, Ph.D., Carlos Ruiz-Arenas, M.Sc., Simon K. Merid, B.Sc., Faisal I. Rezwan, Ph.D., Christian M. Page, Ph.D., Vilhelmina Ullemar, Ph.D., Phillip E. Melton, Ph.D., Sam S. Oh, Ph.D., Ivana V. Yang, Ph.D., Kimberley Burrows, Ph.D., Cilla Söderhäll, Ph.D., Dereje D. Jima, M.Sc., Lu Gao, BS, Ryan Arathimos, B.Sc., Leanne K. Küpers, Ph.D., Matthias Wielscher, Ph.D., Peter Rzehak, Ph.D., Jari Lahti, Ph.D., Catherine Laprise, Ph.D., Anne-Marie Madore, Ph.D., James Ward, Ph.D., Brian D. Bennett, Ph.D., Tianyuan Wang, Ph.D., Douglas A. Bell, Ph.D., The BIOS Consortium, Judith M. Vonk, Ph.D., Siri E. Håberg, M.D., Dr.P.H., Shanshan Zhao, Ph.D., Robert Karlsson, Ph.D., Elysia Hollams, Ph.D., Donglei Hu, Ph.D., Adam J. Richards, Ph.D., Anna Bergström, Ph.D., Gemma C. Sharp, Ph.D., Janine F. Felix, M.D., Ph.D., Mariona Bustamante, Ph.D., Olena Gruzieva, Ph.D., Rachel L. Maguire, MPH, Frank Gilliland, M.D., Ph.D., Nour Baïz, M.Sc., Ph.D., Ellen A. Nohr, M.H.Sc., Ph.D., Eva Corpeleijn, Ph.D., Sylvain Sebert, Ph.D., Wilfried Karmaus, M.D., Dr.Med., Veit Grote, M.D., Ph.D., Eero Kajantie, M.D., Ph.D., Maria C. Magnus, Ph.D., Anne K. Örtqvist, M.D., Ph.D., Celeste Eng, BS, Andrew H. Liu, M.D., Inger Kull, R.N., Ph.D., Vincent W.V. Jaddoe, M.D., Ph.D., Jordi Sunyer, M.D., Ph.D., Juha Kere, M.D., Ph.D., Cathrine Hoyo, MPH, Ph.D., Isabella AnnesiMaesano, M.D., Ph.D., D.Sc., Syed Hasan Arshad, MBBS, DM, FRCP, Berthold Koletzko, M.D., Ph.D., Bert Brunekreef, Ph.D., Elisabeth B. Binder, M.D., Ph.D., Katri Räikkönen, Ph.D., Eva Reischl, Ph.D., John W. Holloway, Ph.D., Marjo-Riitta Jarvelin, M.D., Ph.D., Harold Snieder, Ph.D., Nabila Kazmi, Ph.D., Carrie V. Breton, D.Sc., Susan K. Murphy, Ph.D., Göran Pershagen, M.D., Ph.D., Josep Maria Anto, M.D., Ph.D., Caroline L. Relton, Ph.D., David A. Schwartz, M.D., Esteban G. Burchard, M.D., MPH, Rae-Chi Huang, FRCP, Ph.D., Wenche Nystad, Ph.D., Catarina Almqvist, M.D., Ph.D., A. John Henderson, M.D., Erik Melén, M.D., Ph.D., Liesbeth Duijts, M.D., Ph.D., Gerard H. Koppelman, M.D., Ph.D., Stephanie J. London, M.D., Dr.P.H.

[^0]To appear in: Journal of Allergy and Clinical Immunology

Please cite this article as: Reese SE, Xu C-J, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, Merid SK, Rezwan FI, Page CM, Ullemar V, Melton PE, Oh SS, Yang IV, Burrows K, Söderhäll C, Jima DD, Gao L, Arathimos R, Küpers LK, Wielscher M, Rzehak P, Lahti J, Laprise C, Madore A-M, Ward J, Bennett BD, Wang T, Bell DA, The BIOS Consortium, Vonk JM, Håberg SE, Zhao S, Karlsson R, Hollams E, Hu D, Richards AJ, Bergström A, Sharp GC, Felix JF, Bustamante M, Gruzieva O, Maguire RL, Gilliland F, Baïz N, Nohr EA, Corpeleijn E, Sebert S, Karmaus W, Grote V, Kajantie E, Magnus MC, Örtqvist AK, Eng C, Liu AH, Kull I, Jaddoe VWV, Sunyer J, Kere J, Hoyo C, Annesi-Maesano I, Arshad SH, Koletzko B, Brunekreef B, Binder EB, Räikkönen K, Reischl E, Holloway JW, Jarvelin M-R, Snieder H, Kazmi N, Breton CV, Murphy SK, Pershagen G, Anto JM, Relton CL, Schwartz DA, Burchard EG, Huang R-C, Nystad W, Almqvist C, Henderson AJ, Melén E, Duijts L, Koppelman GH, London SJ, Epigenome-wide Meta-analysis of DNA Methylation and Childhood Asthma, Journal of Allergy and Clinical Immunology (2019), doi: https://doi.org/10.1016/j.jaci.2018.11.043.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

James Ward, Ph.D. ${ }^{1}$
Brian D. Bennett, Ph.D. ${ }^{1}$
Tianyuan Wang, Ph.D. ${ }^{1}$
Douglas A. Bell, Ph.D. ${ }^{1}$
The BIOS Consortium
Judith M. Vonk, Ph.D. ${ }^{4,28}$
Siri E. Håberg, M.D., Dr.P.H. ${ }^{35}$
Shanshan Zhao, Ph.D. ${ }^{1}$
Robert Karlsson, Ph.D. ${ }^{15}$
Elysia Hollams, Ph.D. ${ }^{36}$
Donglei Hu, Ph. D. 18
Adam J. Richards, Ph.D. ${ }^{19}$
Anna Bergström, Ph.D. ${ }^{11,37}$
Gemma C. Sharp, Ph.D. ${ }^{20,21,38}$
Janine F. Felix, M.D., Ph.D. ${ }^{5,7,39}$
Mariona Bustamante, Ph.D. ${ }^{8-10,40}$
Olena Gruzieva, Ph.D. ${ }^{11,37}$

58 Vincent W.V. Jaddoe, M.D., Ph.D., ${ }^{5,7,39}$
59 Jordi Sunyer, M.D., Ph.D. ${ }^{8-10,55}$

62 Isabella Annesi-Maesano, M.D., Ph.D., D.Sc. ${ }^{43}$
63 Syed Hasan Arshad, MBBS, DM, FRCP ${ }^{57,58}$
64 Berthold Koletzko, M.D., Ph.D. ${ }^{30}$
65 Bert Brunekreef, Ph.D. ${ }^{59,60}$
66 Elisabeth B. Binder, M.D., Ph.D. ${ }^{61,62}$
67 Katri Räikkönen, Ph.D. ${ }^{31}$
68 Eva Reischl, Ph.D. ${ }^{63}$

73 Carrie V. Breton D.Sc ${ }^{26}$
74 Susan K. Murphy, Ph.D. ${ }^{64,65}$
75 Göran Pershagen, M.D., Ph.D. ${ }^{11,37}$
76 Josep Maria Anto, M.D., Ph.D. ${ }^{8-10,55}$
77 Caroline L. Relton, Ph.D. ${ }^{20,21}$
78 David A. Schwartz, M.D. ${ }^{19}$
79 Esteban G. Burchard, M.D., MPH ${ }^{18,66}$
80 Rae-Chi Huang, FRCP, Ph.D. ${ }^{36}$
81 Wenche Nystad, Ph.D. ${ }^{35}$
82 Catarina Almqvist, M.D., Ph.D. ${ }^{15,67}$
83 A. John Henderson, M.D. ${ }^{20}$
84 Erik Melén, M.D., Ph.D. ${ }^{11,54+}$
85 Liesbeth Duijts, M.D., Ph.D. ${ }^{6,68+}$
86 Gerard H Koppelman, M.D., Ph.D. ${ }^{3,4+}$
87 Stephanie J. London, M.D., Dr.P.H. ${ }^{1+}$

1. Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
2. Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
3. Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
4. GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
5. Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
6. Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
7. Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
8. CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
9. ISGlobal, Barcelona, Spain.
10. Universitat Pompeu Fabra (UPF), Barcelona, Spain.
11. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
12. Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
13. Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway. .
14. Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.
15. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
16. The Curtin/UWA Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia.
17. School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.
18. Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
19. Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
20. Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
21. Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
22. Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
23. Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
24. Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
25. Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
26. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
27. School of Social and Community Medicine, University of Bristol, Bristol, UK.
28. Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
29. Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment \& Health, School of Public Health, Imperial College London, London, UK.
30. Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany.
31. Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
32. Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland.
33. Centre intégré universitaire de santé et de services sociaux du Saguenay, Saguenay, Quebec, Canada.
34. Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada.
35. Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway.
36. Telethon Kids Institute, University of Western Australia, Perth, Australia.
37. Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.
38. Bristol Dental School, University of Bristol, Bristol, UK.
39. Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
40. Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
41. Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
42. Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA.
43. Epidemiology of Allergic and Respiratory Diseases Department, IPLESP, INSERM and UPMC Sorbonne Université, Paris, France.
44. Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
45. Biocenter Oulu, University of Oulu, Finland.
46. Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
47. Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, UK.
48. Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
49. Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.
50. Department of Obstetrics and Gynaecology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
51. Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.
52. Children's Hospital Colorado, Aurora, CO, USA.
53. Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
54. Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden.
55. Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
56. King's College London, Department of Medical and Molecular Genetics, London, UK.
57. Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
58. David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom.
59. Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
60. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.
61. Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
62. Max-Planck-Institute of Psychiatry, Munich, Germany.
63. Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany.
64. Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
65. Nicholas School of the Environment, Duke University, Durham, NC, USA.
66. Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
67. Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
68. Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.

* Equal contribution as first authors.
${ }^{+}$Equal contribution as senior authors.

Corresponding Author: Stephanie J. London, NIEHS, PO Box 12233, MD A3-05, Research Triangle Park, NC, USA, 27709, london2@niehs.nih.gov, P:1-984-287-3688, F:1-301-480-3199.

Author Contributions: All authors contributed to data collection, data analysis, or data interpretation and all participated in drafting or revising the manuscript.

Funding: Supported in part by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. See Supplemental Materials for complete funding information for individual studies.

Running Head: DNA methylation and childhood asthma

Disclosure of COI: C.Almqvist receives grant support from Swedish Research Council through the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework, Stockholm County Council (ALF-projects), Swedish HeartLung Foundation, and Swedish Asthma and Allergy Association's Research Foundation. R.Arathimos and G.Sharp receive support from the Medical Research Council. C.Breton and I.Yang receive grant support from the NIH. E.Burchard, C.Eng, and S.Oh receive grant support from the NIH and the Tobacco-Related Disease Research Program. A.J.Henderson receives grant support from the Medical Research Council and Wellcome Trust. E.Kajantie receives grant support from the European Commission, Academy of Finland, Foundation for Pediatric Research, Sigrid Juselius Foundation, Signe and Ane Gyllenberg Foundation, and Juho Vainio Foundation. G.Koppelman receives grant support from the Lung Foundation of the Netherlands, MEDALL EU FP7, UBBO EMMIUS Foundation, TEVA the Netherlands, Vertex, GSK, and TETRI foundation. E.Melén received grant support from the European Research Council during conduct of the study, and lecture fees from Thermo Fisher Scientific and Meda outside of the submitted work. G.Pershagen receives grant support from the Swedish Research Council. C.Relton receives grant support from Wellcome Trust. C.Ruiz-Arenas receives grant support from Agència de Gestió d'Ajuts Universitaris i de Recerca. C. Söderhäll receives grant support from several competitive grants from public and private sources and receives royalties from book chapters in study material. The rest of the authors declare that they have no relevant conflicts of interest.

Abstract

Background: Epigenetic mechanisms, including methylation, may contribute to childhood asthma. Identifying DNA methylation profiles in asthma may inform disease pathogenesis.

Objective: To identify differential DNA methylation in newborns and children related to childhood asthma.

Methods: Within the Pregnancy And Childhood Epigenetics (PACE) consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or crosssectionally, in school-age children. We also identified differentially methylated regions (DMRs).

Results: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, $\mathrm{FDR}<0.05$) in relation to asthma development. In cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (FDR<0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports regulatory impact on gene expression at many asthmaassociated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2.

Conclusion: Novel loci differentially methylated in newborns represent potential biomarkers of risk of developing asthma by school age. Cross-sectional associations in children may reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children substantially replicated in eosinophils and respiratory epithelium.

Abstract Word Count: 249

Key Messages: This large-scale genome-wide meta-analysis of DNA methylation and childhood asthma identified novel epigenetic variations related to asthma in newborns and children.

Capsule Summary:

This large-scale genome-wide meta-analysis identified variation in DNA methylation related to childhood asthma, prospectively in newborns and cross-sectionally in children; these biomarkers of asthma development and biologic effects that may shed light on disease mechanisms.

Key words: epigenetics, methylation, asthma, childhood, newborn, drug development.

Abbreviations:

CpG - C phosphate G site

OR - odds ratio

Cl - confidence interval

GWAS - Genome-Wide Association Study

Introduction

Asthma is the most common chronic disease of childhood ${ }^{1}$, but the underlying mechanisms remain poorly understood. GWAS meta-analyses have identified many loci related to asthma ${ }^{2}$, but these explain only a modest proportion of variation in asthma risk ${ }^{3}$. Increasing evidence suggests that epigenetic variation may play a role in asthma pathogenesis ${ }^{4}$. DNA methylation is the most studied epigenetic modification in humans. Prospective examination of methylation patterns in newborns in relation to asthma development may identify genes and mechanisms involved in the developmental origins of asthma ${ }^{5}$.

Epigenome-wide association studies (EWAS) of DNA methylation in blood in relation to asthma (number of cases range from 16 to 149$)^{6-12}$ have identified differential methylation at some specific gene regions. The only meta-analysis of epigenome-wide methylation in childhood asthma included 392 cases but did not examine newborn methylation ${ }^{13}$. Larger meta-analysis, including both methylation in newborns and at later ages, would increase power for identification of novel loci.

Using the Illumina HumanMethylation450K BeadChip (Illumina450K), we performed a largescale meta-analysis of childhood asthma in relation to whole blood DNA methylation in newborns to evaluate whether methylation patterns at birth relate to disease development. We separately examined cross-sectional associations between whole blood DNA methylation and the presence of asthma in children, at least of school age. We investigated the association of DNA methylation in blood and asthma at both individual sites and over genomic regions and evaluated the potential functional impact of findings by integrating gene expression, pathway
analyses, detailed functional annotation, and searching for druggable targets of differentially methylated loci. We also followed up our findings using methylation data in eosinophils and from nasal respiratory epithelium.

Methods

The Online Repository provides additional details on methods.

Study Population

Pregnancy and Childhood Epigenetics (PACE) is an international consortium of cohorts with Illumina450K DNA methylation data at birth (newborns) or in childhood ${ }^{14}$. In prospective analyses, we evaluated childhood asthma at school age in relation to blood DNA methylation data from newborns (8 cohorts: ALSPAC, CHS, EDEN, Generation R, GOYA, MoBa1, MoBa2, NEST). We also conducted cross-sectional analyses of methylation measured in children in relation to asthma status at that same time point (9 cohorts: BAMSE EpiGene, BAMSE MeDALL, CHOP, GALA II, ICAC, NFBC 1986, PIAMA, Raine Study, STOPPA). To avoid problems from small numbers, we set a minimum of 15 cases for participating cohorts to perform analyses.

Harmonization of Childhood Asthma Variables

We developed a harmonized definition of asthma based on the questionnaire data available in each cohort. Asthma was assessed at school age, defined as age 5 years or older and varied by cohort. Asthma was defined by doctor diagnosis of asthma and the report of at least one of the following: (a) current asthma, (b) asthma in the past year, or (c) asthma medication use in the last year. Non-cases were children who had never had asthma.

Methylation Data Measurements and Quality Control

DNA methylation was measured using the Illumina450K platform. Cohorts performed their own quality control, normalization, and analyzed untransformed beta values. We previously found that the use of different pre-processing or normalization methods did not influence metaanalysis results ${ }^{15,16}$. Probes on the X and Y chromosomes were removed as were those where a SNP was present in the last 5 base pairs of the probe which could interfere with binding. Rather than remove probes a priori that have appeared on various published lists of potentially crossreactive probes or probes nearby SNPs, we examined post hoc those that appear in statistically significant results ${ }^{17,18}$.

Annotation of CpGs

Tables include the UCSC RefGene name from Illumina's annotation file and enhanced annotation to UCSC Known Gene. UCSC Known Gene annotations include the nearest gene within 10 Mb of each CpG and fill in many missing gene names. All annotations use the human February 2009 (GRCh37/hg19) assembly.

Сонort Specific Statistical Analyses

The association of methylation and asthma was assessed using logistic regression. Covariates included in adjusted models were maternal age, sustained maternal smoking during pregnancy ${ }^{15}$, maternal asthma, socioeconomic status, and child's sex. Cohorts adjusted for batch effects using ComBat ${ }^{19}$, SVA 20, or by including a batch covariate in their models. We also adjusted for potential cell type confounding by including estimated proportions calculated using the Houseman method ${ }^{21}$ with a cord blood reference panel ${ }^{22}$ for newborn cohorts or an
adult blood reference pane ${ }^{23}$ for child cohorts. The primary models presented include adjustment for covariates and cell type; reduced models are presented for comparison.

Meta-Analyses

As in other consortium genomic analyses ${ }^{24,25}$, we meta-analyzed the study specific results using inverse variance-weighting, also referred to as fixed effects meta-analysis, with METAL ${ }^{26}$. We accounted for multiple testing by controlling for the false discovery rate (FDR) at 0.05^{27}. To enable readers to assess whether the results across studies are consistent, we provide forest plots of the study specific effect estimates and 95% confidence intervals. As another way to visualize meaningful heterogeneity or influential results, we also provide plots, for all significant CpGs, of regression coefficients and 95% confidence intervals where we leave out one cohort at a time. Although inverse-variance weighted meta-analysis does not require the assumption of homogeneity ${ }^{25}$, where there is even nominal evidence for heterogeneity (P-value for heterogeneity <0.05, without correction for multiple testing) for any CpG we report as genome wide significant, we also provide meta-analysis P-values from standard random effects metaanalysis using METASOFT ${ }^{28}$.

Analyses of Differentially Methylated Regions (DMRs)

Differentially methylated regions (DMRs) were identified using two methods, comb-p ${ }^{29}$ and DMRcate ${ }^{30}$. To correct for multiple comparisons, comb-p uses a one-step Šidák correction ${ }^{29}$, while DMRcate uses an FDR correction ${ }^{30}$. Each method requires the input of parameters to be used in selecting the regions. DMRcate ${ }^{30}$ has default values for the minimum number of CpGs in
a region (=2) and minimum length=1000 nucleotides; we used these values in comb-p to maximize comparability. To be conservative, we set the significance threshold at 0.01 , rather than 0.05 , and only considered a DMR to be statistically significant if it met this threshold in both packages (Šidák corrected P-value<0.01 from comb-p and FDR<0.01 from DMRcate). DMRcate annotates DMRs to UCSC RefGene from the Illumina annotation file.

Functional Follow-up of Significant DNA Methylation Findings

Correlation of differentially methylated sites with expression of nearby genes

To examine whether differentially methylated sites impact gene expression, we analyzed paired methylation and gene expression data, both measured in blood, from several datasets ${ }^{31-37}$ (see Online Repository): two with methylation and gene expression in newborns ${ }^{32-34}$ (GEO [GSE62924 and GSE48354], $\mathrm{N}=38$ and IoW, $\mathrm{N}=157$), one with newborn methylation and gene expression at age four years ${ }^{35}$ (INMA, $N=113$), another with gene expression and methylation both measured at age four ${ }^{35}$ (INMA, $N=112$), one with both measured at age 16^{38} (BAMSE, $\mathrm{N}=248$), and the largest with both measured in adults ${ }^{36,37}$ (BIOS, $\mathrm{N}=3,096$). For each of our significant CpGs, we examined the association with expression of transcripts within a 500 kb window (+/-250kb from the CpG). For differentially methylated regions, we used a window 250kb up- and down-stream of the end and start site of each region. A given CpG or region may have more than one gene transcript in this window. In the smaller datasets of paired gene expression and methylation in newborns or children, we report nominal evidence for significance ($\mathrm{P}<0.05$); for the much larger adult dataset, we report associations based on FDR<0.05.

Functional annotation

To identify tissue or cell type specific signals in significant EWAS results, we used eFORGE ${ }^{39}$. Pathway and network analyses were conducted using Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., Venlo, the Netherlands) (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) ${ }^{40}$. Due to possible uncertainty regarding genome annotation of probes flagged in the literature as potentially cross-reactive ${ }^{41}$, we excluded those from pathway analyses. We also compared our methylation findings to published studies of methylation in relation to asthma and evaluated whether the implicated genes overlap with loci identified in GWAS ${ }^{42,43}$. Additionally, we matched the genes to which our asthma-associated CpGs and DMRs annotated against the ChEMBL database (v22.1) to identify whether any are targets of approved drugs or drugs in development ${ }^{44}$.

Look-up Replication of significant DNA methylation findings in nasal respiratory epithelium and

EOSINOPHILS

We examined the cell-type specificity of significant findings in whole blood in childhood by doing a look-up in two datasets with methylation measured with the Illumina450K in respiratory epithelium collected by nasal brushing [455 16-year-old Dutch children (37 with asthma) from the PIAMA study ${ }^{13}$ and 72 African-American children (36 asthmatics, 38 nonasthmatics $)^{45}$] and in a study with methylation measured with the Illumina450K in eosinophils isolated from blood ${ }^{46}$ [16 asthmatics and 8 non-asthmatics aged 2-56 years from the Saguenay-Lac-Saint-Jean (SLSJ) region in Canada ${ }^{13,47}$].

Results

The prospective analysis of newborn methylation in relation to asthma development included eight cohorts; the cross-sectional analysis of methylation in children in relation to asthma included 9 cohorts with mean ages at assessment of both asthma status and methylation ranging from 7 to 17 years (Table 1 contains counts by cohort; Table E1 in the Online Repository contains descriptive statistics). As newborn DNA methylation is measured at birth, the age at asthma assessment is the time between assessment of methylation and asthma status in the prospective analyses. All models included covariates and cell type unless otherwise noted. Some studies oversampled asthma cases within their population-based cohorts using a nested case-control or case-cohort design for methylation measurement, hence the case-control ratio varies across studies.

Asthma in relation to Newborn DNA Methylation

Meta-analysis of asthma and newborn methylation (668 cases, 2,904 non-cases, 8 cohorts, ALSPAC, CHS, EDEN, Generation R, GOYA, MoBA1, MoBa2, and NEST), identified 9 statistically significant (FDR<0.05) individual CpGs (Manhattan and volcano plots in Figure 1). The 9 CpGs include two that have appeared on a list of poorly hybridizing probes ${ }^{41}$ and thus must be regarded with caution (ch.11.109687686R and ch.6.1218502R). The other seven CpGs annotated to the following genes: CLNS1A, MAML2/Mir_548, GPATCH2/STATA17, SCOC/LOC100129858, AK091866, SUB1, and WDR2O (Table 2). We identified 35 significant DMRs (Table 3; Table E2 for individual CpGs within DMRs); DMRs did not overlap the significant CpGs. Seven of the 9 significant CpGs showed higher methylation in children who developed
asthma than in non-cases. All 9 CpGs had $\mathrm{P} \leq 3.55 \times 10^{-3}$ in a crude model and $\mathrm{P} \leq 4.16 \times 10^{-4}$ in the covariate-adjusted models that did not include cell-type (Table E3 in the Online Repository). None of the 9 CpGs had been previously reported in the literature (Table E4 in the Online Repository).

Forest plots, showing the cohort specific odds ratios and 95% confidence intervals for the 9 CpGs, are shown in Figure E1 in the Online Repository. Two cohorts in the newborn analysis include individuals of non-European ancestry (NEST and CHS), therefore we evaluated whether these were influential. The forest plots (Figure E1) suggest that for just 1 of the 9 CpGs (cg07156990), the size of the effect estimate was larger in NEST than in other studies, but the Pvalue for heterogeneity was not close to statistically significant ($\mathrm{P}_{\text {heterogeneity }}=0.26$) and after removing NEST, the meta-analysis p-value was attenuated only slightly to 2.8×10^{-6} from 9.5×10^{-7}. When we repeated the meta-analysis removing both NEST and CHS, results were very consistent with those from all cohorts (correlation of the regression coefficients $=0.996$). With respect to tests of heterogeneity, only one of the 9 CpGs, cg13289553, gave a p-value for heterogeneity that was even nominally significant ($\mathrm{P}_{\text {heterogeneity }}=0.04$, Table E3 in the Online Repository includes $P_{\text {heterogeneity }}$ for all 9 CpGs and the random effects meta-analysis results for this CpG); GOYA had the largest magnitude of association but effect estimates were in the same positive direction across studies (Figure E1). Analyses leaving out one cohort at a time does not suggest that any of the results are driven by a single cohort (plots of untransformed effect estimates and $95 \% \mathrm{Cl}$ are in Figure E2 in the Online Repository).

Asthma in relation to Childhood DNA Methylation

In meta-analysis of asthma in relation to DNA methylation measured in childhood (631 cases, 2,231 non-cases, 9 cohorts, BAMSE EpiGene, BAMSE MeDALL, CHOP, GALA II, ICAC, NFBC, PIAMA, Raine Study, and STOPPA), we identified 179 CpGs at genome-wide significance (FDR<0.05) (Manhattan and volcano plots in Figure 2; results for all 179 CpGs in Table E5 in the Online Repository). Nearly all (173 of 179) showed decreased methylation in asthma versus non-cases; similar predominant directionality was seen in a recent study ${ }^{13}$.

As in the newborn analysis, results were consistent across studies for the 179 significant CpGs (forest plots in Figure E3, plots of regression coefficients and 95% confidence intervals from analyses leaving one cohort out at a time in Figure E4 in the Online Repository). Two of the cohorts were adolescents (NFBC: mean age=16.0, $\mathrm{SD}=0.4$; Raine: mean age=17.0, $\mathrm{SD}=0.2$); repeating the meta-analysis without these two cohorts gave high correlations with the values for our FDR significant findings from all cohorts (correlation of coefficients $=0.96$). Because two studies included individuals who were not of European ancestry - ICAC and GALA - we compared significant results with and without including these two studies and found them to be very similar (correlation of coefficients $=0.99$). Table E5 in the Online Repository provides Pvalues for heterogeneity and, where those are even nominally significant ($\mathrm{P}_{\text {heterogeneity }}<0.05$), random effects meta-analysis results.

Of the 179 FDR significant CpGs, 34 CpGs were not singletons (i.e., more than one significant CpG annotated to a given gene). These 34 non-singleton CpGs correspond to 13 genes: ACOT7, LOC100189589, IL5RA, SLC25A26/LRIG1, RPS6KA2, KCNH2, ZNF862/BC045757, AK096249, PRG2, EVL/AX747103, KIAA0182, ZFPM1, and EPX (Table 4). We identified 36 significant DMRs by both
calling methods (Table 5). Of the 179 FDR significant CpGs, 31 fell within one of these 36 DMRs, and 21 of the 36 DMRs contained at least one FDR significant CpG.

Three studies in our meta-analysis of asthma in relation to childhood methylation (PIAMA, BAMSE-MeDALL, and BAMSE-Epigene) also contributed to a recent meta-analysis of both preschool and school-aged asthma outcomes ${ }^{13}$; these studies contributed only a quarter ($\mathrm{n}=155$) of the 636 cases in our meta-analysis. That EWAS meta-analysis of asthma at preschool and school-age ${ }^{13}$ identified 14 CpGs at genome-wide significance; seven were among our 179 genome-wide significant findings for childhood methylation (cg13835688, cg14011077, $\operatorname{cg} 03131767, \operatorname{cg} 13628444, \operatorname{cg} 10142874, \operatorname{cg} 01901579, \operatorname{cg} 01445399)$ and six others represented in our dataset (cg15344640, cg11456013, cg01770400, cg19764973, cg08085199, cg16592897), were nominally statistically significant ($\mathrm{P}<0.05$) and direction matched for all 13 . When repeating the meta-analysis excluding those three studies, 13 out of the 14 CpGs had $\mathrm{P}<0.05$ and directions of association matched; only cg06483820 gave no evidence for association ($\mathrm{P}=0.74$). In additional comparison to the literature, differential methylation in ACOT7 and ZFPM1 was previously identified in EWAS of blood in relation to immunoglobulin E^{48} and in two of our contributing studies, ICAC and ALSPAC, to asthma ${ }^{10,12}$ as well as in an EWAS of nasal epithelium to asthma ${ }^{45}$.

Comparing newborn and childhood methylation models, none of the 9 FDR-significant CpGs for newborn methylation were nominally significant ($p<0.05$) in the childhood methylation analysis. Only 6 of the 179 CpGs significant for asthma in relation to childhood methylation were at least
nominally significant for newborn methylation; two of these had consistent directions of effect [cg16409452 (EVL) and cg09423651 (NCK1)].

REPLICATION OF FINDINGS FOR ASTHMA IN RELATION TO CHILDHOOD METHYLATION IN NASAL EPITHELIUM

We assessed whether the 179 CpGs differentially methylated in blood in relation to asthma in childhood were also differentially methylated in relation to current asthma in nasal epithelium from two studies (Table E6 in the Online Repository). Among 455 Dutch children (37 with asthma) studied at age 16^{13}, we found evidence for replication for 20 CpGs : matching direction of effect estimates and nominal significance ($\mathrm{P}<0.05$). Among African-American children aged 10-12 with persistent asthma plus atopy (36 cases) compared with 36 non-asthmatic, nonatopic children, 128 of the 179 CpGs gave effect estimates for asthma in the same direction and also had $\mathrm{P}<0.05$ for association.

REPLICATION OF FINDINGS FOR ASTHMA IN RELATION TO CHILDHOOD METHYLATION IN EOSINOPHILS

We looked up the 179 CpGs differentially methylated in childhood in relation to asthma in EWAS of 16 asthma cases and 8 non-cases in whom methylation had been measured in purified eosinophils. Of the 177 CpGs included in this dataset, all directions of association with asthma were the same as in PACE and 148 gave $\mathrm{P}<0.05$ (Table E7 in the Online Repository).

Functional Annotation

For the newborn analysis, among the 7 significant CpGs (after removing the 2 "ch"-probes), all 7 were near a transcription factor binding site and 6 were in a DNase hypersensitivity site,
identified in at least one ENCODE cell line, supporting a potential functional relevance to transcriptional activity (Figure E5 in the Online Repository).

Among the 179 CpGs significantly differentially methylated in childhood in relation to asthma, there was significant depletion of localization to CpG islands ($17 \mathrm{CpGs}, 9.5 \%, \mathrm{P}=1.09 \times 10^{-11}$) and promoters ($34 \mathrm{CpGs}, 19.0 \%, \mathrm{P}=1.10 \times 10^{-4}$). Functional annotation plots are shown in Figure E 6 in the Online Repository for the 13 gene regions to which the 34 nonsingleton CpGs annotate. Among the 179 CpGs, 113 were in DNAse hypersensitivity sites. Using eFORGE ${ }^{39}$ to examine enrichment of all 179 significant CpGs for histone marks (H3K27me3, H3K36me3, H3K4me3, H3K9me3, and H3K4me1), we found significant enrichment for H3K4me1 in blood and lung and H3K36me3 in blood (Figure E7 in the Online Repository).

Association of Methylation and Gene Expression

For the CpGs and regions we identified as differentially methylated in either newborns or children in relation to asthma, we assessed association between paired levels of blood DNA methylation and whole blood gene expression for nearby transcripts, defined as within a 500 kb window of the significant CpG or DMR, in newborns (GEO $n=38$, INMA $n=113$, loW $n=157$), children (4-year-olds in INMA $n=112,16$-year-olds in BAMSE $n=248$) and adults (BIOS $n=3,096$).

Among 9 CpGs differentially methylated in newborns in relation to asthma, three CpGs were associated with expression of a nearby transcript in three datasets (cg17333211 in newborns, 4-year-olds, and adults, and cg02331902 and cg07156990 in two newborn datasets and 4-yearolds) and an additional three CpGs were associated with expression in two datasets
(cg13427149 in 16-year-olds and adults, and cg13289553 and cg21486411 in newborns and 4-year-olds) (Table E8-A in the Online Repository). All regions differentially methylated in newborns in relation to asthma were related to expression in at least one dataset (Table E8-B in the Online Repository).

For methylation in childhood, nearly all $(176 / 179)$ CpGs related to asthma also associated with expression in at least one dataset (Table E8-C in the Online Repository). CpGs annotated to IL5RA were significantly associated with expression in four cohorts (BIOS, INMA, IoW, and BAMSE). All 36 regions differentially methylated in childhood were associated with expression of a nearby transcript in at least one dataset (Table E8-D in the Online Repository).

Pathway Analysis

Using IPA, we identified pathways, as well as disease processes and biological functions, significantly enriched ($\mathrm{P}<0.05$) for the genes to which the significant individual CpGs or DMRs annotated in the meta-analysis of asthma in relation to newborn or childhood methylation (Tables E9 and E10 in the Online Repository). The genes to which the 7 significant CpGs (after removing "ch"-probes) and 35 significant DMRs in the newborn methylation analysis were annotated were significantly enriched ($\mathrm{P}<0.05$) for canonical pathways relevant to immune function in asthma including eNOS signaling, the inflammasome, and NF-кB signaling (Table E9). Enriched disease processes and biologic functions included several involving immune function and others involving immune and organ development (Table E9). Given the larger number of implicated genes for childhood methylation, many more pathways, disease processes, and biological functions were enriched (Table E10 in the Online Repository). There was substantial
overlap in newborns and children in the significantly enriched pathways and diseases and biological function relevant to immune function, immunologic disease and development (Figure E8). As an example, Figure 3 illustrates the network of four overlapping disease and biological processes between newborns and children - tissue morphology, immunological disease, inflammatory disease, and cell-mediated immune response.

Druggable Targets

Among regions differentially methylated in newborns in relation to later asthma, RUNX1 is the target of the agent CHEMBL2093862 and CASP8 is the target of CHEMBL2105721 (Nivocasan), an inhibitor of this caspase and two others (1 and 9). Among genes with individual CpGs significantly differentially methylated in childhood in relation to asthma, KCNH2 (3 significant CpGs) is a target of several approved drugs with mechanism of action of blocking $H E R G$ (human Ether-à-go-go-Related Gene), including the anti-arthymic agents amiodarone hydrochloride, dofetilide, and sotalol. Notably, sotalol is also a beta-adrenergic receptor antagonist. IL5RA (2 significant CpGs) is the target for a drug approved for use in severe asthma, benralizumab, whose mechanism of action is antagonism of this gene ${ }^{49}$. Several other genes implicated by either individual CpG (16 genes) or DMR analysis (5 genes, including IGF1R) are targets for approved or potential drugs (Tables E11 and E12 in the Online Repository).

Discussion

This epigenome-wide meta-analysis of the association between childhood asthma and DNA methylation measured at birth or childhood identified numerous novel CpGs and regions differentially methylated in relation to this common health outcome. The 9 CpGs and 35 regions significantly differentially methylated in relation to asthma in newborn blood DNA are potential markers of risk for disease development. There were many more statistically significant associations of asthma in relation to childhood DNA methylation, with 179 CpGs and 36 regions; these may reflect both risk for and effects of this disease ${ }^{50}$.

Among the significant CpGs in newborns, 6 were in DNAse hyper-sensitivity sites supporting potential regulatory impact on gene function. Additionally, genes to which cg13427149 (GPATCH2/SPATA17) and cg16792002 (MAML2) annotate have previously been associated with obesity phenotypes ${ }^{51,52}$; conditions that are related to childhood asthma. This supports the potential functional importance and asthma relevance of our newborn findings.

Some CpGs on the 450K array have been reported as potentially polymorphic by virtue of location near SNPs ${ }^{41}$. Given that many of the nearby SNPs are low frequency and most will not interfere with probe binding, which would generate a truly spurious result, rather than filter these in advance, in PACE we examined statistically significant CpGs post-hoc for occurrence on lists of potentially problematic CpGs in the literature as recently recommended by others ${ }^{17,18}$. Lists of potentially problematic probes change over time as do underlying gene annotations ${ }^{53}$. We note that two of the 9 significant CpGs in newborn methylation (ch.11.109687686R and ch.6.1218502R) were flagged as potentially non-specific ("ch") probes by Chen, et al. ${ }^{41}$. We
provide association results for these as they may be useful to others but, acknowledging this caveat, do not include them in downstream analyses that assume certainty regarding gene localization. With respect to the issue of CpGs previously reported as near SNPs, we visually assessed plots of all significant CpGs in 3 of our largest cohorts [MoBa1 and Generation R for newborn methylation (Figure E9) and STOPPA for childhood methylation (Figure E10)] to verify unimodal distributions.

We identified many more CpGs and DMRs associated with later asthma, likely because these also capture disease effects. Our findings may also reflect different pathophysiological mechanisms related to newborn vs childhood methylation and asthma. A comprehensive search for methylation signals at birth that predict later development of asthma likely requires much larger sample sizes given the intervening effects of exposures and developmental processes that may outweigh effects of small methylation differences present at birth ${ }^{54}$. However, while overlap at the level of specific CpGs or DMRs was low, there was substantial overlap at the pathway and network level (Figure 3 and Figure E8).

To follow-up our differentially methylated signals for potential functional impact, we examined correlations with gene expression. Because of the relatively small sizes of the paired gene expression datasets in newborns or children, we also examined a much larger dataset of adults to increase power. Although the number of subjects in datasets of newborns or children with both gene expression and methylation data were modest (range 38 to 248), limiting power to find correlations, we found that a high proportion of CpGs and DMRs related to asthma were
also correlated with gene expression in at least one dataset in this age range. This further supports the functional impact of our methylation findings.

Our search for druggable targets identified two genes from the newborn DMR analysis that are targets for either approved or potential drugs. The childhood analysis identified more drug targets. One of these genes, IL5RA, already has an approved asthma drug that inhibits its product. This analysis further supports the relevance to asthma pathogenesis and potential clinical usefulness of these findings. Investigating the potential to repurpose approved drugs for new indications has been recently highlighted as cost-effective way to develop new therapeutic modalities ${ }^{55}$.

We meta-analyzed results across studies using fixed effects meta-analysis with inverse variance weighting. Rice, et al. ${ }^{25}$ have recently summarized issues regarding the choice of meta-analytic models for combining study specific results in genomic analyses and show that inverse-variance weighted average estimates a reasonable and interpretable parameter, even under the assumption that effect sizes differ ${ }^{25}$. Further, they point out that fixed effects meta-analysis does not require the assumption of homogeneity. Rice, et al. ${ }^{25}$ also emphasize the importance of evaluating meta-analyses effect estimates and significance tests along with visualization of study specific estimates rather than relying on a single statistical estimate of heterogeneity. Accordingly, we provide forest plots, to show the consistency of study specific findings for all significant meta-analysis results (Online Repository Figure E1 for newborn methylation and Figure E3 for childhood methylation). Further, we performed a systematic leave-one-out metaanalysis for all significant CpGs, where we leave each cohort, out one by one (Figure E2 for
newborn and E4 for childhood methylation in the Online Repository). In addition, where there is even nominal evidence for heterogeneity ($\mathrm{P}_{\text {heterogeneity }}<0.05$), we provide random effects results in Tables E3 (newborn methylation) and E5 (childhood) in the Online Repository.

We recognize various limitations. As in most EWAS ${ }^{13}$, as well as GWAS meta-analyses ${ }^{56}$, asthma was defined by questionnaires. As in Xu , et al. ${ }^{13}$, we used reported doctor diagnosis combined with symptoms and medication use. While the use of self-reported outcomes can lead to misclassification, this should be non-differential with respect to methylation and thus should lead to bias toward the null rather than create false positive findings. We did not stratify the analyses by allergic status because most cohorts do not have objective measures of atopy and, in many cohorts, sample size would have been inadequate for stratification. We also note that the diverse cohorts included in the analysis could have introduced heterogeneity based on ancestry or, in the analysis of methylation in older children, two studies in older adolescents. However, in the studies of older children, non-European ancestry of older children did not appear to be influential in sensitivity analyses. While magnitudes of the associations are modest, this is consistent with other genome wide analyses of methylation in newborns and children in relation to various exposures ${ }^{15,57,58}$. These effect sizes are not surprising given that highly reproducible genetic signals discovered in asthma GWAS, such as ORMDL3 ${ }^{59}$, are also modest.

We used logistic regression in the prospective analyses of newborn methylation in relation to asthma rather than Cox regression, which is not commonly used in high dimensional genomic studies. If time to asthma were available or could be estimated reliably, a Cox model would be more efficient. However, for asthma, the exact time to disease development is poorly
estimated. Thus, epidemiologic studies generally use age at diagnosis, but there can be a very long lag between disease onset and diagnosis. In our scenario, where the exact time to asthma is unknown, using error-prone outcomes can actually result in larger bias. Thus, considering the tradeoff between bias and efficiency, logistic regression is the better option. We also note that where the condition under study has lower than 10% prevalence, as is the case for our outcome, asthma diagnosed at school age, the odds ratio is a good approximation of the hazard ratio ${ }^{60}$. To address the important aspect of age at diagnosis of asthma, we used the diagnosis age for the harmonized definition of asthma. With the exception of a couple of studies, where sensitivity analyses removing them did not suggest undue influence, the range of mean ages is not large.

Unmeasured confounding is a concern in all analyses of observational data. With high dimensional genomic data, variability due to batch effects is an additional potential source of unmeasured confounding ${ }^{61}$. In this meta-analysis, each cohort corrected for batch effects using methods most suitable for their own data. In most studies, methylation analyses were completed over a short period of time which greatly reduces batch effects ${ }^{61}$. When using methods such as adjustment for batch variables or ComBat, one must specify the putative batch variables. To the extent that there are unknown factors contributing to laboratory variability, there may be residual confounding. Various methods have been proposed to attempt to address unmeasured confounding in high dimensional data. However, in metaanalysis, findings, tend to be significant because they are consistent across studies. Thus, the chance that in studies done in different countries, with methylation measured in different laboratories and at different times, that unmeasured confounding is operating in the same
manner across studies, resulting in false positive significant associations in the meta-analysis, is greatly reduced. Further in the childhood methylation analysis, we have substantial replication of findings from a recently published meta-analysis ${ }^{13}$, even after overlapping individuals are removed. In addition, the consistency of our findings from blood DNA with results for DNA isolated from two tissues highly relevant for asthma, eosinophils and nasal respiratory epithelium, provides compelling evidence that our findings are not driven by unmeasured confounding.

Identification of differentially methylated regions provides a way to reduce the dimensionality of the epigenome-wide methylation data and can identify associations at the regional level where there are not individually significant CpGs. The two methods that we used for DMR identification, DMRcate and comb-p, are the only two published methods available for use with meta-analysis results ${ }^{29,30}$. A recent review noted that the various methods published for identifying DMRs employ different assumptions and statistical approaches and thus rarely identify exactly the same regions ${ }^{62}$. Accordingly, to reduce false positives, we reported only DMRs identified as statistically significant by both methods.

We measured DNA methylation in whole blood, a mix of cell types. Cell counts were not measured, but we adjusted our models for estimated cell counts using established referencebased methods to address confounding by cell type differences ${ }^{21}$. For childhood, as opposed to newborn, methylation, we used an adult reference panel, because a suitable one is not available for children. Notably, the considerable overlap between our findings in whole blood and smaller studies of two highly asthma-relevant tissues, nasal epithelium, an excellent proxy
for airway epithelium in studies of asthma ${ }^{63}$ and purified eosinophils, greatly reduces the concern that our findings are false positives due to failure to fully account for the influence of asthma on white blood cell proportions.

In addition to confirmation of findings in studies of eosinophils and nasal respiratory epithelium, and the high power resulting from meta-analysis, other strengths of the study include our efforts to standardize the definition of asthma across studies, the large sample size provided by meta-analysis, and evaluation of potential biological implications of our findings by detailed examination of functional annotation, pathway analysis, correlating differentially methylated sites with gene expression and consideration of potential druggable targets.

In summary, we identified numerous novel CpGs and regions associated with childhood asthma in relation to DNA methylation measured either at birth, in prospective analyses, or in childhood, in cross-sectional analyses. Many of the genes annotated to these CpGs and regions are significantly enriched for pathways related to immune responses crucial in asthma; several genes are targets for either approved or investigational drugs. Most differentially methylated CpGs or regions correlated with expression at a nearby gene. Many more individual CpGs were differentially methylated in childhood in relation to their current asthma status. There was appreciable overlap with findings in nasal respiratory epithelium and purified eosinophils. The CpGs and regions identified in newborns might be potential biomarkers of later asthma risk; those identified in childhood likely reflect both processes that impact disease risk and effects of having the disease. The novel genes implicated by this study may shed new light on asthma pathogenesis.

Acknowledgements: We thank Dr. Frank Day (NIEHS) and Jianping Jin of Westat, Inc (Durham, NC) for expert computational assistance and Erin Knight (NIEHS) for assistance with literature review. See Supplementary Materials in the Online Repository for complete acknowledgements Funding: Supported in part by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. Funding information for individual studies is in the Supplementary Materials.

Figure Legends

Figure 1: Meta-analysis of asthma in relation to newborn methylation: (A) Manhattan plot and (B) volcano plot. Model adjusted for covariates and cell-types.

Figure 2: Meta-analysis of asthma in relation to childhood methylation: (A) Manhattan plot and (B) volcano plot. Model adjusted for covariates and cell-types. CpGs corresponding to genes with more than one FDR<0.05 significant CpG are highlighted in red.

Figure 3: A network is shown for four categories of disease and biological functions overlapping between analyses of asthma in relation to either newborn or childhood methylation immunological disease, cell-mediated immune response, inflammatory disease and tissue morphology. A gene is connected to a disease or function if it has been previously shown to be involved in it. All the genes marked in red are implicated from newborn methylation analyses and those in orange are implicated from childhood methylation analyses.

References

1. Bisgaard H, Szefler S. Prevalence of asthma-like symptoms in young children. Pediatr Pulmonol 2007; 42:723-8.
2. Wjst M, Sargurupremraj M, Arnold M. Genome-wide association studies in asthma: what they really told us about pathogenesis. Curr Opin Allergy Clin Immunol 2013; 13:112-8.
3. Weiss ST, Silverman EK. Pro: Genome-wide association studies (GWAS) in asthma. Am J Respir Crit Care Med 2011; 184:631-3.
4. DeVries A, Vercelli D. Epigenetic Mechanisms in Asthma. Ann Am Thorac Soc 2016; 13 Suppl 1:S48-50.
5. Sharma S, Chhabra D, Kho AT, Hayden LP, Tantisira KG, Weiss ST. The genomic origins of asthma. Thorax 2014; 69:481-7.
6. Gunawardhana LP, Gibson PG, Simpson JL, Benton MC, Lea RA, Baines KJ. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics 2014; 9:1302-16.
7. Murphy TM, Wong CC, Arseneault L, Burrage J, Macdonald R, Hannon E, et al. Methylomic markers of persistent childhood asthma: a longitudinal study of asthma-discordant monozygotic twins. Clin Epigenetics 2015; 7:130.
8. Nicodemus-Johnson J, Naughton KA, Sudi J, Hogarth K, Naurekas ET, Nicolae DL, et al. GenomeWide Methylation Study Identifies an IL-13-induced Epigenetic Signature in Asthmatic Airways. Am J Respir Crit Care Med 2016; 193:376-85.
9. Rastogi D, Suzuki M, Greally JM. Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci Rep 2013; 3:2164.
10. Yang IV, Pedersen BS, Liu A, O'Connor GT, Teach SJ, Kattan M, et al. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol 2015; 136:69-80.
11. DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA, Lohman IC, et al. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol 2017; 140:534-42.
12. Arathimos R, Suderman M, Sharp GC, Burrows K, Granell R, Tilling K, et al. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin Epigenetics 2017; 9:112.
13. Xu CJ, Soderhall C, Bustamante M, Baiz N, Gruzieva O, Gehring U, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med 2018.
14. Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol 2018; 47:22-3u.
15. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet 2016; 98:680-96.
16. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet 2016; 9:436-47.
17. Andrews SV, Ladd-Acosta C, Feinberg AP, Hansen KD, Fallin MD. "Gap hunting" to characterize clustered probe signals in Illumina methylation array data. Epigenetics Chromatin 2016; 9:56.
18. Wu MC, Kuan PF. A Guide to Illumina BeadChip Data Analysis. Methods Mol Biol 2018; 1708:303-30.
19. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8:118-27.
20. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 2007; 3:1724-35.
21. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012; 13:86.
22. Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, S LM, et al. DNA methylation of cord blood cell types: Applications for mixed cell birth studies. Epigenetics 2016; 11:354-62.
23. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012; 7:e41361.
24. Psaty BM, Sitlani C. The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium as a model of collaborative science. Epidemiology 2013; 24:346-8.
25. Rice K, Higgins J, Lumley T. A re-evaluation of fixed effect(s) meta-analysis. J. R. Statist. Soc. A 2018; 181:205-27.
26. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010; 26:2190-1.
27. Benjamini Y, Hochberg Y. CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING. Journal of the Royal Statistical Society. Series B, Methodological 1995; 57:289-300.
28. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 2011; 88:586-98.
29. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values, Bioinformatics 2012; 28:2986-8.
30. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, R VL, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 2015; 8:6.
31. Gref A, Merid SK, Gruzieva O, Ballereau S, Becker A, Bellander T, et al. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up. Am J Respir Crit Care Med 2017; 195:1373-83.
32. Arshad SH, Karmaus W, Zhang H, Holloway JW. Multigenerational cohorts in patients with asthma and allergy. J Allergy Clin Immunol 2017; 139:415-21.
33. Rager JE, Bailey KA, Smeester L, Miller SK, Parker JS, Laine JE, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 2014; 55:196-208.
34. Rojas D, Rager JE, Smeester L, Bailey KA, Drobna Z, Rubio-Andrade M, et al. Prenatal arsenic exposure and the epigenome: identifying sites of 5 -methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 2015; 143:97-106.
35. Guxens M, Ballester F, Espada M, Fernandez MF, Grimalt JO, Ibarluzea J, et al. Cohort Profile: the INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol 2012; 41:930-40.
36. Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet 2017; 49:131-8.
37. Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat Genet 2017; 49:139-45.
38. Wickman M, Kull I, Pershagen G, Nordvall SL. The BAMSE project: presentation of a prospective longitudinal birth cohort study. Pediatr Allergy Immunol 2002; 13 Suppl 15:11-3.
39. Breeze CE, Paul DS, van Dongen J, Butcher LM, Ambrose JC, Barrett JE, et al. eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data. Cell Rep 2016; 17:2137-50.
40. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014; 30:523-30.
41. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013; 8:203-9.
42. Burdett T, Hall P, Hastings E, Hindorff L, Junkins H, Klemm A, et al. The NHGRI-EBI Catalog of published genome-wide association studies.
43. Leslie R, O'Donnell CJ, Johnson AD. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014; 30:1185-94.
44. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res 2014; 42:D1083-90.
45. Yang IV, Pedersen BS, Liu AH, O'Connor GT, Pillai D, Kattan M, et al. The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol 2017; 139:1478-88.
46. Ferland C, Guilbert M, Davoine F, Flamand N, Chakir J, Laviolette M. Eotaxin promotes eosinophil transmigration via the activation of the plasminogen-plasmin system. J Leukoc Biol 2001; 69:772-8.
47. Laprise C. The Saguenay-Lac-Saint-Jean asthma familial collection: the genetics of asthma in a young founder population. Genes Immun 2014; 15:247-55.
48. Chen W, Wang T, Pino-Yanes M, Forno E, Liang L, Yan Q, et al. An epigenome-wide association study of total serum IgE in Hispanic children. J Allergy Clin Immunol 2017; 140:571-7.
49. Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL, Kuna P, et al. Oral Glucocorticoid-Sparing Effect of Benralizumab in Severe Asthma. N Engl J Med 2017; 376:2448-58.
50. Tost J. A translational perspective on epigenetics in allergic diseases. J Allergy Clin Immunol 2018; 142:715-26.
51. Velez Edwards DR, Naj AC, Monda K, North KE, Neuhouser M, Magvanjav O, et al. Geneenvironment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women's Health Initiative SHARe Study. Hum Genet 2013; 132:323-36.
52. Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N, et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 2012; 8:e1002695.
53. Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet 2012; 13:329-42.
54. Xu CJ, Bonder MJ, Soderhall C, Bustamante M, Baiz N, Gehring U, et al. The emerging landscape of dynamic DNA methylation in early childhood. BMC Genomics 2017; 18:25.
55. Sachs RE, Ginsburg PB, Goldman DP. Encouraging New Uses for Old Drugs. JAMA 2017; 318:2421-2.
56. Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmuller J, Ang W, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet 2018; 50:42-53.
57. Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 2016; 7:10577.
58. Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 2017; 26:4067-85.
59. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007; 448:470-3.
60. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998; 280:1690-1.
61. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010; 11:733-9.
62. Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet 2018; 19:129-47.
63. Yang IV, Richards A, Davidson EJ, Stevens AD, Kolakowski CA, Martin RJ, et al. The Nasal Methylome: A Key to Understanding Allergic Asthma. Am J Respir Crit Care Med 2017; 195:82931.

Table 1: Samples sizes by cohort for epigenome wide association analyses of asthma in relation to DNA methylation in newborns or children. Cohort specific information on covariates is in Supplementary Table E1.

Age Group	Cohort	N	N cases
Newborns	ALSPAC	688	88
	CHS	229	39
	EDEN	150	34
	Generation R	661	37
	GOYA	507	37
	MoBa1	666	149
	MoBa2	458	239
	NEST	213	45
	Meta-analysis...............35	3572	668
Children	BAMSE EpiGene	307	93
	BAMSE MeDALL	214	47
	CHOP	382	19
	GALA II	193	106
	ICAC	194	97
	NFBC 1986	413	17
	PIAMA	197	15
	Raine Study	509	105
	STOPPA	460	137
	Meta-analysis	2869	636

Nine FDR<0.05 significant CpGs from the meta-analysis of asthma in relation to newborn methylation.

| CpG * | chr:pos | UCSC
 RefGene Name | UCSC
 Known Gene | Average
 Methylation | OR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* ch probes (ch.11.109687686R and ch.6.1218502R) have been reported to be cross hybridizing and thus UCSC Known Gene is intentionally left blank.
** Annotation based on UCSC Known Gene also fills in nearest gene within 10 MB.
*** Odds ratio of developing asthma for a 1% absolute increase in methylation. Adjusted for covariates and cell type.
**** For each cohort participating in the analysis: + indicates a positive direction of effect, - indicates a negative direction of effect, and ? indicates missing information for that CpG in a given cohort. Cohort Order: ALSPAC, CHS, EDEN, Generation R, GOYA, MoBa1, MoBa2, NEST.

Table 3 Differentially methylated regions (DMRs; $N=35$) for asthma in relation to newborn methylation identified by both comb-p (P-value<0.01) and DMRcate (FDR<0.01) methods

chr:pos	Gene Name*	$\begin{aligned} & \mathrm{N} \text { CpGs } \\ & \text { in region } \\ & \hline \end{aligned}$	P -value from comb-p**	FDR from DMRCate***
chr1:59280290-59280842	LINC01135	5	$1.23 \mathrm{E}-03$	$1.01 \mathrm{E}-03$
chr1:220263017-220263699	BPNT1; RNU5F-1	11	$4.49 \mathrm{E}-04$	$7.74 \mathrm{E}-05$
chr1:1296093-1296489	MXRA8	2	$9.83 \mathrm{E}-03$	3.86E-04
chr2:202097062-202097608	CASP8	5	$1.14 \mathrm{E}-03$	$1.64 \mathrm{E}-05$
chr2:235004843-235005012	SPP2	2	$6.22 \mathrm{E}-03$	$1.15 \mathrm{E}-03$
chr3:194188646-194189444	ATP13A3	3	$1.06 \mathrm{E}-03$	$7.14 \mathrm{E}-04$
chr4:113218385-113218525	ALPK1	3	$2.00 \mathrm{E}-03$	3.69E-04
chr5:158526108-158526694	EBF1	6	$9.56 \mathrm{E}-04$	$2.16 \mathrm{E}-05$
chr5:81573780-81574461	RPS23	11	$3.75 \mathrm{E}-03$	$1.47 \mathrm{E}-04$
chr5:64777678-64778186	ADAMTS6	10	$7.09 \mathrm{E}-03$	9.97E-05
chr6:291687-292824	DUSP22	9	$6.69 \mathrm{E}-06$	$1.18 \mathrm{E}-05$
chr6:32799997-32801050	TAP2	13	$1.27 \mathrm{E}-03$	6.66E-05
chr6:26234819-26235610	HIST1H1D	9	$6.12 \mathrm{E}-03$	7.67E-05
chr6:29648161-29649085	ZFP57	22	$1.82 \mathrm{E}-08$	3.13E-11
chr6:31055396-31055503	C6orf15	5	3.61E-04	7.05E-05
chr7:106694832-106695007	PRKAR2B	2	$6.86 \mathrm{E}-03$	7.92E-04
chr7:87974722-87975316	STEAP4	4	$2.32 \mathrm{E}-03$	$7.44 \mathrm{E}-05$
chr7:158045980-158046359	PTPRN2	6	$1.98 \mathrm{E}-03$	5.94E-04
chr8:127889010-127889296	PCAT1	4	$2.68 \mathrm{E}-05$	$1.44 \mathrm{E}-05$
chr8:33370172-33371226	TTI2	9	$1.08 \mathrm{E}-04$	$6.40 \mathrm{E}-06$
chr10:71871364-71871634	H2AFY2	4	$8.06 \mathrm{E}-03$	$6.19 \mathrm{E}-04$
chr10:65028929-65029169	JMJD1C	5	$8.56 \mathrm{E}-03$	6.12E-04
chr11:268923-269469	NLRP6	5	$3.71 \mathrm{E}-03$	$1.42 \mathrm{E}-03$
chr11:107328442-107328915	CWF19L2	10	$5.10 \mathrm{E}-03$	$2.13 \mathrm{E}-05$
chr12:74931289-74932008	ATXN7L3B	10	$1.03 \mathrm{E}-03$	$2.81 \mathrm{E}-06$
chr12:58329764-58330116	LOC100506844	5	$1.58 \mathrm{E}-03$	5.22E-04
chr13:108953659-108954055	TNFSF13B	2	$5.19 \mathrm{E}-03$	$2.37 \mathrm{E}-03$
chr13:31618695-31618744	TEX26	2	$4.63 \mathrm{E}-03$	2.09E-04
chr14:69341139-69341739	ACTN1	4	$1.36 \mathrm{E}-03$	$9.96 \mathrm{E}-04$
chr16:20774873-20775353	ACSM3	5	$3.47 \mathrm{E}-03$	$1.58 \mathrm{E}-03$
chr17:74667833-74668253	LOC105274304	6	$2.13 \mathrm{E}-03$	8.34E-07
chr17:21029189-21029296	DHRS7B	2	$7.18 \mathrm{E}-03$	$5.11 \mathrm{E}-05$
chr18:47813745-47815431	CXXC1	10	$2.58 \mathrm{E}-05$	$1.68 \mathrm{E}-03$
chr21:36421467-36421956	RUNX1	6	$2.23 \mathrm{E}-03$	$1.67 \mathrm{E}-04$
chr22:24372913-24374013	LOC391322	12	$3.21 \mathrm{E}-04$	$1.35 \mathrm{E}-07$

[^1]Table 4
34 CpGs annotated to 13 genes with more than one FDR<0.05 significant CpG from the meta-analysis of asthma in relation to childhood methylation

CpG	chr:pos	UCSC RefGene Name	UCSC Known Gene*	P -value	Average Methylation	OR** (CI)	Direction***
cg13066938	chr1:6341140	ACOT7	ACOT7	$1.67 \mathrm{E}-05$	0.682	0.91 (0.88,0.95)	--+?--+--
cg21220721	chr1:6341230	ACOT7	ACOT7	$1.02 \mathrm{E}-08$	0.763	0.94 (0.92,0.96)	
cg09249800	chr1:6341287	ACOT7	ACOT7	$1.19 \mathrm{E}-08$	0.916	0.88 (0.84,0.92)	? ? ?---?--
cg11699125	chr1:6341327	ACOT7	ACOT8	7.54E-10	0.799	0.90 (0.87,0.93)	
cg00043800	chr2:74612144	LOC100189589	LOC100189589	$1.32 \mathrm{E}-05$	0.585	0.91 (0.87,0.95)	-----++--
cg17988187	chr2:74612222	LOC100189589	LOC100189590	$1.21 \mathrm{E}-06$	0.699	0.90 (0.86,0.94)	--+?--+--
cg01310029	chr3:3152374	IL5RA	IL5RA	$4.18 \mathrm{E}-06$	0.744	$0.89(0.85,0.94)$	--- ?--+--
cg10159529	chr3:3152530	IL5RA	IL5RA	4.48E-06	0.736	0.90 (0.86,0.94)	-- - ?
cg07410597	chr3:66404129	SLC25A26	LRIG1	$2.70 \mathrm{E}-07$	0.773	0.88 (0.84,0.93)	--+---+--
cg04217850	chr3:66428294	SLC25A26	LRIG2	$2.35 \mathrm{E}-06$	0.747	0.88 (0.83,0.93)	
cg15304012	chr6:166876490	RPS6KA2	RPS6KA2	1.86E-05	0.697	1.08 (1.04,1.13)	+++++++++
cg19851574	chr6:167178233	RPS6KA2	RPS6KA2	3.42E-06	0.671	0.95 (0.94,0.97)	--+------
cg03329755	chr6:167189272	RPS6KA2	RPS6KA2	6.14E-06	0.818	0.91 (0.88,0.95)	-++
cg05184016	chr7:149543136	ZNF862	BC045757	$2.74 \mathrm{E}-08$	0.817	0.85 (0.80,0.90)	--+------
cg07970948	chr7:149543165	ZNF862	BC045757	6.39E-08	0.771	0.91 (0.88,0.94)	---+--+--
cg06558622	chr7:149543177	ZNF862	BC045757	3.39E-09	0.818	0.88 (0.85,0.92)	
cg24576940	chr7:150648283	KCNH2	KCNH2	$1.83 \mathrm{E}-05$	0.848	0.87 (0.81,0.93)	
cg23147443	chr7:150649655	KCNH2	KCNH2	$1.83 \mathrm{E}-06$	0.842	$0.89(0.85,0.93)$? ? ?---?--
cg18666454	chr7:150651937	KCNH2	KCNH2	$1.46 \mathrm{E}-07$	0.761	$0.89(0.86,0.93)$	
cg13850063	chr9:138362321		AK096249	$5.49 \mathrm{E}-08$	0.819	0.78 (0.71,0.85)	--+?-----
cg14011077	chr9:138362327		AK096249	7.02E-09	0.797	0.86 (0.82,0.90)	- ?
cg15700636	chr11:57156050	PRG2	PRG2	$2.35 \mathrm{E}-07$	0.746	$0.89(0.85,0.93)$	--+------
cg08773180	chr11:57157607	PRG2	PRG2	$1.77 \mathrm{E}-07$	0.741	$0.89(0.85,0.93)$	--+---+--
cg12819873	chr11:57157632	PRG2	PRG2	9.55E-06	0.760	0.90 (0.86,0.94)	------+--
cg16409452	chr14:100610186	EVL	AX747103	4.89E-07	0.770	0.91 (0.87,0.94)	--+------
cg14084609	chr14:100610407	EVL	AX747103	$2.96 \mathrm{E}-09$	0.780	$0.89(0.85,0.92)$	
cg18550847	chr14:100610570	EVL	AX747103	7.10E-07	0.730	0.91 (0.88,0.94)	--+?-----
cg08640475	chr16:85551478		KIAA0182	$2.36 \mathrm{E}-06$	0.815	0.92 (0.89,0.95)	--+------
cg10099827	chr16:85551514		KIAA0182	$1.32 \mathrm{E}-06$	0.808	0.92 (0.89,0.95)	
cg08940169	chr16:88540241	ZFPM1	ZFPM1	$2.93 \mathrm{E}-07$	0.778	0.91 (0.87,0.94)	------+--
cg04983687	chr16:88558223	ZFPM1	ZFPM1	1.33E-10	0.744	0.93 (0.90,0.95)	
cg25173129	chr17:56269410	$E P X$	$E P X$	8.09E-07	0.753	0.88 (0.84,0.93)	-
cg02970679	chr17:56269818	$E P X$	$E P X$	9.99E-07	0.776	0.88 (0.83,0.92)	-
cg17374802	chr17:56270828	$E P X$	$E P X$	2.06E-06	0.713	0.90 (0.86,0.94)	---?--+--

* Annotation based on UCSC Known Gene also fills in nearest gene within 10 MB.
${ }^{* *}$ Odds ratio of developing asthma for a 1% absolute increase in methylation. Adjusted for covariates and cell type.
*** For each cohort: + indicates a positive direction of effect, - indicates a negative direction of effect, and ? indicates missing information for that CpG. Cohort Order: BAMSE EpiGene, BAMSE MeDALL, CHOP, GALAII, ICAC, NFBC1986, PIAMA, RAINE, STOPPA

Table 5 Differentially methylated regions for asthma in relation to childhood methylation with adjustment for covariates and cell type identified by both comb-p (P-value<0.01) and DMRcate (FDR<0.01) methods

chr:pos	Gene Name*	N CpGs in region	P-value from comb-p**	FDR from DMRCate***
chr1:161575716-161576323	HSPA7	4	8.61E-03	$1.24 \mathrm{E}-03$
chr1:209979111-209979780	IRF6	13	$4.62 \mathrm{E}-04$	$1.90 \mathrm{E}-04$
chr1:2036283-2036644	PRKCZ	4	2.00E-04	3.14E-05
chr1:87596820-87596935	LINC01140	3	$1.58 \mathrm{E}-03$	$2.79 \mathrm{E}-05$
chr2:149639612-149640260	KIF5C	4	$3.50 \mathrm{E}-03$	$1.14 \mathrm{E}-05$
chr2:11917490-11917788	LPIN1	3	$4.81 \mathrm{E}-03$	$6.25 \mathrm{E}-04$
chr3:195974258-195974330	PCYT1A	3	$5.07 \mathrm{E}-05$	$2.00 \mathrm{E}-05$
chr3:3151795-3152917	IL5RA	6	$1.35 \mathrm{E}-08$	$2.12 \mathrm{E}-09$
chr5:38445220-38446193	EGFLAM	9	5.11E-06	$1.28 \mathrm{E}-05$
chr5:132008525-132009631	IL4	4	$5.36 \mathrm{E}-07$	$3.11 \mathrm{E}-05$
chr6:112688010-112688931	RFPL4B	4	$4.89 \mathrm{E}-05$	5.19E-04
chr6:166876490-166877039	RPS6KA2;RPS6KA2-IT1	8	$3.08 \mathrm{E}-05$	$1.74 \mathrm{E}-06$
chr7:156735383-156735657	NOM1	3	7.11E-03	$2.82 \mathrm{E}-03$
chr7:149543136-149543178	ZNF862	3	$3.85 \mathrm{E}-16$	$1.43 \mathrm{E}-16$
chr7:65419185-65419289	VKORC1L1	7	$2.82 \mathrm{E}-03$	$1.04 \mathrm{E}-03$
chr8:832917-833049	ERICH1-AS1;DLGAP2	3	$6.15 \mathrm{E}-03$	$6.44 \mathrm{E}-03$
chr8:141046436-141046853	TRAPPC9	5	$8.93 \mathrm{E}-07$	$3.45 \mathrm{E}-09$
chr9:138362321-138362505	PPP1R26-AS1	3	$2.72 \mathrm{E}-05$	$1.44 \mathrm{E}-09$
chr9:130859454-130859607	SLC25A25	2	$2.69 \mathrm{E}-08$	$5.84 \mathrm{E}-08$
chr11:65545808-65547173	AP5B1	8	$1.31 \mathrm{E}-10$	$9.73 \mathrm{E}-12$
chr11:69291998-69292065	LINC01488	3	$4.55 \mathrm{E}-04$	$1.65 \mathrm{E}-04$
chr11:59856225-59856359	MS4A2	2	$1.50 \mathrm{E}-03$	$3.25 \mathrm{E}-04$
chr12:15125458-15126021	PDE6H	4	$6.93 \mathrm{E}-03$	7.65E-06
chr14:100610071-100610668	EVL	6	$7.79 \mathrm{E}-16$	$1.24 \mathrm{E}-19$
chr15:64275810-64275854	DAPK2	2	$4.91 \mathrm{E}-04$	$2.04 \mathrm{E}-04$
chr15:99443213-99443667	IGF1R	4	$6.57 \mathrm{E}-05$	$2.41 \mathrm{E}-04$
chr16:875257-875627	PRR25	4	$3.34 \mathrm{E}-03$	$3.21 \mathrm{E}-03$
chr16:88539861-88540397	ZFPM1	5	$1.09 \mathrm{E}-04$	$1.13 \mathrm{E}-05$
chr16:615709-616221	PRR35	5	$1.62 \mathrm{E}-04$	$2.70 \mathrm{E}-07$
chr16:85551478-85551749	GSE1	3	$5.27 \mathrm{E}-07$	$2.37 \mathrm{E}-07$
chr17:56269410-56270829	EPX	5	$6.20 \mathrm{E}-11$	$1.41 \mathrm{E}-08$
chr17:78682785-78683458	RPTOR	5	$1.18 \mathrm{E}-04$	4.03E-04
chr19:51961666-51961938	SIGLEC8	3	$2.37 \mathrm{E}-04$	5.07E-04
chr19:50553682-50554511	LOC400710	10	$1.78 \mathrm{E}-07$	$3.81 \mathrm{E}-06$
chr20:35503832-35504554	TLDC2	8	$1.23 \mathrm{E}-03$	$5.90 \mathrm{E}-08$
chr21:42520365-42520903	LINC00323	3	$1.41 \mathrm{E}-04$	$2.64 \mathrm{E}-05$

* DMRcate annotates to UCSC RefGene from Illumina annotation file. First listed gene shown.
** Comb-p uses a one-step Sidak multiple-testing correction on the regional P-value assigned using Stouffer-Liptak method.
*** DMRcate takes the minimum Benjamini-Hochberg False Discovery Rate (FDR) corrected P-value in the region as representative after recalculating P-values using Gaussian kernel smoothing.

Online Repository
 Epigenome-wide Consortium Meta-analysis of DNA Methylation and Chiddhood Asthma

Supplementary Methods

1. Cohort specific descriptions of study population, Phenotype Data, DNA methylation data and

 Supplemental acknowledgements
ALSPAC

Study population

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a large, prospective cohort study based in the South West of England. In total, 14,541 pregnant women residents in Avon, UK with expected delivery dates between 1st April 1991 and 31st December 1992 were initially enrolled; 13,988 children were alive at 1 year ${ }^{1,2}$. Please note that the study website contains details of all the data that are available through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). The study has been approved by the ALSPAC Ethics \& Law Committee (ALEC) and written consent was obtained from participating parents of their children.

Phenotype data

Questionnaires were sent to parents when the study children were around the age of 91 months. School age children ($71 / 2$ years) were classified as having current asthma if the mother responded "yes" to the question "has a doctor ever actually said that your study child has asthma?" and in addition, responded "yes" to either of the following questions: "has he/she had any of the following in the past 12 months? [Asthma]" or "children often have accidents or illnesses that need treatment. Please indicate which of the following has been given to your child in the past 12 months. [Asthma medication]".

Covariates

Maternal age at delivery was derived from the mother's report of her own and child's dates of birth. Maternal social class was recorded and derived from self-report questionnaire data of occupation according to the Registrar General's Social Classes based upon SOC 2000 codes. Data were collapsed to low (classifications IV \& V), middle (classifications of III (non-manual) \& III (manual)) and high (classifications of I \& II). Maternal smoking status was derived from self-report questionnaire data completed by the mother. Smoking status was recorded at 18 weeks and 32 weeks gestation and was defined as no smoking during pregnancy, smoked during early pregnancy and smoked throughout pregnancy. Maternal asthma was reported by questionnaire completed by the mothers at 12 weeks gestation. Child's sex was recorded as dichotomous variable.

DNA Methylation Data

Cord blood (whole blood or buffy coats) was collected according to standard procedures, spun and frozen at $80^{\circ} \mathrm{C}$. DNA-methylation data pre-processing was conducted as part of the Accessible Resource for Integrated Epigenomic Studies (ARIES) project [ariesepigenomics.org.uk] at the University of Bristol ${ }^{3}$. Briefly, DNA was bisulfite converted using Zymo EZ DNA MethylationTM kit (Zymo, Irvine, CA). The Illumina Infinium ${ }^{\circledR}$ HumanMethylation450k BeadChip assay was used to measure genome-wide methylation status. Assay arrays were scanned using the Illumina iScan and initial quality review was assessed using GenomeStudio (version 2011.1). Samples were distributed across slides using a semi-random approach. Samples with $>20 \%$ probes with a detection p-value ≥ 0.01 failed quality control and were repeated. Genotype probes on the array were compared between samples of the same individuals and against genome wide SNP chip data to assess and remove any sample mismatches. The methylation data were pre-processed using the WateRmelon package in R (version 3.0.1) according to the subset quantile normalization approach as described by Touleimat and Tost ${ }^{4}$. After assaying, repeat assays, pre-processing QC and normalization, 485,577 probes were available. Probes with a detection p-value of >0.05 for $>5 \%$ of samples ($N=3,033$), probes residing on the X and Y chromosome and SNPs ($\mathrm{N}=11,713$) were removed. This resulted in 471,193 probes available for association analysis.

Technical batch was included in all analyses by adding several surrogate variables generated using the sva() function in the SVA R package. Surrogate variables (SVs) were generated separately for every model and for each exposure. Ten SVs were generated and only those that were not associated with the outcome measure were included as covariates within each model.

Acknowledgements

We are extremely grateful to all the families who took part in the ALSPAC study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. The Accessible Resource for Integrated Epigenomics Studies (ARIES) was funded by the UK Biotechnology and Biological Sciences Research Council (BB/I025751/1 and BB/IO25263/1). This work was supported by the Medical Research Council Integrative Epidemiology Unit and the University of Bristol (MC_UU_12013_2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

BAMSE

Study population

The Children's Allergy Environment Stockholm Epidemiology study is a population-based birth cohort from Stockholm, Sweden. In short, 4,089 children born between 1994 and 1996 in four municipalities of Stockholm County were enrolled ${ }^{5}$. At baseline, when the infant was approximately 2 months of age, parents completed a questionnaire that assessed residential characteristics, as well as socioeconomic and lifestyle factors. When children were $1,2,4,8,12$ and 16 years, the parents completed questionnaires focusing on children's symptoms related to wheezing and allergic diseases, as well as various exposures. The survey response rates
were $96 \%, 94 \%, 91 \%, 84 \%, 82 \%$ and 78%, respectively. Furthermore, blood was obtained at ages 4,8 and 16 years from 2,605 (63.7%), $2,470(60.4 \%)$ and 2,547 (62.2%) children, respectively. The baseline and follow-up studies were approved by the Regional Ethical Review Board, Karolinska Institutet, Stockholm, Sweden, and the parents of all participating children provided informed consent. BAMSE-MeDALL and BAMSE-EpiGene represent two sub-studies within BAMSE.

Phenotype Data

Asthma

In BAMSE, asthma is defined based on parental reports of doctor's diagnosis of asthma ("Has your child been diagnosed with asthma by a doctor up to eight years?") AND positive answer to one of the following questions at eight years:
"Has your child had trouble with wheezing or raspy breathing in the last 12 months? OR "Has your child received treatment for breathing difficulties in the last 12 months with short-acting bronchodilation treatment, cortisone inhalation, so "called combination inhalers" and/or long-acting bronchodilation treatment?"

Covariates

The current analyses include the children who had DNA methylation measurements, asthma or and covariate data ($\mathrm{N}=214$ from BAMSE-MeDALL; $\mathrm{N}=214$ from BAMSE- EpiGene), and each dataset was analysed independently. For both datasets, information on maternal age, smoking during pregnancy, maternal asthma, maternal socioeconomic status, and child's sex was collected via questionnaires completed by the parents ${ }^{5}$. Maternal age was included as a continuous variable. Maternal smoking status during pregnancy was classified into three groups: non-smoker, stopped smoking in early pregnancy, and smoked throughout pregnancy. Maternal asthma was included as a dichotomous variable. Maternal socioeconomic status was categorized into two groups: blue collar worker and white-collar worker, the latter including liberal professional patrician with university graduate jobs. Child's sex was included as a dichotomous variable.

DNA Methylation Data

The DNA methylation data were generated as part of MeDALL. For BAMSE-MeDALL Illumina450K methylation data were generated in Groningen, The Netherlands and Mutation Analysis Facility and for BAMSE-EpiGene, the data were generated at the Karolinska Institutet, Stockholm, Sweden ${ }^{6}$. Protocols for data generation and quality control were identical at the two sites. DNA from peripheral and cord blood samples was extracted using the QIAamp blood kit (Qiagen or equivalent protocols), followed by precipitation-based concentration using GlycoBlue (Ambion). DNA concentration was determined by Nanodrop measurement and Picogreen quantification. 500 ng of DNA was bisulphite-converted using the EZ 96-DNA methylation kit (Zymo Research), following the manufacturer's standard protocol. After verification of the bisulphite conversion step using Sanger Sequencing, DNA concentration was normalized and the samples were randomized to avoid batch effects. All paired samples were hybridized on the same chip. Standard male and female DNA samples were included in this step for quality control. In the BAMSE EpiGene study, epigenome-wide DNA methylation was measured in DNA extracted from blood samples collected at the age of 8 years. An aliquot (500 ng) of DNA per sample underwent bisulfite conversion using the EZ-96 DNA Methylation kit (Zymo Research Corporation, Irvine, USA). Samples were plated onto 96 -well plates in randomized order. The same standard female DNA control sample that was also used in the MeDALL study was again included for quality control.

Acknowledgements

BAMSE was supported by The Swedish Research Council, The Swedish Heart-Lung Foundation, Stockholm County Council (ALF), Swedish foundation for strategic research (SSF) (RBc08-0027; BAMSE-EpiGene), the Strategic Research Programme (SFO) in Epidemiology at Karolinska Institutet, The Swedish Research Council Formas, and the EU-funded MeDALL project (grant agreement number 261357).

CHOP

Study population

The CHOP study (European Childhood Obesity Project) is an ongoing European multicenter randomized prospective nutritional intervention study in 1678 healthy term newborns recruited between October 1, 2002 and July 31, 2004. Currently, infants are followed up until the age of 11 years. Main objective of the CHOP study is to assess the effect of early and later nutrition on children's weight development, growth, body composition and risk of obesity and the role epigenetic and metabolic programming plays in this context. A detailed description of the study design and the comprehensive prospective measurements can be found in recent publications ${ }^{7-10}$. The local ethics committees of each study center approved all study procedures: Belgium (Comitè d'Ethique de L'Hopital Universitaire des Enfants Reine Fabiola; no. CEH 14/02), Germany (Bayerische Landesärztekammer Ethik-Kommission; no. 02070), Italy (Azienda Ospedaliera San Paolo Comitato Etico; no. 14/2002), Poland (Instytut Pomnik-Centrum Zdrowia Dziecka Komitet Etyczny; no 243/KE/2001), and Spain (Comité ético de investigación clinica del Hospital Universitario de Tarragona Joan XXIII). Written informed parental consent was obtained for each participating infant and from children of age 8 years onwards.

Phenotype Data

Asthma

In the CHOP study, asthma was defined based on the following questions asked on questionnaire completed by the mother when the child was 7 to 8 years of age (mean age (sd; range) $=7.1(0.29 ; 1.57)$) and an evaluation of named asthma related medication by an experienced paediatrician. Children were classified as having asthma if the mother responded "YES" to the following questions: "Has your child ever been diagnosed by a physician/ paediatrician of asthma (NO/YES)" and named any asthma medication in response to the question "Is your child currently taking any medication? (>14 days) (NO/YES) Which? \qquad ".

Covariates

Information on maternal age, smoking during pregnancy, asthma, education, and child's sex was collected via questionnaire completed by the mother within the first 8 weeks after delivery. Maternal age was included as a continuous variable. Maternal smoking status during pregnancy was classified into three groups: non-smoker, stopped smoking in early pregnancy, and smoked throughout pregnancy. Reported doctor diagnosed maternal asthma was included as a dichotomous variable. Maternal educational level was categorized into three groups based on years of education: low = basic schooling only or less than 10 yrs.; medium = secondary schooling of

10 to less than 12 yrs; high = completion of college, university or at least 12 years of secondary schooling. Child's sex was included as a dichotomous variable.

The current analyses include the children who had DNA methylation measurements, school-age asthma and covariate data ($n=382$). Batch effects were accounted for by including categorized variable plate in the analyses.

DNA Methylation Data

In the CHOP study, epigenome-wide DNA methylation was measured with the Illumina Infinium HumanMethylation450K Bead Chip (HM450K) array in 384 children of age 5.5 years (Illumina Inc., San Diego, USA). Briefly, genomic DNA was extracted from peripheral blood cells from buffy coats, bisulfite converted (800 ng) with the EZ-96 DNA Methylation Kit (Zymo Research, Irvine, Ca; USA) and finally hybridized on the HM450K arrays at the Genome Analysis Center of Helmholtz Zentrum Muenchen, Munich, Germany. Details on preprocessing, normalization and quality control were previously described ${ }^{9}$. In brief, raw methylation data were pre-processed and normalized according to the approach of Touleimat and Tost ${ }^{4}$ with the modification of a beta-mixture quantile normalization (BMIQ) step ${ }^{11}$. Quality control was conducted according to standard criteria: Retaining only probes with signals from ≥ 3 beads, detection p-values ≤ 0.01 and samples with $\geq 80 \%$ significant probe methylation signals per sample. In addition, color bias correction and background adjustment were conducted with R-package lumi. However, except for identified cross-binding probes ${ }^{12}$, no probe filtering according to proximity of CpG site with SNPs of minor allele frequency $\geq 5 \%$ within 50 bp or probes on the X and Y chromosomes were conducted. In total, 431313 CpG methylation values for $n=384$ children of age 5.5 years were available for EWAS analysis before potential trimming of calculated beta-values and 429948 after trimming. The final sample for the CHOP study in the school-age asthma EWAS analyses comprised 429948 CpG methylation values for $n=382$ children after removing any missing in phenotype and covariates (described below). In the CHOP analysis sample mean age (sd; range) of DNA-methylation measurement was 5.5 (0.07; 0.82) years.

Acknowledgements

The research of the CHOP study reported herein was partially supported by the Commission of the European Community, specific RTD Programme "Quality of Life and Management of Living Resources," within the 5th Framework Programme (research grant nos. QLRT-2001-00389 and QLK1-CT-2002-30582); the 6th Framework Programme contract no. 007036 (FP6-007036); the European Union's Seventh Framework Programme Project EarlyNutrition under grant agreement no. 289346 (FP7-289346), the Horizon 2020 research and innovation programme DYNAHEALTH (no. 633595) and the European Research Council Advanced Grant META-GROWTH (ERC-2012-AdG - no. 322605). Additional support from the German Ministry of Education and Research, Berlin (Grant Nr. 01 GI 0825) and the University of Munich Innovative Research Priority Project MC-Health is gratefully acknowledged. This manuscript does not necessarily reflect the views of the Commission and in no way anticipates the future policy in this area. The funders of this study had no role in study design, data collection, data analysis, data interpretation, decision to publish, or preparation of the manuscript.

The authors thank the participating families and all project partners for their enthusiastic support of the project work. We also like to acknowledge the The European Childhood Obesity Trial Study Group for their continuous and salient support of the CHOP project: Philippe Goyens, Clotilde Carlier, Joana Hoyos, Pascale Poncelet, and Elena Dain (Universite Libre de Bruxelles - (ULB) -Brussels, Belgium); Jean-Noel Van Hees (CHC St VincentFrançoise Martin, Annick Xhonneux, Jean-Paul Langhendries, and Jean-Noel Van Hees - Liège-Rocourt, Belgium);

Ricardo Closa-Monasterolo, Joaquin Escribano, Veronica Luque, Georgina Mendez, Natalia Ferre, and Marta Zaragoza-Jordana (Universitat Rovira i Virgili, Institut d’Investigacio' Sanitaria Pere Virgili, Taragona, Spain); Marcello Giovannini, Enrica Riva, Carlo Agostoni, Silvia Scaglioni, Elvira Verduci, Fiammetta Vecchi, and Alice Re Dionigi (University of Milano, Milano, Italy); Jerzy Socha, Piotr Socha and Anna Stolarczyk (Children's Memorial Health Institute, Department of Gastroenterology, Hepatology and Immunology, Warsaw, Poland); Anna Dobrzanska and Dariusz Gruszfeld (Children's Memorial Health Institute, Neonatal Intensive Care Unit, Warsaw, Poland); Roman Janas (Children's Memorial Health Institute, Diagnostic Laboratory, Warsaw, Poland); Emmanuel Perrin (Danone Research Centre for Specialized Nutrition, Schiphol, the Netherlands); Rudiger von Kries (Division of Pediatric Epidemiology, Institute of Social Pediatrics and Adolescent Medicine, Ludwig Maximilians University of Munich, Munich, Germany); Helfried Groebe, Anna Reith, and Renate Hofmann (Klinikum Nurnberg Sued, Nurnberg, Germany); and Berthold Koletzko, Veit Grote, Martina Weber, Peter Rzehak, Sonia Schiess, Jeannette Beyer, Michaela Fritsch, Uschi Handel, Ingrid Pawellek, Sabine Verwied-Jorky, Iris Hannibal, Hans Demmelmair, Gudrun Haile, and Melissa Theurich (Division of Nutritional Medicine and Metabolism, Dr von Hauner Childrens Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany).

CHS

Study population

The Children's Health Study (CHS) is a population-based prospective cohort study from age 5 onwards in Southern California, which has been described in detail elsewhere ${ }^{13}$. The study protocol was approved by the University of Southern California Institutional Review Board and informed, written consent and assent were provided by the parents and children respectively. A total of 5341 children were recruited, all of whom were born between 1995 and 1997 and are currently being followed until age 18.

Based on the availability of newborn bloodspots archived by the state of California, a subset of 273 children was selected for a sub-study in which epigenome-wide DNA methylation was assessed in newborn bloodspots. Multiple births were excluded from analyses (7 subjects).

Phenotype data

Asthma

We classified asthma based on responses to the following questions completed by the parents when the child was 5-10 years of age (if multiple, the year close to age 6-7 window was chosen). Children were classified as having asthma if the parent responded "yes" to the following question - "Has a doctor ever diagnosed this child as having asthma?". Further, the child was classified as asthmatic only if the parent also responded YES to either of the three following questions - "Has your child had wheezing or whistling in the chest in the last 12 months?" OR "In the last 12 months, has your child required medication for asthma or wheezing?" OR "In the last 12 months, has your child taken any other medication for asthma or wheezing except for controller and rescue medication?". The control group was NEVER asthma.

Covariates

Information on maternal smoking during pregnancy, asthma and education were obtained from parentcompleted questionnaires at study entry when the subjects were around 6 years old. Child's sex and maternal age at delivery were obtained from California birth certificates. Maternal age was included as a continuous variable. Maternal smoking status during pregnancy and maternal asthma were both included as dichotomous variables. Maternal educational level was categorized into three groups based on years of education: less than or finished high school, some college or completed college, and some graduate training. Child's sex was included as a dichotomous variable. Ancestry was assessed from CHS genome-wide genotypic data using the program STRUCTURE from a set of ancestral informative markers that were scaled to represent the proportion of African American, Asian, Native American and white admixture ${ }^{14}$. We additionally corrected the analyses for batch effect by including the Illumina Infinium HumanMethylation450 BeadChip plate number ($\mathrm{n}=3$) .

The current analyses include the children who had DNA methylation measurements, school-age asthma and covariate data ($\mathrm{N}=229$).

DNA Methylation Data

Methylation was measured using the Infinium HumanMethylation450 BeadChip (HM450). Laboratory personnel performing DNA methylation analysis were blinded to study subject information. DNA was extracted from whole blood cells using the QiaAmp DNA blood kit (Qiagen Inc, Valencia, CA) and stored at -80 degrees Celcius. 700-1000ng of genomic DNA from each sample was treated with bisulfite using the EZ-96 DNA Methylation Kit ${ }^{T M}$ (Zymo Research, Irvine, CA, USA), according to the manufacturer's recommended protocol and eluted in $18 \mu \mathrm{l}$. The results of the Infinium HumanMethylation450 BeadChip (HM450) were compiled for each locus as previously described and were reported as beta (β) values ${ }^{15}$. A normal-exponential background correction with dye bias correction was applied to the raw intensities at the array level to reduce background noise ${ }^{16}$. We then normalized each sample's methylation values to have the same quantiles to address sample to sample variability ${ }^{4}$. CpG loci on the HM450 array were removed from analyses if they were on the X and Y chromosomes, or if they contained SNPs, deletions, repeats, or if they have more than 10% missing values, leaving a total of 384,310 probes for analysis. Beta values were considered as outliers and were removed if they fall below Quartile 1-3×IQR or above Quartile $3+3 \times$ IQR.

Acknowledgements

We are indebted to the school principals, teachers, students and parents in each of the study communities for their cooperation and especially to the members of the health testing field team for their efforts. We would like to express our sincere gratitude to Steve Graham and Robin Cooley at the California Biobank Program and Genetic Disease Screening Program within the California Department of Public Health for their assistance and advice regarding newborn bloodspots. The biospecimens and/or data used in this study were obtained from the California Biobank Program, (SIS request number(s) 479)" Section 6555(b), 17 CCR. The California Department of Public Health is not responsible for the results or conclusions drawn by the authors of this publication. This work was supported by NIEHS grants K01ES017801, R01ES022216, and P30ES007048.

EDEN

Study population

The EDEN (Etude des Déterminants pré et post natals du développement et de la santé de l'Enfant) study is a prospective Birth Cohort Study (https://eden.vjf.inserm.fr/), which has been described in detail elsewhere ${ }^{17}$. Pregnant women seen for a prenatal visit at the departments of Obstetrics and Gynecology of the University Hospital of Nancy and Poitiers before their twenty-fourth week of amenorrhea were invited to participate. Enrollment started in February 2003 in Poitiers and September 2003 in Nancy; it lasted 27 months in each centre. Among eligible women, 55% (2002 women) accepted to participate. The study has been approved by the ethical committees «Comité Consultatif pour la Protection des Personnes dans la Recherche Biomédicale», Le Kremlin-Bicêtre University hospital, and «Commission Nationale de l'Informatique et des Libertés ».

Phenotype Data

Asthma

Asthma was defined based on responses to a questionnaire completed by the mother when the child was five years of age. Children were classified as having asthma if the mother responded "yes" to the following questions - "Has your child ever been diagnosed by a doctor as having asthma". Further, the child was classified as asthmatic only if the mother also responded YES to either of the three following questions: 1) Has your child had asthma in the past 12 months? 2) Has your child had medication for asthma in the past 12 months? 3) Wheezing in the last 12 months.

DNA Methylation Data

DNA was extracted from 150 cord blood samples. Amplified and genomic DNA samples are now stored in 96well plates at $-80^{\circ} \mathrm{C}$. More than 40 single nucleotide polymorphisms (SNPs) have been genotyped either from genomic or from amplified DNA. The samples underwent bisulfite treatment using the EZ-96 DNA Methylation kit (Zymo Research Corporation, Irvine, USA), and were subsequently processed with the Illumina Infinium Human Methylation 450 BeadChip (Illumina Inc., San Diego, USA). In total, 439,306 CpGs are available in children with DNA measurements.

Acknowledgements

We acknowledge all funding sources for the EDEN study: Foundation for Medical Research (FRM), National Agency for Research (ANR), National Institute for Research in Public Health (IRESP: TGIR cohorte santé 2008 program), French Ministry of Health (DGS), French Ministry of Research, Inserm Bone and Joint Diseases National Research (PRO-A) and Human Nutrition National Research Programs, Paris-Sud University, Nestlé, French National Institute for Population Health Surveillance (InVS), French National Institute for Health Education (INPES), the European Union FP7 programmes (FP7/2007-2013, HELIX, ESCAPE, ENRIECO, MEDall projects), Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD)), French Agency for Environmental Health Safety (now ANSES), MutuelleGénérale de I'EducationNationale (MGEN), French National Agency for Food Security, Health and Environment-wide Associations based on Large population Surveys (HEALS) and the French-speaking association for the study of diabetes and metabolism (ALFEDIAM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Study Population

The Genes-environments and Admixture in Latino Americans (GALA II) study is a case-control study initiated in 2008 designed to investigate genetic, behavioral, social, and environmental determinants of asthma risk and morbidity among children aged $8-21$ years, as previously described in detail ${ }^{18-20}$. The study used identical protocols to recruit nearly 5000 Latinos (age 8-21) from 5 recruitment centers across the US (San Francisco Bay area; Houston, TX; Chicago, IL; New York, NY; and Puerto Rico). The study was approved by each of the five sites' institutional review boards, and all subjects provided informed consent/assent. Trained interviewers' bilingual in English and Spanish administered questionnaires to participants' parents/caretakers to obtain basic socio-demographic information, medical histories, and environmental exposures, such as exposure to tobacco smoke at various time points.

Phenotype Data

Asthma

In GALA II, childhood asthma is defined as having reported physician-diagnosed asthma plus at least two symptoms of coughing, wheezing, or shortness of breath in the 2 years preceding recruitment. Outcomes for all subjects were assessed at time of recruitment (baseline assessment). Eligible control subjects must not have had a reported history of asthma, lung disease, or chronic illness, and no reported symptoms of coughing, wheezing, or shortness of breath in the 2 years prior to enrollment. Exclusion criteria for asthma cases and controls included subjects who were in the third trimester of pregnancy, current smokers, or had at least a 10 pack-year smoking history. All subjects were aged $8-21$ years at time of recruitment. Therefore, age of asthma onset and current asthma status were both asked at ages $8-21$. Selection of subjects was limited to participants who were aged 8 to 10 years old. The current analyses include 193 children who had whole blood DNA methylation measurements and data on school-age asthma.

Covariates

The age of the participant and the participant's mother were both treated as continuous variables. Categorical variables included the child's ethnicity (Mexican, Puerto Rican, and Other Latino), sex (male/female), mother's asthma status (ever/never) and maternal educational achievement (less than high school, high school or equivalent, some college, college graduate or higher). Maternal smoking during pregnancy was classified into one of three categories: non-smoker, stopped smoking in early pregnancy, and smoked throughout pregnancy. Lastly, we also included measures of Native American and African genetic ancestry using ADMIXTURE ${ }^{21}$ to account for the mixed ancestry of Latinos.

DNA Methylation Data

After examining DNA for complete bisulfite conversion of DNA (Zymo Research, Irvine, CA), we randomized the samples onto the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, USA). Raw genome-wide methylation data were loaded in the R package minfi and assessed for basic quality control metrics, including determination of poorly performing probes with insignificant detection p-values above
background control probes (i.e., detection p-value >0.01). Probes with a single nucleotide polymorphism in the single base extension site were excluded. Since our study population included males and females, we also removed the X and Y chromosomes from the raw methylation values. A total of 321,509 methylation loci were included for analysis. We corrected for batch (microarray chip) effect using the ComBat function in the R package SVA (surrogate variable analysis) and performed SWAN normalization to correct for intra-array differences between Illumina Type I and Type II probes ${ }^{22,23}$.

Acknowledgements

This work was supported in part by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II, National Institutes of Health R01HL117004, R01HL128439, R01HL135156, X01HL134589, National Institute of Health and Environmental Health Sciences, R21ES24844, the National Institute on Minority Health and Health Disparities P60MD006902, U54MD009523, R01MD010443, and Tobacco-Related Disease Research Program under Award Number 24RT-0025.

Generation R

Study Population

The Generation R Study is a population-based prospective cohort study from fetal life onwards in Rotterdam, the Netherlands ${ }^{24,25}$. Assessments in pregnant women and children consisted of physical examinations, fetal ultrasounds, biological samples, and questionnaires. All children were born between April 2002 and January 2006. The study has been approved by the Medical Ethical Committee of the Erasmus University Medical Center and written consent was obtained from participating parents of their children.

DNA methylation

DNA was extracted from cord blood samples of 979 Caucasian children. Using the EZ-96 DNA-methylation kit (Shallow-well) (Zymo Research Corporation, Irvine, USA), 500 ng DNA per sample underwent bisulfite conversion. Samples were transferred onto 96 -well plates in a random order. Samples were processed with Illumina's Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, USA). Quality control of analyzed samples was performed using standardized criteria. Samples were excluded due to sample call rate <99\% ($\mathrm{n}=7$) or poor bisulfite conversion ($\mathrm{n}=1$). In addition, 2 samples were excluded because of a gender mismatch and 1 sample because of a retracted informed consent, leaving a total of 969 samples in the statistical analysis. Probes with a single nucleotide polymorphism in the single base extension site with a frequency of $>1 \%$ in the GoNLv4 reference panel were excluded, as were probes with non-optimal binding (non-mapping or mapping multiple times to either the normal or the bisulphite-converted genome), resulting in the exclusion of 49,564 probes, leaving a total of 436,013 probes in the analysis. Data were normalized with DASES normalization using a pipeline adapted from that developed by Touleimat and Tost ${ }^{4}$. DASES normalization includes background adjustment, between-array normalization applied to type I and type II probes separately, and dye bias correction applied to type I and type II probes separately. DASES is based on the DASEN method, but adds the dye bias correction, which is not included in DASEN ${ }^{26}$. Beta-values were calculated for all CpG sites.

Phenotype Data

Asthma

Information about asthma (no; yes) was collected by questionnaires at the ages 4 and 6 years. Response rates for these questionnaires were 73% and 68%, respectively. Asthma was defined by a "yes" response to the following two questions on the questionnaire at age 6 years: 'Was your child ever diagnosed with asthma by a doctor? AND 'Did your child ever suffer from chest wheezing? [never, 1-3 times, >4 times]. Non-cases were children without report of asthma at either follow-up time.

Covariates

Information on maternal age, parity, asthma, maternal education and maternal smoking during pregnancy was collected by questionnaires at enrollment. Maternal age was used as a continuous covariate. Parity was categorized into nulli- and multiparity. Maternal education was categorized into lower or normal (none, primary or secondary education) and higher (more than secondary education). Maternal smoking during pregnancy was assessed by questionnaires in early (<18 weeks gestational age), mid (18-25 weeks gestational age) and late (>25 weeks gestational age) pregnancy. In each trimester, pregnant women were asked whether they had smoked and if so, how much. Maternal smoking during pregnancy was categorized into no smoking during pregnancy, smoking during first trimester only, and continued smoking during pregnancy. Analyses were additionally adjusted for batch effects by adding plate number (11 categories) as a covariate.

Acknowledgements

The Generation R Study is conducted by the Erasmus MC, University Medical Center Rotterdam in close collaboration with the School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam and the Stichting Trombosedienst \& Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. The study protocol was approved by the Medical Ethical Committee of Erasmus MC, Rotterdam. Written informed consent was obtained for all participants. The generation and management of the Illumina 450K methylation array data (EWAS data) for the Generation R Study was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Netherlands. We thank Ms. Sarah Higgins, Ms. Mila Jhamai, Dr. Marjolein Peters, Dr. Lisette Stolk, Mr. Michael Verbiest, and Mr. Marijn Verkerk for their help in creating the EWAS database and the analysis pipeline.

The general design of the Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, the Netherlands Organization for Health Research and Development and the Ministry of Health, Welfare and Sport. The EWAS data were funded by a grant to VWJ from the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA; project nr. 050-060-810) and by funds from the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC. V.W.J. received a grant from the Netherlands Organization for Health Research and Development (VIDI 016.136.361) and a Consolidator Grant from the European Research Council (ERC-2014-CoG-648916). J.F.F. has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 633595 (DynaHEALTH). This study received funding from the European Union's Horizon 2020 research and innovation programme (733206,

LIFECYCLE). L.D. received funding from the co-funded programme ERA-Net on Biomarkers for Nutrition and Health (ERA HDHL) (ALPHABET project, Horizon 2020 (grant agreement no 696295; 2017), ZonMW The Netherlands (no 529051014; 2017)).

GOYA

Study Population

The Genome-Wide Population-based Association Study of Extremely Overweight Young Adults (GOYA) study has been described previously by Paternoster et al. ${ }^{27,28}$. It is based on the Danish National Birth Cohort (DNBC) that included 92,000 pregnant women and their pregnancies during 1996-2002. Of 67,853 women who had given birth to a live born infant, 67,853 had provided a blood sample during pregnancy and had BMI information available, 3.6% of these women with the largest residuals from the regression of BMI on age and parity (all entered as continuous variables) were selected for GOYA. The BMI for these 2451 women ranged from 32.6 to 64.4. From the remaining cohort, a random sample of similar size $(2,450)$ was also selected. DNA methylation data were generated for the offspring of 1000 mothers in the GOYA study. Study "cases" had mothers with a BMI>32 and "controls" were sampled from the normal BMI distribution (can include mothers with a BMI>32). All participants in the DNBC gave written informed consent and the collection and use of their data has ethics approval.

Phenotype data

Asthma

Information on asthma was obtained from a questionnaire completed by the mothers at 7 years after birth and defined as asthma ever (diagnosed by a doctor).

Covariates

Data on maternal parity, socio-economic status, smoking and pre-pregnancy body mass index were collected via a telephone interview at around 16 weeks' gestation. Maternal age was derived from the mother's report of her own date of birth. Newborn sex and gestational age at birth were extracted from birth records. Socioeconomic status was defined using maternal education or occupation: 1) manager/long or medium education, 2) work requiring a short training period, or skilled manual labor, 3) unskilled or public service. Parity was categorized for this study as nulliparous or parous. Maternal smoking in pregnancy was defined as any smoking in pregnancy or no smoking in pregnancy. We restricted the analysis to GOYA controls, i.e. mothers sampled from the normal BMI distribution.

DNA Methylation measurements

Cord blood was collected according to standard procedures, spun and frozen at $-80^{\circ} \mathrm{C}$. DNA methylation analysis and data pre-processing were performed at the University of Bristol. Following extraction, DNA was bisulfite converted using the Zymo EZ DNA MethylationTM kit (Zymo, Irvine, CA). Following conversion, the genomewide methylation status of over 485,000 CpG sites was measured using the Illumina Infinium ${ }^{\circledR}$ HumanMethylation450k BeadChip assay according to the standard protocol. The arrays were scanned using an

Illumina iScan and initial quality review was assessed using GenomeStudio (version 2011.1). The level of methylation is expressed as a "Beta" value (β-value), ranging from 0 (no cytosine methylation) to 1 (complete cytosine methylation). Samples were distributed across slides using a semi-random approach to minimize the possibility of confounding by batch effects. Samples failing quality control (average probe detection p-value \geq 0.01) were repeated. As an additional quality control step genotype probes on the HumanMethylation450k were compared between samples from the same individual and against SNP-chip data to identify and remove any sample mismatches. Data were normalized using the functional normalization approach in the Minfi R package. We removed probes that had a detection p-value >0.05 for $>5 \%$ of samples, probes on the X or Y chromosomes and SNPs (rs probes). 473864 probes remained. Batch correction was done using 10 surrogate variables generated using the sva package in R and included these in models.

Acknowledgements

The authors want to thank the many families who have taken part in the study. Without their help, there would be no cohort.

The Danish National Birth Cohort was established with a significant grant from the Danish National Research Foundation. Additional support was obtained from the Danish Regional Committees, the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Health Foundation and other minor grants. The DNBC Biobank has been supported by the Novo Nordisk Foundation and the Lundbeck Foundation. Generation of DNA methylation data was funded by the MRC Integrative Epidemiology Unit which is supported by the Medical Research Council (MC_UU_12013/1-9) and the University of Bristol.

Study Population

The Inner-City Asthma Consortium EPIGEN population consisted of inner-city children aged 6-12 years with atopy and persistent asthma (cases) and without atopy or asthma (healthy controls). The cases and controls were recruited by six sites of the Inner-City Asthma Consortium (Boston; Washington, DC; Denver; New York; Dallas; and Detroit) from census tracts that contain at least 20\% of households below the U.S. government poverty level ${ }^{29}$.

Phenotype data

Asthma

Cases of asthma were required to meet the following criteria: 1) a physician diagnosis of asthma; 2) persistent or uncontrolled disease as defined by the National Asthma Education and Prevention Program ${ }^{30}$; 3) physiologic evidence of asthma ($\mathrm{FEV}_{1}<85 \%$ predicted, or $\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio $<85 \%$ and bronchodilator responsiveness $(\geq 12 \%$), or $\mathrm{PC}_{20}<8 \mathrm{mg} / \mathrm{ml}$ of methacholine); and 4) positive prick skin-test to as least one of a panel of indoor aeroallergens (i.e. dust mite, cockroach, mold, cat, dog, rat, or mouse). Controls were required to have: 1) no medical history of asthma, rhinitis, sinusitis, and atopic dermatitis; 2) an $\mathrm{FEV}_{1}>85 \%$ predicted; and 3) no positive prick skin-tests.

DNA Methylation

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood using the Ficoll density gradient separation. DNA was isolated from the PBMCs using the AllPrep DNA/RNA kit (Qiagen, Germantown, MD), and purity was assessed using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE). We used Illumina's Infinium Human Methylation 450k BeadChip on bisulfite-treated samples. 0.85-1.00 $\mu \mathrm{g}$ DNA were bisulfite converted using the Zymo EZ DNA Methylation kit (Zymo Research, Orange, CA). Each conversion assay included a commercially available positive and negative control sample. Bisulfite converted samples formed the input for the Illumina Infinium Methylation assay using the Human Methylation 450k BeadChips (Illumina Inc, San Diego, CA). The labeling, hybridization, and scanning procedures were performed on the iScan system. All samples were assayed once (no technical replicates) with 194 arrays performed in 3 batches.

> INMA -contributed analysis of gene expression in relation to methylation

Study population

The INMA—INfancia y Medio Ambiente - (Environment and Childhood) Project is a network of birth cohorts in Spain that aims to study the role of environmental pollutants in air, water and diet during pregnancy and early childhood in relation to child growth and development ${ }^{31}$. Mothers were enrolled at week 12 of pregnancy from 1997 to 2008 in seven regions of Spain (Flix, Granada, Menorca, Asturias, Gipuzkoa, Sabadell and Valencia). The cohort consisted of 3,768 children at birth. During the follow-up visits information on environmental exposures and health outcomes (reproductive, growth and obesity, lung function, allergies and neurodevelopment) were assessed through questionnaires, biomarker measurements, clinical data, and physical exploration. The study website contains details of the design and data available in INMA project (http://www.proyectoinma.org/). The study was approved by the Ethical Committees of each participating center and written consent was obtained from parents. The present study uses data only from the Sabadell birth subcohort.

DNA Methylation Data

Cord blood and whole blood collected at age $4 y$ was extracted using the Chemagen kit (Perkin Elmer). DNA concentration was determined by a NanoDrop spectrophotometer (Thermo Scientific) and with the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies).

Blood methylation data were produced in two laboratories: the Genome Analysis Facility of the University Medical Center Groningen (UMCG) in Holland as part of the MeDALL project ($0 y$ and 4y), and the Bellvitge Biomedical Research Institute (IDIBELL) in Barcelona as part of the BREATHE project (Oy). Both laboratories randomized the samples in batches and followed the Illumina protocol for the Infinium HumanMethylation450 BeadChip. Briefly, 500 ng of DNA was bisulfite-converted using the EZ 96-DNA methylation kit, and DNA methylation was measured through hybridization on the BeadChips. BeadChips were scanned with an Illumina iScan and image data were uploaded into the Methylation Module of Illumina's analysis software GenomeStudio and converted in β-values.

Two blood samples with overall low quality (MethylAid package ${ }^{32}$), and three blood samples discordant for sex (shinyMethyl package ${ }^{33}$) were removed during the quality control. After applying a stringent detection p-value ${ }^{34}$ of $1.10 \times 10^{-16}, 18$ blood samples with a call rate $<98 \%$ were excluded. Data were normalized with the functional normalization method implemented in the minfi package ${ }^{35}$. 7,136 probes with a call rate $<95 \%$, control probes and probes designed to detect genetic polymorphisms were removed. ComBat was applied to eliminate laboratory batch effects, without removing age differences by keeping age in the statistical model (Johnson, Li, and Rabinovic 2007). Finally, one of the 12 duplicated samples was excluded. The final dataset consisted of 476,946 probes and 616 samples (391 at age $0 y$ and 209 at age $4 y, 185$ of them paired $0-4 y$).

Gene expression data

At age 4 years, whole blood was collected in PAXGene tubes and extracted using the kit recommended by the company. All samples had an RNA Integrity Number higher (RIN) than 7.

Gene expression data were obtained using the Affymetrix HTA 2.0 array at the European Institute for Systems Biology and Medicine in Lyon, France. Gene expression was normalized using the Expression Console Software from Affymetrix and probes were clustered to the transcript level using the version 35 of Affymetrix annotation. In addition, Affymetrix transcript clusters were mapped to gene symbols. Four samples were excluded because there were sex discrepancies ($\mathrm{N}=4$). The final sample size was 124 (113 of them have DNA methylation at Oy and 112 at $4 y$).

Acknowledgements

INMA was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041), Spanish Ministry of Health (FIS-PI041436, FIS-PI081151), Generalitat de Catalunya-CIRIT 1999SGR 00241, Fundació La marató de TV3 (090430), and EU Commission (261357-MeDALL: Mechanisms of the Development of ALLergy). CR-A was supported by a FI fellowship from Catalan Government (\#016FI_B 00272).

INMA researchers would like to thank all the participants for their generous collaboration. INMA researchers are grateful to Silvia Fochs, Nuria Pey, and Muriel Ferrer for their assistance in contacting the families and administering the questionnaires.

A full roster of the INMA Project Investigators can be found at http://www.proyectoinma.org/presentacion-inma/listado-investigadores/en listado-investigadores.html.
loW - analysis of gene expression and methylation data

Study population

This is the Isle of Wight (IoW) $3^{\text {rd }}$ Generation Study ${ }^{36}$. The recruitment of newborns started from April 2010. Data used in the analyses were from infants born between April 2010 to May 2014. In total, 200 newborns were recruited such that at least one of their parents is in the loW birth cohort (loW F1) and the recruitment is ongoing.

DNA Methylation Data

We measured epigenome-wide DNA methylation of 192 newborns using DNA extracted from cord blood. One thousand ng DNA per sample underwent bisulfite conversion using the EZ-96 DNA Methylation kit (Shallow) (Zymo Research Corporation, Irvine, USA). Samples were processed with the Illumina Infinium HumanMethylation450 BeadChip ($n=129$) and Illumina MethylationEPIC Beadchips ($n=63$). "CPACOR" method by Lehne, et al. ${ }^{34}$ has been used in normalization of the beta values. The 65 single nucleotide polymorphism (SNP) markers were removed. Illumina Background Correction was applied to the intensity values. The CpGs with set intensity values with detection p-value $\geq 10^{-16}$ was set as missing and removed in the further analysis. Samples exhibiting call rate $<98 \%$ were excluded. Quantile normalization on intensity values was applied by incorporating control probe adjustment and reduction of global correlation. Also, DNA methylation from the 192 subjects were measured in seven batches. The R function ComBat (package sva) ${ }^{37}$ built upon an empirical Bayes framework was used to remove batch effects. Beta-values were calculated for all CpG sites. After preprocessing a total 399, 383 CpG sites were remained for subsequent studies.

Gene expression data

We analyzed data from 157 matching cord blood samples between methylation data and gene expression (Agilent one-color microarray, Agilent Technologies, Santa Clara, CA). The pre-processing was performed with Limma ${ }^{38}$ in the R statistical computing environment ${ }^{39}$. Raw idat files are read into R with the read.miamages function with the source set to Agilent. Background correction was performed with the function backgroundCorrect using the method "normexp" ${ }^{40}$. This method fits a convolution of normal and exponential distributions to the foreground intensities with the background probe intensities set as a covariate. The expected signal, given the foreground observed, is then set as the corrected intensity measures. Normalization is then performed with the normalizeBetweenArrays function and the method is set to "quantile". Data is then converted to $\log 2$ transformed data for further analysis. Filtering is performed to remove lowly expressed probes that are close to the background level. Negative control probes are also removed from the data.

Acknowledgements

IOW cohort acknowledges the great help from the nurses at the David Hide Asthma and Allergy Research Centre led by Professor Hasan Arshad. We greatly appreciate the participating families in the third-generation study. IOW Researchers are grateful to Stephen Potter for data processing and Nikki Graham for technical support. We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant G0900747 91070) for the generation of the methylation data.

MoBa1 \& MoBa2

Study Population

Participants represent two subsets of mother-offspring pairs from the national Norwegian Mother and Child Cohort Study (MoBa) ${ }^{41-43}$. The years of birth for MoBa participants ranged from 1999-2009. MoBa mothers provided written informed consent. Each subset is referred to here as MoBa1 and MoBa2. MoBa1 is a subset of
a larger study within MoBa that included a cohort random sample and cases of asthma at age three years ${ }^{44}$. We previously reported an association between maternal smoking during pregnancy and differential DNA methylation in MoBa1 newborns ${ }^{45}$. We subsequently measured DNA methylation in additional newborns (MoBa2) in the same laboratory (Illumina, San Diego, CA) ${ }^{46}$. MoBa2 included a cohort random sample plus cases of asthma at age seven years and non-asthmatic controls. Years of birth were 2002-2004 for children in MoBa1 and 2000-2005 for MoBa2. Both studies were approved by the Regional Committee for Ethics in Medical Research, Norway and were approved by the Institutional Review Board of the National Institute of Environmental Health Sciences, USA.

Phenotype data

Asthma

MoBa1 participants were originally selected for analysis of methylation based on asthma status at age 3 years (current asthma with use of inhaled asthma medications) along with a cohort random sample. Individuals whose parent responded to the follow-up questionnaire at age 7 years were included in the current study. Asthma was defined at age 7 according to the ideal definition, i.e. as doctor diagnosed asthma and one of current asthma, asthma symptoms in the past year, or medication for asthma in the past year. The reference group excluded children whose mother had reported asthma at age 3 but not at age 7 .

MoBa2 was selected on asthma case/noncase status based on the questionnaire at age 7 years, therefore school-age asthma is defined by this selection variable. There were additional approximately 200 subjects selected because they had measurement of plasma folate available and these are excluded from the analysis. Asthma was previously defined as current asthma (symptoms in the last year) AND medication for asthma in the past year. The control group is NEVER asthma.

Covariates

For both datasets, information on maternal age, smoking during pregnancy, asthma, education, and child's sex was collected via questionnaires completed by the mother or from birth registry records as previously described ${ }^{44}$. Maternal age was included as a continuous variable. Maternal smoking status during pregnancy was classified into three groups: non-smoker, stopped smoking in early pregnancy, and smoked throughout pregnancy. Maternal asthma was included as a dichotomous variable. Maternal educational level was categorized into four groups based on years of education: less than high school/secondary school, high school/secondary school completion, some college or university, or 4 years of college/university or more. Child's sex was included as a dichotomous variable.

DNA Methylation Data

Details of the DNA methylation measurements and quality control for the MoBa1 participants were previously described ${ }^{45}$ and the same protocol was implemented for the MoBa2 participants. Briefly, umbilical cord blood samples were collected and frozen at birth at $-80^{\circ} \mathrm{C}$. All biological material was obtained from the Biobank of the MoBa study ${ }^{43}$. Bisulfite conversion was performed using the EZ-96 DNA Methylation kit (Zymo Research Corporation, Irvine, CA) and DNA methylation was measured at 485,577 CpGs in cord blood using Illumina's Infinium HumanMethylation450 BeadChip ${ }^{47}$. Raw intensity (idat) files were handled in R using the minfi package to calculate the methylation level at each CpG as the beta-value ($\beta=$ intensity of the methylated allele $(M) /($ intensity of the unmethylated allele $(U)+$ intensity of the methylated allele $(M)+100)$) and the data were
exported for quality control and processing. Probe and sample-specific quality control was performed in the MoBa1 and MoBa2 datasets separately. Similar protocols were applied to MoBa1 and Moba2, as follows: Control probes $(\mathrm{N}=65)$ and probes on $\mathrm{X}(\mathrm{N}=11230)$ and $\mathrm{Y}(\mathrm{N}=416)$ chromosomes were excluded in both datasets. Remaining CpGs missing > 10% of methylation data were also removed ($\mathrm{N}=20$ in MoBa1, none in MoBa2). Samples indicated by Illumina to have failed or have an average detection p-value across all probes < 0.05 ($\mathrm{N}=49 \mathrm{MoBa1}, \mathrm{~N}=35 \mathrm{MoBa2}$) and samples with gender mismatch ($\mathrm{N}=13 \mathrm{MoBa1}, \mathrm{~N}=8 \mathrm{MoBa} 2$) were also removed. For MoBa1 and MoBa2, we accounted for the two different probe designs by applying the intra-array normalization strategy Beta Mixture Quantile dilation (BMIQ) ${ }^{11}$. The Empirical Bayes method via ComBat was applied separately in each dataset for batch correction using the sva package in R^{37}.

The following number of samples passed the above quality control: 1,068 for MoBa1 and 685 for MoBa2. Samples determined to be ancestry outliers based on principal components analysis of Illumina HumanCore genotype data were excluded from analyses (12 in MoBa1; 5 in MoBa2). The current analyses include the children who had cord blood DNA methylation measurements, school-age asthma and covariate data ($\mathrm{N}=661$ from MoBa1; $N=456$ from MoBa2), and each dataset was analysed independently.

Acknowledgements

The Norwegian Mother and Child Cohort Study are supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (contract no NO1-ES-75558), NIH/NINDS (grant no. 1 UO1 NS 047537-01 and grant no. 2 UO1 NS 047537-06A1). For this work, MoBa 1 and 2 were supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZO1-ES49019) and the Norwegian Research Council/BIOBANK (grant no 221097). This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262700. We are grateful to all the participating families in Norway who take part in this on-going cohort study. We thank Dr. Bonnie Joubert of NIEHS for her extensive work on the quality control and initial analysis of the MoBa1 and MoBa2 datasets and Elin Alsaker of the National Institute of Public Health (Bergen, Norway), Dr. Frank Day of NIEHS and Dr. Jianping Jin of Westat (Durham, NC) for expert data management and computational assistance.

NEST

Study Population

NEST is a multiethnic birth cohort designed to identify the effects of early exposures on epigenetic profiles and phenotypic outcomes. Pregnant women were recruited from prenatal clinics serving Duke University Hospital and Durham Regional Hospital Obstetrics facilities in Durham, North Carolina from April 2005 to July 2009. Gestational age at enrollment ranged from 6 to 42 weeks (median 30 weeks). Eligibility criteria were women aged 18 years or older, English speaking, pregnant, and an intention to use one of the two obstetrics facilities. Among these, women infected with HIV or intending to give up custody of the offspring of index pregnancy were excluded. Current smokers were targeted for the first ~200 participants. Of the 1101 women who met eligibility criteria and were approached, 895 (81\%) were enrolled and umbilical cord blood was collected from 741 infants. This study was approved by the Duke Institutional Review Board. Additional details about NEST may be found in previous publications ${ }^{48,49}$.

Phenotype Data

Asthma

Asthma was defined based on a combination of medical records and survey responses. The survey included the following two questions which were used to identify asthma diagnoses: 1) "What was the outcome of your child's doctor visits? Normal or concerns. If there were Concerns, what were they?" and 2) "Was your child diagnosed with any condition by his/her doctor? Yes or No. If Yes, please specify". Parental reports of asthma in these questions were classified as asthma cases, otherwise if the parent said there were no diagnoses or concerns they were classified as not having asthma. Medical records were further used to refine and supplement survey data. Medical billing codes related to asthma (i.e. ICD $9493 . X X$ codes) and the number of encounters were used to identify children with asthma among those with recent visits. This was checked against a review of the child's full medical records to ensure accuracy. The age at which the asthma diagnosis was reported varies; however, it ranges from five to nine years.

Covariates

The sex of the child was collected from medical records following delivery. Maternal smoking status, socioeconomic status (education), age, asthma, and race were reported by the mother on a questionnaire completed during pregnancy. Maternal age was included as a continuous variable. Maternal smoking status during pregnancy was classified into three groups: non-smoker, stopped smoking in early pregnancy, and smoked throughout pregnancy. Maternal asthma was included as a dichotomous variable. Maternal educational level was categorized into 3 groups: high school education/GED or less, some college, or college degree or higher.

DNA Methylation Data

Genomic DNA from buffy coat specimens was extracted from umbilical cord blood using Puregene Reagents (Qiagen, Valencia, CA). Bisulfite conversion was performed using the EZ-96 DNA Methylation Kit (Zymo Research Corporation) and DNA methylation was measured at 485577 CpGs using Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, USA). Illumina’s GenomeStudio Methylation module version 1.0 (Illumina Inc.) was used to calculate the methylation level at each CpG as the beta value. Probe and sample-specific quality control was performed in the NEST cohort using a similar approach to MoBa1 and MoBa2 cohorts. Specifically, control probes ($\mathrm{N}=65$) and probes on $\mathrm{X}(\mathrm{N}=11230)$ and $Y(\mathrm{~N}=416)$ chromosomes were excluded as well as CpGs missing > 10\% of methylation data. Samples indicated by Illumina to have failed or have an average detection p-value across all probes < 0.05 and samples with gender mismatch were also removed. The two different probe designs by applying the intra-array normalization strategy Beta Mixture Quantile dilation (BMIQ) ${ }^{11}$. The Empirical Bayes method via ComBat was applied for batch correction using the sva package in R^{37}. The current analyses include the children who had cord blood DNA methylation measurements, school-age asthma and covariate data ($\mathrm{N}=213$ from NEST).

Acknowledgements

We thank the parents and other caregivers of the Newborn Epigenetics STudy. We also thank the field and laboratory staff for their effort. The NEST study was funded by NIEHS grants R21ES014947 and R01ES016772 and NIDDK grant R01DK085173. CH and DDJ have received funding from the National Institute of Environmental Health Science (P30 ESO25128).

NFBC 1986

Study Population

The Northern Finland Birth Cohort 1986 (NFBC 1986) is a prospective population-based birth cohort which consists of 99% of all children who were born in the provinces of Oulu and Lapland in Northern Finland between 1 July 1985 and 30 June 1986. 9,203 live-born individuals entered the study ${ }^{50}$. At the age of 16 , the subjects living in the original target area or in the capital area ($n=9,215$) were invited to participate in a follow-up study including a clinical examination. 7344 participants attend the study in year 2001/2002, of which 5654 completed the postal questionnaire, the clinical examination and provided a blood sample.

Ethical approval was obtained from the ethical committee of the Northern Ostrobothnia Hospital District and all participants gave written informed consent. The Finnish Ministry of Social Affairs and Health has granted permission to use register data and patient records. Participants' interviews and postal questionnaires were completed/returned from the 24th gestational week onwards with data since 12-16th gestational week. Both the course of pregnancy and delivery, and also complications, were confirmed from patient records, as was the neonatal outcome. Follow-ups of children have been conducted at the age of 6-12 months, 7-8 years and 14-16 years. DNA methylation was measured on 566 randomly selected subjects.

Phenotype Data

Asthma

In the Northern Finland Birth Cohort 1986, asthma was defined based on the following questions asked on questionnaire completed by the child at an age of 16 years. Children were classified as having asthma if they responded "yes" to both of the following questions - "Have you ever had any of the following respiratory and/or allergic symptoms or illnesses? - Asthma (Diagnosed or treated by a doctor)". Further, the child was classified as asthmatic only if the child also responded with occasionally or regularly to the following question "How often do you take the following medicines at the present? - Asthma medication".

Covariates

SES was defined based on the question asked on questionnaire completed by the mother during pregnancy. "Your own school attendance: $1=$ less than 6 years primary school, $2=7-8$ years primary school, $3=9-10$ years primary school, 4 =vocational school or college $6-12$ months, $5=$ vocational school or college >1 years, 6 =matriculation, no vocational schooling, 7=matriculation + college, 8=matriculation, university studies not finished, $9=$ university degree". This was recoded according to the leaving age of school education: 1= before 16 years, $2=16$ to 19 years old, 3 = older than 19 years.

DNA Methylation Data

Methylation of genomic DNA was quantified using the Illumina HumanMethylation450 array according to manufacturer's instructions. Bisulfite conversion of genomic DNA was performed using the EZ DNA methylation kit according to manufacturer's instructions (Zymo Research, Orange, CA). DNA methylation was recoded on Illumina HumanMethlation450K array for 566 randomly selected subjects. To account for batch effects in the
data, beta values underwent a functional normalization approach described by Fortin et al. ${ }^{51}$ using the first 10 PCs of the Illumina 450K array control probes. This approach includes subset quantile normalization of the data and normal-exponential out-of-band background correction.

24 technical replicates were excluded. 18 samples did not reach a call rate of $>95 \%$ applying a detection p-value filter of 1×10^{-16}. We excluded 7 samples with gender inconsistency, no sample was outlying from the overall data structure (1st PC score of the DNA methylation values outside mean +/- 4SD). DNA methylation data of 517 samples with 466290 autosomal probes (call rate filter 95%) each were available for analysis.

Acknowledgements

We thank Professor Paula Rantakallio (launch of NFBC1966 and initial data collection). We gratefully acknowledge the contributions of the participants in the Northern Finland Birth Cohort 1966 study and the Northern Finland Birth Cohort 1986. We also thank all the field workers and laboratory personnel for their efforts.

NFBC1966 received financial support from University of Oulu Grant no. 65354, Oulu University Hospital Grant no. 2/97, 8/97, Ministry of Health and Social Affairs Grant no. 23/251/97, 160/97, 190/97, National Institute for Health and Welfare, Helsinki Grant no. 54121, Regional Institute of Occupational Health, Oulu, Finland Grant no. 50621, 54231. NFBC1986 received financial support from EU QLG1-CT-2000-01643 (EUROBLCS) Grant no. E51560, NorFA Grant no. 731, 20056, 30167, USA / NIHH 2000 G DF682 Grant no. 50945. MW was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 633212. MRJ and SS are supported by H2O20-633595 DynaHEALTH action and academy of Finland EGEA-project (285547).

PIAMA

Study Population

PIAMA (Prevention and Incidence of Asthma and Mite Allergy) is a birth cohort study of children born in 19961997 in the Netherlands. Details of the study design have been published previously ${ }^{51}$. In brief, 10,232 pregnant women completed a validated screening questionnaire at their prenatal health care clinic ($n=52$). Based on this screening, 7,862 women were invited to participate, of whom 4,146 women agreed and gave informed consent. The study started with 3,963 newborns. Questionnaire based follow-up of the children took place at 3 months of age, yearly from 1 to 8 years of age, and at 11,14 , and 16 years of age, with clinical investigations at ages 4 , 8,12 and 16 years. Whole blood DNA was extracted of children who provided a blood sample at ages 4,8 and 16 years.

At the age of 16 years, nasal epithelial cells were collected in two study centers (Groningen and Utrecht) by brushing the lateral area underneath the right inferior turbinate. Brushes were placed in screw-cap Eppendorf tubes and stored at -800 C until further processing. DNA was extracted from nasal brushes using DNA investigator kits (Qiagen, Benelux BV, Venlo, the Netherlands), followed by precipitation-based concentration using GlycoBlue (Ambion). DNA (500ng) was bisulphite-converted using EZ 96-DNA methylation kits (Zymo Research), following manufacturer's standard protocols. After verification of bisulphite conversion using Sanger

Sequencing, DNA concentration was normalized and samples were randomized to avoid batch effects. One standard DNA sample per chip was included in this step for quality control.

The Medical Ethical Committees of the participating institutes approved the study, and the parents and legal guardians of all participants as well as the participants themselves gave written informed consent.

Phenotype Data

Asthma

Asthma was defined based on the questionnaire completed by the mother when the child was eight years of age.

Children were classified as having asthma if the mother responded "yes" to the question - "Has your child ever been diagnosed by a doctor as having asthma". Further, the child was classified as asthmatic only if the mother also responded YES to either of the three following questions: 1) "whether a child had asthma in the past 12 months?", 2) "Has your child had medication for respiratory or lung problems?", or 3) Wheezing in the last 12 months

Covariates

Information on maternal age, smoking during pregnancy, asthma, education, and child's sex was collected via questionnaires completed by the mother. Maternal age was included as a continuous variable. Maternal smoking status during pregnancy was classified into three groups: non-smoker, stopped smoking in early pregnancy, and smoked throughout pregnancy. Maternal asthma was included as a dichotomous variable. Maternal educational level was categorized into three groups based on years of education: 1=primary school, lower vocational or lower secondary education; $2=$ intermediate vocational education or intermediate/higher secondary; $3=$ higher vocational education and university (high). Child's sex was included as a dichotomous variable.

DNA Methylation Data

Details of the DNA methylation measurements and quality control for the PIAMA participants were previously described ${ }^{52}$. Briefly, peripheral blood samples were collected from all consenting cohort participants and DNA was extracted using the QIAamp blood kit (Qiagen or equivalent protocols), followed by precipitation-based concentration using GlycoBlue (Ambion). DNA concentration was determined by Nanodrop measurement and Picogreen quantification. 500 ng of DNA was bisulphite-converted using the EZ 96-DNA methylation kit (Zymo Research), following the manufacturer's standard protocol. After verification of the bisulphite conversion step using Sanger Sequencing, genome-wide DNA methylation was measured using the Illumina Infinium HumanMethylation450 BeadChip. After normalization of the concentration, the samples were randomized to avoid batch effects. Standard male and female DNA samples were included in this step as control samples. DNA methylation data were pre-processed in R with the Bioconductor package Minfi ${ }^{35}$, using the original IDAT files extracted from the HiScanSQ scanner. Samples that did not provide significant methylation signals in more than 10% of probes (detection $P=0.01$) were excluded from further analysis. Samples were also excluded in cases of low staining efficiency, low single base extension efficiency, low stripping efficiency of DNA from probes after single base extension, poor hybridization performance, poor bisulphite conversion and high negative control probe staining. Further, we used the 65 SNP probes to check for concordances between paired DNA samples
from the sample individual and assessed the methylation distribution of the X-chromosome to verify gender. Paired samples with Pearson correlation coefficients <0.9 were regarded as sample mix-ups and were excluded from the study. In probe filtering ${ }^{12}$, we excluded probes on sex chromosomes, probes that mapped on multiloci, the 65 random SNPs assay and probes that contained SNPs at the target CpG sites with a minor allele frequency $>10 \%$. Finally, we implemented "DASEN" ${ }^{26}$ to perform signal correction and normalization. After quality control, 226 samples and 439,306 autosomal probes remained for further analysis.

For nasal epithelium, in total 479 nasal epithelium DNA samples were hybridized to the Infinium HumanMethylation450 BeadChip array (Illumina, San Diego, CA). DNA methylation data were pre-processed with Bioconductor package Minfi3, using the original IDAT files from the HiScanSQ scanner. Samples with call rate $<99 \%$ were removed. We used 65 SNP probes to check for concordance between paired DNA samples (nasal and blood DNA samples from the same subjects were hybridized in the same experiments); paired samples with Pearson correlation coefficient <0.9 were excluded, as were probes on sex chromosomes, probes that mapped to multiple loci, 65 SNP-probes, and probes containing SNPs at the target CpG sites with a MAF $>5 \%$. "DASEN" was used to perform signal correction and normalization. After QC, 455 samples and 436,824 probes remained.

Acknowledgements

The PIAMA study was supported by The Netherlands Organization for Health Research and Development; The Netherlands Organization for Scientific Research; The Netherlands Lung Foundation (with nasal methylation studies supported by AF 4.1.14.001); The Netherlands Ministry of Spatial Planning, Housing, and the Environment; and The Netherlands Ministry of Health, Welfare, and Sport. Cancan Qi is supported by a grant from the China Scholarship Council. We are grateful for financial support from MeDALL. MeDALL is a collaborative project supported by the European Union under the Health Cooperation Work Program of the 7th Framework program (grant agreement number 261357).

Raine Study

Study Population

The Western Australian Pregnancy Cohort (Raine) Study (http://www.rainestudy.org.au) is a longitudinal Australian birth cohort that has serially assessed the offspring of 2900 pregnant women from 18 weeks' gestation in utero. Follow-up of the offspring has been undertaken at $1,2,3,5,8,10,14,17$, and 24 years ${ }^{53,54}$. DNA was extracted from whole blood samples ($n=1137$) obtained at 17 -year-old follow up.

Asthma

Asthma was ascertained at 6- and 17-year-old follow up time-points, by questionnaire answered by the primary care-giver. At the 6 -year-old follow up, asthma was defined as a prior doctor diagnosis or prior wheeze or asthma medication in last 12 months. At 17 years it was defined by presence of wheeze in last 12 months. For the current analysis, asthma was defined as asthma diagnosis by age 17 years plus wheeze in the past 12 months reported at that same time point. Children with report of asthma at age 6, but not at age 17 were excluded from the comparison group.

DNA Methylation Data

Bisulphite conversion was prepared from whole blood cells by standard phenol:chloroform extraction and ethanol precipitation. Processing of the Illumina Infinium HumanMethylation450 BeadChips was carried out by the Centre for Molecular Medicine and Therapeutics (CMMT) http://www.cmmt.ubc.ca. The raw IDAT files were imported into R using the rnb.run.import() function available in the RnBeads package. Two packages were used to perform quality control checks of the samples; shinyMethy $\left.\right|^{33}$ and MethylAid ${ }^{32}$. Three samples were evident as outliers based on the output from shinyMethyl and MethylAid. Gender was inferred using the rnb.execute.gender.prediction() function available in the RnBeads package ${ }^{55}$. When predicted gender was compared to known gender there was a single discrepancy. 58 of the samples were run in duplicate or triplicate and the 65 SNP probes present on the BeadChip were used to assess genetic similarity between these individuals as a check for sample mix-ups. The rnb.plot.snp.heatmap() function available in the RnBeads package was used to produce a heatmap of b values. One contaminated sample was excluded based on this plot. Intentional SNP probes ($n=65$), sex chromosome probes ($n=11,648$) and probes with a detection p-value greater than 0.05 in any sample ($n=10,777$) were removed. A further 160 probes with low bead counts (bead counts less than 3 in more than 5% of samples) were removed.

Acknowledgements

The authors are grateful to the Raine Study participants and their families, and the Raine Study management team for cohort co-ordination and data collection. This work was supported by resources provided by The Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.

The authors acknowledge the contributions to core funding of the Raine Study by the University of Western Australia, the Telethon Kids Institute, the Raine Medical Research Foundation, the Faculty of Medicine, Dentistry and Health Science (UWA), the Women and Infants Research Foundation, Curtin University, and Edith Cowan University. The authors also acknowledge the long-term support of the National Health and Medical Research Council of Australia. The epigenetic data collection is supported by NHMRC grant \#1059711. Rae-Chi Huang supported by NHMRC fellowships 1053384.

SLSJ - Analysis of asthma in relation to methylation in purified eosinophils

Study Population
The families (1394 individuals distributed in 271 families) included in the Saguenay-Lac-Saint-Jean asthma familial cohort ${ }^{56}$ were recruited through probands with documented allergic asthma. To be included in the study, a family needs to fulfill these criteria: the two parents must be available for clinical assessment, one parent must be unaffected and all grand-parents must be of French-Canadian origin. Clinical evaluation (measures of lung function: forced expiratory volume in $1 \mathrm{~s}\left(\mathrm{FEV}_{1}\right)$ and methacholine challenge $\left(\mathrm{PC}_{20}\right)$), white blood cell counts, skin prick test for allergy and a standardized questionnaire were completed for all individuals.

Acknowledgements

The Saguenay-Lac-Saint-Jean asthma familial cohort was supported by Laprise grants from the Canadian Institute of Health Research (CIHR).

STOPPA

Study Population

The Swedish Twin study On Prediction and Prevention of Asthma (STOPPA) is a twin cohort study including $n=752$ individuals ${ }^{57}$. Study participants were selected from an on-going data collection within the Child and Adolescent Twin study in Sweden (CATSS) ${ }^{58}$ based on the pair's asthma status. Approximately one third each of asthma concordant (ACC), asthma discordant (ADC) and healthy concordant (HCC) pairs took part in clinical examinations including questionnaires, lung function testing (spirometry with reversibility test and fractional exhaled nitric oxide, FeNO) and collection of biosamples. The twins were 9-14 years old at the time of invitation to the study.

The study population has been linked to the Swedish population-based Medical Birth Register for information on pregnancy and delivery outcomes, the National Patient Register for all in- and outpatient diagnoses and the Swedish Prescribed Drug Register for data on prescribed drugs since 2005. Biosamples include whole blood (collected in 4 ml EDTA tubes and stored at $-80^{\circ} \mathrm{C}$) from $\mathrm{n}=708$ twins. Further details regarding STOPPA have been provided in a separate publication ${ }^{57}$.

Phenotype Data

Asthma

In STOPPA, childhood asthma is defined based on the following sources;

1) Questionnaires to parents and children distributed at the clinical examinations within STOPPA.
2) A telephone interview with the study participants' parents when the children were 9 years of age (within the Child and Adolescent Twin Study in Sweden, CATSS)
3) Population-based register data covering asthma diagnoses in in- and outpatient care (National Patient Register, NPR) and dispensed asthma medication (Swedish Prescribed Drug Register, SPDR).
a) The presence of an asthma diagnosis prior to the clinical examination, from either the STOPPA questionnaires (parent -reported), the CATSS telephone interview (parent-reported), or that had been recorded in the NPR.
and
b) At least one of the following:
i) Yes to "Does your child have asthma?" (STOPPA parent questionnaire) or "Do you have asthma?" (STOPPA twin questionnaire)
ii) Yes to "Has your child had wheezing or whistled breathing at some point during the last 12 months?" (STOPPA parent questionnaire) or "Have you had wheezing or whistled breathing at some point during the last 12 months?" (STOPPA twin questionnaire)
iii) Yes to "Does your child currently take any asthma medication? (STOPPA parent questionnaire)
iv) During the year prior to the clinical examination in STOPPA, the child fulfilled either of the following validated ${ }^{59}$ asthma medication combinations in the SPDR:
(1) Two or more dispenses of inhaled corticosteroids (ICS, ATC code RO3BA), fixed combinations of selective beta-2-agonists and ICS ($\beta 2$-ICS, ATC code R03AK), or Leukotriene Receptor Antagonists (LTRA, ATC code R03DC).
(2) Three or more dispenses of selective beta-2-agonists ($\beta 2$, ATC code RO3AC), ICS, $\beta 2+$ ICS or LTRA, within one year.

The reference group for school age asthma were those who answered No to "Has your child ever had wheezing or whistled breathing?" (STOPPA parent questionnaire). There was no question regarding asthma ever in STOPPA.

DNA Methylation Data

DNA was extracted from whole blood using the Chemagic Star 400 kit (PerkinElmer chemagen, Baesweiler, Aachen, Germany) according to a standardized protocol. Samples allocation was performed by complete randomization of samples between analysis plates and chips, with the exception that samples from twin pairs were kept within the same chip to allow for within-pair comparisons free of batch effects. Laboratory analyses took place at the Mutation Analysis Facility (MAF), Karolinska Institutet, Stockholm, Sweden, using the Infinium HumanMethylation450 Beadchip Kit (Illumina, Inc., San Diego, California, USA).

Quality control, sample and probe filtering were performed using RnBeads ${ }^{55}$. Predicted gender and phenotypebased sex were compared and matched for all samples. Probes were filtered out due to overlap with single nucleotide polymorphisms or specific nucleotide contexts, unreliable measurements (defined as detection pvalues $>5 \times 10^{-8}$), or location on sex chromosomes, leaving approximately 455,000 CpG probes for final analyses when using the full data set. The methylation data were normalized using the dasen method, which includes background adjustment and separate between-array normalization of Type I and Type II probes ${ }^{26}$. Methylation at each CpG site was expressed as beta values.

To allow for all twins to be retained within the sample, generalized estimating equation (GEE) models are generally used in analyses using STOPPA data. By specifying twin pairs as clusters, the GEE method produces robust standard errors and corrects for within-cluster (i.e. within-pair) correlations. The parameter estimates themselves are not affected. For these analyses the R package drgee is used ${ }^{60}$.

Acknowledgements

Financial support was provided from the Swedish Research Council through the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework grant no 340-2013-5867, grants provided by the Stockholm County Council (ALF-projects), the Strategic Research Program in Epidemiology at Karolinska Institutet, the Swedish Heart-Lung Foundation and the Swedish Asthma and Allergy Association's Research Foundation.

2. Meta-Analysis Details

2.1. PACE CONSORTIUM

The Pregnancy and Childhood Epigenetics (PACE) Consortium is an international consortium of cohorts with Illumina Infinium HumanMethylation450 BeadChip (450K) data measured at birth (ie: in newborns) or in childhood ${ }^{61}$.

The studies participating in the prospective analysis of newborn DNA methylation data in relation to the development of asthma are: the Avon Longitudinal Study of Parents and Children (ALSPAC), the Children's Health Study (CHS), Etudes des Déterminants pré et postnatals précoces du développement et de la santé de l'Enfant (EDEN, the Generation R Study, the Genome-Wide Population-based Association Study of Extremely Overweight Young Adults (GOYA) study (part of the Danish National Birth Cohort), Infancia y Medio Ambiente (INMA), the Isle of Wight (IoW) study, two independent datasets from the Norwegian Mother and Child Cohort Study (MoBa1 and MoBa2), and the Newborn Epigenetics Study (NEST).

The studies participating in the cross-sectional analyses of asthma in relation to DNA methylation measured in childhood are two independent cohorts from the Children's Allergy Environment Stockholm Epidemiology study (BAMSE; BAMSE-EpiGene and BAMSE-MeDALL), the European Childhood Obesity Project (CHOP) Study, the Genes-environments and Admixture in Latino Americans (GALA II) study, the Inner City Asthma Consortium (ICAC), the Northern Finish Birth Cohort (NFBC 1986), the Prevention and Incidence of Asthma and Mite Allergy (PIAMA) study, the Western Australian Pregnancy Cohort (Raine) Study, and the Swedish Twin Study on Prediction and Prevention of Asthma (STOPPA).

2.2. Harmonization of Childhood Asthma and Wheeze Outcomes

We developed a common definition of asthma to be generated from questionnaire data by each cohort. Asthma cases were children with doctor diagnosis of asthma and report of at least one of the following: (a) current asthma, (b) asthma (or asthma symptoms such as wheeze) in the past year, or (c) asthma medication use in the last year. The time point for the assessment of asthma was school age - defined as at least 5 years of age. Controls were children that had never had asthma. Details of cohort specific definitions are provided in the previous section.

2.3 Methylation Data Measurements and Quality Control

DNA methylation was measured either in newborns or older children using the lllumina 450K platform. All cohorts analyzed untransformed beta values. Cohorts performed their preferred quality control and normalization methods (see previous section). We had previously found that different pre-processing or normalization methods do not have an effect on meta-analysis results ${ }^{46}$. Cohorts corrected for batch effects in their data using ComBat ${ }^{62}$ or by including a batch covariate in their models. To reduce the impact of severe outliers in the methylation data on the meta-analysis, all cohorts trimmed the methylation beta values by removing, for each CpG , observations more than three times the interquartile range below the $25^{\text {th }}$ percentile or above the $75^{\text {th }}$ percentile (outer fences) ${ }^{63}$.

Cohorts retained all CpGs that passed quality control and did not remove CpGs that were included on lists of polymorphic, SNP, or non-specific probes such as in Chen, et al. ${ }^{12}$. Instead these were evaluated post-hoc in the
meta-analysis results. The distribution of all individual significant CpGs that appear on these lists were visually assessed for multi-modality in three of the larger cohorts (MoBa1, Generation R, and STOPPA).

2.3. Cohort Specific Statistical Analyses

The association of methylation and asthma was assessed using logistic regression. Covariates included in the adjusted models were maternal age (continuous), maternal smoking status (did not smoke during pregnancy, smoked early then quit, smoked throughout pregnancy), maternal asthma (yes or no), child's sex, and maternal socioeconomic status (generally categorical maternal education). As noted above, Cohorts corrected for batch effects in their data using ComBat ${ }^{62}$ or by including a batch covariate in their models. Cohorts that have oversampled or selected on a phenotype included this selection variable in the analysis. We also adjusted for potential confounding by cell type using estimated cell type proportions calculated using the Houseman method ${ }^{64}$ from either the cord blood cell type reference panel ${ }^{65}$ for newborn cohorts (CD8T, CD4T, NK, Bcell, Mono, Gran, and nRBC) or the adult blood cell type reference panel ${ }^{66}$ for cohorts with older children (CD8T, CD4T, NK, Bcell, Mono, Eos, and Neu). A crude model with adjustment only for optional batch, ancestry, and selection covariates was also done. The primary models presented include adjustment for covariates as well as cell type.

2.4. Meta-analyses Methods

We performed inverse variance-weighted fixed effects meta-analysis with METAL ${ }^{67}$ and accounted for multiple testing by controlling for the false discovery rate (FDR) at 0.05^{68}. As a sensitivity analysis, we also performed random effects meta-analysis using the METASOFT tool ${ }^{69}$.

2.5. EnHANCEd CpG Annotation

The official gene name was noted for each CpG via Illumina's genome coordinate 40. As in Joubert, et al. ${ }^{46}$, we enhanced the annotation provided by Illumina by using the UCSC Genome Browser (including data the RefSeq and Ensembl databases) to identify the UCSC Known Gene. UCSC genes occasionally differ from the Illumina annotation file RefSeq genes. All of the annotations use the human February 2009 (GRCh37/hg19) assembly. UCSC Known Gene annotations include nearest genes within 10 Mb of each CpG and thus fill in gene names missing in the Illumina annotation file.

2.6. Analysis of Differentially Methylated Regions

Differentially methylated regions (DMRs) were assessed via two methods, comb-p ${ }^{70}$ and DMRcate ${ }^{71}$. Among the available methods, these two accept p-values as input, and thus can be used in the context of meta-analysis. Comb-p and DMRcate use different algorithms to identify significantly differentially methylated regions. Combp uses a one-step Šidák correction method for multiple comparisons ${ }^{72}$, while DMRcate uses an FDR method ${ }^{68}$. Each method requires the input of parameters to be used in selecting the regions and these were chosen such that they were most similar to each other as detailed below. To reduce false positives, we only considered a DMR to be statistically significant if it was statistically significant in both packages, according to the definition used in each. DMRcate annotates CpGs using the UCSC Refgene in the Illumina annotation file.

For Comb-p, the input parameters found in Online Repository Methods Table 1 were used. For DMRcate, the input parameters found in Online Repository Methods Table 2 were used.

2.7. Lookup of significant DNA methylation findings in previous literature

We performed a literature review of all DNA methylation and asthma association studies to identify genes reported as differentially methylated in relation to asthma or wheeze. The literature review was performed using the below PubMed search terms (originally on June 3, 2016 and updated 1/12/2018): (((((("Asthma"[Majr]))) OR (((((airways hyper responsiveness[Title/Abstract]) OR airway reactivity[Title/Abstract]) OR bronchodilator response[Title/Abstract]) OR asthma[Title/Abstract]) OR wheez*[Title/Abstract] OR FENO[Title/Abstract]))) AND (((("Methylation"[Majr]) OR "DNA Methylation"[Majr])) OR ((methylation[Title/Abstract]) OR DNA methylation[Title/Abstract])))

We additionally identified genes related to asthma in genome-wide association study (GWAS) results in the GWAS catalog ${ }^{73}$ (p-value $<5 \times 10^{-8}$; downloaded $6 / 29 / 2016$) and updated subsequently using the Genome-Wide Repository of Associations Between SNPs and Phenotypes (GRASP) database ${ }^{74}$ (p -value $<1 \times 10^{-8}$; downloaded $3 / 7 / 2017)$. We updated the literature review on $01 / 12 / 2018$ to include novel loci identified in the largest GWAS meta-analysis of asthma to date ${ }^{75}$.

2.8. FUnctional follow-up of significant DNA methylation findings

2.8.1. Analysis of DNA Methylation in relation to Expression of Nearby Genes

To identify associations between methylation levels and the expression levels of nearby genes (cis-eQTMs) we analyzed methylation and blood gene expression available in the same subjects from several sources. The association of gene expression with methylation was assessed within a 500 kb window for each individual CpG (+/-250kb from the CpG). For differential methylated regions, we used a window 250 kb up- and down-stream of the end and start site of each region.

There were five datasets available with expression and methylation measured in the blood from the same subjects at different periods of the life course. The largest dataset was adults with 3,096 samples from four cohorts in the Netherlands (Biobank-Based Integrative Omics Studies (BIOS) consortium) in which gene expression was assessed by RNA-Seq ${ }^{76,77}$). The BAMSE study consisted of 248 samples from older children (16 years) in which gene expression was assessed using the Affymetrix Human Transcriptome Array (HTA 2.0) ${ }^{78}$. From the INMA study we analyzed 112 samples with methylation in cord blood and 113 samples with methylation at age 4 years, both compared to gene expression measured at age four also using the Affymetrix Human Transcriptome Array (HTA 2.0) (Affymetrix, Inc, Santa Clara, CA) (ref). From the IoW cohort we analyzed paired methylation and gene expression data from cord blood samples from 158 newborns where gene expression was measured using the Agilent one-color microarray (Agilent Technologies, Santa Clara, C). In all of these studies, linear regression analysis took into account cohort specific joint sources of variability (age, gender, differential cell counts, batch effects for both methylation and gene expression). Additionally, we assessed correlation between gene expression and methylation in 38 cord blood samples from Mexican newborns deposited in Gene Expression Omnibus (GEO) [GSE62924 for methylation ${ }^{79}$, GSE48354 for gene expression measured using the Affymetrix HTA 2.0 Array ${ }^{80}$]. For this study, Pearson correlation coefficients were calculated because covariates were not available for linear regression analysis. Given the modest size of the studies of newborns or children, we report association based on nominal significant ($\mathrm{P}<0.05$). For the much larger BIOS study of adults, the FDR was used to account for multiple testing. In all studies, methylation was measured using the llumina450K array.

2.8.2. Functional annotation

Functional annotation was done using tracks customized to DNA methylation in the UCSC Genome Browser. See Online Repository Methods Table 3 for detail on specific tracks. We examined regions to which the genomewide significant individual CpGs annotated as well as the significant differentially methylated regions (DMRs).

2.8.3. Search for Druggable Targets

We matched the list of genes to which our asthma-associated CpGs and DMRs annotated against the ChEMBL database (v22.1, updated on November 15, 2016) ${ }^{81}$ to identify genes as targets of approved drugs or drugs in development. In addition, we used the Ingenuity Pathway Analysis ${ }^{82}$ (IPA, www.ingenuity.com, content of 2017-06-22) to identify drug targets and upstream regulators of the gene lists. We reported the upstream regulators in the following categories, biologic drug, chemical - endogenous mammalian, chemical - kinase inhibitor, chemical - other, chemical drug, chemical reagent, and chemical toxicant.

2.8.4. IDENTIFICATION OF TISSUE AND CELL SPECIFIC SIGNALS USING EFORGE

To identify tissue or cell type specific signals in EWAS results, we used eFORGE software ${ }^{83}$. Input for eFORGE was a list of FDR significant CpGs: 9 CpGs for newborn analysis and 179 for older kids analysis. We examined enrichments for DNase I hypersensitive sites (DHSs) or histone marks. The software provides DHS data from the Roadmap Epigenomics, ENCODE, and BLUEPRINT projects; five separate histone marks (H3K27me3, H3K36me3, H3K4me3, H3K9me3, and H3K4me1) from the Roadmap Epigenomics project. We used default options (proximity distance to filter out nearby CpGs = 1 kb , the number of background CpG sets $=1000$) to run the analyses.

2.8.5. Pathway analysis

We performed pathway and network analyses using Ingenuity Pathway Analysis (IPA) ((QIAGEN Inc., HTTPS://WWW.QIAGENBIOINFORMATICS.COM/PRODUCTS/INGENUITY-PATHWAY-ANALYSIS) ${ }^{82}$.

3. Online Repository Methods Tables

Online Repository Methods Table 1: Input parameters used in the comb-p algorithm

Parameter Value Description		
dist 10	1000 Maximum distance to search for adjacent peaks.	
seed 0	0.05 A value must be at least this large/small in order to seed a region.	
region-filter-p 0.01 Maximum adjusted region-level p-value to be reported in final output.		
region-filter-n 2	Require at	number of probes for a region to be reported in final output.
Online Repository Methods Table 2: Input parameters used in the DMRcat		
Parameter Value Description		
lambda 1000	Gaussian kernel bandwidth for smoothed-function estimation. Gaps \geq lambda between significant CpG sites will be in separate DMRs.	
C 2	Scaling factor for bandwidth. Gaussian kernel is calculated where lambda/C = sigma. Empirical testing shows that, for 450k data when lambda $=1000$, near-optimal prediction of sequencing-derived DMRs is obtained when C is approximately 2.	
pcutoff 0.01	p-value cutoff to	ne DMRs.
min.cpgs 2	Minimum numb	secutive CpGs constituting a DMR.
Supplementary Methods Table 3: UCSC Genome Browser customized track details.		
Category	Label	Description
Our EWAS results		CpGs included in the meta-analysis: red - p-value < FDR; light blue - FDR $\leq \mathrm{p}$-value <0.001; royal blue $-0.001 \leq \mathrm{p}$-value $<$ 0.05 ; black - p-value ≥ 0.05
	DMRs	Significant DMRs
UCSC Genes	Gene Name	UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs \& Comparative Genomics)
Human mRNAs	Human mRNAs	Human mRNAs from GenBank
CpG Islands	CpG Islands	Islands<300 bases are light green

SNP	Common SNPs	Simple Nucleotide Polymorphisms (dbSNP 147) found in $\geq 1 \%$ of samples (https://genome.ucsc.edu/cgi- bin/hgTrackUi?g=snp147Common\&hgsid=560497663_3Vf9tNV A6AoTDdnAgUONTbvVGIc8\&db=hg19) - SNP feature for color specification Unknown and intron: black; Coding-synonymous: green; Coding - non-synonymous: red; untranslated: blue, Splice site: red
	SNPs	Sequences in scientific articles (https://genome.ucsc.edu/cgibin/hgTrackUi?hgsid=560497663_3Vf9tNVA6AoTDdnAgUONTbv VGIc8\&g=pubs) - Filter articles by keywords in abstract, title or authors: 'lung'
DNasel Hypersensitivity Site	Master DNasel HS	DNasel Hypersensitive Site Master List (125 cell types) from ENCODE/Analysis
DNasel Hypersensitivity Site Open chromatin	FL DNase 76 46, FL DNase 27 17, FL DNase 48 07, FL DNase 90 85, FL DNase 47 66, FL DNase 66 24, FL DNase 66 51, FL DNase 84 09, FL DNase 84 20, FL DNase 65 27, FL DNase 99 61, FL DNase 1973	DNase Hypersensitivity Raw Signal from REMC/UW: Fetal Lung
	H1-hESC Syn PK	H1-hESC DNaseI/FAIRE/ChIP Synthesis from ENCODE/OpenChrom.

		- Open Chromatin (OC) code (detection assay) and color (level of validation determined by its OC Code and its statistical significance) are below. Validated, OC Code=1, Black; Open Chromatin, OC Code $=2$ or 3, Blue; DNase, OC Code = 2, Blue (high significance), Green (low significance); FAIRE, OC Code $=3$, Blue (high significance), Dark Red (low significance); ChIP-seq, OC Code = 4, Pink
Chromatin State Segmentation	NHLF ChromHMM	NHLF Chromatin State Segmentation by HMM from ENCODE/Broad. The fifteen states of the HMM, associated segment color, and annotations are below. State 1 - Bright Red - Active Promoter State 2 - Light Red-Weak Promoter State 3 - Purple-Inactive/poised Promoter State 4 - Orange- Strong enhancer State 5 - Orange- Strong enhancer State 6 -Yellow-Weak/poised enhancer State 7 -Yellow-Weak/poised enhancer State 8 - Blue-Insulator State 9 - Dark Green- Transcriptional transition State 10 - Dark Green - Transcriptional elongation State 11 - Light Green- Weak transcribed State 12-Gray-Polycomb-repressed State 13 - Light Gray- Heterochromatin; low signal State 14 - Light Gray-Repetitive/Copy Number Variation State 15 - Light Gray-Repetitive/Copy Number Variation

Chromatin State Segmentation Histone Modification	LNG	Chromatin State Segmentations from the cell types used by Roadmap Consortium. The HMM states, associated color, and annotations are below. State 1 -Red - TssA (Active_TSS) State 2 - OrangeRed - TssAFInk (Flanking_Active_TSS) State 3 - LimeGreen- TxFInk (Transcr_at_gene_5_and_3primer) State 4 - Green - Tx (Strong_transcription) State 5 - DarkGreen- TxWk (Weak_transcription) State 6-GreenYellow- EnhG (Genic_enhancers) State 7 -Yellow-Enh (Enhancers) State 8 - MediumAquamarine-ZNF/Rpts (ZNF_genes\&repeats) State 9-PaleTurquoise - Het (Heterochromatin) State 10-IndianRed - TssBiv (Bivalent/Poised_TSS) State 11 - DarkSalmon-BivFlnk (Flanking_Bivalent_TSS/Enh) State 12 - DarkKhaki-EnhBiv (Bivalent_Enhancer) State 13 - Silver-ReprPC (Repressed_PolyComb) State 14 -Gainsboro-ReprPCWk (Weak_Repressed_PolyComb) State 15 -White- Quies (Quiescent/Low)
	Lung H3K27ac 01 61, Lung H3K27ac 02 48, Lung H3K36me3 01 64, Lung H3K36me3 02 14,	Histone Modification by ChIP-seq from REMC/UCSD: Lung

	Lung H3K4me1 01 66, Lung H3K4me1 02 98, Lung H3K4me3 02 33, Lung H3K9me3 01 84, Lung H3K9me3 02 49, Lung Input 01 53, Lung Input 02 61, Lung Input 02 96	

4. Online Repository Figure Legends

Figure E1: Forest plots of 9 significant CpGs from the meta-analysis of asthma in relation to newborn methylation with adjustment for covariates and cell type. These plots show the number of cases and non-cases and odds ratios (OR) and 95% confidence intervals ($95 \% \mathrm{CI}$) for a one percent change in methylation for each cohort along with the meta-analysis results.

Figure E2: Leave out one plots for the 9 significant CpGs from the meta-analysis of asthma in relation to newborn methylation with adjustment for covariates and cell type. These plots show the untransformed regression coefficients and 95% confidence intervals for the meta-analysis of all studies and then for the meta-analysis repeated leaving each labelled cohort out, one at a time.

Figure E3. Forest plots of 179 significant CpGs from the meta-analysis of asthma in relation to methylation in children with adjustment for covariates and cell type. These plots show the number of cases and noncases and odds ratios (OR) and 95% confidence intervals ($95 \% \mathrm{Cl}$) for a one percent change in methylation for each cohort along with the meta-analysis results.

Figure E4. Leave out one plots for the 179 significant CpGs from the meta-analysis of asthma in relation to childhood methylation with adjustment for covariates and cell type. These plots show the untransformed regression coefficients and 95% confidence intervals for the meta-analysis of all studies and then for the metaanalysis repeated leaving each labelled cohort out, one at a time.

Figure E5: Functional annotation plots of 7 significant CpGs (A-I) from the meta-analysis of asthma in relation to newborn methylation with adjustment for covariates and cell type. Custom track titled "CpGs (Newborns)" show the location of the significant CpG (red) in relation to other nearby CpGs (red - p-value $<$ FDR; light blue - FDR $\leq p$-value <0.001; royal blue $0.001 \leq p$-value <0.05; black - p-value ≥ 0.05).
(A) $\operatorname{cg} 21486411$ - CLNS1A
(B) cg16792002 - MAML2
(C) $\operatorname{cg} 13427149$ - GPATCH2; SPATA17
(D) cg17333211-SCOC; LOC100129858
(E) cg02331902 - RP11-213H15.3; AK091866 (near LUCAT1)
(F) cg13289553-SUB1
(G) cg07156990 - WDR20

Figure E6: Functional annotation plots of 34 CpGs non-singleton significant CpGs corresponding to 13 genes from the meta-analysis of asthma in relation to childhood methylation with adjustment for covariates and cell type. Custom track titled "CpGs (Older Kids)" show the location of the significant CpG (red) in relation to other nearby CpGs (red - p-value < FDR; light blue - FDR $\leq p$-value <0.001; royal blue $-0.001 \leq p$-value <0.05; black - p-value ≥ 0.05). Custom track titled "DMRs (Older Kids)" indicates the location of the significant differentially methylated region.

Figure E7: Tissue and cell type specific enrichment pattern of CpGs significantly associated (FDR < 0.05) with asthma in relation to childhood methylation.
(A) DNase1 sites (probably transcription factor binding sites) in cell lines for H3K4me1 on Roadmap Epigenomics Project (Consolidated data)
(B) DNase1 sites (probably transcription factor binding sites) in cell lines for H3K36me3 on Roadmap Epigenomics Project (Consolidated data)

Figure E8: A heatmap is drawn using the categories of disease and biological functions, significant at p-value cutoff of 0.05 in at either newborns or children. All the categories as well as the genes are hierarchically clustered. The genes involved in newborns are colored as red and those in children as orange.

Figure E9: Density distributions of 9 significant CpGs in 2 cohorts, (A) MoBa1 and (B) Generation R from the meta-analysis of asthma in relation to newborn methylation with adjustment for covariates and cell type.
(A) MoBa1
(B) Generation R

Figure E10: Density distributions of 34 non-singleton CpGs in STOPPA from the meta-analysis of asthma in relation to childhood methylation with adjustment for covariates and cell type. Distributions of all 179 CpGs were checked (not shown).

5. Supplementary References

1. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 2013; 42:111-27.
2. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol 2013; 42:97-110.
3. Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES). Int J Epidemiol 2015; 44:1181-90.
4. Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 2012; 4:325-41.
5. Wickman M, Kull I, Pershagen G, Nordvall SL. The BAMSE project: presentation of a prospective longitudinal birth cohort study. Pediatr Allergy Immunol 2002; 13 Suppl 15:11-3.
6. Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Anto JM, Auffray C, et al. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. Environ Health Perspect 2017; 125:10410.
7. Kirchberg FF, Harder U, Weber M, Grote V, Demmelmair H, Peissner W, et al. Dietary protein intake affects amino acid and acylcarnitine metabolism in infants aged 6 months. J Clin Endocrinol Metab 2015; 100:149-58.
8. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al. Lower protein in infant formula is associated with lower weight up to age 2 y : a randomized clinical trial. Am J Clin Nutr 2009; 89:1836-45.
9. Rzehak P, Saffery R, Reischl E, Covic M, Wahl S, Grote V, et al. Maternal Smoking during Pregnancy and DNAMethylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. PLoS One 2016; 11:e0155554.
10. Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, Dain E, et al. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr 2014; 99:1041-51.
11. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013; 29:189-96.
12. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013; 8:203-9.
13. McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect 2006; 114:766-72.
14. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000; 155:945-59.
15. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17:510-22.
16. Triche TJ, Jr., Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res 2013; 41:e90.
17. Heude B, Forhan A, Slama R, Douhaud L, Bedel S, Saurel-Cubizolles MJ, et al. Cohort Profile: The EDEN motherchild cohort on the prenatal and early postnatal determinants of child health and development. Int J Epidemiol 2016; 45:353-63.
18. Kumar R, Nguyen EA, Roth LA, Oh SS, Gignoux CR, Huntsman S, et al. Factors associated with degree of atopy in Latino children in a nationwide pediatric sample: the Genes-environments and Admixture in Latino Asthmatics (GALA II) study. J Allergy Clin Immunol 2013; 132:896-905 e1.
19. Nishimura KK, Galanter JM, Roth LA, Oh SS, Thakur N, Nguyen EA, et al. Early-life air pollution and asthma risk in minority children. The GALA II and SAGE II studies. Am J Respir Crit Care Med 2013; 188:309-18.
20. Oh SS, Tcheurekdjian H, Roth LA, Nguyen EA, Sen S, Galanter JM, et al. Effect of secondhand smoke on asthma control among black and Latino children. J Allergy Clin Immunol 2012; 129:1478-83 e7.
21. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 2009; 19:1655-64.
22. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium Methylation 450K technology. Epigenomics 2011; 3:771-84.
23. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 2012; 13:R44.
24. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol 2016; 31:1243-64.
25. Kruithof CJ, Kooijman MN, van Duijn CM, Franco OH, de Jongste JC, Klaver CC, et al. The Generation R Study: Biobank update 2015. Eur J Epidemiol 2014; 29:911-27.
26. Pidsley R, CC YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 2013; 14:293.
27. Nohr EA, Timpson NJ, Andersen CS, Davey Smith G, Olsen J, Sorensen TI. Severe obesity in young women and reproductive health: the Danish National Birth Cohort. PLoS One 2009; 4:e8444.
28. Paternoster L, Evans DM, Nohr EA, Holst C, Gaborieau V, Brennan P, et al. Genome-wide population-based association study of extremely overweight young adults--the GOYA study. PLoS One 2011; 6:e24303.
Busse WW, Mitchell H. Addressing issues of asthma in inner-city children. J Allergy Clin Immunol 2007; 119:43-9. National Asthma E, Prevention P. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 2007; 120:S94-138.
29. Guxens M, Ballester F, Espada M, Fernandez MF, Grimalt JO, Ibarluzea J, et al. Cohort Profile: the INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol 2012; 41:930-40.
30. van Iterson M, Tobi EW, Slieker RC, den Hollander W, Luijk R, Slagboom PE, et al. MethylAid: visual and interactive quality control of large Illumina 450k datasets. Bioinformatics 2014; 30:3435-7.
31. Fortin JP, Fertig E, Hansen K. shinyMethyl: interactive quality control of Illumina 450k DNA methylation arrays in R. F1000Res 2014; 3:175.
32. Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan ST, et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol 2015; 16:37.
33. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014; 30:1363-9.
34. Arshad SH, Karmaus W, Zhang H, Holloway JW. Multigenerational cohorts in patients with asthma and allergy. J Allergy Clin Immunol 2017; 139:415-21.
35. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012; 28:882-3.
36. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res 2015; 43:e47.
37. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2010.
38. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007; 23:2700-7.
39. Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 2016; 45:382-8.
40. Magnus P, Irgens LM, Haug K, Nystad W, Skjaerven R, Stoltenberg C, et al. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 2006; 35:1146-50.
41. Ronningen KS, Paltiel L, Meltzer HM, Nordhagen R, Lie KK, Hovengen R, et al. The biobank of the Norwegian Mother and Child Cohort Study: a resource for the next 100 years. Eur J Epidemiol 2006; 21:619-25.
42. Haberg SE, London SJ, Nafstad P, Nilsen RM, Ueland PM, Vollset SE, et al. Maternal folate levels in pregnancy and asthma in children at age 3 years. J Allergy Clin Immunol 2011; 127:262-4, 4 e1.
43. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012; 120:1425-31.
44. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet 2016; 98:680-96.
45. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98:288-95.
46. Hoyo C, Murtha AP, Schildkraut JM, Forman MR, Calingaert B, Demark-Wahnefried W, et al. Folic acid supplementation before and during pregnancy in the Newborn Epigenetics STudy (NEST). BMC Public Health 2011; 11:46.
47. Hoyo C, Murtha AP, Schildkraut JM, Jirtle RL, Demark-Wahnefried W, Forman MR, et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 2011; 6:928-36.
48. Jarvelin MR, Hartikainen-Sorri AL, Rantakallio P. Labour induction policy in hospitals of different levels of specialisation. Br J Obstet Gynaecol 1993; 100:310-5.
49. Wijga AH, Kerkhof M, Gehring U, de Jongste JC, Postma DS, Aalberse RC, et al. Cohort profile: the prevention and incidence of asthma and mite allergy (PIAMA) birth cohort. Int J Epidemiol 2014; 43:527-35.
50. Xu CJ, Bonder MJ, Soderhall C, Bustamante M, Baiz N, Gehring U, et al. The emerging landscape of dynamic DNA methylation in early childhood. BMC Genomics 2017; 18:25.
51. Huang RC, Mori TA, Beilin LJ. Early life programming of cardiometabolic disease in the Western Australian pregnancy cohort (Raine) study. Clin Exp Pharmacol Physiol 2012; 39:973-8.
52. Newnham JP, Evans SF, Michael CA, Stanley FJ, Landau LI. Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet 1993; 342:887-91.
53. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods 2014; 11:1138-40.
54. Laprise C. The Saguenay-Lac-Saint-Jean asthma familial collection: the genetics of asthma in a young founder population. Genes Immun 2014; 15:247-55.
55. Almqvist C, Ortqvist AK, Ullemar V, Lundholm C, Lichtenstein P, Magnusson PK. Cohort Profile: Swedish Twin Study on Prediction and Prevention of Asthma (STOPPA). Twin Res Hum Genet 2015; 18:273-80.
56. Anckarsater H, Lundstrom S, Kollberg L, Kerekes N, Palm C, Carlstrom E, et al. The Child and Adolescent Twin Study in Sweden (CATSS). Twin Res Hum Genet 2011; 14:495-508.
57. Ortqvist AK, Lundholm C, Wettermark B, Ludvigsson JF, Ye W, Almqvist C. Validation of asthma and eczema in population-based Swedish drug and patient registers. Pharmacoepidemiol Drug Saf 2013; 22:850-60.
58. Zetterqvist J, Sjölander A. Doubly robust estimation with the R package drgee. Epidemiologic Methods 2015; 4:6986.
59. Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol 2018; 47:22-3u.
60. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8:118-27.
61. Hoaglin DC, Iglewicz B, Tukey JW. Performance of Some Resistant Rules for Outlier Labeling. Journal of the American Statistical Association 1986; 81:991-9.
62. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012; 13:86.
63. Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, S LM, et al. DNA methylation of cord blood cell types: Applications for mixed cell birth studies. Epigenetics 2016; 11:354-62.
64. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012; 7:e41361.
65. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010; 26:2190-1.
66. Benjamini Y, Hochberg Y. CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING. Journal of the Royal Statistical Society. Series B, Methodological 1995; 57:289-300.
67. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 2011; 88:586-98.
68. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics 2012; 28:2986-8.
69. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, R VL, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 2015; 8:6.
70. Šidák Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. Journal of the American Statistical Association 1967; 62:626-33.
71. Burdett T, Hall P, Hastings E, Hindorff L, Junkins H, Klemm A, et al. The NHGRI-EBI Catalog of published genomewide association studies.
72. Leslie R, O'Donnell CJ, Johnson AD. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014; 30:i185-94.
73. Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmuller J, Ang W, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet 2018; 50:42-53.
74. Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet 2017; 49:131-8.
75. Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, et al. Identification of contextdependent expression quantitative trait loci in whole blood. Nat Genet 2017; 49:139-45.
76. Xu CJ, Soderhall C, Bustamante M, Baiz N, Gruzieva O, Gehring U, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med 2018.
77. Rojas D, Rager JE, Smeester L, Bailey KA, Drobna Z, Rubio-Andrade M, et al. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 2015; 143:97-106.
78. Rager JE, Bailey KA, Smeester L, Miller SK, Parker JS, Laine JE, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 2014; 55:196-208.
79. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res 2014; 42:D1083-90.
80. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014; 30:523-30.
81. Breeze CE, Paul DS, van Dongen J, Butcher LM, Ambrose JC, Barrett JE, et al. eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data. Cell Rep 2016; 17:2137-50.

Table E1	Descriptive statis	of covaria	for	cohor														
Methylation Age Group	Cohort	Ancestry*	Total N	$\begin{gathered} \mathrm{N} \\ \text { cases } \end{gathered}$	N controls	Age at Asthma Phenotyping (SD)	Mean maternal age (SD)	N any smoking in pregnancy	N no smoking in pregnancy	N smoking in early pregnancy	N smoking throughout pregnancy	N maternal asthma	N boys	N girls	N SES group1 (low)		N SES group3 **	$\begin{gathered} \text { N SES } \\ \text { group4 } \\ * * \\ \text { (high) } \end{gathered}$
Newborns	ALSPAC	EU	688	88	600	7.63 (0.11)	30.30 (4.23)	75	613	19	56	81	337	351	62	296	330	
	CHS	M	229	39	190	6.40 (0.58)	29.50 (5.72)	17	212			21	91	138	75	121	33	
	EDEN	EU	150	34	116	5.65 (0.12)	30.80 (5.00)	36	114	13	23	14	87	63	8	94	48	
	Generation R	EU	661	37	624	6.20 (0.50)	31.80 (4.00)	162	499	64	98	46	344	317	239	422		
	GOYA	EU	507	37	470	7.20 (0.12)	29.50 (4.00)	112	395	44	68		250	257	50	169	288	
	MoBa1	EU	666	149	517	7.14 (0.14)	29.99 (4.28)	175	491	88	87	68	347	319	44	223	296	103
	MoBa2	EU	458	239	219	7.20 (0.28)	30.20 (4.61)	103	355	68	35	59	264	194	40	156	171	91
	NEST	M	213	45	168	7.00 (1.13)	28.78 (6.41)	73	140	24	49	38	109	104	78	62	73	
Children	BAMSE EpiGene	EU	307	93	214	8.33 (0.52)	30.94 (4.32)	31	276	3	28	34	160	147	45	262		
	BAMSE MeDALL	EU	214	47	167	8.37 (0.37)	31.32 (4.48)	25	189	5	20	20	120	94	37	177		
	CHOP	EU	382	19	363	7.10 (0.29)	32.01 (4.24)	76	306	18	58	11	183	199	68	200	114	
	GALA II	M	193	106	87	9.31 (0.83)	35.03 (6.72)	19	174	12	7	31	108	85	88	43	41	21
	ICAC	AA	187	92	95	9.19 (1.92)						8	96	91	147	40		
	NFBC 1986	EU	413	17	396	16.00 (0.38)	29.05 (5.03)	96	317	57	39	24	191	222	30	252	131	
	PIAMA	EU	197	15	182	8.06 (0.28)	30.51 (3.60)	35	162	17	18	161	99	98	37	90	70	
	Raine Study	EU	509	105	404	17.01 (0.23)	29.66(5.73)	130	379	51	79	69	248	261	51	109	140	209
	STOPPA	EU	460	137	323	12.54 (1.47)	31.21 (4.68)	37	423			65	244	216	21	119	105	215

* EU $=$ European Ancestry; M = Mixed Ancestry; AA = African American Ancestry
$* *$ SES = Socioeconomic Status; each cohort used their best estimate for SES, often maternal education level,$~$

Table E2 All CpGs within the significant differentially methylated regions in analysis of asthma in relation to newborn methylation. Sorted by chromosomal position

DMR chr:pos	N CpGs (N nominal*)	CpG	CpG Position	p -value
chr1:1296093-1296489	2 (2)	cg13354934	1296093	3.68E-05
		cg14375163	1296488	1.39E-02
chr1:59280290-59280842	5 (5)	cg17826530	59280290	$9.13 \mathrm{E}-03$
	ACCEPTED MANU	cg20593826	59280370	$1.01 \mathrm{E}-02$
		cg08731696	59280489	$6.71 \mathrm{E}-03$
		cg02951357	59280619	$8.05 \mathrm{E}-03$
		cg16037711	59280841	$2.64 \mathrm{E}-02$
chr1:220263017-220263699	11 (8)	cg17009631	220263017	$2.00 \mathrm{E}-02$
		cg06854438	220263111	$6.35 \mathrm{E}-02$
		cg07017209	220263177	3.77E-02
		cg10818272	220263189	$1.14 \mathrm{E}-01$
		cg23274377	220263237	3.69E-02
		cg00578530	220263239	7.47E-03
		cg04168050	220263278	$1.36 \mathrm{E}-03$
		cg00784308	220263509	7.05E-03
		cg20243626	220263520	5.86E-01
		cg11379360	220263525	$4.77 \mathrm{E}-02$
		cg00719685	220263698	1.19E-02
chr2:202097062-202097608	5 (3)	cg04048517	202097062	$2.34 \mathrm{E}-01$
		cg02878216	202097093	$3.99 \mathrm{E}-05$
		cg19448993	202097129	7.28E-03
		cg24410214	202097173	$9.46 \mathrm{E}-05$
		cg20608990	202097607	$2.44 \mathrm{E}-01$
chr2:235004843-235005012	2 (2)	cg03259207	235004843	$8.92 \mathrm{E}-04$
		cg27534679	235005011	1.70E-04
chr3:194188646-194189444	3 (3)	cg08059402	194188646	$1.66 \mathrm{E}-03$
		cg13959207	194188988	5.29E-04
		cg15977148	194189443	$2.24 \mathrm{E}-02$
chr4:113218385-113218525	3 (3)	cg17445830	113218385	$5.05 \mathrm{E}-03$
		cg15299279	113218437	$9.35 \mathrm{E}-05$
		cg16292983	113218524	3.83E-03
chr5:64777678-64778186	10 (6)	cg02577849	64777678	$1.03 \mathrm{E}-01$
		cg24184449	64777750	$3.14 \mathrm{E}-02$
		cg24166172	64777777	$5.49 \mathrm{E}-02$
		cg10642820	64777786	$3.16 \mathrm{E}-02$
		cg14700821	64777802	3.89E-02
		cg10944144	64777807	8.20E-01
		cg19927028	64777838	$1.15 \mathrm{E}-02$
		cg14793753	64778097	8.76E-02
		cg18140645	64778147	$4.28 \mathrm{E}-02$
		cg26688155	64778185	5.08E-05
chr5:81573780-81574461	11 (7)	cg08341821	81573780	$2.60 \mathrm{E}-02$
		cg07833035	81573845	$3.44 \mathrm{E}-01$
		cg27310251	81574067	$4.83 \mathrm{E}-02$
		cg04645034	81574156	$1.14 \mathrm{E}-03$
		cg01556715	81574292	2.30E-03
		cg14916917	81574294	$9.71 \mathrm{E}-03$
		cg26986558	81574325	$2.46 \mathrm{E}-01$
		cg17724054	81574408	1.90E-02
		cg05002974	81574439	5.25E-01
		cg10681725	81574453	$1.71 \mathrm{E}-01$
		cg10425506	81574460	1.26E-02
chr5:158526108-158526694	6 (4)	cg27347265	158526108	$3.41 \mathrm{E}-01$
		cg07256113	158526263	$1.11 \mathrm{E}-01$
		cg17036833	158526332	$1.17 \mathrm{E}-03$
		cg05530568	158526614	8.00E-03
		cg17009297	158526642	$2.41 \mathrm{E}-03$
		cg04217450	158526693	1.36E-03
chr6:291687-292824	9 (6)	cg07332563	291687	$5.62 \mathrm{E}-02$
		cg21548813	291882	$4.10 \mathrm{E}-03$
		cg03395511	291903	3.20E-03
		cg15383120	291909	$2.50 \mathrm{E}-03$
		cg18110333	292329	$1.45 \mathrm{E}-02$
		cg05064044	292385	$1.96 \mathrm{E}-03$
		cg11235426	292522	5.30E-02
		cg01516881	292596	2.73E-02

		$\operatorname{cg} 26668828$	292823	2.24E-01
chr6:26234819-26235610	9 (4)	cg24036126	26234819	$5.76 \mathrm{E}-01$
		cg23705973	26235061	7.83E-04
		cg24855943	26235224	$4.05 \mathrm{E}-04$
		cg21085190	26235254	$4.47 \mathrm{E}-01$
		cg15689967	26235287	$5.50 \mathrm{E}-02$
	ACCEPTED MANU	Cg25267285	26235290	$1.08 \mathrm{E}-01$
		cg03761746	26235311	$3.46 \mathrm{E}-02$
		cg25091056	26235462	9.14E-04
		cg10638657	26235609	1.49E-01
chr6:29648161-29649085	22 (19)	cg25978138	29648161	$2.28 \mathrm{E}-01$
		cg11747594	29648225	$1.20 \mathrm{E}-02$
		cg15708526	29648271	$1.02 \mathrm{E}-03$
		cg04071440	29648275	8.85E-02
		cg08022281	29648345	4.94E-02
		cg10648573	29648348	2.82E-02
		cg12644888	29648360	2.14E-02
		cg22494932	29648379	5.72E-04
		cg25699073	29648381	$1.91 \mathrm{E}-03$
		cg07134666	29648400	$2.28 \mathrm{E}-02$
		cg00588198	29648452	$1.67 \mathrm{E}-02$
		cg16885113	29648507	$9.60 \mathrm{E}-03$
		cg20228636	29648525	2.17E-02
		cg11383134	29648590	$9.34 \mathrm{E}-03$
		cg03198009	29648604	3.17E-02
		cg03449857	29648623	2.62E-02
		cg15570656	29648628	4.84E-02
		cg02157626	29648736	$1.57 \mathrm{E}-02$
		cg13835168	29648756	1.70E-01
		cg08041448	29648901	4.61E-02
		cg24100841	29649024	3.15E-02
		cg19636627	29649084	1.12E-02
chr6:31055396-31055503	5 (5)	cg15583958	31055396	$1.17 \mathrm{E}-03$
		cg09470958	31055471	$2.45 \mathrm{E}-03$
		cg15625467	31055486	2.15E-03
		cg17077639	31055492	1.28E-02
		cg 26138460	31055502	$1.11 \mathrm{E}-02$
chr6:32799997-32801050	13 (9)	cg01283574	32799997	$4.94 \mathrm{E}-02$
		cg11752893	32800103	$3.97 \mathrm{E}-02$
		cg12121080	32800427	$4.22 \mathrm{E}-01$
		cg13600652	32800429	$4.20 \mathrm{E}-01$
		cg12644497	32800444	$3.24 \mathrm{E}-02$
		cg00720839	32800486	$3.65 \mathrm{E}-03$
		cg16026549	32800519	1.16E-02
		cg12761728	32800523	6.14E-03
		cg07015256	32800541	4.81E-03
		cg24813704	32800549	$1.45 \mathrm{E}-02$
		cg21359558	32800563	1.76E-02
		cg09187413	32800591	1.99E-01
		cg24469596	32801049	5.08E-01
chr7:87974722-87975316	4 (3)	cg27221053	87974722	$9.90 \mathrm{E}-06$
		cg03673737	87974733	$1.02 \mathrm{E}-02$
		cg10649525	87974756	2.58E-03
		$\operatorname{cg} 23857078$	87975315	3.80E-01
chr7:106694832-106695007	2 (2)	cg22214581	106694832	$2.16 \mathrm{E}-05$
		cg15154519	106695006	5.00E-03
chr7:158045980-158046359	6 (5)	cg27200869	158045980	$2.98 \mathrm{E}-02$
		cg16571642	158045996	1.01E-02
		cg06715136	158046025	1.37E-03
		cg02770061	158046166	$6.25 \mathrm{E}-03$
		cg06400119	158046222	3.70E-02
		cg10473311	158046358	6.17E-02
chr8:33370172-33371226	9 (7)	cg26948599	33370172	$2.41 \mathrm{E}-01$
		cg04340421	33370637	$1.06 \mathrm{E}-02$
		cg13529074	33370659	5.59E-03
		cg11008718	33370666	9.01E-03
		cg19906737	33370681	2.21E-02
		cg22610784	33370693	5.02E-04
		cg08328324	33370759	2.07E-02

		$\begin{aligned} & \operatorname{cg} 18030007 \\ & \operatorname{cg} 07516225 \end{aligned}$	$\begin{aligned} & 33370902 \\ & 33371225 \end{aligned}$	$\begin{aligned} & 3.70 \mathrm{E}-03 \\ & 5.06 \mathrm{E}-01 \end{aligned}$
chr8:127889010-127889296	$4(4)$	cg22056468	127889010	$3.38 \mathrm{E}-05$
		cg02411950	127889025	1.93E-03
		cg26726325	127889050	$1.86 \mathrm{E}-03$
		cg21238284	127889295	8.78E-03
chr10:65028929-65029169	5(4) EPTED MANUS	Ccg22492966	65028929	$2.66 \mathrm{E}-04$
		cg14534336	65028980	$1.67 \mathrm{E}-01$
		cg09254098	65029020	2.07E-03
		cg16951385	65029115	2.10E-02
		cg27596707	65029168	$2.86 \mathrm{E}-02$
chr10:71871364-71871634	4 (3)	cg17523282	71871364	$1.13 \mathrm{E}-03$
		cg03096811	71871388	3.52E-04
		cg02735204	71871463	$1.08 \mathrm{E}-02$
		cg09777856	71871633	1.58E-01
chr11:268923-269469	5 (4)	cg02443306	268923	$1.29 \mathrm{E}-02$
		cg13185005	268950	$8.48 \mathrm{E}-03$
		cg10308673	268976	8.30E-04
		cg11546385	269375	$9.60 \mathrm{E}-02$
		$\operatorname{cg02563407}$	269468	$4.39 \mathrm{E}-02$
chr11:107328442-107328915	10 (5)	cg20965478	107328442	$1.25 \mathrm{E}-01$
		cg25435332	107328525	9.88E-02
		cg12301744	107328559	1.20E-01
		cg02558537	107328586	5.82E-01
		cg25102621	107328605	4.11E-02
		cg19998148	107328636	$3.96 \mathrm{E}-02$
		cg07444288	107328657	6.96E-04
		cg23880829	107328671	1.98E-01
		cg10872513	107328690	1.04E-03
		cg12578959	107328914	1.80E-04
chr12:58329764-58330116	5 (4)	cg14878686	58329764	$8.22 \mathrm{E}-04$
		cg09932636	58329862	7.64E-02
		cg02175503	58329896	$1.14 \mathrm{E}-02$
		cg22764591	58329936	$2.25 \mathrm{E}-02$
		cg06537201	58330115	$1.41 \mathrm{E}-03$
chr12:74931289-74932008	10 (8)	cg15612392	74931289	6.83E-04
		cg04707531	74931420	1.34E-02
		cg20100969	74931493	1.20E-03
		cg21144006	74931510	$1.79 \mathrm{E}-02$
		cg16403677	74931512	9.90E-04
		cg17824173	74931535	$1.14 \mathrm{E}-02$
		cg01865610	74931554	4.38E-02
		cg22232397	74931695	4.11E-01
		cg23311950	74931760	$4.46 \mathrm{E}-02$
		$\operatorname{cg} 23798332$	74932007	9.00E-01
chr13:31618695-31618744	2 (2)	cg07321753	31618695	$4.11 \mathrm{E}-03$
		cg10670748	31618743	$3.12 \mathrm{E}-06$
chr13:108953659-108954055	2 (2)	cg11726530	108953659	$3.67 \mathrm{E}-04$
		cg16929959	108954054	$1.40 \mathrm{E}-03$
chr14:69341139-69341739	4 (4)	cg00000289	69341139	2.40E-02
		cg11072851	69341430	7.39E-03
		cg27036347	69341603	8.09E-04
		cg01707795	69341738	7.18E-03
chr16:20774873-20775353	5 (4)	cg06478823	20774873	$8.35 \mathrm{E}-02$
		cg10060338	20774960	6.01E-03
		cg10078415	20775011	$4.98 \mathrm{E}-03$
		cg00394823	20775166	4.45E-03
		$\operatorname{cg} 21644826$	20775352	2.13E-02
chr17:21029189-21029296	2 (2)	cg19360316	21029189	$1.87 \mathrm{E}-04$
		cg06582708	21029295	5.92E-04
chr17:74667833-74668253	6 (4)	cg04684864	74667833	$1.12 \mathrm{E}-03$
		cg03874568	74667923	9.02E-01
		cg09326547	74667999	1.70E-03
		cg05121093	74668089	3.13E-04
		cg09509528	74668195	1.29E-06
		cg17177017	74668252	4.56E-01
chr18:47813745-47815431	11 (8)	cg27250841	47813745	$2.22 \mathrm{E}-02$
		cg22433261	47813856	$1.25 \mathrm{E}-02$
		cg00418882	47814150	1.31E-03

		cg13423076	47814178	3.38E-02
		cg07675399	47814227	$3.78 \mathrm{E}-01$
		cg20016845	47814312	$3.63 \mathrm{E}-01$
		cg02159718	47814464	5.65E-02
		cg27419474	47814612	$1.63 \mathrm{E}-02$
		cg21134610	47815407	$1.42 \mathrm{E}-02$
	ACCEPTED MANU	cg15632775	47815417	7.91E-03
		cg11871295	47815430	2.30E-02
chr21:36421467-36421956	6 (3)	cg01519261	36421467	$5.67 \mathrm{E}-02$
		cg04915566	36421472	3.92E-04
		cg13030790	36421503	4.93E-01
		cg15242225	36421857	5.48E-04
		cg19836199	36421941	$1.48 \mathrm{E}-03$
		cg08443845	36421955	$1.19 \mathrm{E}-01$
chr22:24372913-24374013	12 (7)	cg20007245	24372913	$1.61 \mathrm{E}-02$
		cg04824771	24372921	$1.86 \mathrm{E}-01$
		cg24565820	24372926	$3.84 \mathrm{E}-02$
		cg10150615	24372951	$5.24 \mathrm{E}-01$
		cg18538332	24372958	7.44E-01
		cg23131131	24373011	8.83E-02
		cg25703541	24373054	7.83E-03
		cg02953382	24373134	$2.88 \mathrm{E}-03$
		cg04234412	24373322	5.03E-03
		cg12419862	24373484	$8.06 \mathrm{E}-05$
		cg09033563	24373618	$3.54 \mathrm{E}-04$
		cg21256200	24374012	4.33E-01

[^2] without cell type adjustment and without any adjustment

CpG	chr:pos	UCSC RefGene Name	UCSC Known Gene*	Covariates + Cell Type					Covariates		Crude	
				OR** (CI)	P -value	HetPVal	RE OR** (CI)	RE p-value	OR** (C)	P -value	OR** (CI)	P -value
cg21486411	chr11:77348243	CLNS1A	CLNS1A	1.13 (1.08,1.18)	3.43E-07	0.3090			1.11 (1.06,1.15)	1.97E-06	1.10 (1.05,1.14)	8.35E-06
cg16792002	chr11:95788886	MAML2	Mir_548	0.95 (0.93,0.97)	5.59E-07	0.7276			0.95 (0.94,0.97)	2.67E-06	0.96 (0.94,0.98)	5.05E-05
ch.11.109687686R	chr11:110182476			1.08 (1.05,1.11)	7.06E-07	0.3949			1.05 (1.03,1.08)	5.29E-05	1.05 (1.02,1.07)	2.50E-04
cg13427149	chr1:217804379	GPATCH2;SPATA17	GPATCH2	1.19 (1.11,1.27)	8.04E-07	0.8095			1.17 (1.10,1.25)	4.51E-07	1.15 (1.08,1.22)	8.26E-06
cg17333211	chr4:141294016	SCOC	LOC100129858	1.13 (1.08,1.19)	8.25E-07	0.4246			1.10 (1.05,1.15)	5.24E-05	1.08 (1.04,1.13)	1.52E-04
cg02331902	chr5:90610303		AK091866	1.12 (1.07,1.18)	8.37E-07	0.9151			1.10 (1.05,1.14)	5.27E-05	1.09 (1.05,1.13)	4.03E-05
cg13289553	chr5:32585524	SUB1	SUB1	1.14 (1.08,1.20)	8.68E-07	0.0392	1.13 (1.04,1.23)	$4.00 \mathrm{E}-03$	1.10 (1.04,1.15)	8.80E-05	1.10 (1.05,1.15)	$1.02 \mathrm{E}-04$
ch.6.1218502R	chr6:51250028			1.27 (1.15,1.39)	9.32E-07	0.7301			1.16 (1.06,1.26)	1.06E-03	1.13 (1.04,1.23)	3.55E-03
cg07156990	chr14:102685678	WDR20	WDR20	0.87 (0.83,0.92)	9.54E-07	0.2642			0.89 (0.85,0.94)	6.02E-06	0.89 (0.85,0.94)	7.18E-06

* Annotation based on UCSC Known Gene also fills in nearest gene within 10 MB .
** Odds ratio of developing asthma for a 1% absolute increase in methylation.

Table E4
Genes previously associated with childhood asthma identified from literature review in either methylation or GWAS of asthma.

ADAM17	FCER2	IL2RA	LOC105373951	NOTCH4	SLC38A6
ADRB2	FL41481	IL2RB	LOC105374811	NPSR1	SMAD3
AHR	FOXP2	IL33	LOC105375647	NRG1	SNTB1
AK5	FOXP3	IL4	LOC105375922	NTF3	STAC2
AKAP6	GATA3	IL4R	LOC105375976	OR51A7	STARD3
ALOX12	GC	IL5	LOC105376400	ORMDL1	STAT6
ARG1	GSDMA	IL6	LOC105376583	ORMDL3	SYNM
ARG2	GSDMB	IL6R	LOC105376673	PAPLN	TBCD
ARMC10	GTF3AP1	INPP4B	LOC105376928	PBX2	TBX21
BRD2	HCG23	KCNH1	LOC105377623	PDE4D	TBX5
BTNL2	HERC2	KCNQ4	LOC105377670	PGAP3	TCAP
C11orf30	HGC6.3	KIAA1244	LOC105377671	PNMT	TENM3
C1orf53	HLA-DOA	KIAA1598	LOC105378906	PPP3CA	TET1
C6orf10	HLA-DPA1	LCE5A	LOC105378907	PSMD3	TGFB1
CCDC40	HLA-DQA1	LEP	LOC105379121	PYHIN1	TLR1
CCL5	HLA-DQA2	LIF	LOC105379200	PYY2	TNFa
CDC14B	HLA-DQB1	LINC01565	LOC284661	RAD50	TNXB
CDH17	HLA-DRA	LOC100130207	LOC727896	RAM19A4	TOP2A
CDHR3	HLA-DRB1	LOC100131635	LOC727896;LPIN2	RANBP6	TSLP
CDK2	HLA-DRB5	LOC100216346	LOC90246	RAP2B	TUSC3
CHI3L1	HNMT	LOC100996770	LPIN2	RBP1	TYRP1
CLEC16A	HPSE2	LOC101927335	LRRC3C	RNA5SP299	USP38
COL12A1	HTATIP2	LOC101928813	MAX	RNA5SP508	WDR36
CRB1	HTR5A	LOC101928947	ME1	RORA	ZFPM1
CRNN	IKZF3	LOC101929163	MED24	RPL21P96	ZNF432
CTD-2350J17.1	IKZF4	LOC101929497	MIR8084	RPS3AP21	ZNF614
CUX1	IL13	LOC102725019	MLLT3	RTP2	ZNF616
DDIT4L	IL18R1	LOC102725082	MMP13	SCARB1	ZNF680
DENND1B	IL18RAP	LOC105369165	MNAT1	SEC22B	ZNF841
ERBB2	IL1R2	LOC105369563	MTUS1	SH2B3	ZNF90P3
ETS1	IL1RL1	LOC105371272	NCRNA00250	SIX4	ZPBP2
FAM110B	IL1RL2	LOC105371273	NEK6	SLC26A5	
FBXL7	IL2 site 1	LOC105373949	NHEJ1	SLC30A8	

CpG	chr:pos	UCSCRefGene Name	UCSC Known Gene*	Childhood Methylation							Newborn Methylation				
				Coef	SE	OR** (CI)	p -value	HetPVal	RE OR** (CI)	RE P-value	Coef	SE	OR** (CI)	P-value	
cg06315149	chr1:2036398	PRKCZ	PRKCZ	-11.88	2.63	0.89 (0.84,0.93)	6.08E-06	0.2363			-0.04	1.44	1.00 (0.97,1.03)	0.9791	
cg13066938	chr1:6341140	ACOT7	ACOT7	-9.14	2.12	0.91 (0.88,0.95)	$1.67 \mathrm{E}-05$	0.0457	0.92 (0.86,0.98)	$1.21 \mathrm{E}-02$	-0.17	0.70	1.00 (0.98,1.01)	0.8084	
cg21220721	chr1:6341230	ACOT7	ACOT7	-6.32	1.10	0.94 (0.92,0.96)	1.02E-08	0.0049	0.94 (0.90,0.98)	$1.73 \mathrm{E}-03$	-1.99	1.68	0.98 (0.95,1.01)	0.2363	
cg09249800	chr1:6341287	ACOT7	ACOT7	-13.20	2.31	0.88 (0.84,0.92)	1.19E-08	0.2057			-0.28	1.65	1.00 (0.97,1.03)	0.8653	
cg11699125	chr1:6341327	ACOT7	ACOT7	-10.23	1.66	0.90 (0.87,0.93)	7.54E-10	0.1397			-0.65	1.25	0.99 (0.97,1.02)	0.6033	
cg18783781	chr1:9599067	SLC25A33	SLC25A33	-10.56	2.36	0.90 (0.86,0.94)	7.45E-06	0.0424	0.91 (0.85,0.98)	$1.39 \mathrm{E}-02$	0.37	0.84	1.00 (0.99,1.02)	0.6572	
cg02171825	chr1:26517586	CATSPER4	CATSPER4	-13.19	2.97	0.88 (0.83,0.93)	9.01E-06	0.5951			-0.44	2.27	1.00 (0.95,1.04)	0.8476	
cg01942646	chr1:27240694	NROB2	NROB2	-13.02	2.70	0.88 (0.83,0.93)	$1.45 \mathrm{E}-06$	0.4145			-1.43	1.69	0.99 (0.95,1.02)	0.3966	
cg16263722	chr1:29523841	MECR	MECR	-11.15	2.15	0.89 (0.86,0.93)	2.14E-07	0.4042			-1.31	1.29	0.99 (0.96,1.01)	0.3117	
cg11987455	chr1:43290834	ERMAP	ERMAP	-11.98	2.42	0.89 (0.85,0.93)	7.55E-07	0.5742			0.74	1.45	1.01 (0.98,1.04)	0.6099	
cg11683482	chr1:44678623	DMAP1	DMAP1	-10.92	2.01	0.90 (0.86,0.93)	5.39E-08	0.0067	0.88 (0.82,0.95)	5.26E-04	0.55	1.03	1.01 (0.99,1.03)	0.5965	
cg12643917	chr1:44715958	ERI3	ERI3	-11.13	2.51	0.89 (0.85,0.94)	8.98E-06	0.5525			-0.51	1.38	0.99 (0.97,1.02)	0.7101	
cg26252077	chr1:61607055	NFIA	NFIA	-12.78	2.28	0.88 (0.84,0.92)	2.18E-08	0.0388	0.88 (0.82,0.95)	9.20E-04	-1.20	1.49	0.99 (0.96,1.02)	0.4204	
cg10704177	chr1:62209607	INADL	INADL	-10.42	2.01	0.90 (0.87,0.94)	2.25E-07	0.0135	0.90 (0.84,0.96)	$2.12 \mathrm{E}-03$	0.44	1.25	1.00 (0.98,1.03)	0.7225	
cg01445399	chr1:87596934	LOC339524	LOC339524	-9.37	2.18	0.91 (0.87,0.95)	1.72E-05	0.3217			-0.91	1.12	0.99 (0.97,1.01)	0.4179	
cg19805160	chr1:159870731	CCDC19	CCDC19	-11.37	2.43	0.89 (0.85,0.94)	2.85E-06	0.0611			2.62	1.32	1.03 (1.00,1.05)	0.0477	***
cg09332506	chr1:160309220	COPA	NCSTN	-15.15	3.10	0.86 (0.81,0.91)	1.00E-06	0.5562			-2.36	2.82	0.98 (0.92,1.03)	0.4040	
cg17971251	chr1:177907297	SEC16B	SEC16B	-14.63	2.55	0.86 (0.82,0.91)	9.52E-09	0.1650			1.55	1.94	1.02 (0.98,1.05)	0.4245	
cg26033504	chr1:201458737	CSRP1	CSRP1	-9.70	2.15	0.91 (0.87,0.95)	6.35E-06	0.0006	0.91 (0.83,0.99)	$3.21 \mathrm{E}-02$	1.69	1.46	1.02 (0.99,1.05)	0.2466	
cg04895895	chr1:231005895	C1orf198	C1orf198	-12.21	2.68	0.89 (0.84,0.93)	5.26E-06	0.0314	0.91 (0.83,0.99)	$2.35 \mathrm{E}-02$	0.07	1.38	1.00 (0.97,1.03)	0.9581	
cg02473287	chr2:9752386	YWHAQ	YWHAQ	-10.99	2.46	0.90 (0.85,0.94)	8.00E-06	0.0334	0.90 (0.83,0.97)	5.96E-03	-0.80	1.41	0.99 (0.97,1.02)	0.5700	
cg10142874	chr2:11917623	LPIN1	LPIN1	-11.55	2.36	0.89 (0.85,0.93)	$1.04 \mathrm{E}-06$	0.0355	0.89 (0.82,0.95)	$1.10 \mathrm{E}-03$	0.67	1.91	1.01 (0.97,1.05)	0.7262	
cg26752663	chr2:25142016	ADCY3	ADCY3	11.13	2.33	1.12 (1.07,1.17)	1.79E-06	0.0551			1.44	1.01	1.01 (0.99,1.03)	0.1525	
cg00043800	chr2:74612144	LOC100189589	LOC100189589	-9.47	2.17	0.91 (0.87,0.95)	1.32E-05	0.6044			-1.68	1.23	0.98 (0.96,1.01)	0.1715	
cg17988187	chr2:74612222	LOC100189589	LOC100189589	-11.04	2.27	0.90 (0.86,0.94)	1.21E-06	0.0403	0.89 (0.83,0.96)	$2.28 \mathrm{E}-03$	-1.90	1.51	0.98 (0.95,1.01)	0.2068	
cg12077754	chr2:75089669	HK2	HK2	-7.90	1.72	0.92 (0.89,0.96)	4.56E-06	0.3634			0.55	1.13	1.01 (0.98,1.03)	0.6295	
cg22674082	chr2:98585733	TMEM131	TMEM131	-12.20	2.81	0.89 (0.84,0.94)	$1.44 \mathrm{E}-05$	0.1191			-0.54	1.51	0.99 (0.97,1.02)	0.7220	
cg00327263	chr2:120019111	STEAP3	STEAP3	-10.70	2.40	0.90 (0.86,0.94)	8.00E-06	0.1989			-0.25	1.17	1.00 (0.97,1.02)	0.8333	
cg25950520	chr2:121036760	RALB	RALB	-16.28	3.74	0.85 (0.79,0.91)	$1.31 \mathrm{E}-05$	0.4625			-2.66	2.64	0.97 (0.92,1.03)	0.3140	
cg00213281	chr2:149639822	KIF5C;MIR1978	JA429504	-12.85	2.65	0.88 (0.83,0.93)	1.24E-06	0.1106			2.13	1.43	1.02 (0.99,1.05)	0.1365	
cg02494549	chr2:161798364		TANK	-14.66	2.80	0.86 (0.82,0.91)	1.56E-07	0.0096	0.88 (0.80,0.98)	$1.52 \mathrm{E}-02$	-1.16	1.93	0.99 (0.95,1.03)	0.5488	
cg01310029	chr3:3152374	IL5RA	IL5RA	-11.12	2.42	0.89 (0.85,0.94)	4.18E-06	0.3101			0.94	1.52	1.01 (0.98,1.04)	0.5358	
cg10159529	chr3:3152530	IL5RA	IL5RA	-10.82	2.36	0.90 (0.86,0.94)	4.48E-06	0.1419			0.44	1.49	1.00 (0.98,1.03)	0.7688	
cg25224369	chr3:12918528		DQ581328	-10.53	2.36	0.90 (0.86,0.94)	7.75E-06	0.0265	0.89 (0.83,0.96)	$3.58 \mathrm{E}-03$	-2.38	1.25	0.98 (0.95,1.00)	0.0564	

cg07386061	chr3:52492874	NISCH	NISCH	-8.93	1.83	0.91 (0.88,0.95)	1.00E-06	0.3566			0.70	1.21	1.01 (0.98,1.03)	0.5622
cg17890764	chr3:52864816	ITIH4	ITIH4	-9.95	2.03	0.91 (0.87,0.94)	8.95E-07	0.0503			0.99	1.08	1.01 (0.99,1.03)	0.3571
cg07410597	chr3:66404129	SLC25A26	LRIG1	-12.48	2.43	0.88 (0.84,0.93)	2.70E-07	0.1875			0.69	1.78	1.01 (0.97,1.04)	0.6968
cg04217850	chr3:66428294	SLC25A26	LRIG1	-13.23	2.80	0.88 (0.83,0.93)	2.35E-06	0.0001	0.85 (0.76,0.96)	8.68E-03	-0.50	1.95	0.99 (0.96,1.03)	0.7967
cg06070625	chr3:69812798	MITF	MITF	-10.54	2.32	0.90 (0.86,0.94)	5.36E-06	0.0079	0.91 (0.84,0.99)	$3.24 \mathrm{E}-02$	-0.15	1.74	1.00 (0.97,1.03)	0.9327
cg06391412	chr3:71295684	FOXP1	FOXP1	-13.39	2.26	0.87 (0.84,0.91)	3.00E-09	0.2689			1.92	1.40	1.02 (0.99,1.05)	0.1697
cg20263733	chr3:130616293	ATP2C1	ATP2C1	-14.20	2.81	0.87 (0.82,0.92)	$4.26 \mathrm{E}-07$	0.1056			-2.60	2.57	0.97 (0.93,1.02)	0.3123
cg09423651	chr3:136618442	NCK1	NCK1	-12.74	2.88	0.88 (0.83,0.93)	9.72E-06	0.8604			-5.22	1.88	0.95 (0.91,0.98)	0.0056
cg08698681	chr3:171091657	TNIK	TNIK	-12.14	2.67	0.89 (0.84,0.93)	5.52E-06	0.1997			-1.74	1.67	0.98 (0.95,1.02)	0.2978
cg25636075	chr3:185217761	TMEM41A	TMEM41A	-14.50	3.19	0.87 (0.81,0.92)	5.59E-06	0.4020			-0.69	1.46	0.99 (0.97,1.02)	0.6350
cg02803925	chr3:195974300	PCYT1A	PCYT1A	-14.57	2.97	0.86 (0.82,0.92)	9.27E-07	0.5322			-5.06	3.23	0.95 (0.89,1.01)	0.1179
cg04077085	chr4:9937674	SLC2A9	SLC2A9	-14.84	2.96	0.86 (0.81,0.91)	5.34E-07	0.4046			4.07	1.74	1.04 (1.01,1.08)	0.0198
cg18912470	chr4:57848125	POLR2B	POLR2B	-9.85	2.03	0.91 (0.87,0.94)	1.23E-06	0.3294			0.27	1.51	1.00 (0.97,1.03)	0.8575
cg26396815	chr4:102878132	BANK1	BANK1	-11.95	2.74	0.89 (0.84,0.94)	$1.24 \mathrm{E}-05$	0.3019			0.73	1.85	1.01 (0.97,1.04)	0.6918
cg20866785	chr4:148733880	ARHGAP10	Metazoa_SRP	-9.27	2.16	0.91 (0.87,0.95)	1.70E-05	0.1982			0.36	1.65	1.00 (0.97,1.04)	0.8267
cg16362140	chr5:10708717	DAP	DAP	-10.14	2.09	0.90 (0.87,0.94)	1.17E-06	0.0078	0.91 (0.85,0.98)	$1.57 \mathrm{E}-02$	-2.27	1.33	0.98 (0.95,1.00)	0.0877
cg22588983	chr5:38783142		AK126213	-15.64	3.60	0.86 (0.80,0.92)	$1.35 \mathrm{E}-05$	0.7202			1.60	2.44	1.02 (0.97,1.07)	0.5120
cg00944309	chr5:60142446		ELOVL7	-10.74	2.12	0.90 (0.86,0.94)	4.03E-07	0.0674			1.67	1.63	1.02 (0.98,1.05)	0.3032
cg14978242	chr5:79501131	SERINC5	SERINC5	-7.74	1.80	0.93 (0.89,0.96)	$1.74 \mathrm{E}-05$	0.3326			2.48	1.19	1.03 (1.00,1.05)	0.0374
cg09565310	chr5:112541553	MCC	MCC	-11.68	2.50	0.89 (0.85,0.93)	3.10E-06	0.0920			-2.16	1.55	0.98 (0.95,1.01)	0.1640
cg08969102	chr5:133563532		PPP2CA	-8.91	2.06	0.91 (0.88,0.95)	1.54E-05	0.1870			-0.89	1.20	0.99 (0.97,1.01)	0.4559
cg21627181	chr6:25754190	SLC17A4	SLC17A4	-10.14	2.37	0.90 (0.86,0.95)	1.90E-05	0.0424	0.90 (0.84,0.97)	$4.22 \mathrm{E}-03$	-0.38	1.80	1.00 (0.96,1.03)	0.8313
cg09597192	chr6:32141591	AGPAT1	PPT2	-12.53	2.73	0.88 (0.84,0.93)	4.29E-06	0.0134	0.88 (0.80,0.96)	$6.09 \mathrm{E}-03$	0.12	1.48	1.00 (0.97,1.03)	0.9355
cg06426027	chr6:33232644	VPS52	VPS52	-18.72	3.96	0.83 (0.77,0.90)	2.32E-06	0.6621			-1.25	1.99	0.99 (0.95,1.03)	0.5316
cg18460809	chr6:57048049	BAG2	BAG2	-11.60	2.32	0.89 (0.85,0.93)	6.05E-07	0.0535			-2.84	1.53	0.97 (0.94,1.00)	0.0631
cg15961693	chr6:139689053		CITED2	-11.72	2.68	0.89 (0.84,0.94)	1.22E-05	0.1694			-1.77	1.79	0.98 (0.95,1.02)	0.3237
cg26774971	chr6:158994407	TMEM181	TMEM181	-10.23	2.39	0.90 (0.86,0.95)	1.88E-05	0.0615			0.46	1.83	1.00 (0.97,1.04)	0.8032
cg05477517	chr6:164531576		AK093114	-13.14	2.62	0.88 (0.83,0.92)	5.42E-07	0.0055	0.87 (0.79,0.96)	$5.86 \mathrm{E}-03$	-2.04	1.51	0.98 (0.95,1.01)	0.1771
cg15304012	chr6:166876490	RPS6KA2	RPS6KA2	8.11	1.89	1.08 (1.04,1.13)	1.86E-05	0.1151			-0.23	1.05	1.00 (0.98,1.02)	0.8266
cg19851574	chr6:167178233	RPS6KA2	RPS6KA2	-4.71	1.01	0.95 (0.94,0.97)	3.42E-06	0.2116			-0.82	0.64	0.99 (0.98,1.00)	0.1955
cg03329755	chr6:167189272	RPS6KA2	RPS6KA2	-8.91	1.97	0.91 (0.88,0.95)	6.14E-06	0.2372			-1.50	1.82	0.99 (0.95,1.02)	0.4102
cg25270424	chr7:24965657	OSBPL3	OSBPL3	-14.53	2.88	0.86 (0.82,0.92)	$4.75 \mathrm{E}-07$	0.3966			-0.63	2.02	0.99 (0.96,1.03)	0.7538
cg04321303	chr7:44107504		PGAM2	-9.36	2.00	0.91 (0.88,0.95)	2.72E-06	0.0422	0.91 (0.85,0.96)	$1.84 \mathrm{E}-03$	-0.16	1.25	1.00 (0.97,1.02)	0.8994
cg02435538	chr7:75507337	RHBDD2	RHBDD2	-10.68	2.16	0.90 (0.86,0.94)	7.37E-07	0.1305			-0.70	1.05	0.99 (0.97,1.01)	0.5045
cg13007207	chr7:105279391	ATXN7L1	ATXN7L1	22.95	5.36	1.26 (1.13,1.40)	1.87E-05	0.1715			-5.33	2.80	0.95 (0.80,1.00)	0.0566
cg17947765	chr7:117857964		ANKRD7	-14.71	3.36	0.86 (0.81,0.92)	1.17E-05	0.1488			-2.04	2.73	0.98 (0.93,1.03)	0.4551
cg14678084	chr7:127627251	SND1	SND1-IT1	-17.96	3.69	0.84 (0.78,0.90)	1.17E-06	0.0463	0.82 (0.73,0.92)	7.30E-04	-1.00	2.06	0.99 (0.95,1.03)	0.6291

cg05184016	chr7:149543136	ZNF862	BC045757
cg07970948	chr7:149543165	ZNF862	BC045757
cg06558622	chr7:149543177	ZNF862	BC045757
cg24576940	chr7:150648283	KCNH2	KCNH2
cg23147443	chr7:150649655	KCNH2	KCNH2
cg18666454	chr7:150651937	KCNH2	KCNH2
cg02596233	chr7:150970209	SMARCD3	SMARCD3
cg23706836	chr8:6407997	ANGPT2;MCPH1	ANGPT2
cg21919729	chr8:11719367	CTSB	CTSB
cg03437605	chr8:22847209	RHOBTB2	RHOBTB2
cg22816343	chr8:26243601	BNIP3L	BNIP3L
cg23205629	chr8:33421410	RNF122	RNF122
cg10815420	chr8:105599835	LRP12	LRP12
cg02133716	chr8:128981622	PVT1	MIR1205
cg00736681	chr8:134546052	ST3GAL1	ST3GAL1
cg09377531	chr8:141046469	TRAPPC9	AX748239
cg14025883	chr9:5436224	C9orf46	C9orf46
cg01499988	chr9:35755346	MSMP	MSMP
cg13482814	chr9:82183332		TLE4
cg13576859	chr9:97403129	FBP1	FBP1
cg20503329	chr9:101705792	COL15A1	COL15A1
cg00045753	chr9:123630545	PHF19	PHF19
cg13458609	chr9:130608923	ENG	ENG
cg13835688	chr9:130859454	SLC25A25	SLC25A25
cg13628444	chr9:134883788	MED27	MED27
cg13850063	chr9:138362321		AK096249
cg14011077	chr9:138362327		AK096249
cg06958964	chr10:45494806	C10orf25;ZNF22	ZNF22
cg25854298	chr10:73936754	ASCC1	ASCC1
cg04973995	chr10:74057977		DDIT4
cg00366037	chr10:76781121	MYST4	KAT6B
cg22235258	chr11:34675402	EHF	EHF
cg24459209	chr11:57148215	PRG3	PRG3
cg15700636	chr11:57156050	PRG2	PRG2
cg08773180	chr11:57157607	PRG2	PRG2
cg12819873	chr11:57157632	PRG2	PRG2
cg27533472	chr11:59856225	MS4A2	MS4A2

-16.07	2.89	0.85 (0.80,0.90)	2.74E-08	0.0470	0.85 (0.78,0.93)	$2.28 \mathrm{E}-04$	-1.86	2.10	0.98 (0.94,1.02)	0.3759
-9.41	1.74	0.91 (0.88,0.94)	6.39E-08	0.0567			-0.74	1.23	0.99 (0.97,1.02)	0.5436
-12.58	2.13	0.88 (0.85,0.92)	3.39E-09	0.6337			-1.04	1.36	0.99 (0.96,1.02)	0.4429
-14.05	3.28	0.87 (0.81,0.93)	1.83E-05	0.3610			-0.30	1.26	1.00 (0.97,1.02)	0.8088
-11.54	2.42	0.89 (0.85,0.93)	1.83E-06	0.6492			-0.59	0.65	0.99 (0.98,1.01)	0.3585
-11.32	2.15	0.89 (0.86,0.93)	$1.46 \mathrm{E}-07$	0.5027			-0.93	0.87	0.99 (0.97,1.01)	0.2858
-14.99	2.89	0.86 (0.81,0.91)	2.11E-07	0.0041	0.89 (0.79,0.99)	$3.75 \mathrm{E}-02$	0.72	2.35	1.01 (0.96,1.05)	0.7604
-8.80	1.76	0.92 (0.88,0.95)	5.63E-07	0.0080	0.92 (0.86,0.98)	$6.91 \mathrm{E}-03$	-1.69	1.26	0.98 (0.96,1.01)	0.1795
-8.01	1.71	0.92 (0.89,0.95)	3.03E-06	0.1753			-0.26	1.32	1.00 (0.97,1.02)	0.8422
-13.92	2.62	0.87 (0.83,0.92)	1.05E-07	0.3078			1.54	1.83	1.02 (0.98,1.05)	0.4002
-11.80	2.49	0.89 (0.85,0.93)	2.12E-06	0.0804			0.13	1.57	1.00 (0.97,1.03)	0.9339
-9.10	2.05	0.91 (0.88,0.95)	9.28E-06	0.1432			1.40	1.31	1.01 (0.99,1.04)	0.2863
-15.10	2.93	0.86 (0.81,0.91)	2.66E-07	0.9000			0.33	2.03	1.00 (0.96,1.04)	0.8719
-16.57	3.37	0.85 (0.79,0.91)	8.64E-07	0.3547			0.91	1.72	1.01 (0.98,1.04)	0.5991
-10.18	2.14	0.90 (0.87,0.94)	1.93E-06	0.1431			0.29	1.87	1.00 (0.97,1.04)	0.8753
-10.41	1.83	0.90 (0.87,0.93)	$1.23 \mathrm{E}-08$	0.0578			1.38	1.25	1.01 (0.99,1.04)	0.2705
-11.76	2.39	0.89 (0.85,0.93)	8.42E-07	0.1487			0.88	1.28	1.01 (0.98,1.03)	0.4934
-12.47	2.62	0.88 (0.84,0.93)	2.01E-06	0.5397			0.04	1.50	1.00 (0.97,1.03)	0.9794
-12.32	2.69	0.88 (0.84,0.93)	4.74E-06	0.0662			-1.36	2.02	0.99 (0.95,1.03)	0.5015
-8.69	2.00	0.92 (0.88,0.95)	1.37E-05	0.0438	0.91 (0.86,0.97)	3.67E-03	-0.82	1.20	0.99 (0.97,1.02)	0.4951
-19.24	4.13	0.82 (0.76,0.89)	3.10E-06	0.0285	0.83 (0.73,0.96)	8.80E-03	-4.73	2.76	0.95 (0.80,1.01)	0.0861
-12.84	2.95	0.88 (0.83,0.93)	1.32E-05	0.0388	0.88 (0.80,0.97)	$7.24 \mathrm{E}-03$	-2.38	1.24	0.98 (0.95,1.00)	0.0548
-12.05	2.22	0.89 (0.85,0.93)	5.74E-08	0.2476			0.37	1.41	1.00 (0.98,1.03)	0.7930
-11.63	1.97	0.89 (0.86,0.93)	3.33E-09	0.0364	0.89 (0.83,0.95)	$2.62 \mathrm{E}-04$	0.05	1.29	1.00 (0.98,1.03)	0.9718
-12.04	2.44	0.89 (0.85,0.93)	7.76E-07	0.2127			-1.51	1.69	0.98 (0.95,1.02)	0.3701
-24.77	4.56	0.78 (0.71,0.85)	5.49E-08	0.0736			-1.65	2.28	0.98 (0.94,1.03)	0.4696
-15.12	2.61	0.86 (0.82,0.90)	7.02E-09	0.6429			-0.53	2.10	0.99 (0.95,1.04)	0.7997
-15.96	3.42	0.85 (0.80,0.91)	2.97E-06	0.7645			1.25	2.68	1.01 (0.96,1.07)	0.6400
-11.91	2.68	0.89 (0.84,0.94)	8.74E-06	0.2139			-0.89	1.29	0.99 (0.97,1.02)	0.4901
-7.83	1.78	0.92 (0.89,0.96)	1.10E-05	0.3720			0.10	2.08	1.00 (0.96,1.04)	0.9632
-12.66	2.92	0.88 (0.83,0.93)	$1.45 \mathrm{E}-05$	0.9001			0.14	2.10	1.00 (0.96,1.04)	0.9473
-13.03	3.02	0.88 (0.83,0.93)	1.61E-05	0.1041			-1.23	2.47	0.99 (0.94,1.04)	0.6194
-15.30	2.86	0.86 (0.81,0.91)	8.52E-08	0.8292			0.70	1.75	1.01 (0.97,1.04)	0.6907
-11.65	2.25	0.89 (0.85,0.93)	2.35E-07	0.0146	0.89 (0.83,0.96)	$2.61 \mathrm{E}-03$	0.28	1.51	1.00 (0.97,1.03)	0.8533
-11.66	2.23	0.89 (0.85,0.93)	$1.77 \mathrm{E}-07$	0.0409	0.88 (0.83,0.95)	5.02E-04	-1.98	1.66	0.98 (0.95,1.01)	0.2336
-10.83	2.45	0.90 (0.86,0.94)	9.55E-06	0.2663			-0.42	1.88	1.00 (0.96,1.03)	0.8246
-19.27	4.18	0.82 (0.76,0.90)	4.09E-06	0.3282			-3.27	3.38	0.97 (0.91,1.03)	0.3334

cg25087851	chr11:60623918	GPR44	PTGDR2	-11.86	2.10	0.89 (0.85,0.93)	$1.69 \mathrm{E}-08$	0.2450			-0.76	1.43	0.99 (0.97,1.02)	0.5940
cg13233042	chr11:63432489	ATL3	ATL3	-13.01	2.81	0.88 (0.83,0.93)	3.59E-06	0.1843			1.36	1.76	1.01 (0.98,1.05)	0.4387
cg05300717	chr11:65546210	DKFZp761E198	DKFZp761E198	-15.35	2.48	0.86 (0.82,0.90)	6.51E-10	0.1399			-0.94	2.38	0.99 (0.95,1.04)	0.6930
cg15219163	chr11:70842128	SHANK2	SHANK2	15.93	3.71	1.17 (1.09,1.26)	$1.80 \mathrm{E}-05$	0.4823			1.13	1.53	1.01 (0.98,1.04)	0.4600
cg24368962	chr11:111570978	SIK2	DQ599327	-15.79	3.26	0.85 (0.80,0.91)	$1.28 \mathrm{E}-06$	0.0010	0.86 (0.75,0.99)	$3.43 \mathrm{E}-02$	-0.90	4.14	0.99 (0.91,1.07)	0.8277
cg19434937	chr12:7104184	LPCAT3	EMG1	-8.95	1.86	0.91 (0.88,0.95)	1.55E-06	0.0382	0.92 (0.86,0.97)	$3.25 \mathrm{E}-03$	-1.33	1.28	0.99 (0.96,1.01)	0.2976
cg03014680	chr12:10122522	CLEC12A	CLEC12A	-8.84	1.86	0.92 (0.88,0.95)	2.14E-06	0.2674			-1.85	1.28	0.98 (0.96,1.01)	0.1477
cg09447105	chr12:15126020	PDE6H	PDE6H	-13.27	2.68	0.88 (0.83,0.92)	7.60E-07	0.0074	0.89 (0.81,0.97)	$1.22 \mathrm{E}-02$	0.89	1.51	1.01 (0.98,1.04)	0.5557
cg24028828	chr12:56694932	CS	CS	-13.71	2.88	0.87 (0.82,0.92)	$1.99 \mathrm{E}-06$	0.5495			1.11	1.44	1.01 (0.98,1.04)	0.4374
cg21498475	chr12:113737469	SLC24A6	SLC24A6	-10.40	2.29	0.90 (0.86,0.94)	5.44E-06	0.0297	0.90 (0.84,0.97)	$6.21 \mathrm{E}-03$	-0.75	1.52	0.99 (0.96,1.02)	0.6193
cg10065736	chr12:117440120	FBXW8	AK055849	-10.22	1.94	0.90 (0.87,0.94)	$1.41 \mathrm{E}-07$	0.1856			-1.02	1.16	0.99 (0.97,1.01)	0.3790
cg03131767	chr12:123446272	ABCB9	ABCB9	-11.72	2.36	0.89 (0.85,0.93)	7.21E-07	0.1245			0.15	1.41	1.00 (0.97,1.03)	0.9145
cg19928703	chr13:30143971	SLC7A1	SLC7A1	-11.71	2.68	0.89 (0.84,0.94)	$1.21 \mathrm{E}-05$	0.4460			1.26	1.97	1.01 (0.97,1.05)	0.5223
cg07908654	chr13:41631052		TRNA_Glu	-11.47	2.23	0.89 (0.85,0.93)	2.60E-07	0.1662			-0.55	1.50	0.99 (0.97,1.02)	0.7142
cg24818699	chr13:43355514	C13orf30	C13orf30	-13.92	3.13	0.87 (0.82,0.93)	8.53E-06	0.2994			2.02	2.31	1.02 (0.98,1.07)	0.3828
cg08770358	chr13:48876684	RB1	BC039553	-16.86	3.88	0.84 (0.78,0.91)	$1.42 \mathrm{E}-05$	0.9019			1.35	2.03	1.01 (0.97,1.05)	0.5072
cg00222125	chr13:53226144	SUGT1	SUGT1	-10.12	2.33	0.90 (0.86,0.95)	$1.43 \mathrm{E}-05$	0.8730			2.93	1.19	1.03 (1.01,1.05)	0.0138
cg11770323	chr13:80066032	NDFIP2	NDFIP2	-9.41	2.08	0.91 (0.87,0.95)	5.86E-06	0.0916			-0.23	1.35	1.00 (0.97,1.02)	0.8630
cg25479097	chr13:113305704	C13orf35	C13orf35	-12.19	2.48	0.89 (0.84,0.93)	9.11E-07	0.1731			1.36	1.57	1.01 (0.98,1.05)	0.3861
cg18368116	chr14:21436271		RNASE2	-11.80	2.58	0.89 (0.84,0.93)	4.93E-06	0.2402			0.58	2.10	1.01 (0.97,1.05)	0.7820
cg08077807	chr14:62001072	PRKCH	PRKCH	-16.27	3.08	0.85 (0.80,0.90)	$1.29 \mathrm{E}-07$	0.6743			-2.93	2.14	0.97 (0.93,1.01)	0.1708
cg04933530	chr14:77419754		IRF2BPL	-11.70	2.20	0.89 (0.85,0.93)	$1.02 \mathrm{E}-07$	0.4659			-0.12	1.47	1.00 (0.97,1.03)	0.9368
cg01901579	chr14:95615731	DICER1	DICER1	-9.29	2.05	0.91 (0.88,0.95)	5.86E-06	0.0257	0.91 (0.85,0.97)	5.84E-03	0.10	1.44	1.00 (0.97,1.03)	0.9473
cg16409452	chr14:100610186	EVL	AX747103	-9.84	1.96	0.91 (0.87,0.94)	4.89E-07	0.2881			-2.62	0.75	0.97 (0.96,0.99)	0.0005
cg14084609	chr14:100610407	EVL	AX747103	-12.03	2.03	0.89 (0.85,0.92)	2.96E-09	0.3931			-0.68	0.93	0.99 (0.98,1.01)	0.4653
cg18550847	chr14:100610570	EVL	AX747103	-9.38	1.89	0.91 (0.88,0.94)	7.10E-07	0.1220			-0.07	0.55	1.00 (0.99,1.01)	0.8948
cg01000631	chr14:100610667		EVL	-9.86	1.81	0.91 (0.87,0.94)	$4.88 \mathrm{E}-08$	0.0153	0.90 (0.84,0.96)	8.40E-04	0.38	0.49	1.00 (0.99,1.01)	0.4364
cg05875066	chr14:104625249	KIF26A	KIF26A	-13.75	2.63	0.87 (0.83,0.92)	1.77E-07	0.1313			-0.23	0.58	1.00 (0.99,1.01)	0.6869
cg18817654	chr15:39485138		C15orf54	-14.23	3.06	0.87 (0.82,0.92)	3.41E-06	0.1330			2.59	3.18	1.03 (0.96,1.09)	0.4151
cg25939647	chr15:40173065	GPR176	GPR176	-9.35	1.96	0.91 (0.88,0.95)	$1.91 \mathrm{E}-06$	0.0607			2.37	1.67	1.02 (0.99,1.06)	0.1553
cg07177867	chr15:52030746	LYSMD2	LYSMD2	-10.62	2.44	0.90 (0.86,0.94)	$1.29 \mathrm{E}-05$	0.2360			0.44	1.14	1.00 (0.98,1.03)	0.7032
cg11266582	chr15:64275853	DAPK2	DAPK2	-11.58	2.68	0.89 (0.85,0.94)	$1.52 \mathrm{E}-05$	0.0761			-3.00	2.29	0.97 (0.93,1.02)	0.1904
cg10387956	chr15:72646210	HEXA	BC034424	-9.63	2.05	0.91 (0.87,0.95)	$2.72 \mathrm{E}-06$	0.0368	0.90 (0.85,0.96)	$2.27 \mathrm{E}-03$	-0.44	1.33	1.00 (0.97,1.02)	0.7430
cg23387863	chr15:77472416	SGK269	AX747193	-9.78	2.03	0.91 (0.87,0.94)	$1.51 \mathrm{E}-06$	0.0407	0.92 (0.86,0.97)	5.65E-03	1.28	1.53	1.01 (0.98,1.04)	0.4017
cg04497992	chr16:616212	NHLRC4	C16orf11	-10.13	2.13	0.90 (0.87,0.94)	1.92E-06	0.1859			-1.08	1.82	0.99 (0.95,1.03)	0.5532
cg08067346	chr16:25011481	ARHGAP17	DQ583809	-10.13	2.35	0.90 (0.86,0.95)	$1.60 \mathrm{E}-05$	0.0093	0.92 (0.85,1.00)	4.91E-02	0.66	1.44	1.01 (0.98,1.04)	0.6467
cg26134665	chr16:31021544	STX1B	STX1B	-8.66	1.96	0.92 (0.88,0.95)	9.50E-06	0.3601			-0.73	1.43	0.99 (0.97,1.02)	0.6118

cg09147843	chr16:53467612	RBL2	RBL2	-11.57	2.60	0.89 (0.85,0.94)	8.89E-06	0.0427	0.91 (0.84,0.99)	$3.27 \mathrm{E}-02$	1.67	1.61	1.02 (0.99,1.05)	0.2982
cg01998785	chr16:55542709	LPCAT2	LPCAT2	-9.91	1.99	0.91 (0.87,0.94)	6.17E-07	0.0594			-0.74	0.94	0.99 (0.97,1.01)	0.4310
cg27383865	chr16:84075870	SLC38A8	SLC38A8	10.35	2.41	1.11 (1.06,1.16)	$1.73 \mathrm{E}-05$	0.0300	1.12 (1.04,1.21)	$4.24 \mathrm{E}-03$	-1.72	1.71	0.98 (0.95,1.02)	0.3171
cg08640475	chr16:85551478		KIAA0182	-7.97	1.69	0.92 (0.89,0.95)	2.36E-06	0.0577			-0.63	1.01	0.99 (0.97,1.01)	0.5372
cg10099827	chr16:85551514		KIAA0182	-8.05	1.66	0.92 (0.89,0.95)	1.32E-06	0.2595			-0.35	1.10	1.00 (0.98,1.02)	0.7509
cg08940169	chr16:88540241	ZFPM1	ZFPM1	-9.73	1.90	0.91 (0.87,0.94)	2.93E-07	0.1990			-1.50	1.56	0.99 (0.96,1.02)	0.3346
cg04983687	chr16:88558223	ZFPM1	ZFPM1	-7.76	1.21	0.93 (0.80,0.95)	1.33E-10	0.1560			-0.54	1.10	0.99 (0.97,1.02)	0.6259
cg20315954	chr17:15137304	PMP22	PMP22	-12.65	2.73	0.88 (0.84,0.93)	3.58E-06	0.1377			-0.55	1.68	0.99 (0.96,1.03)	0.7436
cg20885063	chr17:17939419	ATPAF2	ATPAF2	-10.94	2.24	0.90 (0.86,0.94)	1.06E-06	0.1305			-0.30	1.34	1.00 (0.97,1.02)	0.8197
cg14611258	chr17:17946468	C17orf39	C17orf39	-11.70	2.59	0.89 (0.85,0.94)	6.41E-06	0.0120	0.89 (0.82,0.97)	$1.06 \mathrm{E}-02$	2.35	1.53	1.02 (0.99,1.05)	0.1254
cg19468946	chr17:37922297	IKZF3	IKZF3	8.35	1.93	1.09 (1.05,1.13)	1.50E-05	0.9004			-0.34	0.96	1.00 (0.98,1.02)	0.7268
cg21723861	chr17:39686628		KRT19	-14.05	2.68	0.87 (0.82,0.92)	$1.59 \mathrm{E}-07$	0.4059			-0.59	1.59	0.99 (0.96,1.03)	0.7077
cg00170714	chr17:40724562	MLX;PSMC3IP	PSMC3IP	-12.13	2.24	0.89 (0.85,0.93)	6.15E-08	0.1413			0.58	1.50	1.01 (0.98,1.04)	0.6985
cg25173129	chr17:56269410	EPX	EPX	-12.40	2.51	0.88 (0.84,0.93)	8.09E-07	0.0960			1.23	1.76	1.01 (0.98,1.05)	0.4845
cg02970679	chr17:56269818	$E P X$	$E P X$	-13.35	2.73	0.88 (0.83,0.92)	9.99E-07	0.1576			-3.60	1.90	0.96 (0.93,1.00)	0.0584
cg17374802	chr17:56270828	$E P X$	EPX	-10.55	2.22	0.90 (0.86,0.94)	2.06E-06	0.0543			-1.40	1.25	0.99 (0.96,1.01)	0.2630
cg17041511	chr17:61509620		CYB561	-9.62	2.19	0.91 (0.87,0.95)	$1.15 \mathrm{E}-05$	0.4396			-0.74	1.38	0.99 (0.97,1.02)	0.5905
cg22312249	chr17:72779428	TMEM104	TMEM104	-9.31	2.09	0.91 (0.87,0.95)	8.73E-06	0.1446			-0.66	1.16	0.99 (0.97,1.02)	0.5724
cg09705784	chr17:76565232	DNAH17	DNAH17	-9.15	1.74	0.91 (0.88,0.94)	1.50E-07	0.0185	0.87 (0.82,0.93)	$3.95 \mathrm{E}-05$	0.94	1.31	1.01 (0.98,1.04)	0.4743
cg06725287	chr17:80533762	FOXK2	FOXK2	-13.56	2.54	0.87 (0.83,0.92)	9.07E-08	0.3875			-0.26	0.81	1.00 (0.98,1.01)	0.7504
cg13054523	chr17:81055722		METRNL	-13.94	2.45	0.87 (0.83,0.91)	1.20E-08	0.1336			-0.60	1.81	0.99 (0.96,1.03)	0.7400
cg18337287	chr19:930871	ARID3A	ARID3A	-15.13	2.81	0.86 (0.81,0.91)	7.21E-08	0.2100			-0.07	1.36	1.00 (0.97,1.03)	0.9583
cg12104982	chr19:5592815	SAFB2	SAFB2	-15.43	2.91	0.86 (0.81,0.91)	1.13E-07	0.2578			2.89	3.25	1.03 (0.97,1.10)	0.3750
cg10644885	chr19:11687621	ACP5	ACP5	-15.00	2.29	0.86 (0.82,0.90)	5.77E-11	0.2290			-0.84	1.17	0.99 (0.97,1.01)	0.4712
cg02359181	chr19:34860339	GPI	GPI	-12.75	2.72	0.88 (0.83,0.93)	$2.68 \mathrm{E}-06$	0.0204	0.89 (0.82,0.97)	$1.15 \mathrm{E}-02$	-0.80	1.51	0.99 (0.96,1.02)	0.5938
cg20673965	chr19:44220148	IRGC	IRGC	-11.06	2.43	0.90 (0.85,0.94)	5.54E-06	0.2895			-0.61	1.57	0.99 (0.96,1.02)	0.6983
cg26979537	chr19:48016860	NAPA	NAPA	-18.55	3.83	0.83 (0.77,0.90)	1.31E-06	0.5977			1.53	3.53	1.02 (0.95,1.09)	0.6642
cg21073212	chr20:30866501	KIF3B	KIF3B	-7.94	1.85	0.92 (0.89,0.96)	$1.79 \mathrm{E}-05$	0.3531			-0.41	1.15	1.00 (0.97,1.02)	0.7204
cg20226253	chr20:34022914	GDF5	GDF50S	-14.37	3.28	0.87 (0.81,0.92)	$1.15 \mathrm{E}-05$	0.0008	0.87 (0.77,0.99)	$3.62 \mathrm{E}-02$	2.61	1.54	1.03 (1.00,1.06)	0.0901
cg21045547	chr20:35422703	C20orf117	KIAA0889	-11.71	2.57	0.89 (0.85,0.94)	5.32E-06	0.2887			-0.37	0.62	1.00 (0.98,1.01)	0.5521
cg13792581	chr20:43590115	TOMM34	TOMM34	-13.71	3.15	0.87 (0.82,0.93)	$1.34 \mathrm{E}-05$	0.2441			0.40	1.69	1.00 (0.97,1.04)	0.8132
cg13197551	chr20:60709957	LSM14B	LSM14B	-15.40	3.14	0.86 (0.81,0.91)	9.23E-07	0.7768			-1.03	2.73	0.99 (0.94,1.04)	0.7063
cg18042632	chr21:42520902	C21orf130	LINC00323	-8.87	1.86	0.92 (0.88,0.95)	1.87E-06	0.6020			1.36	1.38	1.01 (0.99,1.04)	0.3245
cg18879389	chr21:43771120	TFF2	TFF2	-13.79	2.84	0.87 (0.82,0.92)	$1.21 \mathrm{E}-06$	0.5763			-1.17	1.31	0.99 (0.96,1.01)	0.3730

[^3]*** Significant nominal (<0.05) p-value

CpG	chr:position	UCSC RefGene Name	UCSC Known Gene*	PACE Discovery ($\mathrm{N}=647$ cases)		PIAMA Look-Up in Nasal$\text { (} \mathrm{N}=37 \text { cases) }$		ICAC Look-Up in Nasal ($\mathrm{N}=36$ cases)	
				OR (CI)	P -value	Direction of Effect Concordant with PACE	P -value	Direction of Effect Concordant with PACE	P -value
cg06315149	chr1:2036398	PRKCZ	PRKCZ	0.89 (0.84,0.93)	6.08E-06	yes	5.66E-01	yes	3.40E-01
cg13066938	chr1:6341140	ACOT7	ACOT7	0.91 (0.88,0.95)	1.67E-05	yes	$1.88 \mathrm{E}-01$	yes	$2.39 \mathrm{E}-01$
cg21220721	chr1:6341230	ACOT7	ACOT7	0.94 (0.92,0.96)	1.02E-08	yes	$1.09 \mathrm{E}-01$	yes	$1.14 \mathrm{E}-05$
cg09249800	chr1:6341287	ACOT7	ACOT7	0.88 (0.84,0.92)	$1.19 \mathrm{E}-08$	NA	NA	yes	1.40E-06
cg11699125	chr1:6341327	ACOT7	ACOT7	0.90 (0.87,0.93)	7.54E-10	yes	5.80E-03	yes	$1.19 \mathrm{E}-04$
cg18783781	chr1:9599067	SLC25A33	SLC25A33	0.90 (0.86,0.94)	7.45E-06	no	$3.71 \mathrm{E}-01$	yes	3.33E-02
cg02171825	chr1:26517586	CATSPER4	CATSPER4	0.88 (0.83,0.93)	9.01E-06	no	9.17E-01	yes	$1.82 \mathrm{E}-03$
cg01942646	chr1:27240694	NROB2	NROB2	0.88 (0.83,0.93)	$1.45 \mathrm{E}-06$	yes	7.50E-01	yes	6.98E-02
cg16263722	chr1:29523841	MECR	MECR	0.89 (0.86,0.93)	$2.14 \mathrm{E}-07$	yes	$4.54 \mathrm{E}-02$	yes	2.92E-03
cg11987455	chr1:43290834	ERMAP	ERMAP	0.89 (0.85,0.93)	7.55E-07	no	8.81E-01	yes	9.29E-04
cg11683482	chr1:44678623	DMAP1	DMAP1	0.90 (0.86,0.93)	5.39E-08	yes	$4.67 \mathrm{E}-01$	yes	$1.39 \mathrm{E}-01$
cg12643917	chr1:44715958	ERI3	ERI3	0.89 (0.85,0.94)	8.98E-06	yes	$1.96 \mathrm{E}-01$	yes	4.28E-04
cg26252077	chr1:61607055	NFIA	NFIA	0.88 (0.84,0.92)	2.18E-08	yes	$2.24 \mathrm{E}-01$	yes	2.89E-02
cg10704177	chr1:62209607	INADL	INADL	0.90 (0.87,0.94)	$2.25 \mathrm{E}-07$	yes	3.16E-01	yes	$1.77 \mathrm{E}-02$
cg01445399	chr1:87596934	LOC339524	LOC339524	0.91 (0.87,0.95)	$1.72 \mathrm{E}-05$	yes	$1.48 \mathrm{E}-02$	yes	$2.15 \mathrm{E}-03$
cg19805160	chr1:159870731	CCDC19	CCDC19	0.89 (0.85,0.94)	2.85E-06	yes	$1.69 \mathrm{E}-01$	yes	$1.55 \mathrm{E}-02$
cg09332506	chr1:160309220	COPA	NCSTN	0.86 (0.81,0.91)	1.00E-06	yes	$1.34 \mathrm{E}-01$	yes	$2.64 \mathrm{E}-03$
cg17971251	chr1:177907297	SEC16B	SEC16B	0.86 (0.82,0.91)	9.52E-09	yes	$1.33 \mathrm{E}-01$	yes	5.66E-03
cg26033504	chr1:201458737	CSRP1	CSRP1	0.91 (0.87,0.95)	6.35E-06	no	5.99E-01	yes	3.52E-02
cg04895895	chr1:231005895	C1orf198	C1orf198	0.89 (0.84,0.93)	5.26E-06	yes	$9.29 \mathrm{E}-01$	yes	8.06E-02
cg02473287	chr2:9752386	YWHAQ	YWHAQ	0.90 (0.85,0.94)	8.00E-06	no	$7.98 \mathrm{E}-01$	yes	$1.39 \mathrm{E}-02$
cg10142874	chr2:11917623	LPIN1	LPIN1	0.89 (0.85,0.93)	$1.04 \mathrm{E}-06$	yes	$6.74 \mathrm{E}-01$	yes	5.26E-04
cg26752663	chr2:25142016	ADCY3	ADCY3	1.12 (1.07,1.17)	$1.79 \mathrm{E}-06$	no	$1.51 \mathrm{E}-01$	yes	3.88E-03
cg00043800	chr2:74612144	LOC100189589	LOC100189589	0.91 (0.87,0.95)	1.32E-05	no	$4.21 \mathrm{E}-01$	yes	3.66E-03
cg17988187	chr2:74612222	LOC100189589	LOC100189589	0.90 (0.86,0.94)	$1.21 \mathrm{E}-06$	yes	$6.80 \mathrm{E}-01$	yes	$3.17 \mathrm{E}-03$
cg12077754	chr2:75089669	HK2	HK2	0.92 (0.89,0.96)	4.56E-06	yes	$6.02 \mathrm{E}-01$	yes	1.08E-04
cg22674082	chr2:98585733	TMEM131	TMEM131	0.89 (0.84,0.94)	$1.44 \mathrm{E}-05$	no	$2.89 \mathrm{E}-01$	yes	$2.19 \mathrm{E}-03$
cg00327263	chr2:120019111	STEAP3	STEAP3	0.90 (0.86,0.94)	8.00E-06	no	$9.08 \mathrm{E}-02$	yes	5.62E-02
cg25950520	chr2:121036760	RALB	RALB	0.85 (0.79,0.91)	$1.31 \mathrm{E}-05$	yes	$2.01 \mathrm{E}-01$	yes	$1.58 \mathrm{E}-01$
cg00213281	chr2:149639822	KIF5C;MIR1978	JA429504	0.88 (0.83,0.93)	$1.24 \mathrm{E}-06$	yes	8.98E-03	yes	$2.24 \mathrm{E}-05$
cg02494549	chr2:161798364		TANK	0.86 (0.82,0.91)	$1.56 \mathrm{E}-07$	yes	$6.51 \mathrm{E}-02$	yes	$2.56 \mathrm{E}-05$
cg01310029	chr3:3152374	IL5RA	IL5RA	0.89 (0.85,0.94)	4.18E-06	yes	$7.91 \mathrm{E}-02$	yes	6.09E-04

cg10159529 cg25224369 cg07386061 cg17890764 cg07410597 cg04217850 cg06070625 cg06391412 cg20263733 cg09423651 cg08698681 cg25636075 cg02803925 cg04077085 cg18912470 cg26396815 cg20866785 cg16362140 cg22588983 cg00944309 cg14978242 cg09565310 cg08969102 cg21627181 cg09597192 cg06426027 cg18460809 cg15961693 cg26774971 cg05477517 cg15304012 cg19851574 cg03329755 cg25270424 cg04321303 cg02435538 cg13007207 cg17947765 cg14678084 cg05184016

chr3:3152530	ILSRA	IL5RA
chr3:12918528		DQ581328
chr3:52492874	NISCH	NISCH
chr3:52864816	ITIH4	ITIH4
chr3:66404129	SLC25A26	LRIG1
chr3:66428294	SLC25A26	LRIG1
chr3:69812798	MITF	MITF
chr3:71295684	FOXP1	FOXP1
chr3:130616293	ATP2C1	ATP2C1
chr3:136618442	NCK1	NCK1
chr3:171091657	TNIK	TNIK
ch3:185217761	TMEM41A	TMEM41A
ch3:195974300	PCYT1A	PCYT1A
chr4:9937674	SLC2A9	SLC2A9
chr4:57848125	POLR2B	POLR2B
chr4:102878132	BANK1	BANK1
chr4:148733880	ARHGAP10	Metazoa_SRP
chr5:10708717	DAP	DAP
chr5:38783142		AK126213
chr5:60142446		ELOVL7
chr5:79501131	SERINC5	SERINC5
chr5:112541553	MCC	MCC
chr5:133563532		PPP2CA
chr6:25754190	SLC17A4	SLC17A4
chr6:32141591	AGPAT1	PPT2
chr6:33232644	VPS52	VPS52
chr6:57048049	BAG2	BAG2
chr6:139689053		CITED2
chr6:158994407	TMEM181	TMEM181
chr6:164531576		AKO93114
chr6:166876490	RPS6KA2	RPS6KA2
ch66:167178233	RPS6KA2	RPS6KA2
ch66:167189272	RPS6KA2	RPS6KA2
ch77:24965657	OSBPL3	OSBPL3
chr7:44107504		PGAM2
chr7:75507337	RHBDD2	RHBDD2
chr7:105279391	ATXN7L1	ATXN7L1
chr7:117857964		ANKRD7
chr7:127627251	SND1	SND1-IT1
chr7:149543136	ZNF862	BCO45757

yes	$1.69 \mathrm{E}-01$	yes	$3.77 \mathrm{E}-02$
yes	8.13E-01	yes	$3.03 \mathrm{E}-03$
yes	5.27E-01	yes	$4.22 \mathrm{E}-02$
yes	5.33E-02	yes	$1.90 \mathrm{E}-02$
yes	$2.12 \mathrm{E}-01$	yes	$8.38 \mathrm{E}-02$
no	$2.70 \mathrm{E}-01$	yes	9.42E-03
yes	$1.72 \mathrm{E}-01$	yes	$2.88 \mathrm{E}-01$
yes	$1.03 \mathrm{E}-01$	no	9.59E-01
yes	3.63E-02	yes	$3.80 \mathrm{E}-04$
yes	6.47E-02	yes	$6.71 \mathrm{E}-06$
yes	7.36E-01	yes	5.54E-03
yes	$5.90 \mathrm{E}-01$	yes	$1.15 \mathrm{E}-01$
no	5.10E-01	yes	$1.45 \mathrm{E}-03$
yes	9.54E-01	yes	$1.65 \mathrm{E}-04$
no	8.94E-01	no	6.94E-01
yes	7.85E-01	yes	6.99E-04
no	4.11E-01	yes	4.87E-03
yes	5.48E-01	yes	6.81E-04
yes	$2.06 \mathrm{E}-01$	yes	$6.09 \mathrm{E}-03$
yes	$1.25 \mathrm{E}-02$	yes	9.53E-04
no	5.80E-01	yes	2.02E-02
yes	2.27E-01	yes	$1.39 \mathrm{E}-01$
yes	$1.93 \mathrm{E}-01$	yes	$3.90 \mathrm{E}-03$
yes	$2.43 \mathrm{E}-01$	yes	$3.77 \mathrm{E}-02$
yes	$1.44 \mathrm{E}-02$	yes	$6.25 \mathrm{E}-03$
yes	4.81E-01	yes	$6.43 \mathrm{E}-02$
no	9.91E-01	yes	3.55E-03
yes	$7.14 \mathrm{E}-01$	yes	$1.71 \mathrm{E}-02$
no	8.94E-01	yes	$1.50 \mathrm{E}-03$
no	$8.79 \mathrm{E}-01$	yes	$1.28 \mathrm{E}-06$
yes	$4.78 \mathrm{E}-01$	no	5.98E-01
yes	$2.34 \mathrm{E}-01$	yes	9.92E-03
yes	$1.94 \mathrm{E}-01$	yes	2.81E-02
yes	$1.83 \mathrm{E}-01$	yes	5.42E-02
yes	$3.49 \mathrm{E}-01$	yes	2.11E-02
no	$6.48 \mathrm{E}-01$	yes	$3.60 \mathrm{E}-03$
no	$1.04 \mathrm{E}-01$	yes	$9.82 \mathrm{E}-01$
yes	4.12E-01	yes	$1.23 \mathrm{E}-01$
no	7.92E-01	yes	$1.92 \mathrm{E}-03$
yes	$1.84 \mathrm{E}-01$	yes	$1.38 \mathrm{E}-06$

cg07970948 cg06558622 cg24576940 cg23147443 cg18666454 cg02596233 cg23706836 cg21919729 cg03437605 cg22816343 cg23205629 cg10815420 cg02133716 cg00736681 cg09377531 cg14025883 cg01499988 cg13482814 cg13576859 cg20503329 cg00045753 cg13458609 cg13835688 cg13628444 cg13850063 cg14011077 cg06958964 cg25854298 cg04973995 cg00366037 cg22235258 cg24459209 cg15700636 cg08773180 cg12819873 cg27533472 cg25087851 cg13233042 cg05300717 cg15219163
chr7:149543165 chr7:149543177 chr7:150648283 chr7:150649655 chr7:150651937 chr7:150970209 chr8:6407997 chr8:11719367 chr8:22847209 chr8:26243601 chr8:33421410 chr8:105599835 chr8:128981622 chr8:134546052 chr8:141046469 chr9:5436224 chr9:35755346 chr9:82183332 chr9:97403129 chr9:101705792 chr9:123630545 chr9:130608923 chr9:130859454 chr9:134883788 chr9:138362321 chr9:138362327 chr10:45494806 chr10:73936754 chr10:74057977 chr10:76781121 chr11:34675402 chr11:57148215 chr11:57156050 chr11:57157607 chr11:57157632 chr11:59856225 chr11:60623918 chr11:63432489 chr11:65546210 chr11:70842128

ZNF862	BCO45757	$0.91(0.88,0.94)$	$6.39 \mathrm{E}-08$
ZNF862	BCO45757	$0.88(0.85,0.92)$	$3.39 \mathrm{E}-09$
KCNH2	KCNH2	$0.87(0.81,0.93)$	$1.83 \mathrm{E}-05$
KCNH2	KCNH2	$0.89(0.85,0.93)$	$1.83 \mathrm{E}-06$
KCNH2	KCNH2	$0.89(0.86,0.93)$	$1.46 \mathrm{E}-07$
SMARCD3	SMARCD3	$0.86(0.81,0.91)$	$2.11 \mathrm{E}-07$
ANGPT2;MCPH1	ANGPT2	$0.92(0.88,0.95)$	$5.63 \mathrm{E}-07$
CTSB	CTSB	$0.92(0.89,0.95)$	$3.03 \mathrm{E}-06$
RHOBTB2	RHOBTB2	$0.87(0.83,0.92)$	$1.05 \mathrm{E}-07$
BNIP3L	BNIP3L	$0.89(0.85,0.93)$	$2.12 \mathrm{E}-06$
RNF122	RNF122	$0.91(0.88,0.95)$	$9.28 \mathrm{E}-06$
LRP12	LRP12	$0.86(0.81,0.91)$	$2.66 \mathrm{E}-07$
PVT1	MIR1205	$0.85(0.79,0.91)$	$8.64 \mathrm{E}-07$
ST3GAL1	ST3GAL1	$0.90(0.87,0.94)$	$1.93 \mathrm{E}-06$
TRAPPC9	AX748239	$0.90(0.87,0.93)$	$1.23 \mathrm{E}-08$
C9orf46	C9orf46	$0.89(0.85,0.93)$	$8.42 \mathrm{E}-07$
MSMP	MSMP	$0.88(0.84,0.93)$	$2.01 \mathrm{E}-06$
	TLE4	$0.88(0.84,0.93)$	$4.74 \mathrm{E}-06$
FBP1	FBP1	$0.92(0.88,0.95)$	$1.37 \mathrm{E}-05$
COL15A1	COL15A1	$0.82(0.76,0.89)$	$3.10 \mathrm{E}-06$
PHF19	PHF19	$0.88(0.83,0.93)$	$1.32 \mathrm{E}-05$
ENG	ENG	$0.89(0.85,0.93)$	$5.74 \mathrm{E}-08$
SLC25A25	SLC25A25	$0.89(0.86,0.93)$	$3.33 \mathrm{E}-09$
MED27	MED27	$0.89(0.85,0.93)$	$7.76 \mathrm{E}-07$
	AK096249	$0.78(0.71,0.85)$	$5.49 \mathrm{E}-08$
	AKO96249	$0.86(0.82,0.90)$	$7.02 \mathrm{E}-09$
C1Oorf25;ZNF22	ZNF22	$0.85(0.80,0.91)$	$2.97 \mathrm{E}-06$
ASCC1	ASCC1	$0.89(0.84,0.94)$	$8.74 \mathrm{E}-06$
	DDIT4	$0.92(0.89,0.96)$	$1.10 \mathrm{E}-05$
MYST4	KAT6B	$0.88(0.83,0.93)$	$1.45 \mathrm{E}-05$
EHF	EHF	$0.88(0.83,0.93)$	$1.61 \mathrm{E}-05$
PRG3	PRG3	$0.86(0.81,0.91)$	$8.52 \mathrm{E}-08$
PRG2	PRG2	$0.89(0.85,0.93)$	$2.35 \mathrm{E}-07$
PRG2	PRG2	$0.89(0.85,0.93)$	$1.77 \mathrm{E}-07$
PRG2	PRG2	$0.90(0.86,0.94)$	$9.55 \mathrm{E}-06$
MS4A2	MS4A2	$0.82(0.76,0.90)$	$4.09 \mathrm{E}-06$
GPR44	PTGDR2	$0.89(0.85,0.93)$	$1.69 \mathrm{E}-08$
ATL3	ATL3	$0.88(0.83,0.93)$	$3.59 \mathrm{E}-06$
DKFZP761E198	DKFZp761E198	$0.86(0.82,0.90)$	$6.51 \mathrm{E}-10$
SHANK2	SHANK2	$1.17(1.09,1.26)$	$1.80 \mathrm{E}-05$

yes	$2.04 \mathrm{E}-02$	yes	$1.51 \mathrm{E}-06$
yes	$4.12 \mathrm{E}-02$	yes	$1.01 \mathrm{E}-07$
yes	$2.26 \mathrm{E}-02$	yes	$1.91 \mathrm{E}-03$
NA	NA	yes	$1.96 \mathrm{E}-03$
yes	$4.46 \mathrm{E}-01$	yes	$5.80 \mathrm{E}-04$
no	$8.17 \mathrm{E}-01$	yes	$1.07 \mathrm{E}-01$
yes	$2.98 \mathrm{E}-02$	yes	$3.03 \mathrm{E}-02$
yes	$1.76 \mathrm{E}-01$	yes	$1.05 \mathrm{E}-01$
yes	$4.00 \mathrm{E}-01$	yes	$5.92 \mathrm{E}-02$
no	$8.60 \mathrm{E}-01$	yes	$1.59 \mathrm{E}-05$
yes	$1.29 \mathrm{E}-01$	yes	$5.57 \mathrm{E}-01$
yes	$2.98 \mathrm{E}-01$	yes	$2.51 \mathrm{E}-01$
yes	$3.91 \mathrm{E}-01$	yes	$3.47 \mathrm{E}-04$
yes	$6.89 \mathrm{E}-01$	yes	$8.95 \mathrm{E}-01$
yes	$1.87 \mathrm{E}-01$	yes	$3.13 \mathrm{E}-05$
yes	$5.90 \mathrm{E}-02$	yes	$5.17 \mathrm{E}-05$
yes	$1.05 \mathrm{E}-01$	yes	$4.30 \mathrm{E}-03$
yes	$4.99 \mathrm{E}-01$	yes	$2.25 \mathrm{E}-04$
no	$8.87 \mathrm{E}-01$	yes	$2.39 \mathrm{E}-03$
yes	$3.35 \mathrm{E}-01$	yes	$1.70 \mathrm{E}-01$
yes	$4.29 \mathrm{E}-01$	yes	$1.52 \mathrm{E}-01$
yes	$3.81 \mathrm{E}-01$	yes	$5.87 \mathrm{E}-05$
yes	$1.90 \mathrm{E}-02$	yes	$9.77 \mathrm{E}-04$
yes	$3.70 \mathrm{E}-03$	yes	$3.48 \mathrm{E}-02$
yes	$8.89 \mathrm{E}-01$	yes	$7.10 \mathrm{E}-01$
yes	$9.10 \mathrm{E}-01$	yes	$4.25 \mathrm{E}-01$
no	$3.07 \mathrm{E}-01$	yes	$2.79 \mathrm{E}-02$
yes	$1.18 \mathrm{E}-01$	yes	$1.91 \mathrm{E}-03$
yes	$5.68 \mathrm{E}-01$	yes	$8.10 \mathrm{E}-01$
yes	$2.11 \mathrm{E}-01$	yes	$7.89 \mathrm{E}-03$
yes	$2.27 \mathrm{E}-01$	yes	$1.08 \mathrm{E}-03$
yes	$5.07 \mathrm{E}-02$	yes	$9.52 \mathrm{E}-03$
no	$8.75 \mathrm{E}-01$	yes	$1.59 \mathrm{E}-02$
no	$5.88 \mathrm{E}-01$	yes	$1.99 \mathrm{E}-04$
yes	$1.69 \mathrm{E}-01$	yes	$8.70 \mathrm{E}-03$
yes	$3.44 \mathrm{E}-01$	yes	$4.65 \mathrm{E}-01$
yes	$1.80 \mathrm{E}-01$	yes	$4.03 \mathrm{E}-02$
no	$4.50 \mathrm{E}-01$	yes	$1.82 \mathrm{E}-03$
yes	$4.86 \mathrm{E}-01$	yes	$1.41 \mathrm{E}-03$
yes	$4.61 \mathrm{E}-01$	no	$3.35 \mathrm{E}-01$

cg24368962 cg19434937 cg03014680 cg09447105 cg24028828 cg21498475 cg10065736 cg03131767 cg19928703 cg07908654 cg24818699 cg08770358 cg00222125 cg11770323 cg25479097 cg18368116 cg08077807 cg04933530 cg01901579 cg16409452 cg14084609 cg18550847 cg01000631 cg05875066 cg18817654 cg25939647 cg07177867 cg11266582 cg10387956 cg23387863 cg04497992 cg08067346 cg26134665 cg09147843 cg01998785 cg27383865 cg08640475 cg10099827 cg08940169 cg04983687
chr11:111570978 chr12:7104184 chr12:10122522 chr12:15126020 chr12:56694932 chr12:113737469 chr12:117440120 chr12:123446272 chr13:30143971 chr13:41631052 chr13:43355514 chr13:48876684 chr13:53226144 chr13:80066032 chr13:113305704 chr14:21436271 chr14:62001072 chr14:77419754 chr14:95615731 chr14:100610186 chr14:100610407 chr14:100610570 chr14:100610667 chr14:104625249 chr15:39485138 chr15:40173065 chr15:52030746 chr15:64275853 chr15:72646210 chr15:77472416 chr16:616212 chr16:25011481 chr16:31021544 chr16:53467612 chr16:55542709 chr16:84075870 chr16:85551478 chr16:85551514 chr16:88540241 chr16:88558223

SIK2	DQ599327	$0.85(0.80,0.91)$	$1.28 \mathrm{E}-06$
LPCAT3	EMG1	$0.91(0.88,0.95)$	$1.55 \mathrm{E}-06$
CLEC12A	CLEC12A	$0.92(0.88,0.95)$	$2.14 \mathrm{E}-06$
PDE6H	PDE6H	$0.88(0.83,0.92)$	$7.60 \mathrm{E}-07$
CS	CS	$0.87(0.82,0.92)$	$1.99 \mathrm{E}-06$
SLC24A6	SLC24A6	$0.90(0.86,0.94)$	$5.44 \mathrm{E}-06$
FBXW8	AK055849	$0.90(0.87,0.94)$	$1.41 \mathrm{E}-07$
ABCB9	ABCB9	$0.89(0.85,0.93)$	$7.21 \mathrm{E}-07$
SLC7A1	SLC7A1	$0.89(0.84,0.94)$	$1.21 \mathrm{E}-05$
	TRNA_Glu	$0.89(0.85,0.93)$	$2.60 \mathrm{E}-07$
C13orf30	C13orf30	$0.87(0.82,0.93)$	$8.53 \mathrm{E}-06$
RB1	BC039553	$0.84(0.78,0.91)$	$1.42 \mathrm{E}-05$
SUGT1	SUGT1	$0.90(0.86,0.95)$	$1.43 \mathrm{E}-05$
NDFIP2	NDFIP2	$0.91(0.87,0.95)$	$5.86 \mathrm{E}-06$
C13orf35	C13orf35	$0.89(0.84,0.93)$	$9.11 \mathrm{E}-07$
PRKCH	RNASE2	$0.89(0.84,0.93)$	$4.93 \mathrm{E}-06$
	PRKCH	$0.85(0.80,0.90)$	$1.29 \mathrm{E}-07$
DICER1	IRF2BPL	$0.89(0.85,0.93)$	$1.02 \mathrm{E}-07$
EVL	DICER1	$0.91(0.88,0.95)$	$5.86 \mathrm{E}-06$
EVL	AX747103	$0.91(0.87,0.94)$	$4.89 \mathrm{E}-07$
EVL	AX747103	$0.89(0.85,0.92)$	$2.96 \mathrm{E}-09$
	AX747103	$0.91(0.88,0.94)$	$7.10 \mathrm{E}-07$
KIF26A	EVL	$0.91(0.87,0.94)$	$4.88 \mathrm{E}-08$
	KIF26A	$0.87(0.83,0.92)$	$1.77 \mathrm{E}-07$
GPR176	C15orf54	$0.87(0.82,0.92)$	$3.41 \mathrm{E}-06$
LYSMD2	GPR176	$0.91(0.88,0.95)$	$1.91 \mathrm{E}-06$
DAPK2	LYSMD2	$0.90(0.86,0.94)$	$1.29 \mathrm{E}-05$
HEXA	DAPK2	$0.89(0.85,0.94)$	$1.52 \mathrm{E}-05$
SGK269	BC034424	$0.91(0.87,0.95)$	$2.72 \mathrm{E}-06$
NHLRC4	AX747193	$0.91(0.87,0.94)$	$1.51 \mathrm{E}-06$
ARHGAP17	C16orf11	DQ583809	$0.90(0.87,0.94)$
STX1B	STX1B	$0.90(0.86,0.95)$	$1.60 \mathrm{E}-06$
RBL2	RBL2	$0.92(0.88,0.95)$	$9.50 \mathrm{E}-06$
LPCAT2	LPCAT2	$0.89(0.85,0.94)$	$8.89 \mathrm{E}-06$
SLC38A8	SLC38A8	$0.91(0.87,0.94)$	$6.17 \mathrm{E}-07$
	KIAAO182	$1.11(1.06,1.16)$	$1.73 \mathrm{E}-05$
ZFPM1	KIAAO182	$0.92(0.89,0.95)$	$2.36 \mathrm{E}-06$
ZFPM1	ZFPM1	$0.92(0.89,0.95)$	$1.32 \mathrm{E}-06$
	ZFPM1	$0.91(0.87,0.94)$	$2.93 \mathrm{E}-07$
	$0.93(0.90,0.95)$	$1.33 \mathrm{E}-10$	

no	7.04E-01	yes	3.32E-04
yes	$3.37 \mathrm{E}-01$	yes	1.82E-02
yes	3.27E-01	yes	$2.36 \mathrm{E}-01$
yes	1.90E-04	yes	6.53E-02
yes	$6.15 \mathrm{E}-01$	yes	$2.71 \mathrm{E}-04$
yes	2.79E-01	yes	$2.43 \mathrm{E}-03$
yes	$8.32 \mathrm{E}-01$	yes	$4.36 \mathrm{E}-01$
yes	6.36E-01	no	$8.41 \mathrm{E}-02$
yes	$2.32 \mathrm{E}-01$	yes	$3.45 \mathrm{E}-03$
yes	1.68E-01	yes	1.89E-04
no	1.94E-01	yes	$2.73 \mathrm{E}-02$
yes	3.50E-01	yes	8.73E-04
yes	9.45E-01	yes	$2.95 \mathrm{E}-01$
yes	1.80E-01	yes	1.85E-04
no	4.89E-01	yes	1.07E-02
yes	$2.16 \mathrm{E}-01$	yes	$6.19 \mathrm{E}-03$
no	9.48E-01	yes	5.21E-04
yes	3.88E-01	yes	8.35E-04
yes	7.73E-04	yes	$2.91 \mathrm{E}-01$
yes	3.79E-01	yes	$5.53 \mathrm{E}-03$
yes	1.97E-01	yes	6.81E-01
no	$1.00 \mathrm{E}+00$	yes	$2.36 \mathrm{E}-02$
yes	7.95E-01	yes	2.70E-02
yes	8.03E-01	yes	$1.48 \mathrm{E}-02$
yes	5.33E-01	no	9.20E-01
yes	2.61E-01	yes	$2.18 \mathrm{E}-03$
yes	3.19E-03	yes	3.93E-02
no	$5.22 \mathrm{E}-01$	yes	$1.57 \mathrm{E}-03$
no	6.56E-01	yes	1.64E-03
yes	6.99E-01	yes	4.93E-03
yes	7.99E-01	yes	1.20E-01
yes	8.15E-02	yes	1.26E-02
yes	9.09E-01	yes	8.09E-01
yes	$1.52 \mathrm{E}-01$	yes	1.26E-03
yes	6.47E-01	yes	3.60E-03
yes	7.77E-01	yes	$5.82 \mathrm{E}-01$
yes	$9.26 \mathrm{E}-02$	yes	1.20E-04
yes	$4.54 \mathrm{E}-02$	yes	3.95E-04
yes	6.88E-02	yes	2.18E-05
yes	$1.82 \mathrm{E}-02$	yes	5.27E-10

cg20315954	chr17:15137304	PMP22	PMP22	0.88 (0.84,0.93)	3.58E-06	no	9.09E-01	yes	$1.95 \mathrm{E}-02$
cg20885063	chr17:17939419	ATPAF2	ATPAF2	0.90 (0.86,0.94)	1.06E-06	yes	$1.68 \mathrm{E}-01$	yes	9.97E-03
cg14611258	chr17:17946468	C17orf39	C17orf39	0.89 (0.85,0.94)	6.41E-06	yes	$2.75 \mathrm{E}-01$	yes	$1.74 \mathrm{E}-03$
cg19468946	chr17:37922297	IKZF3	IKZF3	1.09 (1.05,1.13)	1.50E-05	yes	4.50E-01	no	$5.77 \mathrm{E}-01$
cg21723861	chr17:39686628		KRT19	0.87 (0.82,0.92)	1.59E-07	yes	$4.81 \mathrm{E}-01$	yes	1.26E-03
cg00170714	chr17:40724562	MLX;PSMC3IP	PSMC3IP	0.89 (0.85,0.93)	6.15E-08	no	5.98E-01	yes	5.88E-02
cg25173129	chr17:56269410	EPX	EPX	0.88 (0.84,0.93)	8.09E-07	yes	$1.92 \mathrm{E}-01$	yes	$1.50 \mathrm{E}-01$
cg02970679	chr17:56269818	EPX	EPX	0.88 (0.83,0.92)	9.99E-07	no	5.25E-01	yes	$1.74 \mathrm{E}-03$
cg17374802	chr17:56270828	EPX	EPX	0.90 (0.86,0.94)	2.06E-06	no	$5.64 \mathrm{E}-01$	yes	$3.47 \mathrm{E}-02$
cg17041511	chr17:61509620		CYB561	0.91 (0.87,0.95)	1.15E-05	yes	$3.47 \mathrm{E}-02$	yes	3.39E-02
cg22312249	chr17:72779428	TMEM104	TMEM104	0.91 (0.87,0.95)	8.73E-06	yes	$6.60 \mathrm{E}-01$	yes	1.90E-03
cg09705784	chr17:76565232	DNAH17	DNAH17	0.91 (0.88,0.94)	1.50E-07	yes	$6.05 \mathrm{E}-02$	yes	3.80E-03
cg06725287	chr17:80533762	FOXK2	FOXK2	0.87 (0.83,0.92)	9.07E-08	no	3.20E-01	yes	$1.26 \mathrm{E}-05$
cg13054523	chr17:81055722		METRNL	0.87 (0.83,0.91)	1.20E-08	yes	$3.92 \mathrm{E}-01$	yes	$4.40 \mathrm{E}-01$
cg18337287	chr19:930871	ARID3A	ARID3A	0.86 (0.81,0.91)	$7.21 \mathrm{E}-08$	yes	6.02E-01	yes	8.52E-05
cg12104982	chr19:5592815	SAFB2	SAFB2	0.86 (0.81,0.91)	1.13E-07	yes	$1.59 \mathrm{E}-02$	yes	1.49E-04
cg10644885	chr19:11687621	ACP5	ACP5	0.86 (0.82,0.90)	5.77E-11	yes	2.35E-01	yes	2.03E-03
cg02359181	chr19:34860339	GPI	GPI	0.88 (0.83,0.93)	2.68E-06	yes	8.27E-01	yes	$5.69 \mathrm{E}-04$
cg20673965	chr19:44220148	IRGC	IRGC	0.90 (0.85,0.94)	5.54E-06	yes	$9.59 \mathrm{E}-01$	yes	3.27E-02
cg26979537	chr19:48016860	NAPA	NAPA	0.83 (0.77,0.90)	1.31E-06	yes	3.68E-01	yes	$2.13 \mathrm{E}-01$
cg21073212	chr20:30866501	KIF3B	KIF3B	0.92 (0.89,0.96)	1.79E-05	no	7.85E-02	yes	$4.58 \mathrm{E}-01$
cg20226253	chr20:34022914	GDF5	GDF50S	0.87 (0.81,0.92)	$1.15 \mathrm{E}-05$	yes	$8.43 \mathrm{E}-01$	yes	$2.12 \mathrm{E}-01$
cg21045547	chr20:35422703	C20orf117	KIAA0889	0.89 (0.85,0.94)	5.32E-06	no	9.41E-02	yes	4.39E-02
cg13792581	chr20:43590115	TOMM34	TOMM34	0.87 (0.82,0.93)	$1.34 \mathrm{E}-05$	yes	$3.61 \mathrm{E}-01$	yes	3.10E-04
cg13197551	chr20:60709957	LSM14B	LSM14	0.86 (0.81,0.91)	9.23E-07	yes	5.26E-01	yes	$1.21 \mathrm{E}-01$
cg18042632	chr21:42520902	C21orf130	LINC00323	0.92 (0.88,0.95)	1.87E-06	no	$9.54 \mathrm{E}-01$	yes	5.57E-03
cg18879389	chr21:43771120	TFF2	TFF2	0.87 (0.82,0.92)	1.21E-06	yes	2.08E-01	yes	1.03E-01

[^4]| CpG | chr:position | UCSC
 RefGene Name | UCSC
 Known Gene* | PACE Discovery ($\mathrm{N}=647$ cases) | | Look-Up in Eos$\text { (} \mathrm{N}=16 \text { cases) }$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | OR (CI) | P -value | Direction of Effect Concordant | P-value |
| | | ACCEPTED MANUSCRIPT | | | | with PACE | |
| cg06315149 | chr1:2036398 | PRKCZ | PRKCZ | 0.89 (0.84,0.93) | 6.08E-06 | yes | $2.43 \mathrm{E}-02$ |
| cg13066938 | chr1:6341140 | ACOT7 | ACOT7 | 0.91 (0.88,0.95) | $1.67 \mathrm{E}-05$ | yes | $2.36 \mathrm{E}-02$ |
| cg21220721 | chr1:6341230 | ACOT7 | ACOT7 | 0.94 (0.92,0.96) | $1.02 \mathrm{E}-08$ | yes | $1.80 \mathrm{E}-02$ |
| cg09249800 | chr1:6341287 | ACOT7 | ACOT7 | 0.88 (0.84,0.92) | $1.19 \mathrm{E}-08$ | yes | $3.52 \mathrm{E}-02$ |
| cg11699125 | chr1:6341327 | ACOT7 | ACOT7 | 0.90 (0.87,0.93) | 7.54E-10 | yes | $4.74 \mathrm{E}-02$ |
| cg18783781 | chr1:9599067 | SLC25A33 | SLC25A33 | 0.90 (0.86,0.94) | 7.45E-06 | yes | $4.16 \mathrm{E}-02$ |
| cg02171825 | chr1:26517586 | CATSPER4 | CATSPER4 | 0.88 (0.83,0.93) | 9.01E-06 | yes | $2.31 \mathrm{E}-02$ |
| cg01942646 | chr1:27240694 | NROB2 | NROB2 | 0.88 (0.83,0.93) | $1.45 \mathrm{E}-06$ | yes | $3.78 \mathrm{E}-02$ |
| cg16263722 | chr1:29523841 | MECR | MECR | 0.89 (0.86,0.93) | $2.14 \mathrm{E}-07$ | yes | $3.24 \mathrm{E}-02$ |
| cg11987455 | chr1:43290834 | ERMAP | ERMAP | 0.89 (0.85,0.93) | 7.55E-07 | yes | $3.90 \mathrm{E}-02$ |
| cg11683482 | chr1:44678623 | DMAP1 | DMAP1 | 0.90 (0.86,0.93) | $5.39 \mathrm{E}-08$ | yes | $3.32 \mathrm{E}-02$ |
| cg12643917 | chr1:44715958 | ERI3 | ERI3 | 0.89 (0.85,0.94) | 8.98E-06 | yes | $1.67 \mathrm{E}-02$ |
| cg26252077 | chr1:61607055 | NFIA | NFIA | 0.88 (0.84,0.92) | 2.18E-08 | yes | $3.82 \mathrm{E}-02$ |
| cg10704177 | chr1:62209607 | INADL | INADL | 0.90 (0.87,0.94) | $2.25 \mathrm{E}-07$ | yes | $3.63 \mathrm{E}-02$ |
| cg01445399 | chr1:87596934 | LOC339524 | LOC339524 | 0.91 (0.87,0.95) | $1.72 \mathrm{E}-05$ | yes | $3.23 \mathrm{E}-02$ |
| cg19805160 | chr1:159870731 | CCDC19 | CCDC19 | 0.89 (0.85,0.94) | $2.85 \mathrm{E}-06$ | yes | $2.76 \mathrm{E}-02$ |
| cg09332506 | chr1:160309220 | COPA | NCSTN | 0.86 (0.81,0.91) | $1.00 \mathrm{E}-06$ | yes | $2.66 \mathrm{E}-02$ |
| cg17971251 | chr1:177907297 | SEC16B | SEC16B | 0.86 (0.82,0.91) | 9.52E-09 | yes | $3.41 \mathrm{E}-02$ |
| cg26033504 | chr1:201458737 | CSRP1 | CSRP1 | 0.91 (0.87,0.95) | 6.35E-06 | yes | $5.95 \mathrm{E}-02$ |
| cg04895895 | chr1:231005895 | C1orf198 | C1orf198 | 0.89 (0.84,0.93) | $5.26 \mathrm{E}-06$ | yes | $4.08 \mathrm{E}-02$ |
| cg02473287 | chr2:9752386 | YWHAQ | YWHAQ | 0.90 (0.85,0.94) | 8.00E-06 | yes | $3.18 \mathrm{E}-02$ |
| cg10142874 | chr2:11917623 | LPIN1 | LPIN1 | 0.89 (0.85,0.93) | $1.04 \mathrm{E}-06$ | yes | $3.75 \mathrm{E}-02$ |
| cg26752663 | chr2:25142016 | ADCY3 | ADCY3 | 1.12 (1.07,1.17) | $1.79 \mathrm{E}-06$ | yes | $3.75 \mathrm{E}-01$ |
| cg00043800 | chr2:74612144 | LOC100189589 | LOC100189589 | 0.91 (0.87,0.95) | $1.32 \mathrm{E}-05$ | yes | $5.14 \mathrm{E}-02$ |
| cg17988187 | chr2:74612222 | LOC100189589 | LOC100189589 | 0.90 (0.86,0.94) | $1.21 \mathrm{E}-06$ | yes | $2.62 \mathrm{E}-02$ |
| cg12077754 | chr2:75089669 | HK2 | HK2 | 0.92 (0.89,0.96) | $4.56 \mathrm{E}-06$ | yes | $3.41 \mathrm{E}-02$ |
| cg22674082 | chr2:98585733 | TMEM131 | TMEM131 | 0.89 (0.84,0.94) | $1.44 \mathrm{E}-05$ | yes | $2.99 \mathrm{E}-02$ |
| cg00327263 | chr2:120019111 | STEAP3 | STEAP3 | 0.90 (0.86,0.94) | 8.00E-06 | yes | $9.15 \mathrm{E}-02$ |
| cg25950520 | chr2:121036760 | RALB | RALB | 0.85 (0.79,0.91) | $1.31 \mathrm{E}-05$ | yes | $5.60 \mathrm{E}-02$ |
| cg00213281 | chr2:149639822 | KIF5C;MIR1978 | JA429504 | 0.88 (0.83,0.93) | $1.24 \mathrm{E}-06$ | yes | $2.29 \mathrm{E}-02$ |
| cg02494549 | chr2:161798364 | | TANK | 0.86 (0.82,0.91) | $1.56 \mathrm{E}-07$ | yes | $5.16 \mathrm{E}-02$ |
| cg01310029 | chr3:3152374 | IL5RA | IL5RA | 0.89 (0.85,0.94) | $4.18 \mathrm{E}-06$ | yes | $3.68 \mathrm{E}-02$ |
| cg10159529 | chr3:3152530 | IL5RA | IL5RA | 0.90 (0.86,0.94) | $4.48 \mathrm{E}-06$ | yes | $3.12 \mathrm{E}-02$ |
| cg25224369 | chr3:12918528 | | DQ581328 | 0.90 (0.86,0.94) | 7.75E-06 | yes | $4.65 \mathrm{E}-02$ |
| cg07386061 | chr3:52492874 | NISCH | NISCH | 0.91 (0.88,0.95) | $1.00 \mathrm{E}-06$ | yes | $3.81 \mathrm{E}-02$ |
| cg17890764 | chr3:52864816 | ITIH4 | ITIH4 | 0.91 (0.87,0.94) | 8.95E-07 | yes | $9.14 \mathrm{E}-02$ |
| cg07410597 | chr3:66404129 | SLC25A26 | LRIG1 | 0.88 (0.84,0.93) | 2.70E-07 | yes | $3.02 \mathrm{E}-02$ |
| cg04217850 | chr3:66428294 | SLC25A26 | LRIG1 | 0.88 (0.83,0.93) | $2.35 \mathrm{E}-06$ | yes | $4.53 \mathrm{E}-02$ |
| cg06070625 | chr3:69812798 | MITF | MITF | 0.90 (0.86,0.94) | 5.36E-06 | yes | $2.97 \mathrm{E}-02$ |
| cg06391412 | chr3:71295684 | FOXP1 | FOXP1 | 0.87 (0.84,0.91) | 3.00E-09 | yes | $2.70 \mathrm{E}-02$ |
| cg20263733 | chr3:130616293 | ATP2C1 | ATP2C1 | 0.87 (0.82,0.92) | $4.26 \mathrm{E}-07$ | yes | $5.11 \mathrm{E}-02$ |
| cg09423651 | chr3:136618442 | NCK1 | NCK1 | 0.88 (0.83,0.93) | $9.72 \mathrm{E}-06$ | yes | $3.98 \mathrm{E}-02$ |
| cg08698681 | chr3:171091657 | TNIK | TNIK | 0.89 (0.84,0.93) | 5.52E-06 | yes | $2.04 \mathrm{E}-02$ |
| cg25636075 | chr3:185217761 | TMEM41A | TMEM41A | 0.87 (0.81,0.92) | 5.59E-06 | yes | $2.23 \mathrm{E}-02$ |
| cg02803925 | chr3:195974300 | PCYT1A | PCYT1A | 0.86 (0.82,0.92) | 9.27E-07 | yes | $3.86 \mathrm{E}-02$ |
| cg04077085 | chr4:9937674 | SLC2A9 | SLC2A9 | 0.86 (0.81,0.91) | 5.34E-07 | yes | $3.42 \mathrm{E}-02$ |
| cg18912470 | chr4:57848125 | POLR2B | POLR2B | 0.91 (0.87,0.94) | $1.23 \mathrm{E}-06$ | yes | $3.57 \mathrm{E}-02$ |
| cg26396815 | chr4:102878132 | BANK1 | BANK1 | 0.89 (0.84,0.94) | $1.24 \mathrm{E}-05$ | yes | $3.87 \mathrm{E}-02$ |
| cg20866785 | chr4:148733880 | ARHGAP10 | Metazoa_SRP | 0.91 (0.87,0.95) | $1.70 \mathrm{E}-05$ | yes | $6.39 \mathrm{E}-02$ |
| cg16362140 | chr5:10708717 | DAP | DAP | 0.90 (0.87,0.94) | $1.17 \mathrm{E}-06$ | yes | $3.66 \mathrm{E}-02$ |
| cg22588983 | chr5:38783142 | | AK126213 | 0.86 (0.80,0.92) | $1.35 \mathrm{E}-05$ | yes | $4.05 \mathrm{E}-02$ |
| cg00944309 | chr5:60142446 | | ELOVL7 | 0.90 (0.86,0.94) | 4.03E-07 | yes | $4.96 \mathrm{E}-02$ |
| cg14978242 | chr5:79501131 | SERINC5 | SERINC5 | 0.93 (0.89,0.96) | $1.74 \mathrm{E}-05$ | yes | $2.47 \mathrm{E}-02$ |
| cg09565310 | chr5:112541553 | MCC | MCC | 0.89 (0.85,0.93) | $3.10 \mathrm{E}-06$ | yes | $3.03 \mathrm{E}-02$ |
| cg08969102 | chr5:133563532 | | PPP2CA | 0.91 (0.88,0.95) | $1.54 \mathrm{E}-05$ | yes | $3.31 \mathrm{E}-02$ |
| cg21627181 | chr6:25754190 | SLC17A4 | SLC17A4 | 0.90 (0.86,0.95) | $1.90 \mathrm{E}-05$ | yes | $3.21 \mathrm{E}-02$ |
| cg09597192 | chr6:32141591 | AGPAT1 | PPT2 | 0.88 (0.84,0.93) | 4.29E-06 | yes | $1.99 \mathrm{E}-02$ |
| cg06426027 | chr6:33232644 | VPS52 | VPS52 | 0.83 (0.77,0.90) | $2.32 \mathrm{E}-06$ | yes | $1.87 \mathrm{E}-02$ |
| cg18460809 | chr6:57048049 | BAG2 | BAG2 | 0.89 (0.85,0.93) | 6.05E-07 | yes | $3.41 \mathrm{E}-02$ |
| cg15961693 | chr6:139689053 | | CITED2 | 0.89 (0.84,0.94) | $1.22 \mathrm{E}-05$ | yes | $3.02 \mathrm{E}-02$ |
| cg26774971 | chr6:158994407 | TMEM181 | TMEM181 | 0.90 (0.86,0.95) | $1.88 \mathrm{E}-05$ | yes | $3.08 \mathrm{E}-02$ |
| cg05477517 | chr6:164531576 | | AK093114 | 0.88 (0.83,0.92) | 5.42E-07 | yes | $4.58 \mathrm{E}-02$ |
| cg15304012 | chr6:166876490 | RPS6KA2 | RPS6KA2 | 1.08 (1.04,1.13) | $1.86 \mathrm{E}-05$ | yes | $2.13 \mathrm{E}-01$ |
| cg19851574 | chr6:167178233 | RPS6KA2 | RPS6KA2 | 0.95 (0.94,0.97) | $3.42 \mathrm{E}-06$ | yes | $3.76 \mathrm{E}-02$ |
| cg03329755 | chr6:167189272 | RPS6KA2 | RPS6KA2 | 0.91 (0.88,0.95) | 6.14E-06 | yes | $3.04 \mathrm{E}-02$ |
| cg25270424 | chr7:24965657 | OSBPL3 | OSBPL3 | 0.86 (0.82,0.92) | $4.75 \mathrm{E}-07$ | yes | $4.69 \mathrm{E}-02$ |
| cg04321303 | chr7:44107504 | | PGAM2 | 0.91 (0.88,0.95) | $2.72 \mathrm{E}-06$ | yes | $3.02 \mathrm{E}-02$ |
| cg02435538 | chr7:75507337 | RHBDD2 | RHBDD2 | 0.90 (0.86,0.94) | 7.37E-07 | yes | $6.15 \mathrm{E}-02$ |

cg13007207	chr7:105279391	ATXN7L1	ATXN7L1	1.26 (1.13,1.40)	1.87E-05	yes	6.20E-01
cg17947765	chr7:117857964		ANKRD7	0.86 (0.81,0.92)	$1.17 \mathrm{E}-05$	yes	$1.41 \mathrm{E}-01$
cg14678084	chr7:127627251	SND1	SND1-IT1	0.84 (0.78,0.90)	$1.17 \mathrm{E}-06$	yes	$1.57 \mathrm{E}-02$
cg05184016	chr7:149543136	ZNF862	BC045757	0.85 (0.80,0.90)	2.74E-08	yes	$4.56 \mathrm{E}-02$
cg07970948	chr7:149543165	ZNF862	BC045757	0.91 (0.88,0.94)	6.39E-08	yes	3.05E-02
cg06558622	chr7:149543177	ZNF862	BC045757	0.88 (0.85,0.92)	3.39E-09	yes	$4.61 \mathrm{E}-02$
cg24576940	chr7:150648283	KCNH2	KCNH2	0.87 (0.81,0.93)	1.83E-05	yes	$3.44 \mathrm{E}-02$
cg23147443	chr7:150649655	KCNH2 AC	PKCNH2 MANI	0.89 (0.85,0.93)	1.83E-06	yes	$2.39 \mathrm{E}-02$
cg18666454	chr7:150651937	KCNH2	KCNH2	0.89 (0.86,0.93)	1.46E-07	yes	$2.53 \mathrm{E}-02$
cg02596233	chr7:150970209	SMARCD3	SMARCD3	0.86 (0.81,0.91)	2.11E-07	yes	$2.55 \mathrm{E}-02$
cg23706836	chr8:6407997	ANGPT2;MCPH1	ANGPT2	0.92 (0.88,0.95)	5.63E-07	yes	$3.33 \mathrm{E}-02$
cg21919729	chr8:11719367	CTSB	CTSB	0.92 (0.89,0.95)	3.03E-06	yes	$4.45 \mathrm{E}-02$
cg03437605	chr8:22847209	RHOBTB2	RHOBTB2	0.87 (0.83,0.92)	1.05E-07	yes	$6.06 \mathrm{E}-02$
cg22816343	chr8:26243601	BNIP3L	BNIP3L	0.89 (0.85,0.93)	2.12E-06	yes	5.31E-02
cg23205629	chr8:33421410	RNF122	RNF122	0.91 (0.88,0.95)	9.28E-06	yes	$4.96 \mathrm{E}-02$
cg10815420	chr8:105599835	LRP12	LRP12	0.86 (0.81,0.91)	2.66E-07	yes	$9.38 \mathrm{E}-02$
cg02133716	chr8:128981622	PVT1	MIR1205	0.85 (0.79,0.91)	8.64E-07	yes	$2.62 \mathrm{E}-02$
cg00736681	chr8:134546052	ST3GAL1	ST3GAL1	0.90 (0.87,0.94)	1.93E-06	yes	$2.41 \mathrm{E}-02$
cg09377531	chr8:141046469	TRAPPC9	AX748239	0.90 (0.87,0.93)	1.23E-08	yes	4.19E-02
cg14025883	chr9:5436224	C9orf46	C9orf46	0.89 (0.85,0.93)	8.42E-07	yes	$2.96 \mathrm{E}-02$
cg01499988	chr9:35755346	MSMP	MSMP	0.88 (0.84,0.93)	2.01E-06	yes	$3.59 \mathrm{E}-02$
cg13482814	chr9:82183332		TLE4	0.88 (0.84,0.93)	4.74E-06	yes	$2.99 \mathrm{E}-02$
cg13576859	chr9:97403129	FBP1	FBP1	0.92 (0.88,0.95)	1.37E-05	yes	$2.46 \mathrm{E}-02$
cg20503329	chr9:101705792	COL15A1	COL15A1	0.82 (0.76,0.89)	3.10E-06	yes	$2.35 \mathrm{E}-02$
cg00045753	chr9:123630545	PHF19	PHF19	0.88 (0.83,0.93)	$1.32 \mathrm{E}-05$	yes	$3.10 \mathrm{E}-02$
cg13458609	chr9:130608923	ENG	ENG	0.89 (0.85,0.93)	$5.74 \mathrm{E}-08$	yes	$4.21 \mathrm{E}-02$
cg13835688	chr9:130859454	SLC25A25	SLC25A25	0.89 (0.86,0.93)	3.33E-09	yes	$2.66 \mathrm{E}-02$
cg13628444	chr9:134883788	MED27	MED27	0.89 (0.85,0.93)	7.76E-07	yes	$3.53 \mathrm{E}-02$
cg13850063	chr9:138362321		AK096249	0.78 (0.71,0.85)	5.49E-08	yes	$3.02 \mathrm{E}-02$
cg14011077	chr9:138362327		AK096249	0.86 (0.82,0.90)	7.02E-09	yes	$3.48 \mathrm{E}-02$
cg06958964	chr10:45494806	C10orf25;ZNF22	ZNF22	0.85 (0.80,0.91)	2.97E-06	yes	$4.05 \mathrm{E}-02$
cg25854298	chr10:73936754	ASCC1	ASCC1	0.89 (0.84,0.94)	8.74E-06	yes	$2.58 \mathrm{E}-02$
cg04973995	chr10:74057977		DDIT4	0.92 (0.89,0.96)	1.10E-05	yes	$4.83 \mathrm{E}-01$
cg00366037	chr10:76781121	MYST4	KAT6B	0.88 (0.83,0.93)	1.45E-05	yes	$4.11 \mathrm{E}-02$
cg22235258	chr11:34675402	EHF	EHF	0.88 (0.83,0.93)	1.61E-05	yes	4.94E-02
cg24459209	chr11:57148215	PRG3	PRG3	0.86 (0.81,0.91)	8.52E-08	yes	$2.74 \mathrm{E}-02$
cg15700636	chr11:57156050	PRG2	PRG2	0.89 (0.85,0.93)	2.35E-07	yes	$3.13 \mathrm{E}-02$
cg08773180	chr11:57157607	PRG2	PRG2	0.89 (0.85,0.93)	$1.77 \mathrm{E}-07$	yes	$2.40 \mathrm{E}-02$
cg12819873	chr11:57157632	PRG2	PRG2	0.90 (0.86,0.94)	9.55E-06	yes	$4.33 \mathrm{E}-02$
cg27533472	chr11:59856225	MS4A2	MS4A2	0.82 (0.76,0.90)	4.09E-06	yes	2.21E-02
cg25087851	chr11:60623918	GPR44	PTGDR2	0.89 (0.85,0.93)	$1.69 \mathrm{E}-08$	yes	$3.14 \mathrm{E}-02$
cg13233042	chr11:63432489	ATL3	ATL3	0.88 (0.83,0.93)	$3.59 \mathrm{E}-06$	yes	4.19E-02
cg05300717	chr11:65546210	DKFZp761E198	DKFZp761E198	0.86 (0.82,0.90)	6.51E-10	yes	$1.25 \mathrm{E}-02$
cg15219163	chr11:70842128	SHANK2	SHANK2	1.17 (1.09,1.26)	$1.80 \mathrm{E}-05$	no	$1.09 \mathrm{E}-01$
cg24368962	chr11:111570978	SIK2	DQ599327	0.85 (0.80,0.91)	$1.28 \mathrm{E}-06$	yes	$3.42 \mathrm{E}-02$
cg19434937	chr12:7104184	LPCAT3	EMG1	0.91 (0.88,0.95)	1.55E-06	yes	$3.88 \mathrm{E}-02$
cg03014680	chr12:10122522	CLEC12A	CLEC12A	0.92 (0.88,0.95)	2.14E-06	yes	$4.57 \mathrm{E}-02$
cg09447105	chr12:15126020	PDE6H	PDE6H	0.88 (0.83,0.92)	7.60E-07	yes	$2.92 \mathrm{E}-02$
cg24028828	chr12:56694932	CS	CS	0.87 (0.82,0.92)	$1.99 \mathrm{E}-06$	yes	2.24E-02
cg21498475	chr12:113737469	SLC24A6	SLC24A6	0.90 (0.86,0.94)	5.44E-06	yes	$2.10 \mathrm{E}-02$
cg10065736	chr12:117440120	FBXW8	АК055849	0.90 (0.87,0.94)	$1.41 \mathrm{E}-07$	yes	$1.71 \mathrm{E}-02$
cg03131767	chr12:123446272	ABCB9	ABCB9	0.89 (0.85,0.93)	7.21E-07	yes	$3.09 \mathrm{E}-02$
cg19928703	chr13:30143971	SLC7A1	SLC7A1	0.89 (0.84,0.94)	$1.21 \mathrm{E}-05$	yes	$2.82 \mathrm{E}-02$
cg07908654	chr13:41631052		TRNA_Glu	0.89 (0.85,0.93)	$2.60 \mathrm{E}-07$	yes	4.01E-02
cg24818699	chr13:43355514	C13orf30	C13orf30	0.87 (0.82,0.93)	$8.53 \mathrm{E}-06$	yes	$8.31 \mathrm{E}-02$
cg08770358	chr13:48876684	RB1	BC039553	0.84 (0.78,0.91)	$1.42 \mathrm{E}-05$	yes	4.03E-02
cg00222125	chr13:53226144	SUGT1	SUGT1	0.90 (0.86,0.95)	$1.43 \mathrm{E}-05$	yes	$9.65 \mathrm{E}-01$
cg11770323	chr13:80066032	NDFIP2	NDFIP2	0.91 (0.87,0.95)	5.86E-06	yes	$3.73 \mathrm{E}-02$
cg25479097	chr13:113305704	C13orf35	C13orf35	0.89 (0.84,0.93)	9.11E-07	yes	$2.49 \mathrm{E}-02$
cg18368116	chr14:21436271		RNASE2	0.89 (0.84,0.93)	4.93E-06	yes	$2.25 \mathrm{E}-02$
cg08077807	chr14:62001072	PRKCH	PRKCH	0.85 (0.80,0.90)	$1.29 \mathrm{E}-07$	yes	$4.37 \mathrm{E}-02$
cg04933530	chr14:77419754		IRF2BPL	0.89 (0.85,0.93)	$1.02 \mathrm{E}-07$	yes	$2.64 \mathrm{E}-02$
cg01901579	chr14:95615731	DICER1	DICER1	0.91 (0.88,0.95)	5.86E-06	yes	$3.61 \mathrm{E}-02$
cg16409452	chr14:100610186	EVL	AX747103	0.91 (0.87,0.94)	4.89E-07	yes	$2.12 \mathrm{E}-02$
cg14084609	chr14:100610407	EVL	AX747103	0.89 (0.85,0.92)	2.96E-09	yes	$3.24 \mathrm{E}-02$
cg18550847	chr14:100610570	EVL	AX747103	0.91 (0.88,0.94)	7.10E-07	yes	$2.85 \mathrm{E}-02$
cg01000631	chr14:100610667		EVL	0.91 (0.87,0.94)	4.88E-08	yes	$2.75 \mathrm{E}-02$
cg05875066	chr14:104625249	KIF26A	KIF26A	0.87 (0.83,0.92)	$1.77 \mathrm{E}-07$	yes	5.64E-02
cg18817654	chr15:39485138		C15orf54	0.87 (0.82,0.92)	$3.41 \mathrm{E}-06$	yes	7.10E-02
cg25939647	chr15:40173065	GPR176	GPR176	0.91 (0.88,0.95)	$1.91 \mathrm{E}-06$	yes	$2.83 \mathrm{E}-02$
cg07177867	chr15:52030746	LYSMD2	LYSMD2	0.90 (0.86,0.94)	$1.29 \mathrm{E}-05$	yes	$3.26 \mathrm{E}-02$
cg11266582	chr15:64275853	DAPK2	DAPK2	0.89 (0.85,0.94)	$1.52 \mathrm{E}-05$	yes	$2.56 \mathrm{E}-02$
cg10387956	chr15:72646210	HEXA	BC034424	0.91 (0.87,0.95)	$2.72 \mathrm{E}-06$	yes	$4.78 \mathrm{E}-02$
cg23387863	chr15:77472416	SGK269	AX747193	0.91 (0.87,0.94)	$1.51 \mathrm{E}-06$	yes	$5.29 \mathrm{E}-02$
cg04497992	chr16:616212	NHLRC4	C16orf11	0.90 (0.87,0.94)	$1.92 \mathrm{E}-06$	yes	4.10E-02
cg08067346	chr16:25011481	ARHGAP17	DQ583809	0.90 (0.86,0.95)	$1.60 \mathrm{E}-05$	yes	$2.70 \mathrm{E}-02$

cg26134665	chr16:31021544	STX1B	STX1B	0.92 (0.88,0.95)	9.50E-06	yes	7.87E-01
cg09147843	chr16:53467612	RBL2	RBL2	0.89 (0.85,0.94)	8.89E-06	yes	$5.72 \mathrm{E}-02$
cg01998785	chr16:55542709	LPCAT2	LPCAT2	0.91 (0.87,0.94)	6.17E-07	yes	3.52E-02
cg27383865	chr16:84075870	SLC38A8	SLC38A8	1.11 (1.06,1.16)	$1.73 \mathrm{E}-05$	no	$2.63 \mathrm{E}-01$
cg08640475	chr16:85551478		KIAA0182	0.92 (0.89,0.95)	$2.36 \mathrm{E}-06$	yes	$1.99 \mathrm{E}-01$
cg10099827	chr16:85551514		KIAA0182	0.92 (0.89,0.95)	$1.32 \mathrm{E}-06$	yes	$1.48 \mathrm{E}-01$
cg08940169	chr16:88540241	ZFPM1	ZFPM1	0.91 (0.87,0.94)	$2.93 \mathrm{E}-07$	yes	3.33E-02
cg04983687	chr16:88558223	ZFPM1 A	EPZFPM1 MANL	S 0.93 (0.90,0.95)	$1.33 \mathrm{E}-10$	yes	3.29E-02
cg20315954	chr17:15137304	PMP22	PMP22	0.88 (0.84,0.93)	3.58E-06	yes	$1.89 \mathrm{E}-02$
cg20885063	chr17:17939419	ATPAF2	ATPAF2	0.90 (0.86,0.94)	$1.06 \mathrm{E}-06$	yes	3.13E-02
cg14611258	chr17:17946468	C17orf39	C17orf39	0.89 (0.85,0.94)	6.41E-06	yes	3.89E-02
cg19468946	chr17:37922297	IKZF3	IKZF3	1.09 (1.05,1.13)	$1.50 \mathrm{E}-05$	yes	4.02E-01
cg21723861	chr17:39686628		KRT19	0.87 (0.82,0.92)	$1.59 \mathrm{E}-07$	yes	$2.68 \mathrm{E}-02$
cg00170714	chr17:40724562	MLX;PSMC3IP	PSMC3IP	0.89 (0.85,0.93)	$6.15 \mathrm{E}-08$	yes	$3.55 \mathrm{E}-02$
cg25173129	chr17:56269410	EPX	EPX	0.88 (0.84,0.93)	8.09E-07	yes	$2.54 \mathrm{E}-02$
cg02970679	chr17:56269818	EPX	EPX	0.88 (0.83,0.92)	$9.99 \mathrm{E}-07$	yes	$2.37 \mathrm{E}-02$
cg17374802	chr17:56270828	$E P X$	EPX	0.90 (0.86,0.94)	2.06E-06	yes	$2.64 \mathrm{E}-02$
cg17041511	chr17:61509620		CYB561	0.91 (0.87,0.95)	$1.15 \mathrm{E}-05$	yes	$3.37 \mathrm{E}-02$
cg22312249	chr17:72779428	TMEM104	TMEM104	0.91 (0.87,0.95)	$8.73 \mathrm{E}-06$	yes	3.19E-02
cg09705784	chr17:76565232	DNAH17	DNAH17	0.91 (0.88,0.94)	$1.50 \mathrm{E}-07$	yes	$2.96 \mathrm{E}-02$
cg06725287	chr17:80533762	FOXK2	FOXK2	0.87 (0.83,0.92)	9.07E-08	yes	5.71E-02
cg13054523	chr17:81055722		METRNL	0.87 (0.83,0.91)	$1.20 \mathrm{E}-08$	yes	$2.07 \mathrm{E}-02$
cg18337287	chr19:930871	ARID3A	ARID3A	0.86 (0.81,0.91)	$7.21 \mathrm{E}-08$	yes	3.51E-02
cg12104982	chr19:5592815	SAFB2	SAFB2	0.86 (0.81,0.91)	$1.13 \mathrm{E}-07$	yes	$1.55 \mathrm{E}-02$
cg10644885	chr19:11687621	ACP5	ACP5	0.86 (0.82,0.90)	$5.77 \mathrm{E}-11$	yes	$1.85 \mathrm{E}-02$
cg02359181	chr19:34860339	GPI	GPI	0.88 (0.83,0.93)	$2.68 \mathrm{E}-06$	yes	3.91E-02
cg20673965	chr19:44220148	IRGC	IRGC	0.90 (0.85,0.94)	5.54E-06	yes	3.81E-02
cg26979537	chr19:48016860	NAPA	NAPA	0.83 (0.77,0.90)	$1.31 \mathrm{E}-06$	yes	$3.93 \mathrm{E}-02$
cg21073212	chr20:30866501	KIF3B	KIF3B	0.92 (0.89,0.96)	$1.79 \mathrm{E}-05$	yes	$2.48 \mathrm{E}-02$
cg20226253	chr20:34022914	GDF5	GDF5OS	0.87 (0.81,0.92)	$1.15 \mathrm{E}-05$	yes	$4.10 \mathrm{E}-02$
cg21045547	chr20:35422703	C20orf117	KIAA0889	0.89 (0.85,0.94)	$5.32 \mathrm{E}-06$	yes	$2.86 \mathrm{E}-02$
cg13792581	chr20:43590115	TOMM34	TOMM34	0.87 (0.82,0.93)	$1.34 \mathrm{E}-05$	yes	$2.74 \mathrm{E}-02$
cg13197551	chr20:60709957	LSM14B	LSM14B	0.86 (0.81,0.91)	$9.23 \mathrm{E}-07$	yes	$2.25 \mathrm{E}-02$
cg18042632	chr21:42520902	C21orf130	LINC00323	0.92 (0.88,0.95)	$1.87 \mathrm{E}-06$	yes	$1.91 \mathrm{E}-02$
cg18879389	chr21:43771120	TFF2	TFF2	0.87 (0.82,0.92)	$1.21 \mathrm{E}-06$	yes	$1.57 \mathrm{E}-01$

List of CpGs*	chr:pos	UCSC RefGene Name	UCSC Known Gene**	Significant*** Y) association with gene expression in						N datasets showing association (max 6)
				$\begin{aligned} & \text { GEO }(\mathrm{N}=38) \\ & \text { cord blood } \end{aligned}$	$\begin{aligned} & \text { loW }(N=157) \\ & \text { cord blood } \end{aligned}$	INMA ($\mathrm{N}=113$) cord blood	INMA ($\mathrm{N}=112$) 4-year-olds	BAMSE ($\mathrm{N}=248$) 16-year-olds	$\operatorname{BIOS}(N=3,096)$ adults	
cg13427149	chr1:217804379	GPATCH2;SPATA17	GPATCH2	N	N	N	N	Y	Y	2
cg17333211	chr4:141294016	SCOC	LOC100129858	N	Y	N	N	N	Y	2
cg13289553	chr5:32585524	SUB1	SUB1	N	N	Y	Y	N	N	2
cg02331902	chr5:90610303		AK091866	Y	N	Y	N	N	Y	3
ch.6.1218502R	chr6:51250028			N	NA	NA	NA	NA	N	0
cg21486411	chr11:77348243	CLNS1A	CLNS1A	N	NA	Y	Y	N	N	2
cg16792002	chr11:95788886	MAML2	Mir_548	N	N	N	N	N	N	0
ch.11.109687686R	chr11:110182476			N	NA	NA	NA	NA	N	0
cg07156990	chr14:102685678	WDR20	WDR20	Y	Y	N	Y	N	N	3

* ch probes (ch.11.109687686R and ch.6.1218502R) have been reported to be cross hybridizing and thus UCSC Known Gene is intentionally left blank.
** UCSC Known Gene fills in nearest genes for those missing gene annotation in the UCSC RefGene Name column.
*** P-value < 0.05 in the smaller GEO, IOW, INMA and BAMSE datasets and FDR < 0.05 in the larger BIOS dataset
(B)

DMR chr:pos	Gene Name	Significant* (Y) correlation with gene expression in						N datasets showing association (max 5)
		$\text { GEO }(\mathrm{N}=38)$ cord blood	$\text { IoW (} \mathrm{N}=157 \text {) }$ cord blood	INMA ($\mathrm{N}=113$) cord blood	INMA ($\mathrm{N}=112$) 4-year-olds	BAMSE ($\mathrm{N}=248$) 16-year-olds	$\begin{gathered} \hline \text { BIOS }(3,096) \\ \text { adults } \end{gathered}$	
chr1:1296093-1296489	MXRA8	Y	NA	Y	Y	N	Y	4
chr1:59280290-59280842	LINC01135	N	NA	Y	Y	Y	Y	4
chr1:220263017-220263699	BPNT1;RNU5F-1	Y	NA	Y	Y	N	Y	4
chr2:202097062-202097608	CASP8	N	NA	N	Y	Y	Y	3
chr2:235004843-235005012	SPP2	Y	NA	NA	NA	N	N	1
chr3:194188646-194189444	ATP13A3	N	NA	N	N	Y	Y	2
chr4:113218385-113218525	ALPK1	N	NA	N	N	Y	Y	2
chr5:64777678-64778186	ADAMTS6	Y	NA	N	Y	N	Y	3
chr5:81573780-81574461	RPS23	N	NA	N	Y	N	Y	2
chr5:158526108-158526694	EBF1	Y	NA	Y	Y	Y	Y	5
chr6:291687-292824	DUSP22	N	NA	Y	Y	Y	Y	4
chr6:26234819-26235610	HIST1H1D	N	NA	Y	Y	Y	Y	4
chr6:29648161-29649085	ZFP57	Y	NA	Y	Y	Y	Y	5
chr6:31055396-31055503	C6orf15	Y	NA	Y	N	N	Y	3
chr6:32799997-32801050	TAP2	Y	NA	N	N	N	Y	2
chr7:87974722-87975316	STEAP4	Y	NA	N	N	N	Y	2
chr7:106694832-106695007	PRKAR2B	N	NA	N	N	N	Y	1

ACCEPTED MANUSCRIPT

chr7:158045980-158046359	PTPRN2	N	NA	N	N	NA	Y	1
chr8:33370172-33371226	TTI2	N	NA	Y	Y	N	Y	3
chr8:127889010-127889296	PCAT1	N	NA	N	Y	NA	N	1
chr10:65028929-65029169	JMJD1C	N	NA	Y	N	N	N	1
chr10:71871364-71871634	H2AFY2	N	NA	Y	Y	N	N	2
chr11:268923-269469	NLRP6	N	NA	Y	Y	N	Y	3
chr11:107328442-107328915	CWF19L2	N	NA	N	N	N	Y	1
chr12:58329764-58330116	LOC100506844	Y	NA	Y	Y	N	Y	4
chr12:74931289-74932008	ATXN7L3B	N	NA	N	N	NA	Y	1
chr13:31618695-31618744	TEX26	N	NA	Y	N	N	N	1
chr13:108953659-108954055	TNFSF13B	Y	NA	N	N	Y	Y	3
chr14:69341139-69341739	ACTN1	N	NA	Y	Y	Y	Y	4
chr16:20774873-20775353	ACSM3	Y	NA	N	N	Y	Y	3
chr17:21029189-21029296	DHRS7B	N	NA	Y	Y	N	Y	3
chr17:74667833-74668253	LOC105274304	Y	NA	N	N	N	Y	2
chr18:47813745-47815431	CXXC1	Y	NA	N	N	N	Y	2
chr21:36421467-36421956	RUNX1	N	NA	N	N	NA	Y	1
chr22:24372913-24374013	LOC391322	Y	NA	N	N	Y	Y	3
DMRs associated with gene	he datas							35

DMRs associated with gene expression in at least one of the datasets.

* P-value <0.05 in the smaller GEO, IoW, INMA and BAMSE datasets and FDR <0.05 in the larger BIOS dataset

				'	Sign	cant** (Y) corr	ation with gene	xpression in		N datasets
CpG	chr:pos	UCSC RefGene Name	UCSC Known Gene*	$\text { GEO }(\mathrm{N}=38)$ cord blood	$\text { IoW }(N=157)$ cord blood	INMA ($\mathrm{N}=113$) cord blood	INMA ($\mathrm{N}=112$) 4-year-olds	BAMSE ($\mathrm{N}=248$) 16-year-olds	$\operatorname{BIOS}(3,096)$ adults	showing association (max 6)
cg06315149	chr1:2036398	PRKCZ	PRKCZ	N	Y	Y	N	Y	Y	4
cg13066938	chr1:6341140	ACOT7	ACOT7	Y	Y	N	N	Y	Y	4
cg21220721	chr1:6341230	ACOT7	ACOT7	Y	N	Y	Y	Y	Y	5
cg09249800	chr1:6341287	ACOT7	ACOT7	Y	N	Y	Y	NA	Y	4
cg11699125	chr1:6341327	ACOT7	ACOT7	Y	Y	Y	Y	Y	Y	6
cg18783781	chr1:9599067	SLC25A33	SLC25A33	Y	Y	N	Y	Y	Y	5
cg02171825	chr1:26517586	CATSPER4	CATSPER4	Y	N	Y	Y	Y	Y	5
cg01942646	chr1:27240694	NROB2	NROB2	Y	N	Y	N	Y	Y	4
cg16263722	chr1:29523841	MECR	MECR	Y	N	Y	N	N	Y	3
cg11987455	chr1:43290834	ERMAP	ERMAP	Y	Y	Y	Y	N	Y	5
cg11683482	chr1:44678623	DMAP1	DMAP1	Y	N	N	Y	Y	Y	4
cg12643917	chr1:44715958	ERI3	ERI3	Y	NA	N	N	N	Y	2
cg26252077	chr1:61607055	NFIA	NFIA	N	NA	N	N	N	Y	1
cg10704177	chr1:62209607	INADL	INADL	N	N	N	N	Y	Y	2
cg01445399	chr1:87596934	LOC339524	LOC339524	N	N	Y	N	N	Y	2
cg19805160	chr1:159870731	CCDC19	CCDC19	Y	NA	N	Y	Y	Y	4
cg09332506	chr1:160309220	COPA	NCSTN	Y	Y	Y	N	Y	Y	5
cg17971251	chr1:177907297	SEC16B	SEC16B	N	N	N	N	N	Y	1

chr1:201458737 chr1:231005895 chr2:9752386 chr2:11917623 chr2:25142016 chr2:74612144 chr2:74612222 chr2:75089669 chr2:98585733 chr2:120019111 chr2:121036760 chr2:149639822 chr2:161798364 chr3:3152374 chr3:3152530 chr3:12918528 chr3:52492874 chr3:52864816 chr3:66428294 chr3:69812798 chr3:71295684 chr3:130616293 chr3:136618442 chr3:185217761 chr3:195974300 chr4:9937674 chr4:57848125 chr4:102878132 chr4:148733880 chr5:10708717 chr5:38783142 chr5:60142446 chr5:79501131 chr5:112541553 chr5:133563532 chr6:25754190 chr6:32141591 chr6:33232644 chr6:57048049 chr6:139689053 chr6:158994407 chr6:164531576

CSRP1	CSRP1	Y	Y	Y
C1orf198	C1orf198	Y	Y	Y
YWHAQ	YWHAQ	N	Y	N
LPIN1	LPIN1	N	Y	N
ADCY3	ADCY3	Y	N	N
LOC100189589	LOC100189589	Y	Y	Y
LOC100189589	LOC100189589	Y	Y	Y
HK2	HK2	N	Y	N
TMEM131	TMEM131	N	N	N
STEAP3	STEAP3	Y	NA	Y
RALB	RALB	N	N	N
KIF5C;MIR1978	JA429504	Y	N	N
	TANK	N	NA	N
IL5RA	IL5RA	Y		N
IL5RA	IL5RA	Y	Y	N
	DQ581328	N	N	Y
NISCH	NISCH	Y	Y	Y
ITIH4	ITIH4	Y	N	N
SLC25A26	LRIG1	Y	N	N
SLC25A26	LRIG1	N	N	Y
MITF	MITF	N	N	N
FOXP1	FOXP1	N	N	N
ATP2C1	ATP2C1	Y	N	N
NCK1	NCK1	Y	N	Y
TNIK	TNIK	N	N	N
TMEM41A	TMEM41A	Y	N	Y
PCYT1A	PCYT1A	Y	Y	N
SLC2A9	SLC2A9	Y	Y	Y
POLR2B	POLR2B	Y	N	N
BANK1	BANK1	Y	N	N
ARHGAP10	Metazoa_SRP	N	N	N
DAP	DAP	Y	Y	Y
	AK126213	Y	N	N
	ELOVL7	Y	N	N
SERINC5	SERINC5	N	Y	Y
MCC	MCC	N	N	N
	PPP2CA	N	Y	N
SLC17A4	SLC17A4	N	N	N
AGPAT1	PPT2	Y	Y	Y
VPS52	VPS52	Y	Y	Y
BAG2	BAG2	Y	N	Y
	CITED2	Y	N	N
TMEM181	TMEM181	N	Y	Y
	AK093114	N	NA	N

[^5] cg03329755 cg25270424 cg04321303 cg02435538 cg13007207 cg17947765 cg14678084 cg05184016 cg07970948 cg06558622 cg24576940 cg23147443 cg18666454 cg02596233 cg23706836 cg21919729 cg03437605 cg22816343 cg23205629 cg10815420 cg02133716 cg00736681 cg09377531 cg14025883 cg01499988 cg13482814 cg13576859 cg20503329 cg00045753 cg13458609 cg13835688 cg13628444 cg13850063 cg14011077 cg06958964 cg25854298 cg04973995 cg00366037 cg22235258 cg24459209 cg15700636 cg08773180
chr6:166876490 chr6:167178233 chr6:167189272 chr7:24965657 chr7:44107504 chr7:75507337 chr7:105279391 chr7:117857964 chr7:127627251 chr7:149543136
chr7:149543165 chr7:149543177 chr7:150648283 chr7:150649655 chr7:150651937 chr7:150970209 chr8:6407997 chr8:11719367 chr8:22847209 chr8:26243601 chr8:105599835 chr8:128981622 chr8:134546052 chr8:141046469 chr9:5436224 chr9:35755346 chr9:82183332 chr9:97403129 chr9:101705792 chr9:123630545 chr9:130608923 chr9:130859454 chr9:134883788 chr9:138362321 chr9:138362327 chr10:45494806 chr10:73936754 chr10:74057977 chr10:76781121 chr11:34675402 chr11:57148215 chr11:57156050 chr11:57157607

RPS6KA2	RPS6KA2	Y	Y	N
RPS6KA2	RPS6KA2	N	NA	Y
RPS6KA2	RPS6KA2	N	N	Y
OSBPL3	OSBPL3	N	N	N
	PGAM2	Y	N	N
RHBDD2	RHBDD2	Y	N	N
ATXN7L1	ATXN7L1	N	N	N
	ANKRD7	Y	N	
SND1	SND1-IT1	N	NA	N
ZNF862	BC045757	Y	Y	Y
ZNF862	BC045757	Y	Y	Y
ZNF862	BC045757	Y	NA	N
KCNH2	KCNH2	Y	Y	Y
KCNH2	KCNH2	Y		N
KCNH2	KCNH2	Y	N	Y
SMARCD3	SMARCD3	Y	NA	N
ANGPT2;MCPH1	ANGPT2	N	NA	N
CTSB	CTSB	Y	Y	Y
RHOBTB2	RHOBTB2	Y	N	Y
BNIP3L	BNIP3L	Y	N	N
RNF122	RNF122	Y	N	Y
LRP12	LRP12	Y	Y	N
PVT1	MIR1205	Y	N	N
ST3GAL1	ST3GAL1	N	N	Y
TRAPPC9	AX748239	N	N	N
C9orf46	C9orf46	N	N	N
MSMP	MSMP	Y	Y	N
	TLE4	N	NA	Y
FBP1	FBP1	Y	N	Y
COL15A1	COL15A1	Y	N	N
PHF19	PHF19	Y	Y	N
ENG	ENG	Y	N	N
SLC25A25	SLC25A25	Y	Y	Y
MED27	MED27	N	Y	Y
	AK096249	N	N	Y
	AK096249	Y	N	N
C1Oorf25;ZNF22	ZNF22	Y	N	Y
ASCC1	ASCC1	Y	Y	Y
	DDIT4	N	N	Y
MYST4	KAT6B	Y	N	N
EHF	EHF	N	N	Y
PRG3	PRG3	Y	N	Y
PRG2	PRG2	Y	Y	Y
PRG2	PRG2	Y	NA	Y

$z \gg z>z \ggg \ggg z \sum z \ggg z z \gg z z z>z z \gg z \gg z z \ggg z z \ggg>$
 cg25087851 cg13233042 cg05300717 cg15219163 cg24368962 cg19434937 cg03014680 cg09447105 cg24028828 cg21498475 cg10065736 cg03131767 cg19928703 cg07908654 cg24818699 cg08770358 cg00222125 cg11770323 cg25479097 $\operatorname{cg} 18368116$ cg08077807 cg04933530 cg01901579 cg16409452 cg14084609 cg18550847 cg01000631 cg05875066 cg18817654 cg25939647 cg07177867 cg11266582 cg10387956 cg23387863 cg04497992 cg08067346 cg26134665 cg09147843 cg01998785 cg27383865 cg08640475 cg10099827
chr11:57157632 chr11:59856225 chr11:60623918 chr11:63432489 chr11:65546210 chr11:70842128 chr11:111570978 chr12:7104184 chr12:10122522 chr12:15126020 chr12:56694932 chr12:113737469 chr12:117440120 chr12:123446272 chr13:30143971 chr13:41631052 chr13:43355514
chr13:48876684 chr13:53226144 chr13:80066032 chr13:113305704 chr14:21436271 chr14:62001072 chr14.95615731 chr14:100610186 chr14:100610407 chr14:100610570 chr14:100610667 chr14:104625249 chr15:39485138 chr15:40173065 chr15:52030746 chr15:64275853 chr15:72646210 chr15:77472416 chr16:616212 chr16:25011481 chr16:31021544 chr16:53467612 chr16:55542709 chr16:84075870 chr16:85551478 chr16:85551514

PRG2	PRG2	Y	Y	Y
MS4A2	MS4A2	Y	N	N
GPR44	PTGDR2	Y	Y	Y
ATL3	ATL3	Y	NA	N
DKFZp761E198	DKFZp761E198	N	N	Y
SHANK2	SHANK2	N	NA	N
SIK2	DQ599327	Y	N	N
LPCAT3	EMG1	Y	Y	
CLEC12A	CLEC12A	Y	Y	Y
PDE6H	PDE6H	Y	Y	Y
CS	CS	Y	N	N
SLC24A6	SLC24A6	N	Y	Y
FBXW8	AK055849	N	Y	N
ABCB9	ABCB9	Y	Y	Y
SLC7A1	SLC7A1	N	N	N
	TRNA_Glu	Y	N	N
C13orf30	C13orf30	N	N	Y
RB1	BC039553	Y	NA	N
SUGT1	SUGT1	Y	N	N
NDFIP2	NDFIP2	Y	N	N
C13orf35	C13orf35	Y	N	N
	RNASE2	Y	Y	N
PRKCH	PRKCH	N	N	N
	IRF2BPL	Y	N	N
DICER1	DICER1	Y	N	N
EVL	AX747103	N	N	Y
EVL	AX747103	Y	N	Y
EVL	AX747103	Y	N	Y
	EVL	N	N	Y
KIF26A	KIF26A	N	N	Y
	C15orf54	Y	NA	N
GPR176	GPR176	Y	Y	Y
LYSMD2	LYSMD2	Y	Y	Y
DAPK2	DAPK2	Y	N	N
HEXA	BC034424	N	Y	Y
SGK269	AX747193	Y	N	N
NHLRC4	C16orf11	Y	N	N
ARHGAP17	DQ583809	Y	NA	N
STX1B	STX1B	Y	Y	Y
RBL2	RBL2	N	N	Y
LPCAT2	LPCAT2	Y	Y	N
SLC38A8	SLC38A8	N	NA	Y
	KIAA0182	N	N	N
	KIAA0182	Y	Y	N

ACCEPTED MANUSCRIPT

cg08940169	chr16:88540241	ZFPM1	ZFPM1	N	Y	Y	N	Y	Y	4
cg04983687	chr16:88558223	ZFPM1	ZFPM1	Y	Y	Y	Y	Y	Y	6
cg20315954	chr17:15137304	PMP22	PMP22	N	Y	Y	Y	Y	Y	5
cg20885063	chr17:17939419	ATPAF2	ATPAF2	Y	N	N	Y	N	Y	3
cg14611258	chr17:17946468	C17orf39	C17orf39	Y	N	N	N	Y	Y	3
cg19468946	chr17:37922297	IKZF3	IKZF3	Y	Y	Y	Y	Y	Y	6
cg21723861	chr17:39686628		KRT19	Y	Y	Y	Y	Y	Y	6
cg00170714	chr17:40724562	MLX;PSMC3IP	PSMC3IP	Y	Y	Y	Y	Y	Y	6
cg25173129	chr17:56269410	EPX	EPX	Y	NA	Y	Y	N	Y	4
cg02970679	chr17:56269818	EPX	EPX	Y	N	Y	N	N	Y	3
cg17374802	chr17:56270828	EPX	EPX	Y	N	Y	N	N	Y	3
cg17041511	chr17:61509620		CYB561	N	N	N	N	N	Y	1
cg22312249	chr17:72779428	TMEM104	TMEM104	Y	Y	Y	Y	Y	Y	6
cg09705784	chr17:76565232	DNAH17	DNAH17	N	N	N	N	N	Y	1
cg06725287	chr17:80533762	FOXK2	FOXK2	Y	N	Y	Y	N	Y	4
cg13054523	chr17:81055722		METRNL	N	N	Y	N	Y	Y	3
cg18337287	chr19:930871	ARID3A	ARID3A	N	Y	Y	Y	Y	Y	5
cg12104982	chr19:5592815	SAFB2	SAFB2	N	Y	N	Y	N	Y	3
cg10644885	chr19:11687621	ACP5	ACP5	N	Y	N	Y	Y	Y	4
cg02359181	chr19:34860339	GPI	GPI	Y	N	N	Y	Y	Y	4
cg20673965	chr19:44220148	IRGC	IRGC	Y	N	Y	Y	Y	Y	5
cg26979537	chr19:48016860	NAPA	NAPA	Y	Y	N	N	N	Y	3
cg21073212	chr20:30866501	KIF3B	KIF3B	N	N	Y	Y	N	Y	3
cg20226253	chr20:34022914	GDF5	GDF50S	Y	Y	N	Y	Y	Y	5
cg21045547	chr20:35422703	C20orf117	KIAA0889	Y	Y	N	Y	Y	Y	5
cg13792581	chr20:43590115	TOMM34	TOMM34	Y	Y	Y	Y	Y	Y	6
cg13197551	chr20:60709957	LSM14B	LSM14B	N	N	Y	Y	Y	Y	4
cg18042632	chr21:42520902	C21orf130	LINC00323	Y	N	Y	Y	Y	Y	5
cg18879389	chr21:43771120	TFF2	TFF2	Y	Y	N	Y	N	Y	4

CpGs associated with gene expression in at least one of the datasets.

* UCSC Known Gene fills in nearest genes for those missing gene annotation in the UCSC RefGene Name column.
** P-value <0.05 in the smaller GEO, IoW, INMA and BAMSE datasets and FDR < 0.05 in the larger BIOS dataset.
(D)

	Gene Name	Significant* (Y) correlation with gene expression in						N datasets showing association (max 5)
DMR		$\text { GEO }(N=38)$ cord blood	IoW ($\mathrm{N}=157$) cord blood	INMA ($\mathrm{N}=113$) cord blood	INMA ($\mathrm{N}=112$) 4-year-olds	BAMSE ($\mathrm{N}=248$) 16-year-olds	$\begin{aligned} & \text { BIOS }(3,096) \\ & \text { adults } \end{aligned}$	
chr1:2036283-2036644	PRKCZ	Y	NA	Y	N	Y	Y	4
chr1:87596820-87596935	LINC01140	N	NA	N	N	N	Y	1
chr1:161575716-161576323	HSPA7	Y	NA	Y	N	Y	Y	5
chr1:209979111-209979780	IRF6	Y	NA	Y	N	Y	Y	4
chr2:11917490-11917788	LPIN1	N	NA	N	N	N	Y	1
chr2:149639612-149640260	KIF5C	Y	NA	NA	NA	Y	Y	3

chr3:3151795-3152917	IL5RA	N	NA	Y	N	Y	Y	3
chr3:195974258-195974330	PCYT1A	Y	NA	Y	N	Y	Y	4
chr5:38445220-38446193	EGFLAM	N	NA	N	N	N	NA	1
chr5:132008525-132009631	IL4	N	NA	Y	N	Y	Y	3
chr6:112688010-112688931	RFPL4B	N	NA	Y	Y	Y	NA	3
chr6:166876490-166877039	RPS6KA2;RPS6KA2-IT1	N	NA	N	N	N	Y	1
chr7:65419185-65419289	VKORC1L1	Y	NA	Y	Y	Y	Y	5
chr7:149543136-149543178	ZNF862	Y	NA	Y	Y	Y	Y	5
chr7:156735383-156735657	NOM1	N	NA	Y	N	N	N	1
chr8:832917-833049	ERICH1-AS1;DLGAP2	N	NA	N	N	NA	Y	1
chr8:141046436-141046853	TRAPPC9	N	NA	N	N	N	Y	1
chr9:130859454-130859607	SLC25A25	Y	NA	Y	N	Y	Y	5
chr9:138362321-138362505	PPP1R26-AS1	N	NA	Y	N	N	Y	2
chr11:59856225-59856359	MS4A2	Y	NA	Y	Y	Y	Y	5
chr11:65545808-65547173	AP5B1	Y	NA	Y	Y	Y	Y	5
chr11:69291998-69292065	LINC01488	N	NA	Y	N	Y	Y	3
chr12:15125458-15126021	PDE6H	Y	NA	Y	Y	N	Y	4
chr14:100610071-100610668	EVL	Y	NA	Y	Y	Y	Y	5
chr15:64275810-64275854	DAPK2	N	NA	N	N	N	Y	1
chr15:99443213-99443667	IGF1R	Y	NA	Y	N	N	Y	2
chr16:615709-616221	PRR35	Y	NA	Y	Y	Y	Y	5
chr16:875257-875627	PRR25	Y	NA	Y	Y	Y	Y	5
chr16:85551478-85551749	GSE1	N	NA	N	N	N	Y	1
chr16:88539861-88540397	ZFPM1	N	NA	Y	Y	Y	Y	3
chr17:56269410-56270829	EPX	Y	NA	Y	Y	N	Y	4
chr17:78682785-78683458	RPTOR	N	NA	Y	Y	Y	Y	3
chr19:50553682-50554511	LOC400710	Y	NA	Y	N	Y	Y	4
chr19:51961666-51961938	SIGLEC8	Y	NA	Y	Y	Y	Y	5
chr20:35503832-35504554	TLDC2	Y	NA	Y	Y	Y	Y	5
chr21:42520365-42520903	LINC00323	Y	NA	N	Y	Y	Y	5

DMRs associated with gene expression in at least one of the datasets.

* P-value < 0.05 in the smaller GEO, IoW, INMA and BAMSE datasets and FDR < 0.05 in the larger BIOS dataset
 CANONICAL PATHWAYS

Category	Genes	P-value
Granzyme B Signaling	CASP8,	0.029512092
Granzyme A Signaling	HIST1H1D,	0.031622777
D-myo-inositol (1,4,5)-trisphosphate Degradation	BPNT1,	0.033113112
Protein Kinase A Signaling	HIST1H1D,PRKAR2B,DUSP22	0.034673685
Inflammasome pathway	CASP8,	0.037153523
eNOS Signaling	PRKAR2B,CASP8	0.038904514
Superpathway of D-myo-inositol (1,4,5)-trisphosphate Metabolism	BPNT1,	0.044668359
Tumoricidal Function of Hepatic Natural Killer Cells	CASP8,	0.044668359
Sertoli Cell-Sertoli Cell Junction Signaling	PRKAR2B,ACTN1	0.044668359
NF-kB Signaling	TNFSF13B,CASP8	0.045708819

Category	Disease and Biological Function ${ }^{*}$	P-value	Genes
Cellular Development	Arrest in differentiation of leukocytes	$9.96 \mathrm{E}-06$	TNFSF13B,EBF1,RUNX1,CASP8
	Arrest in differentiation of myeloid cells	2.07E-05	RUNX1,CASP8
	Arrest in differentiation of leukemia cells	$3.44 \mathrm{E}-05$	RUNX1,CASP8
	Differentiation of pre-B lymphocytes	0.000128	TNFSF13B,EBF1,RUNX1
	Expansion of leukocytes	0.000965	TNFSF13B,EBF1,RUNX1,CASP8
	Differentiation of B lymphocytes	0.00163	TNFSF13B,EBF1,RUNX1,CASP8
	Differentiation of pro-B lymphocytes	0.00176	EBF1,RUNX1
	Differentiation of neutrophils	0.00271	DHRS7B,RUNX1
	Arrest in differentiation of B lymphocytes	0.00297	TNFSF13B,EBF1
	Expansion of B lymphocytes	0.00297	TNFSF13B,EBF1
	Differentiation of phagocytes	0.00322	DHRS7B,EBF1,RUNX1,CASP8
	Thrombopoiesis	0.00325	ACTN1,CASP8
	Hematopoiesis in embryo	0.00517	RUNX1,CASP8
	Expansion of lymphocytes	0.00735	TNFSF13B,EBF1,CASP8
	Differentiation of hematopoietic progenitor cells	0.00811	TNFSF13B,EBF1,RUNX1,CASP8
	Differentiation of antigen presenting cells	0.0107	EBF1,RUNX1,CASP8
	Expansion of hematopoietic progenitor cells	0.0109	EBF1,RUNX1
	Proliferation of leukemia cell lines	0.0141	PRKAR2B,RUNX1,CASP8
	Development of hematopoietic progenitor cells	0.0194	TNFSF13B,EBF1,RUNX1
	Proliferation of hematopoietic progenitor cells	0.0223	EBF1,RUNX1,JMJD1C
	Differentiation of embryonic stem cells	0.0225	RUNX1,H2AFY2
	Differentiation of myeloid leukocytes	0.023	DHRS7B,RUNX1,CASP8
	Maturation of lymphocytes	0.026	TNFSF13B,RUNX1
	Formation of osteoclasts	0.0297	EBF1,RUNX1

Cellular Growth and Proliferation

Hematological System Development and Function

Proliferation of B lymphocytes Differentiation of macrophages Commitment of cells
Development of B lymphocytes
Expansion of T lymphocytes Differentiation of leukemia cell lines Proliferation of keratinocytes Arrest in differentiation of leukocytes Arrest in differentiation of myeloid cells Differentiation of pre-B lymphocytes Expansion of leukocytes
Expansion of lymphatic system cells Differentiation of B lymphocytes Differentiation of pro-B lymphocytes Differentiation of neutrophils Arrest in differentiation of B lymphocytes
Expansion of B lymphocytes
Differentiation of phagocytes
Thrombopoiesis
Hematopoiesis in embryo
Expansion of lymphocytes
Differentiation of hematopoietic progenitor cells
Differentiation of antigen presenting cells Expansion of hematopoietic progenitor cells Proliferation of leukemia cell lines
Development of hematopoietic progenitor cells Proliferation of hematopoietic progenitor cells Differentiation of myeloid leukocytes Formation of osteoclasts
Proliferation of B lymphocytes Differentiation of macrophages Development of B lymphocytes Expansion of T lymphocytes
Proliferation of keratinocytes Arrest in differentiation of leukocytes Arrest in differentiation of myeloid cells Differentiation of pre-B lymphocytes
Survival of pre-B lymphocytes
Expansion of leukocytes
Survival of hematopoietic cells
0.0302 TNFSF13B,EBF1,CASP8
0.0341 RUNX1,CASP8
0.0373 EBF1,RUNX1
0.0373 TNFSF13B,EBF1
0.0443 TNFSF13B,CASP8
0.0456 PRKAR2B,RUNX1
0.0498 RUNX1,STEAP4
9.96E-06 TNFSF13B,EBF1,RUNX1,CASP8
2.07E-05 RUNX1,CASP8
0.000128 TNFSF13B,EBF1,RUNX1
0.000965 TNFSF13B,EBF1,RUNX1,CASP8
0.00098 TNFSF13B,EBF1,RUNX1,CASP8
0.00163 TNFSF13B,EBF1,RUNX1,CASP8
0.00176 EBF1,RUNX1
0.00271 DHRS7B,RUNX1
0.00297 TNFSF13B,EBF1
0.00297 TNFSF13B,EBF1
0.00322 DHRS7B,EBF1,RUNX1,CASP8
0.00325 ACTN1,CASP8
0.00517 RUNX1,CASP8
0.00735 TNFSF13B,EBF1,CASP8
0.00811 TNFSF13B,EBF1,RUNX1,CASP8
0.0107 EBF1,RUNX1,CASP8
0.0109 EBF1,RUNX1
0.0141 PRKAR2B,RUNX1,CASP8
0.0194 TNFSF13B,EBF1,RUNX1
0.0223 EBF1,RUNX1,JMJD1C
0.023 DHRS7B,RUNX1,CASP8
0.0297 EBF1,RUNX1
0.0302 TNFSF13B,EBF1,CASP8
0.0341 RUNX1,CASP8
0.0373 TNFSF13B,EBF1
0.0443 TNFSF13B,CASP8
0.0498 RUNX1,STEAP4
9.96E-06 TNFSF13B,EBF1,RUNX1,CASP8
2.07E-05 RUNX1,CASP8
0.000128 TNFSF13B,EBF1,RUNX1
0.00093 TNFSF13B,EBF1
0.000965 TNFSF13B,EBF1,RUNX1,CASP8
0.00131 TNFSF13B,EBF1,RUNX1

```
ACCEPTED MANUSCRIPT
```

Differentiation of B lymphocytes Differentiation of pro-B lymphocytes Activation of B lymphocytes Differentiation of neutrophils Arrest in differentiation of B lymphocytes Expansion of B lymphocytes Differentiation of phagocytes Thrombopoiesis
Abnormal morphology of thymus gland Quantity of myeloid progenitor cells Activation of lymphocytes Hematopoiesis in embryo Expansion of lymphocytes Differentiation of hematopoietic progenitor cells Cell viability of lymphocytes Differentiation of antigen presenting cells Expansion of hematopoietic progenitor cells Abnormal morphology of lymphoid organ Quantity of marginal-zone B lymphocytes Abnormal morphology of enlarged lymph node Development of hematopoietic progenitor cells Proliferation of hematopoietic progenitor cells Differentiation of myeloid leukocytes Quantity of hematopoietic progenitor cells Maturation of lymphocytes Quantity of pre-B lymphocytes Proliferation of B lymphocytes Differentiation of macrophages Development of B lymphocytes Expansion of T lymphocytes T cell homeostasis Activation of T lymphocytes Abnormal morphology of enlarged spleen Arrest in differentiation of leukocytes Arrest in differentiation of myeloid cells Differentiation of pre-B lymphocytes Differentiation of B lymphocytes Differentiation of pro-B lymphocytes Differentiation of neutrophils Arrest in differentiation of B lymphocytes

0.00163	TNFSF13B,EBF1,RUNX1,CASP8
0.00176	EBF1,RUNX1
0.0026	TNFSF13B,EBF1,CASP8
0.00271	DHRS7B,RUNX1
0.00297	TNFSF13B,EBF1
0.00297	TNFSF13B,EBF1
0.00322	DHRS7B,EBF1,RUNX1,CASP8
0.00325	ACTN1,CASP8
0.00331	HIST1H1D,RUNX1,CASP8
0.00369	RUNX1,CASP8
0.00432	TNFSF13B,EBF1,RUNX1,DUSP22,CASP8
0.00517	RUNX1,CASP8
0.00735	TNFSF13B,EBF1,CASP8
0.00811	TNFSF13B,EBF1,RUNX1,CASP8
0.0093	TNFSF13B,EBF1,CASP8
0.0107	EBF1,RUNX1,CASP8
0.0109	EBF1,RUNX1
0.0113	HIST1H1D,TNFSF13B,RUNX1,CASP8
0.0133	TNFSF13B,CASP8
0.0147	TNFSF13B,CASP8
0.0194	TNFSF13B,EBF1,RUNX1
0.0223	EBF1,RUNX1,JMJD1C
0.023	DHRS7B,RUNX1,CASP8
0.0239	TNFSF13B,EBF1,RUNX1,CASP8
0.026	TNFSF13B,RUNX1
0.0271	TNFSF13B,EBF1
0.0302	TNFSF13B,EBF1,CASP8
0.0341	RUNX1,CASP8
0.0373	TNFSF13B,EBF1
0.0443	TNFSF13B,CASP8
0.0472	TNFSF13B,EBF1,RUNX1,CASP8
0.0474	RUNX1,DUSP22,CASP8
0.0488	TNFSF13B,CASP8
$9.96 E-06$	TNFSF13B,EBF1,RUNX1,CASP8
$2.07 E-05$	RUNX1,CASP8
0.000128	TNFSF13B,EBF1,RUNX1
0.00163	TNFSF13B,EBF1,RUNX1,CASP8
0.00176	EBF1,RUNX1
0.00271	DHRS7B,RUNX1
0.00297	TNFSF13B,EBF1
0.	

Lymphoid Tissue Structure and Development

Differentiation of phagocytes
Thrombopoiesis
Quantity of myeloid progenitor cells Hematopoiesis in embryo
Differentiation of hematopoietic progenitor cells Differentiation of antigen presenting cells
Expansion of hematopoietic progenitor cells Development of hematopoietic progenitor cells Proliferation of hematopoietic progenitor cells Differentiation of myeloid leukocytes
Quantity of hematopoietic progenitor cells
Quantity of pre-B lymphocytes
Differentiation of macrophages
Development of B lymphocytes
Arrest in differentiation of leukocytes Differentiation of pre-B lymphocytes Expansion of leukocytes
Expansion of lymphatic system cells
Differentiation of B lymphocytes
Differentiation of pro-B lymphocytes
Frequency of B lymphocytes
Differentiation of neutrophils
Arrest in differentiation of B lymphocytes
Expansion of B lymphocytes
Differentiation of phagocytes
Abnormal morphology of thymus gland
Quantity of myeloid progenitor cells
Quantity of bone marrow cells
Expansion of lymphocytes
Differentiation of antigen presenting cells Abnormal morphology of lymphoid organ
Quantity of marginal-zone B lymphocytes Abnormal morphology of enlarged lymph node Differentiation of myeloid leukocytes
Maturation of lymphocytes
Quantity of pre-B lymphocytes
Proliferation of B lymphocytes
Differentiation of macrophages
Development of B lymphocytes
Expansion of T lymphocytes

0.00322	DHRS7B,EBF1,RUNX1,CASP8
0.00325	ACTN1,CASP8
0.00369	RUNX1,CASP8
0.00517	RUNX1,CASP8
0.00811	TNFSF13B,EBF1,RUNX1,CASP8
0.0107	EBF1,RUNX1,CASP8
0.0109	EBF1,RUNX1
0.0194	TNFSF13B,EBF1,RUNX1
0.0223	EBF1,RUNX1,JMJD1C
0.023	DHRS7B,RUNX1,CASP8
0.0239	TNFSF13B,EBF1,RUNX1,CASP8
0.0271	TNFSF13B,EBF1
0.0341	RUNX1,CASP8
0.0373	TNFSF13B,EBF1
$9.96 E-06$	TNFSF13B,EBF1,RUNX1,CASP8
0.000128	TNFSF13B,EBF1,RUNX1
0.000965	TNFSF13B,EBF1,RUNX1,CASP8
0.00098	TNFSF13B,EBF1,RUNX1,CASP8
0.00163	TNFSF13B,EBF1,RUNX1,CASP8
0.00176	EBF1,RUNX1
0.00176	TNFSF13B,RUNX1
0.00271	DHRS7B,RUNX1
0.00297	TNFSF13B,EBF1
0.00297	TNFSF13B,EBF1
0.00322	DHRS7B,EBF1,RUNX1,CASP8
0.00331	HIST1H1D,RUNX1,CASP8
0.00369	RUNX1,CASP8
0.00627	EBF1,RUNX1,CASP8
0.00735	TNFSF13B,EBF1,CASP8
0.0107	EBF1,RUNX1,CASP8
0.0113	HIST1H1D,TNFSF13B,RUNX1,CASP8
0.0133	TNFSF13B,CASP8
0.0147	TNFSF13B,CASP8
0.023	DHRS7B,RUNX1,CASP8
0.026	TNFSF13B,RUNX1
0.0271	TNFSF13B,EBF1
0.0302	TNFSF13B,EBF1,CASP8
0.0341	RUNX1,CASP8
0.0373	TNFSF13B,EBF1
0.0443	TNFSF13B,CASP8
0.	

ACCEPTED MANUSCRIPT

Cancer

Organismal Injury and Abnormalities

Abnormal morphology of enlarged spleen Arrest in differentiation of leukocytes Arrest in differentiation of myeloid cells Differentiation of pre-B lymphocytes Differentiation of B lymphocytes Differentiation of pro-B lymphocytes Differentiation of neutrophils Arrest in differentiation of B lymphocytes Differentiation of phagocytes
Thrombopoiesis
Hematopoiesis in embryo
Activation of osteoclasts
Differentiation of hematopoietic progenitor cells Differentiation of antigen presenting cells Formation of coronary vessel Development of hematopoietic progenitor cells Differentiation of myeloid leukocytes Formation of osteoclasts
Differentiation of macrophages
Development of B lymphocytes
Proliferation of keratinocytes
Arrest in differentiation of leukemia cells
Apoptosis of leukemia cells
Type M4 acute myeloid leukemia
Precursor B-cell acute lymphoblastic leukemia Cecum adenocarcinoma

Oral tumor
Arrest in differentiation of leukemia cells
Apoptosis of leukemia cells
Hemopericardium
Primary Sjögren syndrome
Abnormal morphology of thymus gland Insulin-dependent diabetes mellitus
Advanced stage peripheral arterial disease
Intermediate disease stage peripheral arterial disease Inflammation of joint
Type M4 acute myeloid leukemia
Non-traumatic arthropathy
Hereditary bleeding disorder
Abnormal morphology of lymphoid organ
0.0488 TNFSF13B,CASP8
9.96E-06 TNFSF13B,EBF1,RUNX1,CASP8
2.07E-05 RUNX1,CASP8
0.000128 TNFSF13B,EBF1,RUNX1
0.00163 TNFSF13B,EBF1,RUNX1,CASP8
0.00176 EBF1,RUNX1
0.00271 DHRS7B,RUNX1
0.00297 TNFSF13B,EBF1
0.00322 DHRS7B,EBF1,RUNX1,CASP8
0.00325 ACTN1,CASP8
0.00517 RUNX1,CASP8
0.00667 EBF1,RUNX1
0.00811 TNFSF13B,EBF1,RUNX1,CASP8
0.0107 EBF1,RUNX1,CASP8
0.0122 ADAMTS6,RUNX1
0.0194 TNFSF13B,EBF1,RUNX1
0.023 DHRS7B,RUNX1,CASP8
0.0297 EBF1,RUNX1
0.0341 RUNX1,CASP8
0.0373 TNFSF13B,EBF1
0.0498 RUNX1,STEAP4
3.44E-05 RUNX1,CASP8
0.000605 TNFSF13B,RUNX1,CASP8
0.00648 RUNX1,STEAP4
0.0264 EBF1,RUNX1
0.028 ATP13A3,TAP2,MXRA8,STEAP4
0.0329 ATP13A3,ADAMTS6,EBF1,WDR20,DUSP22,STEAP4,CASP8
3.44E-05 RUNX1,CASP8
0.000605 TNFSF13B,RUNX1,CASP8
0.00127 RUNX1,CASP8
0.00258 TNFSF13B,TAP2
0.00331 HIST1H1D,RUNX1,CASP8
0.00339 TNFSF13B,C6orf15,ADAMTS6,TAP2,ZFP57
0.00367 SUB1,RUNX1,CASP8
0.00426 SUB1,RUNX1,CASP8
0.00508 TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,CASP8,JMJD1C
0.00648 RUNX1,STEAP4
0.00682 TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,JMJD1C
0.00813 RUNX1,ACTN1
0.0113 HIST1H1D,TNFSF13B,RUNX1,CASP8

	Rheumatoid arthritis	0.0135	TNFSF13B,C6orf15,TAP2,PTPRN2,STEAP4,JMJD1C
	Abnormal morphology of enlarged lymph node	0.0147	TNFSF13B,CASP8
	Autosomal recessive immunodeficiency	0.0228	TAP2,CASP8
	Precursor B-cell acute lymphoblastic leukemia	0.0264	EBF1,RUNX1
	Cecum adenocarcinoma	0.028	ATP13A3,TAP2,MXRA8,STEAP4
	Oral tumor	0.0329	ATP13A3,ADAMTS6,EBF1,WDR20,DUSP22,STEAP4,CASP8
	Hepatic steatosis	0.0351	PRKAR2B,EBF1,STEAP4
	Abnormal morphology of enlarged spleen	0.0488	TNFSF13B,CASP8
Tumor Morphology	Arrest in differentiation of leukemia cells	3.44E-05	RUNX1,CASP8
	Apoptosis of leukemia cells	0.000605	TNFSF13B,RUNX1,CASP8
Embryonic Development	Differentiation of pre-B lymphocytes	0.000128	TNFSF13B,EBF1,RUNX1
	Differentiation of B lymphocytes	0.00163	TNFSF13B,EBF1,RUNX1,CASP8
	Differentiation of pro-B lymphocytes	0.00176	EBF1,RUNX1
	Arrest in differentiation of B lymphocytes	0.00297	TNFSF13B,EBF1
	Remodeling of vitelline vessel	0.0034	RUNX1,CASP8
	Hematopoiesis in embryo	0.00517	RUNX1,CASP8
	Formation of coronary vessel	0.0122	ADAMTS6,RUNX1
	Abnormal morphology of yolk sac	0.0192	HIST1H1D,CASP8
	Differentiation of embryonic stem cells	0.0225	RUNX1,H2AFY2
	Abnormal morphology of vitelline vessel	0.0228	HIST1H1D,CASP8
	Development of B lymphocytes	0.0373	TNFSF13B,EBF1
Humoral Immune Response	Differentiation of pre-B lymphocytes	0.000128	TNFSF13B,EBF1,RUNX1
	Differentiation of B lymphocytes	0.00163	TNFSF13B,EBF1,RUNX1,CASP8
	Differentiation of pro-B lymphocytes	0.00176	EBF1,RUNX1
	Activation of B lymphocytes	0.0026	TNFSF13B,EBF1,CASP8
	Arrest in differentiation of B lymphocytes	0.00297	TNFSF13B,EBF1
	Expansion of B lymphocytes	0.00297	TNFSF13B,EBF1
	Quantity of marginal-zone B lymphocytes	0.0133	TNFSF13B,CASP8
	Quantity of pre-B lymphocytes	0.0271	TNFSF13B,EBF1
	Proliferation of B lymphocytes	0.0302	TNFSF13B,EBF1,CASP8
	Development of B lymphocytes	0.0373	TNFSF13B,EBF1
Organ Development	Differentiation of pre-B lymphocytes	0.000128	TNFSF13B,EBF1,RUNX1
	Differentiation of B lymphocytes	0.00163	TNFSF13B,EBF1,RUNX1,CASP8
	Differentiation of pro-B lymphocytes	0.00176	EBF1,RUNX1
	Arrest in differentiation of B lymphocytes	0.00297	TNFSF13B,EBF1
	Formation of coronary vessel	0.0122	ADAMTS6,RUNX1
	Development of B lymphocytes	0.0373	TNFSF13B,EBF1
	Proliferation of keratinocytes	0.0498	RUNX1,STEAP4
Organismal Development	Differentiation of pre-B lymphocytes	0.000128	TNFSF13B,EBF1,RUNX1
	Differentiation of B lymphocytes	0.00163	TNFSF13B,EBF1,RUNX1,CASP8

```
ACCEPTED MANUSCRIPT
```

Connective Tissue Development and Function

Tissue Morphology

Cell Death and Survival

Differentiation of pro-B lymphocytes Arrest in differentiation of B lymphocytes Paleness of liver
Thrombopoiesis
Abnormal morphology of thymus gland Hematopoiesis in embryo
Formation of coronary vessel
Differentiation of embryonic stem cells Abnormal morphology of vitelline vessel Development of artery
Development of B lymphocytes
Morphology of liver
Abnormal morphology of enlarged spleen
Quantity of adipose tissue
Thrombopoiesis
Quantity of connective tissue
Activation of osteoclasts
Quantity of subcutaneous fat
Formation of osteoclasts
Proliferation of keratinocytes
Quantity of adipose tissue
Abnormal morphology of thymus gland
Remodeling of vitelline vessel
Quantity of connective tissue
Quantity of myeloid progenitor cells
Quantity of bone marrow cells
Quantity of subcutaneous fat
Abnormal morphology of lymphoid organ
Quantity of marginal-zone B lymphocytes
Abnormal morphology of enlarged lymph node
Abnormal morphology of yolk sac
Abnormal morphology of vitelline vessel
Quantity of hematopoietic progenitor cells
Quantity of pre-B lymphocytes
Abnormal morphology of membrane tissue
Abnormal morphology of enlarged spleen
Apoptosis of leukemia cells
Apoptosis of lymphoma cell lines
Survival of pre-B lymphocytes
Survival of hematopoietic cells
0.00176 EBF1,RUNX1
0.00297 TNFSF13B,EBF1
0.00297 RUNX1,BPNT1
0.00325 ACTN1,CASP8
0.00331 HIST1H1D,RUNX1,CASP8
0.00517 RUNX1,CASP8
0.0122 ADAMTS6,RUNX1
0.0225 RUNX1,H2AFY2
0.0228 HIST1H1D,CASP8
0.0357 ADAMTS6,RUNX1
0.0373 TNFSF13B,EBF1
0.0479 RUNX1,BPNT1,STEAP4
0.0488 TNFSF13B,CASP8
0.000387 C6orf15,PRKAR2B,EBF1,STEAP4,CASP8
0.00325 ACTN1,CASP8
0.00366 C6orf15,PRKAR2B,EBF1,RUNX1,STEAP4,CASP8
0.00667 EBF1,RUNX1
0.00667 EBF1,STEAP4
0.0297 EBF1,RUNX1
0.0498 RUNX1,STEAP4
0.000387 C6orf15,PRKAR2B,EBF1,STEAP4,CASP8
0.00331 HIST1H1D,RUNX1,CASP8
0.0034 RUNX1,CASP8
0.00366 C6orf15,PRKAR2B,EBF1,RUNX1,STEAP4,CASP8
0.00369 RUNX1,CASP8
0.00627 EBF1,RUNX1,CASP8
0.00667 EBF1,STEAP4
0.0113 HIST1H1D,TNFSF13B,RUNX1,CASP8
0.0133 TNFSF13B,CASP8
0.0147 TNFSF13B,CASP8
0.0192 HIST1H1D,CASP8
0.0228 HIST1H1D,CASP8
0.0239 TNFSF13B,EBF1,RUNX1,CASP8
0.0271 TNFSF13B,EBF1
0.0479 HIST1H1D,NLRP6
0.0488 TNFSF13B,CASP8
0.000605 TNFSF13B,RUNX1,CASP8
0.000705 TNFSF13B,EBF1,RUNX1,CASP8
0.00093 TNFSF13B,EBF1
0.00131 TNFSF13B,EBF1,RUNX1

Organismal Survival	Viability	0.000756	RUNX1,CXXC1,CASP8
	Organismal death	0.0244	HIST1H1D,TNFSF13B,EBF1,RUNX1,CLNS1A,SUB1,CXXC1,NLRP6,ZFP57,PTPRN2,BPNT1,CASP8
Cardiovascular Disease	Hemopericardium	0.00127	RUNX1,CASP8
	Advanced stage peripheral arterial disease	0.00367	SUB1,RUNX1,CASP8
	Intermediate disease stage peripheral arterial disease	0.00426	SUB1,RUNX1,CASP8
Connective Tissue Disorders	Inflammation of joint	0.00508	TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,CASP8,JMJD1C
	Non-traumatic arthropathy	0.00682	TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,JMJD1C
	Rheumatoid arthritis	0.0135	TNFSF13B,C6orf15,TAP2,PTPRN2,STEAP4,JMJD1C
Immunological Disease	Primary Sjögren syndrome	0.00258	TNFSF13B,TAP2
	Abnormal morphology of thymus gland	0.00331	HIST1H1D,RUNX1,CASP8
	Insulin-dependent diabetes mellitus	0.00339	TNFSF13B,C6orf15,ADAMTS6,TAP2,ZFP57
	Systemic autoimmune syndrome	0.00418	TNFSF13B,C6orf15,ADAMTS6,TAP2,ZFP57,PTPRN2,STEAP4,CASP8,JMJD1C
	Type M4 acute myeloid leukemia	0.00648	RUNX1,STEAP4
	Abnormal morphology of lymphoid organ	0.0113	HIST1H1D,TNFSF13B,RUNX1,CASP8
	Rheumatoid arthritis	0.0135	TNFSF13B,C6orf15,TAP2,PTPRN2,STEAP4,JMJD1C
	Abnormal morphology of enlarged lymph node	0.0147	TNFSF13B,CASP8
	Immunodeficiency	0.0165	TNFSF13B,TAP2,CASP8
	Autosomal recessive immunodeficiency	0.0228	TAP2,CASP8
	Precursor B-cell acute lymphoblastic leukemia	0.0264	EBF1,RUNX1
	Primary immunodeficiency disorder	0.0447	TAP2,CASP8
	Abnormal morphology of enlarged spleen	0.0488	TNFSF13B,CASP8
Inflammatory Disease	Inflammation of joint	0.00508	TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,CASP8,JMJD1C
	Rheumatoid arthritis	0.0135	TNFSF13B,C6orf15,TAP2,PTPRN2,STEAP4,JMJD1C
Skeletal and Muscular Disorders	Inflammation of joint	0.00508	TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,CASP8,JMJD1C
	Non-traumatic arthropathy	0.00682	TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,JMJD1C
	Rheumatoid arthritis	0.0135	TNFSF13B,C6orf15,TAP2,PTPRN2,STEAP4,JMJD1C
Hematological Disease	Type M4 acute myeloid leukemia	0.00648	RUNX1,STEAP4

ACCEPTED MANUSCRIPT

	Hereditary bleeding disorder	0.00813	RUNX1,ACTN1
	Precursor B-cell acute lymphoblastic leukemia	0.0264	EBF1,RUNX1
Cardiovascular System Development	Formation of coronary vessel	0.0122	ADAMTS6,RUNX1
and Function	Development of artery	0.0357	ADAMTS6,RUNX1
Cell Cycle	Binding of protein binding site	0.0283	EBF1,RUNX1,SUB1
	Binding of DNA	0.0404	TNFSF13B,EBF1,RUNX1,SUB1
Cellular Function and Maintenance	T cell homeostasis	0.0472	TNFSF13B,EBF1,RUNX1,CASP8
Developmental Disorder	Dysmorphogenesis	0.0173	HIST1H1D, CXXC1
	Abnormal morphology of yolk sac	0.0192	HIST1H1D,CASP8
	Abnormal morphology of vitelline vessel	0.0228	HIST1H1D,CASP8
Hereditary Disorder	Hereditary bleeding disorder	0.00813	RUNX1,ACTN1
	Autosomal recessive immunodeficiency	0.0228	TAP2,CASP8
Cellular Movement	Cell movement of leukemia cell lines	0.0438	RUNX1,ACTN1
Gastrointestinal Disease	Primary Sjögren syndrome	0.00258	TNFSF13B,TAP2
	Insulin-dependent diabetes mellitus	0.00339	TNFSF13B,C6orf15,ADAMTS6,TAP2,ZFP57
	Cecum adenocarcinoma	0.028	ATP13A3,TAP2,MXRA8,STEAP4
	Oral tumor	0.0329	ATP13A3,ADAMTS6,EBF1,WDR20,DUSP22,STEAP4,CASP8
	Hepatic steatosis	0.0351	PRKAR2B,EBF1,STEAP4
Organ Morphology	Paleness of liver	0.00297	RUNX1,BPNT1
	Abnormal morphology of thymus gland	0.00331	HIST1H1D,RUNX1,CASP8
	Abnormal morphology of lymphoid organ	0.0113	HIST1H1D,TNFSF13B,RUNX1,CASP8
	Abnormal morphology of enlarged lymph node	0.0147	TNFSF13B,CASP8
	Morphology of liver	0.0479	RUNX1,BPNT1,STEAP4
	Abnormal morphology of enlarged spleen	0.0488	TNFSF13B,CASP8
Inflammatory Response	Activation of B lymphocytes	0.0026	TNFSF13B,EBF1,CASP8
	Activation of lymphocytes	0.00432	TNFSF13B,EBF1,RUNX1,DUSP22,CASP8
	Inflammation of joint	0.00508	TNFSF13B,C6orf15,ADAMTS6,TAP2,PTPRN2,STEAP4,CASP8,JMJD1C
	Rheumatoid arthritis	0.0135	TNFSF13B,C6orf15,TAP2,PTPRN2,STEAP4,JMJD1C
	Activation of T lymphocytes	0.0474	RUNX1,DUSP22,CASP8
Cell-mediated Immune Response	T cell homeostasis	0.0472	TNFSF13B,EBF1,RUNX1,CASP8
Metabolic Disease	Insulin-dependent diabetes mellitus	0.00339	TNFSF13B,C6orf15,ADAMTS6,TAP2,ZFP57
	Glucose metabolism disorder	0.0166	TNFSF13B,C6orf15,ADAMTS6,TAP2,EBF1,ZFP57,STEAP4,CASP8
	DNA repair-deficiency disorder	0.0264	TAP2,RUNX1
	Hepatic steatosis	0.0351	PRKAR2B,EBF1,STEAP4
Endocrine System Disorders	Insulin-dependent diabetes mellitus	0.00339	TNFSF13B,C6orf15,ADAMTS6,TAP2,ZFP57
Ophthalmic Disease	Primary Sjögren syndrome	0.00258	TNFSF13B,TAP2
Cell-To-Cell Signaling and Interaction	Activation of B lymphocytes	0.0026	TNFSF13B,EBF1,CASP8
	Activation of lymphocytes	0.00432	TNFSF13B,EBF1,RUNX1,DUSP22,CASP8
	Activation of osteoclasts	0.00667	EBF1,RUNX1
	Activation of T lymphocytes	0.0474	RUNX1,DUSP22,CASP8

ACCEPTED MANUSCRIPT

Immune Cell Trafficking

Digestive System Development and Function
Hepatic System Development and Function
Endocrine System Development and Function
Gene Expression

Skeletal and Muscular System Development and Function Hair and Skin Development and Function
Carbohydrate Metabolism Lipid Metabolism

Small Molecule Biochemistry

Molecular Transport

DNA Replication, Recombination, and Repair
Nucleic Acid Metabolism
Protein Synthesis
Hepatic System Disease Post-Translational Modification Cell Signaling

Activation of B lymphocytes Activation of lymphocytes Activation of T lymphocytes Paleness of liver
Morphology of liver
Paleness of liver Morphology of liver Glucose tolerance

Transcription of RNA
Transcription
Expression of RNA
Transcription of DNA
Binding of protein binding site
Activation of DNA endogenous promoter Binding of DNA
Activation of osteoclasts
Formation of osteoclasts
Proliferation of keratinocytes

Uptake of D-glucose
Concentration of lipid
Quantity of sphingolipid Concentration of cholesterol Incorporation of thymidine Uptake of D-glucose
Concentration of lipid
Quantity of sphingolipid Concentration of cholesterol Uptake of D-glucose Concentration of lipid Quantity of sphingolipid Concentration of cholesterol Incorporation of thymidine DNA damage Incorporation of thymidine Quantity of leptin in blood Hepatic steatosis
Dephosphorylation of protein I-kappaB kinase/NF-kappaB cascade
0.0026 TNFSF13B,EBF1,CASP8
0.00432 TNFSF13B,EBF1,RUNX1,DUSP22,CASP8
0.0474 RUNX1,DUSP22,CASP8
0.00297 RUNX1,BPNT1
0.0479 RUNX1,BPNT1,STEAP4
0.00297 RUNX1,BPNT1
0.0479 RUNX1,BPNT1,STEAP4
0.00374 PRKAR2B,PTPRN2,STEAP4,CASP8
0.00648 HIST1H1D,PRKAR2B,EBF1,RUNX1,SUB1,CXXC1,H2AFY2,ZFP57,DUSP22,CASP8,JMJD1C
0.00708 HIST1H1D,TNFSF13B,PRKAR2B,EBF1,RUNX1,SUB1,CXXC1,H2AFY2,ZFP57,DUSP22,CASP8,JMJD1C
0.0109 HIST1H1D,PRKAR2B,EBF1,RUNX1,SUB1,CXXC1,RPS23,H2AFY2,ZFP57,DUSP22,CASP8,JMJD1C
0.0163 HIST1H1D,EBF1,RUNX1,SUB1,CXXC1,H2AFY2,ZFP57,DUSP22,JMJD1C
0.0283 EBF1,RUNX1,SUB1
0.0371 HIST1H1D,EBF1,RUNX1,SUB1,H2AFY2,ZFP57,DUSP22
0.0404 TNFSF13B,EBF1,RUNX1,SUB1
0.00667 EBF1,RUNX1
0.0297 EBF1,RUNX1
0.0498 RUNX1,STEAP4
0.0133 TNFSF13B,EBF1,STEAP4
0.0197 PRKAR2B,RUNX1,PTPRN2,BPNT1,STEAP4,CASP8
0.0222 RUNX1,CASP8
0.0342 PRKAR2B,BPNT1,STEAP4
0.0125 TNFSF13B,PRKAR2B
0.0133 TNFSF13B,EBF1,STEAP4
0.0197 PRKAR2B,RUNX1,PTPRN2,BPNT1,STEAP4,CASP8
0.0222 RUNX1,CASP8
0.0342 PRKAR2B,BPNT1,STEAP4
0.0133 TNFSF13B,EBF1,STEAP4
0.0197 PRKAR2B,RUNX1,PTPRN2,BPNT1,STEAP4,CASP8
0.0222 RUNX1,CASP8
0.0342 PRKAR2B,BPNT1,STEAP4
0.0125 TNFSF13B,PRKAR2B
0.0131 EBF1,RUNX1,CASP8
0.0125 TNFSF13B,PRKAR2B
0.0253 PRKAR2B,STEAP4
0.0351 PRKAR2B,EBF1,STEAP4
0.0286 PTPRN2,DUSP22
0.0369 NLRP6,CASP8

Table E10: Significantly enriched canonical pathways, diseases and biological functions from Ingenuity Pathway Analysis based on CpGs and regions differentially methylated in older children relation to asthma
CANONICAL PATHWAYS

Category	Genes	P-value
p70S6K Signaling	RALB,YWHAQ,IL4,PRKCH,PRKCZ,PPP2CA	0.000870964
Glycolysis I	FBP1,PGAM2,GPI	0.000954993
Gluconeogenesis I	FBP1,PGAM2,GPI	0.001096478
mTOR Signaling	RALB,RPTOR,RPS6KA2,DDIT4,PRKCH,PRKCZ,PPP2CA	0.00128825
ERK5 Signaling	RALB,YWHAQ,RPS6KA2,PRKCZ	0.002630268
Glioma Signaling	IGF1R,RALB,RBL2,PRKCH,PRKCZ	0.002951209
UDP-N-acetyl-D-galactosamine Biosynthesis II	HK2,GPI	0.003467369
ErbB4 Signaling	RALB,NCSTN,PRKCH,PRKCZ	0.003548134
Myc Mediated Apoptosis Signaling	IGF1R,RALB,YWHAQ,PRKCZ	0.003548134
Fc Epsilon RI Signaling	RALB,IL4,PRKCH,PRKCZ,MS4A2	0.003715352
Growth Hormone Signaling	IGF1R,RPS6KA2,PRKCH,PRKCZ	0.005011872
HIPPO signaling	PATJ,YWHAQ,PRKCZ,PPP2CA	0.005011872
α-Adrenergic Signaling	RALB,ADCY3,PRKCH,PRKCZ	0.006606934
UVC-Induced MAPK Signaling	RALB,PRKCH,PRKCZ	0.007079458
Hepatic Cholestasis	ADCY3,IL4,PRKCH,PRKCZ,NROB2	0.009549926
ErbB Signaling	RALB,PRKCH,PRKCZ,NCK1	0.01023293
Melanocyte Development and Pigmentation Signaling	RALB,ADCY3,RPS6KA2,MITF	0.01023293
IGF-1 Signaling	IGF1R,RALB,YWHAQ,PRKCZ	0.013182567
Synaptic Long Term Depression	IGF1R,RALB,PRKCH,PRKCZ,PPP2CA	0.013803843
RAR Activation	ADCY3,SMARCD3,PRKCH,PRKCZ,CITED2	0.018197009
Natural Killer Cell Signaling	RALB,PRKCH,PRKCZ,NCK1	0.018197009
PI3K/AKT Signaling	RALB,YWHAQ,PRKCZ,PPP2CA	0.019952623
Renin-Angiotensin Signaling	RALB,ADCY3,PRKCH,PRKCZ	0.020417379
Thrombopoietin Signaling	RALB,PRKCH,PRKCZ	0.020417379
Estrogen Receptor Signaling	POLR2B,RALB,MED27,NROB2	0.023442288
14-3-3-mediated Signaling	RALB,YWHAQ,PRKCH,PRKCZ	0.025703958
P2Y Purigenic Receptor Signaling Pathway	RALB,ADCY3,PRKCH,PRKCZ	0.027542287
Breast Cancer Regulation by Stathmin1	RALB,ADCY3,PRKCH,PRKCZ,PPP2CA	0.028183829
Insulin Receptor Signaling	RALB,RPTOR,PRKCZ,NCK1	0.029512092
Angiopoietin Signaling	RALB,ANGPT2,NCK1	0.030902954
CREB Signaling in Neurons	POLR2B,RALB,ADCY3,PRKCH,PRKCZ	0.032359366
Airway Inflammation in Asthma	IL4,	0.032359366
Role of NFAT in Cardiac Hypertrophy	IGF1R,RALB,ADCY3,PRKCH,PRKCZ	0.034673685
Erythropoietin Signaling	RALB,PRKCH,PRKCZ	0.034673685
IL-3 Signaling	RALB,PRKCH,PRKCZ	0.034673685
Macropinocytosis Signaling	RALB,PRKCH,PRKCZ	0.034673685
Prolactin Signaling	RALB,PRKCH,PRKCZ	0.036307805
Neuregulin Signaling	RALB,PRKCH,PRKCZ	0.038904514
Fcy Receptor-mediated Phagocytosis in Macrophages and	PRKCH,PRKCZ,NCK1	0.039810717
Monocytes		
LPS-stimulated MAPK Signaling	RALB,PRKCH,PRKCZ	0.040738028

NF-kB Activation by Viruses
Dopamine-DARPP32 Feedback in cAMP Signaling
Rapoport-Luebering Glycolytic Shun
Trehalose Degradation II (Trehalase) HER-2 Signaling in Breast Cancer
VEGF Family Ligand-Receptor Interactions
Mechanisms of Viral Exit from Host Cells
Triacylglycerol Biosynthesis
Ceramide Signaling
Tight Junction Signaling
eNOS Signaling
PPAR Signaling
GDP-mannose Biosynthesis
Opioid Signaling Pathway
GNRH Signaling

RALB,PRKCH,PRKCZ	0.040738028
ADCY3,PRKCH,PRKCZ,PPP2CA	0.040738028
PGAM2,	0.040738028
HK2,	0.040738028
RALB,PRKCH,PRKCZ	0.041686938
RALB,PRKCH,PRKCZ	0.041686938
PRKCH,PRKCZ	0.044668359
LPIN1,LPCAT2	0.044668359
RALB,PRKCZ,PPP2CA	0.044668359
PATJ,NAPA,PRKCZ,PPP2CA	0.045708819
ADCY3,SLC7A1,PRKCH,PRKCZ	0.046773514
RALB,CITED2,NROB2	0.046773514
GPI,	0.047863009
RALB,ADCY3,RPS6KA2,PRKCH,PRKCZ	0.047863009

DISEASES AND BIOLOGICAL FUNCTIONS

Quantity of B-1 lymphocytes Morphology of lymph follicle Proliferation of lymphocytes

Migration of basophils Activation of phagocytes Granulopoiesis
Activation of eosinophils
Morphology of granulocytes Homing of Th2 cells Activation of mast cells Quantity of blood cells

Survival of follicular B lymphocytes Myelopoiesis of leukocytes Quantity of B-1a lymphocytes Quantity of B lymphocytes Migration of B-lymphocyte derived cell lines Proliferation of germinal center B lymphocytes Activation of blood cells Quantity of myeloid cells Activation of Th2 cells Development of plasma cells Activation of leukocytes Quantity of leukocytes

Development of PBMCs Differentiation of memory B cells Cellular infiltration by granulocytes Differentiation of eosinophils Leukopoiesis

Hematopoiesis in embryo Migration of Langerhans cells Abnormal morphology of germinal center Abnormal morphology of lymphoid organ Morphology of lymphoid tissue Activation of basophils Abnormal morphology of eosinophils Migration of basophils Activation of eosinophils Activation of mast cells Degranulation of BMMC cells Activation of basophils
0.00101
0.00112
, $4,1 K Z$ F3,PRKCZ,TLE4,BANK1,PPT2
0.00119
0.00136
0.00156
0.00159
0.00168
0.00246
0.00287
0.00304
0.00333
0.00349
0.00393
0.00397
0.00447
0.00653
0.00653
0.00675
0.0073
0.00742
0.00742
0.00789
0.00815
$\lambda>$
0.00836
0.00836
0.00869
0.00936
0.00985
0.0114
0.0115
0.015
0.015
0.0151
0.0162
$1.97 \mathrm{E}-07$
0.000199
0.00136
0.00168
0.00168 PTGDR2,LL4,IL5RA
0.00304 PRG2,SIGLEC8,IL4,EPX
0.0126
1.97E-07

RPTOR,IL4,IL5RA,ARID3A,BANK1 PI
PTGDR2,ENG

IGF1R,ZFPM1,RALB,SIGLEC8,IL4,CITED2
PTGDR2,IL4,IL5RA
PRG2,IL4,EPX
PTGDR2,IL4
PRG2,SIGLEC8,IL4,EPX

3A,BANK1,TLE4,ST3GAL1,PPT2,PPP2CA
DICER1,IL4
IGF1R,ZFPM1,RALB,SIGLEC8,FOXP1,IL4,CITED2
RPTOR,ARID3A,BANK1

PTGDR2,ENG
DICER1,IL4

PTGDR2,IL4
DICER1,IL4

1,PPT2,PPP2CA
DICER1,IL4
FOXP1,IL4
IRF6,PTGDR2,SIGLEC8,ANGPT2,DICER1,CTSB,IL4
SIGLEC8,IL4

4
ZFPM1,ENG,ARID3A
RPTOR,IL4
IL4,IKZF3,BANK1

PRG2,PTGDR2,IL4,EPX,PRG3
PRG2,EPX
PTGDR2,IL4,IL5RA

IL4,EHF
PRG2,PTGDR2,IL4,EPX,PRG3

TANK,SLC7A1,RBL2,IL4,IL5RA,IKZF3,IRF6,IGF1R,NCSTN,LPIN1,RPTOR,DICER1,PCYT1A,PRKCH,PRKCZ,BANK1,NCK1,G

IRF6,PRG2,SIGLEC8,ANGPT2,FOXP1,TFF2,IL4,METRNL,EPX,RNASE2,PRG3

TANK,SIGLEC8,PTGDR2,SLC7A1,RBL2,BNIP3L,IL4,IL5RA,IKZF3,IRF6,IGF1R,RPTOR,DICER1,CTSB,STEAP3,PRKCH,ARID

TANK,RPTOR,CTSB,IL4,IL5RA,PRKCH,IKZF3,ARID3A,BANK1,TLE4

PRG2,SIGLEC8,PTGDR2,ANGPT2,FOXP1,IL4,METRNL,IL5RA,PRG3,IRF6,RPTOR,TFF2,EPX,NCK1,BANK1,RNASE2
IRF6,IGF1R,PTGDR2,SIGLEC8,RBL2,CTSB,IL4,IL5RA,ARID3A,TLE4,PPT2,PPP2CA

PRG2,PTGDR2,SIGLEC8,ANGPT2,FOXP1,IL4,METRNL,IL5RA,PRG3,IRF6,TFF2,EPX,BANK1,NCK1,RNASE2
TANK,SIGLEC8,PTGDR2,RBL2,IL4,IL5RA,IKZF3,IRF6,IGF1R,RPTOR,DICER1,CTSB,PRKCH,ARID3A,BANK1,TLE4,ST3GAL

ZFPM1,SIGLEC8,FOXP1,RBL2,IL4,IL5RA,IKZF3,CITED2,NROB2,IGF1R,RALB,RPTOR,DICER1,PRKCH,PRKCZ,ARID3A,TLE

BNIP3L,STEAP3,IL5RA,PRKCH,IKZF3,BANK1,TLE4,CITED2,PPT2
RBL2,BNIP3L,STEAP3,IL4,IL5RA,PRKCH,IKZF3,PRKCZ,BANK1,TLE4,CITED2,PPT2

Activation of granulocytes
Migration of basophils
Activation of phagocytes Activation of eosinophils Homing of Th2 cells Activation of mast cells Migration of B-lymphocyte derived cell lines Activation of Th2 cells Activation of leukocytes Cellular infiltration by granulocytes Migration of Langerhans cells Activation of basophils Activation of granulocytes Inflammatory response of tumor cell lines Activation of phagocytes Activation of eosinophil Degranulation of cells Immune response of tumor cell lines Activation of mast cells Inflammatory response Activation of Th2 cells Activation of leukocytes Size of phagocytes Antiviral response Migration of Langerhans cells Degranulation of BMMC cells Glycolysis of cells Modification of glucose-6-phosphate Flux of carbohydrate Flux of D-glucose Metabolism of monosaccharide Catabolism of proteoglycan Metabolism of D-hexose Gluconeogenesis Cell death of epithelial cells Necrosis of epithelial tissue

Necrosis

Cell death of connective tissue cells Survival of follicular B lymphocytes Apoptosis of hepatoma cell lines
0.000552
0.00136
0.00156
0.00168
0.00168
0.00287
0.00304
0.00653
0.00742
0.00789
0.00789
0.00869
0.0115
1.97E-07
0.000552
0.00136
0.00156
0.00168
0.00183
0.00263
0.00304
0.00327

RNAS
0.00742 PTGDR2,IL
0.00789 PRG2,PTGDR2,SIGLEC8,ANGPT2,FOXP1,IL4,METRNL,IL5RA,PRG3,IRF6,TFF2,EPX,BANK1,NCK1,RNASE2
0.0104 RPTOR,IL4
0.0109 SERINC5,DICER1,BNIP3L,IL4,DDIT4,RNASE2
0.0115 RPTOR,IL4
0.0126 IL4,EHF
3.26E-06 IGF1R,RPTOR,IL4,DDIT4,FBP1,PGAM2,HK2,CITED2,GP
0.000396 HK2,GPI
0.000846 PCYT1A,PGAM2,GPI
0.000979 PGAM2,GP
0.00479 IGF1R,NISCH,FBP1,HK2,GPI
0.00836
0.00957 IGF1R,NISCH,FBP1,HK2

SOGA1,FBP1,PGAM2,NROB2
3.54E-05 PRG2,ITIH4,YWHAQ,RBL2,BNIP3L,IL4,ENG,MITF,CITED2,NROB2,IGF1R,DICER1,CTSB,EPX,HK2,PMP22,PPP2CA
0.000119 PRG2,ITIH4,YWHAQ,ANGPT2,RBL2,BNIP3L,IL4,ENG,MITF,CITED2,NROB2,IGF1R,DICER1,CTSB,EPX,HK2,PMP22,PPP2 CA
DAPK2,RBL2,BNIP3L,EHF,MITF,RALB,LRIG1,DICER1,ATP2C1,EMG1,PRKCH,NCK1,TLE4,GPI,DDIT4,ENG,CITED2,IGF1 R,RPTOR,RPS6KA2,CS,PPT2,YWHAQ,SIGLEC8,FOXP1,RHOBTB2,NAPA,IKZF3,MS4A2,STEAP3,STX1B,EPX,PRKCZ,HK2, TLDC2,ST3GAL1,PMP22,PPP2CA,PRG2,ITIH4,TANK,PTGDR2,ANGPT2,IL4,IL5RA,NROB2,CTSB,FOXK2,RNASE2
0.00255 TANK, RBL2, BNIP3L, DDIT4, ॥4, ENG,NROB2, IGF1R RALB, DICER1, RPS6KA2, CTSB, PRKCZ NCK1, GPI
0.00349 DICER1,IL4
0.00391 IGF1R,CTSB,IL4,PRKCZ,PPP2CA,NROB2

Cell death of blood cells
Apoptosis of tumor
Cell death of lymphatic system cells Cell death of immune cells Cell death of lung cells Cell death of embryonic cell lines Apoptosis

Cell death
0.00868
0.00904
0.00929
0.01
0.0113
0.0138
0.0138
0.0138
0.015
0.0163
3.54E-05
0.000119
0.000402

IGF1R,KRT19,DICER1
0.000656
0.000996
0.00122
0.00145
0.00145
0.00231
0.00287
0.00291
0.00352
0.00352
0.00368 IL4,ENG,PRKCH,ASCC1,PRKCZ
0.00417 IGF1R,ANGPT2
0.00417 KRT19,DICER1
0.00426 DICER1,CTSB,SUGT1
0.00462 KRT19,ANGPT2,CTSB,ENG
0.00523 ATP2C1,ENG,PRKCH
0.00569 IGF1R,DICER1
0.00593 IL5RA,ENG,PRKCZ,MS4A2 IGF1R,ANGPT2

IGF1R,PRG2,EPX STN,CTSB,FOXK2,RNASE2

ITIH4,DICER1,CTSB,IL4,NROB2
ITIH4,DICER1,RBL2,CTSB,IL4,ENG,MITF,NROB2
LRIG1,DICER1,FOXP1,CTSB,IL4
IGF1R,RALB,IL4,MITF
PRG2,EPX
IGF1R,CTSB
IGF1R,ANGPT2,HK2

DDIT4,IL4,HK2

DICER1,RHOBTB2,CTSB,SUGT1
RBL2,PGAM2,ARID3A
KRT19,IL5RA,ENG,PRKCZ,MS4A2
NCSTN,RBL2,ENG
IL5RA,MS4A2
CTSB,ENG
IGF1R,DICER1,RPTOR
ANGPT2,DICER1,IKZF3,KAT6B
4,ENG,PRKCH,ASCC1,PRKCZ

DAPK2,SIGLEC8,FOXP1,BNIP3L,DDIT4,IL4,IL5RA,IKZF3,MS4A2,LRIG1,RPTOR,DICER1,CTSB,PRKCZ,TLE4,ST3GAL1
LRIG1,DICER1,FOXP1,CTSB,BNIP3L,STEAP3,DDIT4,IL4,IL5RA,TLE4,ST3GAL1
DAPK2,SIGLEC8,FOXP1,DDIT4,IL4,IL5RA,IKZF3,MS4A2,LRIG1,RPTOR,DICER1,CTSB,PRKCZ,TLE4,ST3GAL1
IGF1R,TANK,YWHAQ,RBL2,CTSB,BNIP3L,DDIT4,HK2,CITED2,PMP22
DAPK2,YWHAQ,SIGLEC8,FOXP1,RHOBTB2,RBL2,NAPA,BNIP3L,EHF,IKZF3,MITF,MS4A2,KCNH2,RALB,LRIG1,DICER1,
ATP2C1,STEAP3,PRKCH,PRKCZ,HK2,NCK1,ST3GAL1,TLE4,GPI,PMP22,PPP2CA,ITIH4,ANGPT2,DAP,DDIT4,IL4,IL5RA,E NG,CITED2,NROB2,IGF1R,NCSTN,RPTOR,RPS6KA2,CTSB,CS,FOXK2,PPT2
DAPK2,RBL2,BNIP3L,EHF,MITF,RALB,LRIG1,DICER1,ATP2C1,EMG1,PRKCH,NCK1,TLE4,GPI,DAP,DDIT4,ENG,PRG3,CI TED2,IGF1R,RPTOR,RPS6KA2,CS,PPT2,YWHAQ,SIGLEC8,FOXP1,RHOBTB2,NAPA,IKZF3,MS4A2,KCNH2,KRT19,STEAP 3,STX1B,EPX,PRKCZ,HK2,TLDC2,ST3GAL1,PMP22,PPP2CA,PRG2,ITIH4,TANK,PTGDR2,ANGPT2,IL4,IL5RA,NROB2,NC

LRIG1,DICER1,FOXP1,CTSB,DDIT4,IL4,IL5RA,TLE4,ST3GAL1,MS4A2

LRIG1,DICER1,FOXP1,BNIP3L,STEAP3,IL4,IL5RA,ST3GAL1,TLE4
PRG2,ITIH4,YWHAQ,RBL2,BNIP3L,IL4,ENG,MITF,CITED2,NROB2,IGF1R,DICER1,CTSB,EPX,HK2,PMP22,PPP2CA
PRG2,ITIH4,YWHAQ,ANGPT2,RBL2,BNIP3L,IL4,ENG,MITF,CITED2,NROB2,IGF1R,DICER1,CTSB,EPX,HK2,PMP22,PPP2

Abnormal morphology of hair follicle Cell death of lung cells
Abnormal morphology of epidermis Hydronephrosis
Diabetes mellitus
Hereditary myopathy
Apoptosis of hepatocytes
Apoptosis of epithelial cells
Hemangioblastoma
Polyposis
Parakeratosis
Hemangioma
Juvenile dermatomyositis
Neurodegeneration of cerebellum
Cell viability of cancer cells
Congenital malformation of brain
Autosomal dominant Emery-Dreifuss muscular dystrophy
Proliferation of ovarian cancer cells
Lymphatic system tumor

Cell death of pneumocytes
Injury of renal glomerulus
Metastasis of tumor cell lines
Abnormal morphology of germinal center Familial pervasive developmental disorder Abnormal morphology of lymphoid organ Neoplasia of leukocytes

Barrett syndrome
Eosinophilia of tissue
Anisopoikilocytosis Hypercholesterolemia Neoplasia of leukocytes

Eosinophilia of tissue Abnormal morphology of eosinophils Chronic idiopathic urticaria
Abnormal morphology of germinal center Abnormal morphology of lymphoid organ
0.00595 IGF1R,DICER1,RBL2
0.00595 IGF1R,PRG2,EPX
0.00668 IGF1R,LRIG1,DICER1,RBL2,CTSB
0.00693 IGF1R,SLC2A9,IL4,NFIA
0.0077 ITIH4,COL15A1,FOXP1,SLC17A4,IL4,NISCH,IKZF3,CLEC12A,NROB2,KCNH2,IGF1R,SLC2A9,LRIG1,PCYT1A,CTSB,MED2 7,FBP1,HK2,BANK1,DLGAP2,PPT2
0.00857 LPIN1,PTGDR2,AP5B1,BNIP3L,ENG,SLC25A33,KIF26A,ASCC1,ATPAF2,CYB561,PMP22,KCNH2
0.00904
0.00929
0.0104
0.0104
0.0104
0.0108
0.0109
0.0109
0.0113
0.0123
0.0125
0.0126
0.01

,

FOXP1,RBL2,ATXN7L1,LPCAT2,IKZF3,BAG2,KCNH2,POLR2B,TRAPPC9,LPIN1,TNIK,LRIG1,ADCY3,DICER1,STEAP3,EGF
LAM,PRKCZ,HK2,PPP2CA,ANGPT2,COL15A1,DAP,IL4,ENG,PSMC3IP,CITED2,IGF1R,RPTOR,ACP5,SHANK2,TMEM131 ,SMARCD3

0.0138 PRG2,EPX

0.0138 ANGPT2, DICER1
0.0145 IGF1R,RALB,ANGPT2,RPTOR,DICER1,CTSB,GPI
0.015 IL4,IKZF3,BANK1
0.0151 FOXP1,SHANK2
0.0151 BNIP3L,STEAP3,IL5RA,PRKCH,IKZF3,BANK1,TLE4,CITED2,PPT2
0.0156 FOXP1,RBL2,ATXN7L1,LPCAT2,IKZF3,BAG2,MS4A2,KCNH2,TRAPPC9,LPIN1,TNIK,LRIG1,ADCY3,DICER1,STEAP3,EGF LAM,PRKCZ,HK2,PPP2CA,ANGPT2,COL15A1,DAP,IL4,ENG,PSMC3IP,CITED2,RPTOR,ACP5,SHANK2,TMEM131,SMAR CD3
IL4,ENG,ASCC1
SIGLEC8,PTGDR2,IL4
SLC7A1,STEAP3
ITIH4,LPIN1,RPTOR,NROB2
FOXP1,RBL2,ATXN7L1,LPCAT2,IKZF3,BAG2,MS4A2,KCNH2,TRAPPC9,LPIN1,TNIK,LRIG1,ADCY3,DICER1,STEAP3,EGF LAM,PRKCZ,HK2,PPP2CA,ANGPT2,COL15A1,DAP,IL4,ENG,PSMC3IP,CITED2,RPTOR,ACP5,SHANK2,TMEM131,SMAR CD3
0.000145 SIGLEC8,PTGDR2,IL4
0.000199 PRG2,EPX
0.00231 IL5RA,MS4A2
0.015 IL4,IKZF3,BANK1
0.0151 BNIP3L,STEAP3,IL5RA,PRKCH,IKZF3,BANK1,TLE4,CITED2,PPT2

			CD3
Lipid Metabolism	Release of leukotriene	0.000186	PRG2,IL4,PRG3,MS4A2
	Release of eicosanoid	0.000315	IGF1R,PRG2,LPIN1,CTSB,IL4,PRG3,MS4A2
	Release of leukotriene C4	0.00074	PRG2,IL4,PRG3
	Catabolism of fatty acid	0.0151	LPIN1,ACOT7
Molecular Transport	Release of leukotriene	0.000186	PRG2,IL4,PRG3,MS4A2
	Release of eicosanoid	0.000315	IGF1R,PRG2,LPIN1,CTSB,IL4,PRG3,MS4A2
	Release of leukotriene C4	0.00074	PRG2,IL4,PRG3
	Flux of D-glucose	0.000979	PGAM2,GPI
	Priming of synaptic vesicles	0.00653	NAPA,STX1B
	Release of histamine	0.00712	PRG2,IL4,PRG3
	Exocytosis by eukaryotic cells	0.00842	IGF1R,NAPA,IL4
	Translocation of Ca2+	0.00936	SLC8B1,ATP2C1
Small Molecule Biochemistry	Release of leukotriene	0.000186	PRG2,IL4,PRG3,MS4A2
	Release of eicosanoid	0.000315	IGF1R,PRG2,LPIN1,CTSB,IL4,PRG3,MS4A2
	Modification of glucose-6-phosphate	0.000396	HK2,GPI
	Release of leukotriene C4	0.00074	PRG2,IL4,PRG3
	Flux of D-glucose	0.000979	PGAM2,GPI
	Release of histamine	0.00712	PRG2,IL4,PRG3
	Catabolism of proteoglycan	0.00836	CTSB,IL4
	Metabolism of D-hexose	0.00957	IGF1R,NISCH,FBP1,HK2
	Catabolism of fatty acid	0.0151	LPIN1,ACOT7
Cellular Development	Differentiation of tumor cell lines	0.000186	FOXP1,RBL2,IL4,IGF1R,TRAPPC9,DICER1,PCYT1A,ATP2C1,MCC,PRKCH,PRKCZ,NCK1,RNASE2
	Proliferation of B lymphocytes	0.000195	TANK,LPIN1,RPTOR,DICER1,PCYT1A,RBL2,IL4,IL5RA,IKZF3,PRKCZ,BANK1
	Colony formation of tumor cells	0.000996	DICER1,RHOBTB2,CTSB,SUGT1
	Proliferation of lymphocytes	0.00119	TANK,SLC7A1,RBL2,IL4,IL5RA,IKZF3,IRF6,IGF1R,NCSTN,LPIN1,RPTOR,DICER1,PCYT1A,PRKCH,PRKCZ,BANK1,NCK1,G PI
	Immortalization of fibroblasts	0.00122	RBL2,PGAM2,ARID3A
	Granulopoiesis	0.00159	IGF1R,ZFPM1,RALB,SIGLEC8,IL4,CITED2
	Myelination of cells	0.00257	SERINC5,DICER1,DDIT4,HEXA,PMP22
	Myelopoiesis of leukocytes	0.00393	IGF1R,ZFPM1,RALB,SIGLEC8,FOXP1,IL4,CITED2
	Colony formation of cancer cells	0.00426	DICER1,CTSB,SUGT1
	Morphogenesis of neurons	0.00452	CSRP1,NFIA,HEXA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
	Delay in differentiation of cells	0.0049	IGF1R,ATP2C1,CTSB
	Proliferation of germinal center B lymphocytes	0.00653	DICER1,IL4
	Development of plasma cells	0.00742	DICER1,1L4
	Proliferation of skeletal muscle cells	0.00742	IGF1R,ANGPT2
	Development of PBMCs	0.00836	DICER1,IL4
	Differentiation of memory B cells	0.00836	FOXP1,IL4
	Proliferation of myofibroblasts	0.00836	CTSB,IL4
	Axonogenesis	0.00885	IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
	Differentiation of eosinophils	0.00936	SIGLEC8,IL4

Differentiation of neuroblastoma cell lines Epithelial-mesenchymal transition Proliferation of liver cells
Neuritogenesis
Leukopoiesis
Hematopoiesis in embryo
Cell proliferation of fibroblasts Proliferation of ovarian cancer cells Cell proliferation of tumor cell lines

Differentiation of keratinocytes Proliferation of hepatocytes
Myelination of axons Proliferation of endocrine cells Proliferation of B lymphocytes Inhibition of tumor cells
Inhibition of mammary tumor cells
Colony formation of tumor cells
Proliferation of lymphocytes
Proliferation of bone marrow cell lines Granulopoiesis
Colony formation of cells
Myelination of cells
Contact growth inhibition
Myelopoiesis of leukocytes
Colony formation of cancer cells
Morphogenesis of neurons
Proliferation of germinal center B lymphocytes Colony formation of tumor cell lines Proliferation of connective tissue cells Development of plasma cells Proliferation of skeletal muscle cells Development of PBMCs Differentiation of memory B cells Proliferation of myofibroblasts Axonogenesis
Differentiation of eosinophils
Proliferation of epithelial cells
Proliferation of liver cells
Neuritogenesis
Leukopoiesis

IGF1R,PCYT1A,ATP2C1
,
IGF1R,ITIH4,DICER1,CTSB,IL4,CITED2

4
ZFPM1,ENG,ARID3A
IGF1R,NCSTN,CTSB,IL4,ENG,PGAM2,ARID3A,CITED2,GPI
IGF1R,PPP2CA

IRF6,LPIN1,LRIG1,RBL2,PRKCH
IGF1R,ITIH4,DICER1,IL4,CITED2
DICER1,PMP22
IGF1R,ANGPT2,DICER1,TFF2
TANK,LPIN1,RPTOR,DICER1,PCYT1A,RBL2,IL4,IL5RA,IKZF3,PRKCZ,BANK1
DDIT4,IL4,HK2
IL4,HK2
DICER1,RHOBTB2,CTSB,SUGT1 PI

DICER1,IL4
IGF1R,KRT19,DMAP1,DICER1,RBL2,CTSB,IL4,EHF,MITF
DICER1,IL4
IGF1R,ANGPT2
DICER1,IL4
FOXP1,IL4
CTSB,IL4
IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
SIGLEC8,IL4
IRF6,IGF1R,NCSTN,ITIH4,LRIG1,DICER1,RBL2,IL4,MCC,ENG,PRKCH,CITED2
IGF1R,ITIH4,DICER1,CTSB,IL4,CITED2

CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
ZFPM1,SIGLEC8,FOXP1,RBL2,IL4,IL5RA,IKZF3,CITED2,NROB2,IGF1R,RALB,RPTOR,DICER1,PRKCH,PRKCZ,ARID3A,TLE

DAPK2,YWHAQ,DMAP1,FOXP1,RHOBTB2,RBL2,EHF,MITF,IRF6,RALB,TNIK,LRIG1,KRT19,FBXW8,STEAP3,PRKCH,PRK
CZ,HK2,ARID3A,TLE4,PPP2CA,ELOVL7,ANGPT2,IL4,ENG,IGF1R,NCSTN,RPTOR,TFF2,CTSB

TANK,SLC7A1,RBL2,IL4,IL5RA,IKZF3,IRF6,IGF1R,NCSTN,LPIN1,RPTOR,DICER1,PCYT1A,PRKCH,PRKCZ,BANK1,NCK1,G

RBL2,IL4,ENG,CITED2,IRF6,IGF1R,NCSTN,LRIG1,DICER1,CTSB,PRKCH,PGAM2,ARID3A,GPI

CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
ZFPM1,SIGLEC8,FOXP1,RBL2,IL4,IL5RA,IKZF3,CITED2,NROB2,IGF1R,RALB,RPTOR,DICER1,PRKCH,PRKCZ,ARID3A,TLE

Hematopoiesis in embryo
Cell proliferation of fibroblasts
Proliferation of heart cells
Colony formation of stomach cancer cell lines Proliferation of ovarian cancer cells
Cell proliferation of tumor cell lines
Proliferation of hepatocytes
Myelination of axons
Proliferation of endocrine cells
Stimulation of epithelial cells
Proliferation of B lymphocytes
Quantity of naive B cells
Quantity of B-1 lymphocytes
Quantity of IgM
Quantity of B-1a lymphocytes
Quantity of $\lg A$
Quantity of B lymphocytes
Quantity of $\lg G 1$
Proliferation of germinal center B lymphocytes Development of plasma cells Differentiation of memory B cells Quantity of IgG2a
Abnormal morphology of germinal center Proliferation of B lymphocytes Quantity of naive B cells
Quantity of B-1 lymphocytes Morphology of lymph follicle Proliferation of lymphocytes

Granulopoiesis
Homing of Th2 cells
Myelopoiesis of leukocytes
Quantity of B-1a lymphocytes Quantity of B lymphocytes
Proliferation of germinal center B lymphocytes Development of plasma cells
Development of PBMCs
Differentiation of memory B cells
Differentiation of eosinophils
Leukopoiesis
Quantity of lymph follicle
Abnormal morphology of germinal center
0.0114
0.0121
0.0124
0.0124
0.0126
0.0126
0.0128
0.0137
0.0138
0.0138
0.0144
0.0151
0.000195
0.000656
0.00101
0.00101
0.00108 TANK,IL4,IL5RA,IKZF3,ARID3A,BA
0.00397 RPTOR,ARID3A,BANK1
0.00404 TANK,IL4,IL5RA,IKZF3
0.00447 TANK,RPTOR,CTSB,IL4,IL5RA,PRKCH,IKZF3,ARID3A,BANK1,TLE4
0.0056 TANK,IL4,IL5RA,IKZF3,ARID3A
0.00653 DICER1,IL4
0.00742 DICER1,IL4
0.00836 FOXP1,IL4
0.0124 TANK,IL4,IKZF3,BANK1
0.015 IL4,IKZF3,BANK1
0.000195 TANK,LPIN1,RPTOR,DICER1,PCYT1A,RBL2,IL4,IL5RA,IKZF3,PRKCZ,BANK1
0.000656 IL4,IKZF3
0.00101 RPTOR,IL4,IL5RA,ARID3A,BANK1
0.00112 IL4,IKZF3,PRKCZ,TLE4,BANK1,PPT2
0.00119 TANK,SLC7A1,RBL2,IL4,IL5RA,IKZF3,IRF6,IGF1R,NCSTN,LPIN1,RPTOR,DICER1,PCYT1A,PRKCH,PRKCZ,BANK1,NCK1,G PI
IGF1R,ZFPM1,RALB,SIGLEC8,IL4,CITED2
PTGDR2,IL4
IGF1R,ZFPM1,RALB,SIGLEC8,FOXP1,IL4,CITED2
RPTOR,ARID3A,BANK1
TANK,RPTOR,CTSB,IL4,IL5RA,PRKCH,IKZF3,ARID3A,BANK1,TLE4
DICER1,IL4
DICER1,IL4
0.00836 DICER1,IL4
0.00836 FOXP1,IL4

SIGLEC8,IL4
ZFPM1,SIGLEC8,FOXP1,RBL2,IL4,IL5RA,IKZF3,CITED2,NROB2,IGF1R,RALB,RPTOR,DICER1,PRKCH,PRKCZ,ARID3A,TLE 4
0.0144 IKZF3,ARID3A,PRKCZ,BANK1,TLE4
0.015 IL4,IKZF3,BANK1

ZFPM1,ENG,ARID3A
,

IGF1R,DMAP1
IGF1R,PPP2CA
DAPK2,YWHAQ,DMAP1,FOXP1,RHOBTB2,RBL2,EHF,MITF,IRF6,RALB,TNIK,LRIG1,KRT19,FBXW8,STEAP3,PRKCH,PRK CZ,HK2,ARID3A,TLE4,PPP2CA,ELOVL7,ANGPT2,IL4,ENG,IGF1R,NCSTN,RPTOR,TFF2,CTSB

CZ,
DICER1,PMP22
IGF1R,ANGPT2,DICER1,TFF2
IL4,EPX
TANK,LPIN1,RPTOR,DICER1,PCYT1A,RBL2,IL4,IL5RA,IKZF3,PRKCZ,BANK1
IL4,IKZF3
,

TANK,IL4,IL5RA,IKZF3
0.00287
0.00653
0.00936

Abnormal morphology of lymphoid organ Morphology of lymphoid tissue Abnormal morphology of eosinophils Autophagy of tumor cell lines Morphology of blood cells Autophagy
Conversion of placental cells
Orientation of axons
Abnormal morphology of reticulocytes
Conversion of chondrocytes
Autophagy of cells
Morphology of thyroid cells
Transepithelial electrical resistance of cells
Morphology of granulocytes
Morphology of hematopoietic progenitor cells
Transepithelial electrical resistance of colorectal cancer cell lines
Morphology of tumor cell lines
Morphogenesis of neurons
Cell flattening of tumor cell lines
Size of antigen presenting cells
Reorganization of actin cytoskeleton
Morphology of leukocytes
Axonogenesis
Neuritogenesis
Size of phagocytes
Abnormal morphology of hematopoietic progenitor cells
Reorganization of cytoskeleton
Permeability of colorectal cancer cell lines
Enlargement of cells
Myelination of axons
Autophagy of tumor cell lines
Autophagy
Autophagy of cells
Organization of actin cytoskelen
Cellular homeostasis

Instability of microtubules Priming of synaptic vesicle Reorganization of actin cytoskeleton Exocytosis by eukaryotic cells
Axonogenesis
0.0151
0.0162 0.000199 0.000208 0.000254 0.00033 0.000656
0.000656
0.000979 0.000979 0.000979
0.00111
0.00136
0.00168
0.00246
0.00246
0.00341
0.00349
0.00441
0.00452
0.00452
0.0056
0.00653
0.007 LPIN1,TNIK,ATP2C1,ENG,PRKCZ
0.0075 PRG2,RPTOR,IL4,IL5RA,PRKCH,EPX,MITF,ARID3A,PRKCZ
0.00885 IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
0.00966 CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
0.0104 RPTOR IL4
0.0108 ZFPM1,SLC7A1,STEAP3,ARID3A,CITED2
0.0113 LPIN1,TNIK,ATP2C1,ENG,PRKCZ,MS4A2
0.0115
0.0118
0.0138
0.000208
0.00033
0.00111
0.00125
0.00184

BNIP3L,STEAP3,IL5RA,PRKCH,IKZF3,BANK1,TLE4,CITED2,PPT2
RBL2,BNIP3L,STEAP3,IL4,IL5RA,PRKCH,IKZF3,PRKCZ,BANK1,TLE4,CITED2,PPT2
PRG2,EPX
KIF5C,YWHAQ,RPTOR,DICER1,BNIP3L,DDIT4,MITF,CATSPER4
ZFPM1,PRG2,SLC7A1,BNIP3L,IL4,IL5RA,MITF,CITED2,RPTOR,STEAP3,PRKCH,EPX,ARID3A,PRKCZ
DAPK2,KIF5C,YWHAQ,SOGA1,BNIP3L,DAP,DDIT4,ENG,MITF,CATSPER4,CLEC12A,IGF1R,RPTOR,DICER1
SMARCD3,MITF
NFIA,PRKCZ
SLC7A1,STEAP3
SMARCD3,MITF
DAPK2,KIF5C,YWHAQ,RPTOR,DICER1,BNIP3L,DDIT4,ENG,MITF,CATSPER4
IGF1R,CTSB
IL4,PRKCZ,PPP
ZFPM1,SLC7A1,RPTOR,STEAP3,ARID3A,CITED2
IL4,PPP2CA
IGF1R,IRF6,DICER1,RBL2,PRKCH,MITF,PRKCZ,GPI
CSRP1,NFIA,HEXA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
RBL2,PRKCH
RPTOR, IL4 RPTOR,IL4

IL4,PPP2CA
DAPK2,LPIN1,ANGPT2,DICER1,RPS6KA2,CTSB,IL4,PRKCH,PMP22
DICER1,PMP22
KIF5C,YWHAQ,RPTOR,DICER1,BNIP3L,DDIT4,MITF,CATSPER4
DAPK2,KIF5C,YWHAQ,SOGA1,BNIP3L,DAP,DDIT4,ENG,MITF,CATSPER4,CLEC12A,IGF1R,RPTOR,DICER1
DAPK2,KIF5C,YWHAQ,RPTOR,DICER1,BNIP3L,DDIT4,ENG,MITF,CATSPER4
RALB,LPIN1,TNIK,CSRP1,ATP2C1,ENG,EVL,PRKCZ,NCK1,GPI
ZFPM1,DAPK2,YWHAQ,FOXP1,SOGA1,RBL2,BNIP3L,SLC25A33,MITF,MS4A2,KCNH2,DICER1,ATP2C1,PRKCH,PRKCZ,
GPI,PPP2CA,KIF5C,ANGPT2,SLC25A25,SLC8B1,DAP,DDIT4,IL4,IL5RA,ENG,CATSPER4,CLEC12A,NROB2,IGF1R,NCSTN,
RPTOR
KIF5C,KIF3B
NAPA,STX1B
LPIN1,TNIK,ATP2C1,ENG,PRKCZ
IGF1R,NAPA,IL4

IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA

Neuritogenesis
Reorganization of cytoskeleton
Permeability of colorectal cancer cell lines
Myelination of axons
Homeostasis of blood cells
Organization of cytoplasm
Arrest in G1 phase of keratinocytes
Homologous pairing of DNA
Arrest in cell cycle progression
Arrest in cell cycle progression of tumor cell lines Contact growth inhibition
Cell cycle progression of prostate cancer cell lines Fission
Cell cycle progression of tumor cell lines Cell cycle progression

Arrest in cell cycle progression of prostate cancer cell lines
Arrest in G1 phase of keratinocytes
Transepithelial electrical resistance of cells
Transepithelial electrical resistance of colorectal
cancer cell lines
Differentiation of keratinocytes
Inhibition of tumor cells
Inhibition of mammary tumor cells
Transformation of prostate cancer cell lines
Colony formation of tumor cells
Immortalization of fibroblasts
Growth of pancreatic endocrine tumor
Metastasis of colorectal cancer cell lines
Development of angioma
Precancerous condition
Apoptosis of tumor
Colony formation of cancer cells
Follicular thyroid tumor
Skin papilloma
Hyperplasia of cell lines
Hemangioblastoma
Polyposis
Hemangioma
Cell viability of cancer cells
Proliferation of ovarian cancer cells
Lymphatic system tumor
0.00966
0.0115
0.0138
0.0139
0.0142
0.000396 0.000979 0.00225
0.00341
0.00341
0.00341
0.00426
0.00656
0.00868
0.0115
0.000396
$\begin{array}{ll}0.00168 & \text { IL4,PRKCZ,P } \\ 0.00349 & \text { IL4,PPP2CA }\end{array}$
0.0131 0.000402 0.000656
0.000656
0.000996
0.00122
0.00287
0.00287
0.00291
0.00352
0.00368
0.00417
0.00426
0.00462
0.00462
0.00836
0.0104
0.0104
0.0108
0.0108
0.0113
0.0126
0.013

IL4,PPP2CA
DICER1,PMP22

LPIN1,PRKCH
EVL,PSMC3IP

LRIG1,DDIT4,EHF

DDIT4,EHF

LPIN1,PRKCH

DDIT4,IL4,HK2
IL4, HK2
IGF1R,DDIT4
RBL2,PGAM2,ARID3A
CTSB,ENG

IGF1R,ANGPT2
DICER1,CTSB,SUGT1

IGF1R,IL4
DICER1,IKZF3,KAT6B
IL5RA,ENG,MS4A2

IGF1R,PPP2CA

CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
LPIN1,TNIK,ATP2C1,ENG,PRKCZ,MS4A2

ZFPM1,FOXP1,RBL2,IL4,IL5RA,NROB2,IGF1R,NCSTN,RPTOR,DICER1,PRKCH,PRKCZ,GPI
SEC16B,CSRP1,SLC25A33,HEXA,MS4A2,LPIN1,RALB,TNIK,ADCY3,DICER1,FBXW8,ATP2C1,LRP12,PRKCH,PRKCZ,NCK
1,GPI,PMP22,PPP2CA,KIF5C,ANGPT2,ENG,NFIA,ATL3,KIF3B,IGF1R,SHANK2,EVL

IGF1R,IRF6,KRT19,RPTOR,RBL2,DDIT4,EHF,PRKCH,PGAM2,MITF
IGF1R,KRT19,RBL2,DDIT4,EHF,PRKCH
IGF1R,RBL2,IL4,IKZF3,PRKCZ,GP
SEC16B,LPIN1,RPTOR
IGF1R,KRT19,LRIG1,RHOBTB2,RBL2,DDIT4,EHF,PRKCH
RHOBTB2,RBL2,DDIT4,IL4,EHF,MITF,IKZF3,CITED2,IRF6,IGF1R,LRIG1,KRT19,RPTOR,DICER1,RPS6KA2,SUGT1,PRKCH
,PGAM2,PRKCZ,GPI,PPP2CA

IRF6,LPIN1,LRIG1,RBL2,PRKCH

DICER1,RHOBTB2,CTSB,SUGT1

IGF1R,DICER1,RPTOR
ANGPT2,DICER1,IKZF3,KAT6B
IL4,ENG,PRKCH,ASCC1,PRKCZ

KRT19,ANGPT2,CTSB,ENG
ATP2C1,ENG,PRKCH

IGF1R,ANGPT2,DICER1,IKZF3,KAT6B
IGF1R,RALB,IL4,MITF

FOXP1,RBL2,ATXN7L1,LPCAT2,IKZF3,BAG2,KCNH2,POLR2B,TRAPPC9,LPIN1,TNIK,LRIG1,ADCY3,DICER1,STEAP3,EGF

			,SMARCD3
	Metastasis of tumor cell lines Neoplasia of leukocytes	0.0145	IGF1R,RALB,ANGPT2,RPTOR,DICER1,CTSB,GPI
		0.0156	FOXP1,RBL2,ATXN7L1,LPCAT2,IKZF3,BAG2,MS4A2,KCNH2,TRAPPC9,LPIN1,TNIK,LRIG1,ADCY3,DICER1,STEAP3,EGF
			LAM,PRKCZ,HK2,PPP2CA,ANGPT2,COL15A1,DAP,IL4,ENG,PSMC3IP,CITED2,RPTOR,ACP5,SHANK2,TMEM131,SMAR
			CD3 ${ }_{\text {IL4,ENG,ASCC1 }}$
	Barrett syndrome	0.0156	IL4,ENG,ASCC1
Organismal Functions	Inhibition of tumor cells	0.000402	DDIT4,IL4,HK2
	Inhibition of mammary tumor cells	0.000656	IL4,HK2
Tumor Morphology	Inhibition of tumor cells	0.000402	DDIT4,IL4,HK2
	Inhibition of mammary tumor cells	0.000656	IL4,HK2
	Colony formation of tumor cells	0.000996	DICER1,RHOBTB2,CTSB,SUGT1
	Colony formation of cancer cells	0.00426	DICER1,CTSB,SUGT1
	Cell viability of cancer cells	0.0113	IGF1R,RALB,ILL,MITF
	Proliferation of ovarian cancer cells	0.0126	IGF1R,PPP2CA
Endocrine System Disorders	Goiter	0.000474	IGF1R,KRT19,DICER1
	Growth of pancreatic endocrine tumor	0.00287	CTSB,ENG
	Nodular goiter	0.00417	KRT19, DICER1
	Follicular thyroid tumor	0.00462	KRT19,ANGPT2,CTSB,ENG
	Diabetes mellitus	0.0077	ITIH4,COL15A1,FOXP1,SLC17A4,IL4,NISCH,IKZF3,CLEC12A,NROB2,KCNH2,IGF1R,SLC2A9,LRIG1,PCYT1A,CTSB,MED2 7,FBP1,HK2,BANK1,DLGAP2,PPT2
	Proliferation of ovarian cancer cells	0.0126	IGF1R,PPP2CA
Cellular Assembly and Organization	Orientation of axons	0.000656	NFIA,PRKCZ
	Organization of actin cytoskeleton	0.00125	RALB,LPIN1,TNIK,CSRP1,ATP2C1,ENG,EVL,PRKCZ,NCK1,GPI
	Instability of microtubules	0.00417	KIF5C, KIF3B
	Priming of synaptic vesicles	0.00653	NAPA, STX1B
	Reorganization of actin cytoskeleton	0.00707	LPIN1,TNIK,ATP2C1,ENG,PRKCZ
	Fusion of myotube	0.00836	IGF1R,IL4
	Axonogenesis	0.00885	IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
	Neuritogenesis	0.00966	CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
	Accumulation of lysosome	0.0104	IGF1R,CTSB
	Reorganization of cytoskeleton	0.0113	LPIN1,TNIK,ATP2C1,ENG,PRKCZ,MS4A2
	Fusion of plasma membrane	0.0138	RALB,NAPA
	Myelination of axons	0.0138	DICER1,PMP22
	Organization of cytoplasm	0.0142	SEC16B,CSRP1,SLC25A33,HEXA,MS4A2,LPIN1,RALB,TNIK,ADCY3,DICER1,FBXW8,ATP2C1,LRP12,PRKCH,PRKCZ,NCK 1,GPI,PMP22,PPP2CA,KIF5C,ANGPT2,ENG,NFIA,ATL3,KIF3B,IGF1R,SHANK2,EVL
Nervous System Development and Function	Orientation of axons	0.000656	NFIA,PRKCZ
	Myelination of cells	0.00257	SERINC5,DICER1,DDIT4,HEXA,PMP22
	Morphogenesis of neurons	0.00452	CSRP1,NFIA,HEXA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
	Migration of cerebellar granule cell	0.00653	IGF1R,NFIA
	Axonogenesis	0.00885	IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
	Neuritogenesis	0.00966	CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
	Myelination of axons	0.0138	DICER1,PMP22
Tissue Morphology	Quantity of naive B cells	0.000656	IL4,IKZF3

Cardiovascular System Development and Function

Organ Development

Hematopoiesis

Abnormal morphology of reticulocytes
Quantity of B-1 lymphocytes
Morphology of lymph follicle Quantity of blood cells

Size of embryo
Quantity of B-1a lymphocyte
Contraction of vein
Quantity of B lymphocytes
Quantity of cells

Quantity of epithelial tissue
Quantity of myeloid cells
Quantity of leukocytes
Quantity of lymph follicle Abnormal morphology of germinal center Quantity of glandular epithelial cells Abnormal morphology of lymphoid organ Morphology of lymphoid tissue Stroke volume index Muscularization of artery Ejection fraction of heart Contraction of vein Proliferation of heart cells Stroke volume index
Ejection fraction of heart
Development of plasma cells Proliferation of skeletal muscle cells
Differentiation of memory B cells
Proliferation of myofibroblasts Proliferation of liver cells
Proliferation of heart cells
Differentiation of keratinocytes
Proliferation of hepatocytes Abnormal morphology of germinal center Abnormal morphology of reticulocytes Granulopoiesis
Morphology of hematopoietic progenitor cells
Myelopoiesis of leukocytes
Development of plasma cells
Development of PBMCs
Differentiation of memory B cells
Differentiation of eosinophils
0.000979
0.00101
0.00112
0.00333
0.00348
0.00397
0.00417
0.00447 0.00532

SLC7A1,STEAP3

RPTOR,IL4,IL5RA,ARID3A,BANK1
IL4,IKZF3,PRKCZ,TLE4,BANK1,PPT2
TANK,SIGLEC8,PTGDR2,SLC7A1,RBL2,BNIP3L,IL4,IL5RA,IKZF3,IRF6,IGF1R,RPTOR,DICER1,CTSB,STEAP3,PRKCH,ARID 3A,BANK1,TLE4,ST3GAL1,PPT2,PPP2CA
ZFPM1,IGF1R,NCSTN,DICER1,RBL2,ATP2C1,ENG,CITED2,KIF3B,PPP2CA
RPTOR,ARID3A,BANK1
DICER1,IL4
TANK,RPTOR,CTSB,IL4,IL5RA,PRKCH,IKZF3,ARID3A,BANK1,TLE4
SIGLEC8,RBL2,BNIP3L,MITF,IKZF3,IRF6,KRT19,DICER1,ATP2C1,STEAP3,STX1B,PRKCH,ARID3A,TLE4,ST3GAL1,PMP2 2,PPP2CA,TANK,PTGDR2,KIF5C,ANGPT2,SLC7A1,IL4,IL5RA,ENG,NFIA,CITED2,IGF1R,RPTOR,TFF2,CTSB,BANK1,PPT2 IGF1R,ANGPT2,DICER1,TFF2,CTSB,MITF
IRF6,IGF1R,PTGDR2,SIGLEC8,RBL2,CTSB,IL4,IL5RA,ARID3A,TLE4,PPT2,PPP2CA
TANK,SIGLEC8,PTGDR2,RBL2,IL4,IL5RA,IKZF3,IRF6,IGF1R,RPTOR,DICER1,CTSB,PRKCH,ARID3A,BANK1,TLE4,ST3GAL
1,PPT2,PPP2CA
IKZF3,ARID3A,PRKCZ,BANK1,TLE4
IL4,IKZF3,BANK1
DICER1,TFF2
BNIP3L,STEAP3,IL5RA,PRKCH,IKZF3,BANK1,TLE4,CITED2,PPT2
RBL2,BNIP3L,STEAP3,IL4,IL5RA,PRKCH,IKZF3,PRKCZ,BANK1,TLE4,CITED2,PPT2
ANGPT2,ENG
RPTOR,IL4
IGF1R,ANGPT2,ENG
DICER1,IL4
DICER1,FOXP1,RBL2,CITED2
ANGPT2,ENG
IGF1R,ANGPT2,ENG
DICER1,IL4
IGF1R,ANGPT2
FOXP1,IL4
CTSB,IL4
IGF1R,ITIH4,DICER1,CTSB,IL4,CITED2
DICER1,FOXP1,RBL2,CITED2
IRF6,LPIN1,LRIG1,RBL2,PRKCH
IGF1R,ITIH4,DICER1,IL4,CITED2
IL4,IKZF3,BANK1
SLC7A1,STEAP3
IGF1R,ZFPM1,RALB,SIGLEC8,IL4,CITED2
ZFPM1,SLC7A1,RPTOR,STEAP3,ARID3A,CITED2
IGF1R,ZFPM1,RALB,SIGLEC8,FOXP1,IL4,CITED2
DICER1,IL4
DICER1,IL4
FOXP1,IL4
SIGLEC8,IL4

	Leukopoiesis	0.00985	ZFPM1,SIGLEC8,FOXP1,RBL2,IL4,ILLRA,IKZF3,CITED2,NROB2,IGF1R,RALB,RPTOR,DICER1,PRKCH,PRKCZ,ARID3A,TLE 4
	Abnormal morphology of hematopoietic progenitor cells	0.0108	ZFPM1,SLC7A1,STEAP3,ARID3A,CITED2
	Hematopoiesis in embryo	0.0114	ZFPM1,ENG,ARID3A
DNA Replication, Recombination, and Repair	Homologous pairing of DNA	0.000979	EVL,PSMC3IP
	Synthesis of genomic DNA	0.0151	IL4,PRKCH
Protein Synthesis	Quantity of lgM	0.00108	TANK,IL4,ILSRA,IKZF3,ARID3A,BANK1
	Quantity of $\lg A$	0.00404	TANK,IL4,ILSRA,IKZF3
	Quantity of IgG1	0.0056	TANK,ILL,ILSRA,IKZF3,ARID3A
	Quantity of IgG2a	0.0124	TANK,IL4,IKZF3,BANK1
Gene Expression	Transcription of DNA	0.00126	ZFPM1,YWHAQ,DMAP1,FOXP1,EHF,MITF,IKZF3,POLR2B,IRF6,LPIN1,DICER1,MED27,FBP1,IRF2BPL,ASCC1,ARID3A, PHF19,NCK1,TLE4,PPP2CA,DAP,IL4,ENG,NFIA,PSMC3IP,CITED2,NROB2,IGF1R,SMARCD3,FOXK2,KAT6B
	Expression of RNA	0.00157	SEC16B,ZFPM1,YWHAQ,DMAP1,FOXP1,RBL2,EHF,MITF,IKZF3,POLR2B,IRF6,NDFIP2,LPIN1,DICER1,ATP2C1,MED27, STX1B,FBP1,IRF2BPL,PRKCZ,ASCC1,ARID3A,PHF19,NCK1,TLE4,PPP2CA,TANK,DAP,IL4,ENG,NFIA,PSMC3IP,PRG3,CIT ED2,NROB2,IGF1R,RPS6KA2,SMARCD3,FOXK2,KAT6B,BANK1
	Transcription of RNA	0.00175	ZFPM1,YWHAQ,DMAP1,FOXP1,RBL2,EHF,MITF,IKZF3,POLR2B,IRF6,LPIN1,DICER1,ATP2C1,MED27,FBP1,IRF2BPL,P RKCZ,ASCC1,ARID3A,PHF19,NCK1,TLE4,PPP2CA,TANK,DAP,IL4,ENG,NFIA,PSMC3IP,CITED2,NROB2,IGF1R,SMARCD3 ,FOXK2,KAT6B
	Transcription	0.00196	SEC16B,ZFPM1,YWHAQ,DMAP1,FOXP1,RBL2,EHF,MITF,IKZF3,POLR2B,IRF6,NDFIP2,LPIN1,DICER1,ATP2C1,MED27, STX1B,FBP1,IRF2BPL,PRKCZ,ASCC1,ARID3A,PHF19,NCK1,TLE4,PPP2CA,TANK,DAP,IL4,ENG,NFIA,PSMC3IP,CITED2,N ROB2,IGF1R,RPS6KA2,SMARCD3,FOXK2,KAT6B
	Activation of DNA endogenous promoter	0.00599	ZFPM1,DMAP1,IL4,EHF,ENG,MITF,NFIA,PSMC3IP,IKZF3,CITED2,NROB2,POLR2B,IRF6,LPIN1,DICER1,MED27,FOXK2, FBP1,IRF2BPL,ARID3A,PHF19,NCK1,TLE4,PPP2CA
Cellular Movement	Migration of basophils	0.00136	PTGDR2,ENG
	Invasion of cells	0.00279	YWHAQ,ANGPT2,FOXP1,RHOBTB2,ENG,MITF,KCNH2,PLGRKT,IRF6,IGF1R,RALB,LRIG1,KRT19,ADCY3,RPTOR,DICER 1,TFF2,CTSB,PRKCZ,ST3GAL1,GPI
	Homing of Th2 cells	0.00287	PTGDR2,IL4
	Invasion of lymphoma cell lines	0.00349	PLGRKT,CTSB
	Cell movement of prostate cell lines	0.0049	IGF1R,ENG
	Cell movement	0.00559	DAPK2,SIGLEC8,FOXP1,RHOBTB2,EHF,MITF,KCNH2,PLGRKT,IRF6,PATJ,RALB,TNIK,LRIG1,KRT19,ADCY3,DICER1,LRP 12,PRKCZ,NCK1,GPI,PMP22,PTGDR2,ANGPT2,DDIT4,IL4,ILLRA,NISCH,ENG,NFIA,CATSPER4,CITED2,IGF1R,RPTOR,A CP5,TFF2,CTSB,EVL,RNASE2,PPT2
	Dissemination of tumor cells	0.00653	IGF1R,ANGPT2
	Migration of B-lymphocyte derived cell lines	0.00653	PTGDR2,ENG
	Migration of cerebellar granule cell	0.00653	IGF1R,NFIA
	Recruitment of muscle cells	0.00653	IL4,ENG
	Migration of cells	0.00752	DAPK2,SIGLEC8,FOXP1,RHOBTB2,EHF,MITF,KCNH2,PLGRKT,IRF6,PATJ,RALB,KRT19,ADCY3,DICER1,LRP12,PRKCZ,N
			CK1,GPI,PMP22,PTGDR2,ANGPT2,DDIT4,IL4,NISCH,ENG,NFIA,CITED2,IGF1R,RPTOR,ACP5,TFF2,CTSB,EVL,RNASE2,P PT2
	Cellular infiltration by granulocytes	0.00869	IRF6,PTGDR2,SIGLEC8,ANGPT2,DICER1,CTSB,IL4
	Migration of myeloma cell lines	0.00936	IGF1R,RALB
	Invasion of carcinoma cell lines	0.01	IRF6,RALB,FOXP1,CTSB,MITF,PRKCZ,ST3GAL1
	Invasion of tumor cell lines	0.0109	YWHAQ,FOXP1,MITF,IRF6,PLGRKT,IGF1R,RALB,KRT19,LRIG1,RPTOR,DICER1,CTSB,TFF2,PRKCZ,ST3GAL1,GPI

Migration of Langerhans cells Morphology of thyroid cells Proliferation of endocrine cells Morphology of thyroid cells Abnormal morphology of hair follicle Abnormal morphology of epidermis Quantity of glandular epithelial cells Abnormal morphology of lymphoid organ Morphology of thyroid cells Muscularization of artery Size of embryo
Morphogenesis of neurons
Development of plasma cells
Development of PBMCs Differentiation of memory B cells Axonogenesis
Neuritogenesis
Hematopoiesis in embryo
Differentiation of keratinocytes
Myelination of axons Abnormal morphology of germinal center Granulopoiesis
Myelopoiesis of leukocytes
Morphogenesis of neurons
Growth of epithelial tissue Proliferation of connective tissue cells Development of plasma cells Proliferation of skeletal muscle cells Development of PBMCs Differentiation of memory B cells Proliferation of myofibroblasts Axonogenesis
Accumulation of lymphatic system cells Differentiation of eosinophils Proliferation of epithelial cells Neuritogenesis Leukopoiesis

Hematopoiesis in embryo
Cell proliferation of fibroblasts Differentiation of keratinocytes Proliferation of hepatocytes

Myelination of axons

Abnormal morphology of germinal center

RPTOR,IL4
IGF1R,CTSB
IGF1R,ANGPT2,DICER1,TFF2
IGF1R,CTSB
IGF1R,DICER1,RBL2
IGF1R,LRIG1,DICER1,RBL2,CTSB
DICER1,TFF2
BNIP3L,STEAP3,IL5RA,PRKCH,IKZF3,BANK1,TLE4,CITED2,PPT2
IGF1R,CTSB
RPTOR,IL4
ZFPM1,IGF1R,NCSTN,DICER1,RBL2,ATP2C1,ENG,CITED2,KIF3B,PPP2CA
CSRP1,NFIA,HEXA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
DICER1,IL4
DICER1,IL4
FOXP1,IL4
IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
ZFPM1,ENG,ARID3A
IRF6,LPIN1,LRIG1,RBL2,PRKCH
DICER1,PMP22
IL4,IKZF3,BANK1
IGF1R,ZFPM1,RALB,SIGLEC8,IL4,CITED2
IGF1R,ZFPM1,RALB,SIGLEC8,FOXP1,IL4,CITED2
CSRP1,NFIA,HEXA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
ITIH4,ANGPT2,RBL2,IL4,ENG,CITED2,IRF6,IGF1R,NCSTN,LRIG1,RPTOR,DICER1,CTSB,MCC,PRKCH,PRKCZ
RBL2,IL4,ENG,CITED2,IRF6,IGF1R,NCSTN,LRIG1,DICER1,CTSB,PRKCH,PGAM2,ARID3A,GPI
DICER1,IL4
IGF1R,ANGPT2
OXP1,IL4
CTSB,IL4
IGF1R,ADCY3,DICER1,NFIA,PRKCZ,PMP22,PPP2CA
NCSTN,IL4
SIGLEC8,IL4
IRF6,IGF1R,NCSTN,ITIH4,LRIG1,DICER1,RBL2,IL4,MCC,ENG,PRKCH,CITED2
CSRP1,NFIA,KIF3B,IGF1R,RALB,TNIK,ADCY3,DICER1,FBXW8,SHANK2,LRP12,PRKCZ,PMP22,PPP2CA
ZFPM1,SIGLEC8,FOXP1,RBL2,IL4,IL5RA,IKZF3,CITED2,NROB2,IGF1R,RALB,RPTOR,DICER1,PRKCH,PRKCZ,ARID3A,TLE
4
ZFPM1,ENG,ARID3A
IGF1R,NCSTN,CTSB,IL4,ENG,PGAM2,ARID3A,CITED2,GPI
IRF6,LPIN1,LRIG1,RBL2,PRKCH
IGF1R,ITIH4,DICER1,IL4,CITED2
DICER1,PMP22
IL4,IKZF3,BANK1

Cell-mediated Immune Response
Skeletal and Muscular System Developmen and Function

Degranulation of cells
Instability of microtubules
Damage of hepatocytes Degranulation of BMMC cells Failure of heart looping Development of angioma Hypercholesterolemia
Hemangioblastoma
Congenital anomaly of cardiovascular system Hemangioma
Failure of heart looping
Susceptibility to autism type 1
Congenital anomaly of cardiovascular system
Congenital malformation of brain
Autosomal dominant Emery-Dreifuss muscular dystrophy
Chronic idiopathic urticaria
Skin papilloma
Abnormal morphology of hair follicle Abnormal morphology of epidermis Parakeratosis
Juvenile dermatomyositis
Morbidity or mortality

Organismal death

0.00368

Growth of pancreatic endocrine tumor
Damage of hepatocytes
Polyp
Diabetes mellitus

Apoptosis of hepatocytes
Polyposis
Barrett syndrome
Homing of Th2 cells
Muscularization of artery
Proliferation of skeletal muscle cells
Fusion of myotube
Proliferation of myofibroblasts
Cell viability of muscle cell lines Cell viability of muscle cells
Size of embryo
0.00183
0.00417
0.00569
0.0126
0.00225
0.00352
0.00593
0.0104
0.0104
0.0108
0.00225
0.00569
0.0104
0.0123
0.0125
0.00231
0.00523
0.00595
0.00668
0.0104
0.0109
0.00265
0.00287
0.00569
0.00593
0.0077
0.00904
0.0104
0.0156
0.00287
0.00287
0.00742
0.00836
0.00836
0.0138
0.015
0.00348 ZFPM1,IGF1R,NCSTN,DICER1,RBL2,ATP2C1,ENG,CITED2,KIF3B,PPP2CA

ZFPM1,PRG2,RALB,LPIN1,DICER1,IL4,EHF,MS4A2
KIF5C,KIF3B
IGF1R,DICER1
IL4,EHF
NCSTN,RBL2,ENG
ANGPT2,DICER1,IKZF3,KAT6B
ITIH4,LPIN1,RPTOR,NROB2
DICER1,IKZF3,KAT6B
NCSTN,ANGPT2,DICER1,RBL2,ENG,KAT6B,CITED2,KCNH2
IGF1R,ANGPT2,DICER1,IKZF3,KAT6B
NCSTN,RBL2,ENG
FOXP1,SHANK2
NCSTN,ANGPT2,DICER1,RBL2,ENG,KAT6B,CITED2,KCNH2
RALB,KIF5C,RPTOR,DICER1,ATP2C1,EMG1,NFIA,CITED2,KIF3B
BNIP3L,ENG,CYB561

IL5RA,MS4A2

ATP2C1,ENG,PRKCH
IGF1R,DICER1,RBL2
IGF1R,LRIG1,DICER1,RBL2,CTSB
LRIG1,RBL2
BNIP3L,ENG,CYB561
ZFPM1,DMAP1,RBL2,CSRP1,BNIP3L,VPS52,MITF,IKZF3,HEXA,KCNH2,RALB,KRT19,ADCY3,DICER1,FBXW8,PCYT1A,A TP2C1,STX1B,EPX,PRKCH,HK2,ARID3A,NCK1,TLE4,PMP22,PPP2CA,TANK,ANGPT2,SLC25A25,SLC7A1,IL4,ENG,NFIA KIF26A,CLEC12A,CITED2,KIF3B,IGF1R,NCSTN,SLC2A9,RPTOR,CTSB,SHANK2,PPT2 KIF26A,CITED2,KIF3B,IGF1R,NCSTN,SLC2A9,RPTOR,CTSB,SHANK2,PPT2
CTSB,ENG
IGF1R,DICER1
IL5RA,ENG,PRKCZ,MS4A2

7,FBP1,HK2,BANK1,DLGAP2,PPT2
ITIH4,DICER1,CTSB,IL4,NROB2
IL5RA,ENG,MS4A2
IL4,ENG,ASCC1
PTGDR2,IL4
RPTOR,IL4
IGF1R,ANGPT2
IGF1R,IL4
CTSB,IL4
IGF1R,CTSB

ZFPM1,DMAP1,RBL2,CSRP1,BNIP3L,VPS52,MITF,IKZF3,HEXA,KCNH2,RALB,KRT19,ADCY3,DICER1,FBXW8,PCYT1A,A TP2C1,STX1B,EPX,PRKCH,HK2,ARID3A,NCK1,TLE4,PMP22,PPP2CA,TANK,ANGPT2,SLC25A25,SLC7A1,IL4,ENG,NFIA,

ITIH4,COL15A1,FOXP1,SLC17A4,IL4,NISCH,IKZF3,CLEC12A,NR0B2,KCNH2,IGF1R,SLC2A9,LRIG1,PCYT1A,CTSB,MED2

	Cell death of embryonic cell lines	0.00617	IGF1R,TANK,YWHAQ,RBL2,CTSB,BNIP3L,DDIT4,HK2,CITED2,PMP22
	Development of plasma cells	0.00742	DICER1,IL4
	Differentiation of memory B cells	0.00836	FOXP1,IL4
	Hematopoiesis in embryo	0.0114	ZFPM1,ENG,ARID3A
	Differentiation of keratinocytes	0.0131	IRF6,LPIN1,LRIG1,RBL2,PRKCH
	Abnormal morphology of germinal center	0.015	IL4,IKZF3,BANK1
Inflammatory Disease	Severe asthma	0.00417	IL5RA,MS4A2
	Juvenile dermatomyositis	0.0109	BNIP3L,ENG,CYB561
	Barrett syndrome	0.0156	IL4,ENG,ASCC1
Respiratory Disease	Severe asthma	0.00417	IL5RA,MS4A2
	Cell death of lung cells	0.00595	IGF1R,PRG2,EPX
	Cell death of pneumocytes	0.0138	PRG2,EPX
Free Radical Scavenging	Production of superoxide	0.0051	PRG2,ANGPT2,IL4,PRKCZ,PRG3
	Synthesis of reactive oxygen species	0.00713	PRG2,IRF6,ITIH4,ANGPT2,BNIP3L,SHANK2,DDIT4,IL4,FBP1,PRKCZ,HK2,PRG3
Hepatic System Disease	Damage of hepatocytes	0.00569	IGF1R,DICER1
	Apoptosis of hepatocytes	0.00904	ITIH4,DICER1,CTSB,IL4,NROB2
Neurological Disease	Susceptibility to autism type 1	0.00569	FOXP1,SHANK2
	Demyelination of neurons	0.0104	LPIN1,DICER1
	Neurodegeneration of cerebellum	0.0109	DICER1,CTSB,PPT2
	Congenital malformation of brain	0.0123	RALB,KIF5C,RPTOR,DICER1,ATP2C1,EMG1,NFIA,CITED2,KIF3B
	Familial pervasive developmental disorder	0.0151	FOXP1,SHANK2
Psychological Disorders	Susceptibility to autism type 1	0.00569	FOXP1,SHANK2
	Familial pervasive developmental disorder	0.0151	FOXP1,SHANK2
Metabolic Disease	Hypercholesterolemia	0.00593	ITIH4,LPIN1,RPTOR,NROB2
	Diabetes mellitus	0.0077	ITIH4,COL15A1,FOXP1,SLC17A4,IL4,NISCH,IKZF3,CLEC12A,NROB2,KCNH2,IGF1R,SLC2A9,LRIG1,PCYT1A,CTSB,MED2 7,FBP1,HK2,BANK1,DLGAP2,PPT2
	Glucose metabolism disorder	0.0112	ITIH4,COL15A1,FOXP1,SLC17A4,IL4,NISCH,IKZF3,CLEC12A,NR0B2,KCNH2,IGF1R,LPIN1,SLC2A9,LRIG1,DICER1,PCYT 1A,CTSB,MED27,SMARCD3,FBP1,HK2,BANK1,DLGAP2,PPT2
Renal and Urological Disease	Hydronephrosis	0.00693	IGF1R,SLC2A9,IL4,NFIA
	Injury of renal glomerulus	0.0138	ANGPT2,DICER1
Connective Tissue Development and Function	Proliferation of connective tissue cells	0.00708	RBL2,IL4,ENG,CITED2,IRF6,IGF1R,NCSTN,LRIG1,DICER1,CTSB,PRKCH,PGAM2,ARID3A,GPI
	Development of PBMCs	0.00836	DICER1,IL4
	Proliferation of myofibroblasts	0.00836	CTSB,IL4
	Cell proliferation of fibroblasts	0.0121	IGF1R,NCSTN,CTSB,IL4,ENG,PGAM2,ARID3A,CITED2,GPI
Digestive System Development and Function	Proliferation of liver cells	0.00961	IGF1R,ITIH4,DICER1,CTSB,IL4,CITED2
	Proliferation of hepatocytes	0.0137	IGF1R,ITIH4,DICER1,IL4,CITED2
Hereditary Disorder	Hereditary myopathy	0.00857	LPIN1,PTGDR2,AP5B1,BNIP3L,ENG,SLC25A33,KIF26A,ASCC1,ATPAF2,CYB561,PMP22,KCNH2
	Autosomal dominant Emery-Dreifuss muscular dystrophy	0.0125	BNIP3L,ENG,CYB561
	Familial pervasive developmental disorder	0.0151	FOXP1,SHANK2
Skeletal and Muscular Disorders	Hereditary myopathy	0.00857	LPIN1,PTGDR2,AP5B1,BNIP3L,ENG,SLC25A33,KIF26A,ASCC1,ATPAF2,CYB561,PMP22,KCNH2
	Juvenile dermatomyositis	0.0109	BNIP3L,ENG,CYB561
	Autosomal dominant Emery-Dreifuss muscular dystrophy	0.0125	BNIP3L,ENG,CYB561

Reproductive System Disease
Cell Signaling
Vitamin and Mineral Metabolism
Hepatic System Development and Function

Proliferation of ovarian cancer cells
Translocation of Ca2+
Translocation of Ca2+
Proliferation of liver cells
Proliferation of hepatocytes Antiviral response
0.0126
0.00936
0.00961
0.0137 0.0109

IGF1R,PPP2CA
SLC8B1,ATP2C1
SLC8B1,ATP2C1
IGF1R,ITIH4,DICER1,CTSB,IL4,CITED2
IGF1R,ITIH4,DICER1,IL4,CITED2
SERINC5,DICER1,BNIP3L,IL4,DDIT4,RNASE2
*Diseases and biological functions which had only one gene involved were removed

Table E11	Druggable targets	to whic	179 signific	d in analysis of asthma in relation	A methylation in childhood.	
CpG	chr:pos	Gene*	ChEMBL Target ID	Approved drugs and clinical candidates [ChEMBLID]	Approved drugs and Clinical candidates [Name]	Mechanism of Action
cg01942646	chr1:27240694	NROB2	CHEMBL5603	No	No	
cg26752663	chr2:25142016	ADCY3	CHEMBL2097167	No	No	
cg01310029	chr3:3152374	IL5RA	CHEMBL3580483	CHEMBL1742991	BENRALIZUMAB	Interleukin-5 receptor subunit alpha inhibitor
cg10159529	chr3:3152530	IL5RA	CHEMBL3580483	CHEMBL1742991	BENRALIZUMAB	Interleukin-5 receptor subunit alpha inhibitor
cg07386061	chr3:52492874	NISCH	CHEMBL3923	No	No	
cg06070625	chr3:69812798	MITF	CHEMBL1741165	No	No	
cg09423651	chr3:136618442	NCK1	CHEMBL4846	No	No	
cg08698681	chr3:171091657	TNIK	CHEMBL4527	No	No	
cg09597192	chr6:32141591	PPT2	CHEMBL2189137	No	No	
cg24576940	chr7:150648283	KCNH2	CHEMBL240	CHEMBL473	DOFETILIDE	HERG blocker
				CHEMBL1700	SOTALOL HYDROCHLORIDE	HERG blocker
				CHEMBL1083993	AMIODARONE HYDROCHLORIDE	HERG blocker
				CHEMBL1200564	IBUTILIDE FUMARATE	HERG blocker
				CHEMBL3545040	AZD7009	HERG blocker
				CHEMBL3545169	AZD1305	HERG blocker
cg23147443	chr7:150649655	KCNH2	CHEMBL240	CHEMBL473	DOFETILIDE	HERG blocker
				CHEMBL1700	SOTALOL HYDROCHLORIDE	HERG blocker
				CHEMBL1083993	AMIODARONE HYDROCHLORIDE	HERG blocker
				CHEMBL1200564	IBUTILIDE FUMARATE	HERG blocker
				CHEMBL3545040	AZD7009	HERG blocker
				CHEMBL3545169	AZD1305	HERG blocker
cg18666454	chr7:150651937	KCNH2	CHEMBL240	CHEMBL473	DOFETILIDE	HERG blocker
				CHEMBL1700	SOTALOL HYDROCHLORIDE	HERG blocker
				CHEMBL1083993	AMIODARONE HYDROCHLORIDE	HERG blocker
				CHEMBL1200564	IBUTILIDE FUMARATE	HERG blocker
				CHEMBL3545040	AZD7009	HERG blocker
				CHEMBL3545169	AZD1305	HERG blocker
cg03131767	chr12:123446272	ABCB9	CHEMBL1293189	No	No	
cg11266582	chr15:64275853	DAPK2	CHEMBL3123	No	No	
cg20315954	chr17:15137304	PMP22	CHEMBL1293298	No	No	
cg21073212	chr20:30866501	KIF3B	CHEMBL6109	No	No	

*UCSC Known Gene used to map to drug target database

chr:pos	GeneName*	ChEMBL Target ID	Approved drugs and clinical candidates [ChEMBL ID]	Approved drugs and clinical candidates [Name]	Mechanism of Action
chr2:149639612-149640260	KIF5C	CHEMBL2029194	No	No	
chr3:3151795-3152917	IL5RA	CHEMBL3580483	CHEMBL1742991	BENRALIZUMAB	Interleukin-5 receptor subunit alpha inhibitor
chr15:64275810-64275854	DAPK2	CHEMBL3123	No	No	
chr15:99443213-99443667	IGF1R	CHEMBL1957	CHEMBL1201717	MECASERMIN RINFABATE	Insulin-like growth factor I receptor agonist
			CHEMBL1201716	MECASERMIN	Insulin-like growth factor I receptor agonist
			CHEMBL1091644	LINSITINIB	Insulin-like growth factor I receptor inhibitor
			CHEMBL1743019	FIGITUMUMAB	Insulin-like growth factor I receptor antagonist
			CHEMBL1743024	GANITUMAB	Insulin-like growth factor I receptor antagonist
			CHEMBL283120	PICROPODOPHYLLOTOXIN	Insulin-like growth factor I receptor inhibitor
			CHEMBL575448	BMS-754807	Insulin-like growth factor I receptor inhibitor
			CHEMBL1743001	CIXUTUMUMAB	Insulin-like growth factor I receptor antagonist
			CHEMBL1743006	DALOTUZUMAB	Insulin-like growth factor I receptor antagonist
			CHEMBL1743064	ROBATUMUMAB	Insulin-like growth factor I receptor antagonist
			CHEMBL1743079	TEPROTUMUMAB	Insulin-like growth factor I receptor antagonist
			CHEMBL2109357	AVE-1642	Insulin-like growth factor I receptor antagonist
			CHEMBL3545025	INSM-18	Insulin-like growth factor I receptor inhibitor
			CHEMBL3545156	KW-2450	Insulin-like growth factor I receptor inhibitor
			CHEMBL551064	AEW-541	Insulin-like growth factor I receptor inhibitor
			CHEMBL3545004	PL-225B	Insulin-like growth factor I receptor inhibitor
			CHEMBL3545085	XL-228	Insulin-like growth factor I receptor inhibitor
chr17:78682785-78683458	RPTOR	CHEMBL3120040	No	No	

[^6]
cg02331902
cg07156990

cg13427149

Left out stuay

Left out study
cg10644885
cg04983687
cg05300717

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	$93: 214$	0.92	
BAMSE_MEDALL	$47: 167$	0.92	
CHOP	$19: 363$	0.98	
GALA	$106: 87$	0.97	
ICAC	$97: 97$	0.64	
NFBC	$29: 343$	0.89	
PIAMA	$15: 182$	0.93	
RAINE	$114: 405$	0.93	

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.85
BAMSE_MEDALL	$47: 167$	0.84
CHOP	$19: 363$	0.95
ICAC	$97: 97$	0.56
NFBC	$29: 343$	0.45
PIAMA	$15: 182$	0.84
RAINE	$114: 405$	0.89
STOPPA	$137: 323$	0.83
META-ANALYSIS	$551: 2094$	$\mathbf{0 . 8 6}$

cg14084609

cg06558622

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.86 | |
| BAMSE_MEDALL | $47: 167$ | 0.87 | |
| CHOP | $19: 363$ | 0.97 | |
| GALA | $106: 87$ | 0.95 | |
| ICAC | $97: 97$ | 0.81 | |
| NFBC | $29: 343$ | 0.75 | |
| PIAMA | $15: 182$ | 0.99 | |
| RAINE | $114: 405$ | 0.87 | |
| STOPPA | $137: 323$ | 0.86 | |

cg21220721
N cases:controls OR

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	93:214	0.80	\square
BAMSE_MEDALL	47:167	0.82	-
CHOP	19:363	1.07	
GALA	106:87	0.82	\square
ICAC	97:97	0.80	
NFBC	29:343	0.94	\square
PIAMA	15:182	0.89	-
RAINE	114:405	0.94	-
STOPPA	137:323	0.84	\square
META-ANALYSIS	657:2181	0.90	
			0.71 Odds Ratio

cg00170714			
Cohort	N cases:controls	OR	
bamse_eplgene	93:214	0.81	-
bamse_medall	47:167	0.85	-
снор	19:363	0.92	-
GALA	106:87	0.88	-
icac	97:97	0.72	,
NFbC	29.343	0.90	-
Plama	$15: 182$	1.15	
Raine	114:405	0.95	-
Stoppa	137:323	0.83	
meta-analysis	657:2181	0.89	-

Cohort	N cases:controls	OR		
BAMSE_EPIGENE	$93: 214$	0.86		
BAMSE_MEDALL	$47: 167$	0.89		
CHOP	$19: 363$	1.06		
GALA	$106: 87$	0.77		
ICAC	$97: 97$	0.67		
NFBC	$29: 343$	0.97		
PIAMA	$15: 182$	1.10		
RAINE	$114: 405$	0.88		
STOPPA	$137: 323$	0.82		
META-ANALYSIS	$657: 2181$	0.86		

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	93:214	0.86	-
BAMSE_MEDALL	47:167	0.87	- -
CHOP	19:363	0.96	\square
GALA	106:87	0.84	-
ICAC	97:97	0.81	
NFBC	29:343	1.01	
PIAMA	15:182	1.06	
RAINE	114:405	0.89	-
STOPPA	137:323	0.85	-
META-ANALYSIS	657:2181	0.89	

cg03437605
cg12104982

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	93:214	0.79	-
BAMSE_MEDALL	47:167	0.86	
CHOP	19:363	0.99	
GALA	106:87	0.88	
ICAC	97:97	0.79	
NFBC	29:343	1.11	
PIAMA	15:182	1.07	
RAINE	114:405	0.88	\square
STOPPA	137:323	0.78	
META-ANALYSIS	657:2181	0.86	

cg18666454

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	$93: 214$	0.88	
BAMSE_MEDALL	$47: 167$	0.86	
CHOP	$19: 363$	0.91	
GALA	$106: 87$	0.86	
ICAC	$97: 97$	0.66	
NFBC	$29: 343$	0.82	
PIAMA	$15: 182$	0.93	
RAINE	$114: 405$	0.96	
STOPPA	$137: 323$	0.89	
META-ANALYSIS	$657: 2181$	$\mathbf{0 . 8 9}$	

cg10065736
cg02494549

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	93:214	0.82	\square
BAMSE_MEDALL	47:167	0.82	-
CHOP	19:363	0.77	■
GALA	106:87	1.04	
ICAC	97:97	0.96	
NFBC	29:343	0.82	
PIAMA	15:182	1.35	
RAINE	114:405	1.00	
STOPPA	137:323	0.79	
META-ANALYSIS	657:2181	0.86	

Cohort N cases:controls OR

BAMSE_MEDALL
NFBC
PIAMA
RAINE
STOPPA

META-ANALYSIS

Cohort

BAMSE_EPIGENE
BAMSE_MEDALL
CHOP
GALA
ICAC
NFBC
PIAMA
raine
stoppa
META-ANALYSIS

cg10815420

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.84
BAMSE_MEDALL	$47: 167$	0.89
CHOP	$19: 363$	0.99
GALA	$106: 87$	0.85
ICAC	$97: 97$	0.85
NFBC	$29: 343$	0.91
PIAMA	$15: 182$	1.12
RAINE	$114: 405$	0.90
STOPPA	$137: 323$	0.86
META-ANALYSIS	$657: 2181$	$\mathbf{0 . 8 9}$

cg07908654
N cases:controls OR

cg08940169

cg00944309
cg20263733
cg25270424

cg16409452

cg23706836

cg18550847
cg03131767

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.89
BAMSE_MEDALL	$47: 167$	1.05
CHOP	$19: 363$	0.98
GALA	$106: 87$	0.88
ICAC	$97: 97$	0.70
NFBC	$29: 343$	1.01
PIAMA	$15: 182$	1.01
RAINE	$114: 405$	0.87
STOPPA	$137: 323$	0.86
META-ANALYSIS	$657: 2181$	$\mathbf{0 . 9 0}$

cg13628444
N cases:controls OR

BAMSE_EPIGENE	93:214	0.74	\square
BAMSE_MEDALL	47:167	0.80	-
CHOP	19:363	1.19	
GALA	106:87	0.90	-
ICAC	97:97	0.89	
NFBC	29:343	0.87	
PIAMA	15:182	1.03	
RAINE	114:405	0.86	
STOPPA	137:323	0.85	
META-ANALYSIS	657:2181	0.88	

cg14025883

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	$93: 214$	0.80	
BAMSE_MEDALL	$47: 167$	0.97	
CHOP	$19: 363$	1.11	
GALA	$106: 87$	0.84	
ICAC	$97: 97$	1.00	
NFBC	$29: 343$	0.81	
PIAMA	$15: 182$	0.98	
RAINE	$114: 405$	0.90	
STOPPA	$137: 323$	0.87	

cg02435538

cg02133716

cg17890764
cg25479097

Cohort N cases:controls OR

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	93:214	0.86	-
BAMSE_MEDALL	47:167	0.92	-
CHOP	19:363	1.20	
GALA	106:87	0.90	
ICAC	97:97	0.88	
NFBC	29:343	0.85	
PIAMA	15:182	0.91	-
RAINE	114:405	0.89	
STOPPA	137:323	0.83	-
META-ANALYSIS	657:2181	0.89	

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.86
BAMSE_MEDALL	$47: 167$	0.95
CHOP	$19: 363$	0.93
GALA	$106: 87$	0.84
ICAC	$97: 97$	0.65
NFBC	$29: 343$	0.82
PIAMA	$15: 182$	0.93
RAINE	$114: 405$	0.91
STOPPA	$137: 323$	0.83
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{0 . 8 6}$

cg16362140
cg14678084
cg18879389

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.84
BAMSE_MEDALL	$47: 167$	0.91
CHOP	$19: 363$	0.93
GALA	$106: 87$	0.91
ICAC	$97: 97$	0.99
NFBC	$29: 343$	0.70
PIAMA	$15: 182$	0.83
RAINE	$114: 405$	0.97
STOPPA	$137: 323$	0.84
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{0 . 8 7}$

cg00213281
N cases:controls OR

$93: 214$	0.82
$47: 167$	0.73
$19: 363$	1.02
$106: 87$	0.93
$97: 97$	0.67
$29: 343$	0.75
$15: 182$	0.92
$114: 405$	0.95
$137: 323$	0.87
$657: 2181$	0.88

cg10099827

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.94
BAMSE_MEDALL	$47: 167$	0.99
CHOP	$19: 363$	0.98
GALA	$106: 87$	0.94
ICAC	$97: 97$	0.73
NFBC	$29: 343$	0.88
PIAMA	$15: 182$	0.96
RAINE	$114: 405$	0.87
STOPPA	$137: 323$	0.88
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{0 . 9 2}$

cg01942646
cg23387863
$\operatorname{cg} 19434937$

Cohort
BAMSE_EPIGENE
BAMSE_MEDALL
CHOP
GALA
ICAC
NFBC
PIAMA
RAINE
STOPPA
META-ANALYSIS

N cases:controls	OR	
93:214	0.84	■-
47:167	0.85	\square
19:363	1.04	
97:97	0.99	
29:343	0.91	
15:182	0.95	
114:405	0.95	
137:323	0.86	
551:2094	0.91	

> cg23147443
> cg18042632
> N cases:controls OR
> cg00736681
cg24028828
cg01499988

cg03014680

cg04217850

cg06426027
N cases:controls OR

cg02359181

cg04321303
cg10387956

Cohort N cases:controls OR

cg21919729

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.89 | |
| BAMSE_MEDALL | $47: 167$ | 0.92 | |
| CHOP | $19: 363$ | 1.06 | |
| ICAC | $97: 97$ | 0.90 | |
| NFBC | $29: 343$ | 0.90 | |
| PIAMA | $15: 182$ | 0.96 | |
| RAINE | $114: 405$ | 0.95 | |
| STOPPA | $137: 323$ | 0.88 | |

cg18817654

cg19805160
Cohort N cases:controls OR

BAMSE_EPIGENE	93:214	0.85	■
BAMSE_MEDALL	47:167	0.94	-
CHOP	19:363	1.07	
GALA	106:87	0.96	
ICAC	97:97	0.77	
NFBC	29:343	0.89	
PIAMA	15:182	0.88	
RAINE	114:405	0.90	-
STOPPA	137:323	0.86	\square
META-ANALYSIS	657:2181	0.91	

cg06958964

cg20503329

cg20315954
cg13233042
cg27533472

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.90
BAMSE_MEDALL	$47: 167$	0.77
CHOP	$19: 363$	0.83
ICAC	$97: 97$	0.57
NFBC	$29: 343$	1.14
PIAMA	$15: 182$	1.01
RAINE	$114: 405$	0.87
STOPPA	$137: 323$	0.78
META-ANALYSIS	$551: 2094$	$\mathbf{0 . 8 2}$

cg09597192

cg13482814

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	$93: 214$	0.90	
BAMSE_MEDALL	$47: 167$	0.88	
CHOP	$19: 363$	0.96	
GALA	$106: 87$	0.93	
ICAC	$97: 97$	0.59	
NFBC	$29: 343$	0.79	
PIAMA	$15: 182$	1.15	
RAINE	$13: 405$	0.97	

cg10159529
N cases:controls OR

cg18368116

| Cohort | N cases:controls | OR | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.85 | | |
| BAMSE_MEDALL | $47: 167$ | 0.91 | | |
| CHOP | $19: 363$ | 1.04 | | |
| GALA | $106: 87$ | 0.90 | | |
| ICAC | $97: 97$ | 1.03 | | |
| NFBC | $29: 343$ | 0.81 | | |
| PIAMA | $15: 182$ | 1.09 | | |
| RAINE | $114: 405$ | 0.95 | | |
| STOPPA | $137: 323$ | 0.83 | | |
| META-ANALYSIS | $657: 2181$ | 0.89 | | |

Cohort N cases:controls OR

BAMSE_MEDALL
RAINE
STOPPA

META-ANALYSIS

cg25636075

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.90 | |
| BAMSE_MEDALL | $47: 167$ | 0.92 | |
| CHOP | $19: 363$ | 1.05 | |
| ICAC | $97: 97$ | 0.73 | |
| NFBC | $29: 343$ | 0.85 | |
| PIAMA | $15: 182$ | 0.87 | |
| RAINE | $13: 405$ | 0.89 | |

Cohort	N cases:controls OR
BAMSE EPIGENE	

BAMSE_MEDALL	$47: 167$	0.82
CHOP	$19: 363$	1.09

ICAC	$97: 97$	0.85
NFBC	$29: 343$	0.80

$\begin{array}{lll}\text { PIAMA } & 15: 182 & 1.57\end{array}$
RAINE $\quad 114: 405 \quad 0.91$

STOPPA	$137: 323$	0.87

META-ANALYSIS 551:2094 0.90

cg11770323

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.90 | |
| BAMSE_MEDALL | $47: 167$ | 0.73 | |
| CHOP | $19: 363$ | 1.01 | |
| ICAC | $97: 97$ | 0.76 | |
| NFBC | $29: 343$ | 0.84 | |
| PIAMA | $15: 182$ | 0.90 | |
| RAINE | $114: 405$ | 0.94 | |
| STOPPA | $137: 323$ | 0.91 | |

cg06315149

cg14611258

cg02473287

cg03329755
N cases:controls OR

cg18783781

cg00327263

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.89 | |
| BAMSE_MEDALL | $47: 167$ | 0.87 | |
| CHOP | $19: 363$ | 0.98 | |
| ICAC | $97: 97$ | 0.84 | |
| NFBC | $29: 343$ | 0.77 | |
| PIAMA | $15: 182$ | 0.81 | |

cg26033504

cg25224369
N cases:controls OR

cg24818699

cg02171825

cg26134665

cg09147843

cg23205629
N cases:controls OR

cg09423651

cg04973995
cg20226253
cg17041511

cg17947765

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.84 | |
| BAMSE_MEDALL | $47: 167$ | 0.80 | |
| CHOP | $19: 363$ | 1.06 | |
| GALA | $106: 87$ | 0.89 | |
| ICAC | $97: 97$ | 0.92 | |
| NFBC | $15: 182$ | 0.94 | |
| PIAMA | $114: 405$ | 0.97 | |
| RAINE | $137: 323$ | 0.87 | |

cg07177867

Cohort N cases:controls OR $\begin{array}{lll}\text { BAMSE_EPIGENE } & 93: 214 \quad 0.85\end{array}$ $\begin{array}{lll}\text { BAMSE_MEDALL } & 47: 167 & 0.84\end{array}$ $\begin{array}{lll}\text { CHOP } & 19: 363 & 1.01\end{array}$
GALA $\quad 106: 87 \quad 0.95$

ICAC	$97: 97$	0.80

29:343 0.91
$\begin{array}{rr}15: 182 & 1.15 \\ 114: 405 & 0.92\end{array}$

137:323 0.89
657:2181 0.91
cg15961693

cg25950520

cg00043800
cg00045753

cg13576859
$\begin{array}{lcccc}\text { Cohort } & \text { N cases:controls } & \text { OR } \\ \text { BAMSE_EPIGENE } & 93: 214 & 0.85 & \\ \text { BAMSE_MEDALL } & 47: 167 & 0.94 & \\ \text { CHOP } & 19: 363 & 1.06 & \\ \text { GALA } & 106: 87 & 0.90 & \\ \text { ICAC } & 97: 97 & 0.67 & \\ \text { NFBC } & 29: 343 & 0.99 & \\ \text { PIAMA } & 15: 182 & 0.88 & \\ \text { RAINE } & 114: 405 & 0.94 & \\ \text { STOPPA } & 137: 323 & 0.87 & \\ \text { META-ANALYSIS } & 657: 2181 & 0.92 & \end{array}$
cg22674082

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.86 | |
| BAMSE_MEDALL | $47: 167$ | 1.10 | |
| CHOP | $19: 363$ | 0.81 | |
| GALA | $106: 87$ | 1.01 | |
| ICAC | $97: 97$ | 0.74 | |
| NFBC | $15: 182$ | 0.83 | |
| PIAMA | $114: 405$ | 0.94 | |
| RAINE | $137: 323$ | 0.82 | |

Cohort N casesicontrols OR

BAMSE_EPIGENE	$93: 214$	0.87
BAMSE_MEDALL	$47: 167$	0.83
CHOP	$19: 363$	0.94
GALA	$106: 87$	1.01
ICAC	$97: 97$	0.66
NFBC	$29: 343$	0.94
PIAMA	$15: 182$	1.14
RAINE	$114: 405$	0.97
STOPPA	$137: 323$	0.81
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{0 . 8 7}$

cg08770358
N cases:controls OR

cg00366037
N cases:controls OR

$93: 214$	0.86
$47: 167$	0.84
$19: 363$	0.87
$106: 87$	0.93
$97: 97$	0.73
$29: 343$	0.83
$15: 182$	0.99
$114: 405$	0.95
$137: 323$	0.88

cg19468946

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	93:214	1.13	\square
BAMSE_MEDALL	47:167	1.14	-
CHOP	19:363	1.05	
ICAC	97:97	1.06	
PIAMA	15:182	1.16	
RAINE	114:405	1.07	
STOPPA	137:323	1.12	
META-ANALYSIS	522:1751	1.09	

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	$93: 214$	0.89	
BAMSE_MEDALL	$47: 167$	0.80	
CHOP	$19: 363$	1.11	
ICAC	$97: 97$	0.80	
NFBC	$29: 343$	0.90	
PIAMA	$15: 182$	0.99	
RAINE	$137: 305$	0.93	

cg22235258

| Cohort | N cases:controls | OR | |
| :--- | :---: | :---: | :---: | :---: |
| BAMSE_EPIGENE | $93: 214$ | 0.83 | |
| BAMSE_MEDALL | $47: 167$ | 0.82 | |
| CHOP | $19: 363$ | 1.07 | |
| GALA | $106: 87$ | 1.08 | |
| ICAC | $97: 97$ | 1.02 | |
| NFBC | $29: 343$ | 0.82 | |
| PIAMA | $15: 182$ | 1.01 | |
| RAINE | $114: 405$ | 0.92 | |

cg01445399

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	0.84
BAMSE_MEDALL	$47: 167$	0.86
CHOP	$19: 363$	1.05
GALA	$106: 87$	0.85
ICAC	$97: 97$	0.76
NFBC	$29: 343$	0.93
PIAMA	$15: 182$	1.05
RAINE	$114: 405$	0.93
STOPPA	$137: 323$	0.92
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{0 . 9 1}$

cg13066938
N cases:controls OR

cg27383865

Cohort	N cases:controls	OR	
BAMSE_EPIGENE	$93: 214$	1.08	
BAMSE_MEDALL	$47: 167$	1.40	
CHOP	$19: 363$	1.16	
GALA	$106: 87$	1.47	
ICAC	$97: 97$	0.93	
NFBC	$29: 343$	0.94	
PIAMA	$15: 182$	1.25	
RAINE	$114: 405$	1.12	
STOPPA	$137: 323$	1.10	
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{1 . 1 1}$	

$\operatorname{cg} 15219163$

cg15304012

Cohort	N cases:controls	OR
BAMSE_EPIGENE	$93: 214$	1.41
BAMSE_MEDALL	$47: 167$	1.25
CHOP	$19: 363$	0.84
GALA	$106: 87$	1.67
ICAC	$97: 97$	1.20
NFBC	$29: 343$	1.70
PIAMA	$15: 182$	2.00
RAINE	$114: 405$	1.35
STOPPA	$137: 323$	1.06
META-ANALYSIS	$\mathbf{6 5 7 : 2 1 8 1}$	$\mathbf{1 . 2 6}$

cg00043800
cg00045753

cg00222125

Left out study

Left out study
cg00327263

Left out study
cg00944309

cg01000631
cg01310029

Left out study
cg01499988

Left out study
cg01998785

Left out study

Left out study
cg01901579

Left out study
cg02133716

Left out study

Left out study
cg01942646

Left out study
cg02171825

cg02359181

Left out study
cg02494549

Left out study
cg02970679

Left out study

Left out study
cg02596233

Left out study
cg03014680

Left out study
cg02803925

Left out study
cg03131767

cg04983687

Left out study
cg05477517

Left out study
cg06315149

cg05184016

Left out study
cg05875066

Left out study
cg06391412

Left out study

Left out study
cg06070625

Left out study
cg06426027

cg06558622

cg06725287

Left out study
cg07386061

Left out study
cg07970948

Left out study

Left out study
cg07410597

Left out study
cg08067346

cg08077807

Left out study
cg08770358

Left out study
cg08969102

Left out study

Left out study
cg08773180

Left out study
cg09147843

Left out study

Left out study
cg08940169

Left out study
cg09249800

cg09332506

Left out study
cg09447105

Left out study
cg09705784

cg09423651

Left out study
cg09565310

Left out study
cg10065736

Left out study
cg10142874
cg10159529

cg10704177

Left out study
cg11266582

cg11770323
cg11987455

Left out study
cg12643917

Left out study
cg13054523

cg13197551

Left out study
cg13482814

Left out study
cg13792581

Left out study
cg13233042

Left out study
cg13576859

Left out study
cg13835688

Left out study
cg13628444

Left out study
cg13850063

cg14011077

Left out study
cg14611258

Left out study
cg15219163

cg14025883

Left out study
cg14678084

Left out study

Left out study
cg14978242

Left out study
cg15700636

Left out study
cg17988187
g18042632

Left out study
cg18460809

Left out study
cg18666454

Left out study
cg18368116

Left out study

Left out study

Left out study
cg18550847

Left out study
cg18817654

cg18879389

Left out study
cg19468946

Left out study
cg19928703

Left out study

Left out study
cg19805160

Left out study
cg20226253

Left out study
cg19851574

Left out study
cg20263733

Left out study
cg20315954
cg20503329

Left out study
cg20885063

Left out study
cg21073212

Left out study

Left out study cg21045547

Left out study
cg21498475

cg21627181

Left out study
cg22235258

Left out study
cg22674082

Left out study

Left out study
cg22312249

Left out study
cg22816343

Left out study

Left out study
cg22588983

Left out study
cg23147443

cg23205629

Left out study
cg24028828

Left out study
cg24576940

cg23387863
cg23706836

Left out study
cg24368962

Left out study
cg24818699

Left out study
cg24459209

Left out study
cg25087851

cg25173129

Left out study
cg25479097

Left out study
cg25939647

Left out study

Left out study
cg25636075

Left out study
cg25950520

Left out study

Left out study
cg25854298

Left out study
cg26033504

cg26134665
cg26252077

Left out study
cg26774971

Left out study
cg27533472

cg26396815

Left out study
cg26979537

Left out study

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs \& Comparative Genomics)
CLNS1A
Human mRNAs
CpG Islands

Common SNPs(150)
| | | || |

Master DNasel HS
FL DNase 764 FL DNase 271 FL DNase 4B 07 FL DNase 4766 FL DNase 6624 FL DNase 6651 FL DNase 8409 FL DNase 6527 FL DNase 9961 FL DNase 1973 H1-hESC Syn Pk NHLF ChromHMM

Bases are Light Green)
NP 150) Found in >=1\% of Sample

Nasel/FAIRE/ChIP Synthesis from ENCODE/OpenChrom(Duke/UNC/UTA)
NHLF ChromHMM
LNG
Lung BS 02
FL RRBS 27
FL RRBS 66

Chromatin State Segmentation by HMM from ENCODE/Broad

 Lung H3K36me3 0164 Lung H3K36me3 0214 Lung H3K4me1 0166 Lung H3K4me1 0298 Lung H3K4me3 0233 Lung H3K9me3 0184 Lung H3K9me3 0249
Lung Input 0153 Lung Input 0153
Lung Input 0261 Lung Input 0266

FL DGF 6624

Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

\qquad

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs \& Comparative Genomics)

Common SNPs(150)
SNPs

$$
\begin{aligned}
& \text { FL DNase } 7646 \\
& \text { FL DNase } 2717 \\
& \text { FL DNase 4B } 07
\end{aligned}
$$ FL DNase 4B 07 FL DNase 9085 FL DNase 4766 FL DNase 6624 FL DNase 8451 FL DNase 8420 FL DNase 6527 FL DNase 9561 FL DNase 1973 H1-hESC Syn Pk NHLF ChromHMM

Nasel/FAIRE/ChIP Synthesis from ENCODE/OpenChrom(Duke/UNC/UTA)

NHLF ChromHMM
Chromatin State Segmentation by HMM from ENCODE/Broad
Lung BS 02
FL RRBS 27
FL RRBS 66

Lung H3K27ac 0161 Lung H3K27ac 0248 Lung H3K36me3 0164 Lung H3K36me3 0214 Lung H3K4me1 0166 Lung H3K4me1 0298 Lung H3K4me3 0233 Lung H3K9me3 0184 Lung H3K9me3 0249

$$
\begin{aligned}
& \text { Lung Input } 0153 \\
& \text { Lung Input } 0261
\end{aligned}
$$

$$
\text { Lung Input } 0296
$$

FL DGF 6624 GPATCH2 $川$ chromHMM tracks from Roadmap

lung F YFC4

 wholBlood F YFC4 lung M ZPU1 wholBlood M ZPU1$$
\begin{aligned}
& \text { Lung mRNA } 01 \\
& \text { Lung mRNA } 02
\end{aligned}
$$

DNA Methylation from REMC

Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

111

SPATA1

$$
\begin{aligned}
& \text { SPATA17 } \\
& \text { GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN) }
\end{aligned}
$$

GTEx RNA signal from female Whole Blood (GTEX-YFC4-0006-SM-4RGLV)
GTEx RNA signal from male Lung (GTEX-ZPU1-0926-SM-57WDO)
GTEx RNA signal from male Whole Blood (GTEX-ZPU1-0006-SM-4WWAT)
RNA-seq Signal from REMC

GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN)
GTEx RNA signal from female Whole Blood (GTEX-YFC4-0006-SM-4RGLV)
GTEx RNA signal from male Lung (GTEX-ZPU1-0926-SM-57WDO)
 Lung H3K36me3 0214 Lung H3K4me1 0166 Lung H3KK4me1 0298 Lung H3KK4me3 0233 Lung H3K9me3 0184 Lung H3K9me3 0249

$$
\begin{aligned}
& \text { Lung Input } 0153 \\
& \text { Lung Input } 0261 \\
& \text { Lung Input } 0296
\end{aligned}
$$

FL DGF 6624 -
Transcription Factor ChIP-seq (161 factors) from ENCODE with Factorbook Motifs

GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN)
GTEx RNA signal from female Whole Blood (GTEX-YFC4-0006-SM-4RGLV)
GTEx RNA signal from male Lung (GTEX-ZPU1-0926-S̄M-57WDO)

Lung mRNA 01
Lung mRNA 02
$\operatorname{scoc} \|$.
wholBlood F YFC4
lung M ZPU1
wholBlood M ZPU1

E

$\xrightarrow{\square}$

Lung mRNA 01
Lung mRNA 02

Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors) GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN)
GTEx RNA signal from female Whole Blood (GTEX-YFC4-0006-SM-4RGLV)
GTEx RNA signal from male Lung (GTEX-ZPU1-0926-SM-57WDO)
\ldots GTEx RNA signal from male Whole Blood (GTEX-ZPU1-0006-SM-4WWAT)

F \qquad
CpG Islands (Islands < 300 Bases are Light Green)
Simple Nucleotide Polymorphisms (dbSNP 150) Found in >= 1% of Samples
Common SNPs(150)
Master DNasel HS
FL DNase 7646
FL DNase 2717 FL DNase 4B 07 FL DNase 9085 FL DNase 4766 FL DNase 6651 FL DNase 8409 FL DNase 6527 FL DNase 9961 FL DNase 9961
FL DNase 1973
H1-hESC Syn Pk
NHLF ChromHMM

DNasel/FAIRE/ChIP Synthesis from ENCODE/OpenChrom(Duke/UNC/UTA)
Chromatin State Segmentation by HMM from ENCODE/Broad
LNG
Lung BS 02
FL RRBS 27
FL RRBS 66
\| \|\|\|\| \| \| ||| \|||\|\|\| ||||| \| ||| \|
chromHMM tracks from Roadmap
FL RRBS 27 FL RRBS 66 Lung H3K27ac 0161
Lung H3K27ac 0248 Lung H3K36me3 0164 Lung H3K36me3 0214 Lung H3K4me1 0166 Lung H3K4me10298 $\quad \square \square \square \mid$ Lung H3K4me3 0233
Lung H3K9me3 0184
Lung H3K9me3 0249 Lung H3K9me3 0249
Lung Input 0153
Lung Input 0261
Lung Input 0296

FL DGF 66
SU lung F YFC4
wholBlood F YFC4 lung M ZPU1 wholBlood M ZPU1

Gene Expression in 53 tissues from
Lung mRNA 01
Lung mRNA 02

Transcription Factor ChIP-seq (161 factors) from ENCODE with Factorbook Motifs

GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN)
GTEx RNA signal from female Whole Blood (GTEX-YFC4-0006-SM-4RGL
01
GTEx RNA signal from male Lung (GTEX-ZPU1-0926-SM-57WDO)
GTEx RNA signal from male Whole Blood (GTEX-ZPU1-0006-SM-4WWAT)

Human mRNAs from GenBank

Human mRNAs
 CpG Islands

CpG Islands (Islands < 300 Bases are Light Green)
Common SNPs(150)
III | |

NHLF ChromHMM

$$
\text { FL DGF } 6624
$$

WDR20 ॥II
ng F YFC4
wholBlood F YFC4
lung M ZPU1 wholBlood M ZPU1
Lung mRNA 01
Lung mRNA 02
—— GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN)

LV)

-

DNasel/FAIRE/ChIP Synthesis from ENCODE/OpenChrom(Duke/UNC/UTA)
Chromatin State Segmentation by HMM from ENCODE/Broad
 Ex RNA signal from female Whole Blood (GTEX-YFC4-0006-S

DMRs (Older Kids)
CpG Islands

Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors) I

$$
\text { CpG Islands (Islands }<300 \text { Bases are Liaht Greas }
$$

DMRs (Older Kids)

CpG Islands

CpG Islands (slands < 300 Bases are Light Green)
 SNPs
 FL RRBS 27
FL RRBS 66
 Lung Input 0296

$$
\text { FLDGF } 6624
$$

Ren

C25A26 4
g F YFC4
olBlood F YFC
 wholBlood M ZPUI Lung mRNA 01
Lung mRNA 02

$$
\text { II } 1 \mid \square
$$

Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

$$
\frac{\text { Gene Expression in } 5 S \text { tissues from Gitx RNA-seq of } 8555 \text { samples (5/0 dono }}{\text { GTEx RNA signal from female Lung (GTEX-YFC4-1126-SM-5RQJN) }}
$$

[^7]CpG Islands (lslands < 300 Bases are Light Green)
 SNPs
Master DNasel $\mathrm{HS}\|$

${ }^{\mid}$| || |||| |||

$$
\begin{aligned}
& \text { Lung H3KK6mees } 02144 \\
& \text { Lung H3K4me1 } \\
& \hline 16166
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lung H3K4mel } 0298 \\
& \text { Lung HKK4me } 0233 \\
& \text { Lung H3K9me3 } 0184
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lung Input } 0153 \\
& \text { Lung Input } 0261 \\
& \text { Lung Input } 0296 \mid
\end{aligned}
$$

$$
\begin{array}{c|cc|c|l}
\text { FL DGF } 6624 & \text { Genomic Footprinting trom REMC/UW }
\end{array}
$$

IUng F YFC4
wholBlood F YFC4
IUng M ZPU1
wholBlood M ZPU1

CpG Islands (Islands <300 Bases are Light Green)

SNPs

LNG

 DNase Hypersensitivity Raw Signal from REMC/UW

$\square \square \square$

```
chromHMM tracks from Roadmap
```


sSPO
ZNF862 ${ }^{\|}$
Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

$$
\begin{aligned}
& \text { Lung H3K9me3 } 0249 \\
& \text { Lung Input } 0153 \\
& \text { Lung Input } 0261
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lung Input } 0261 \\
& \text { Lung Input } 0296
\end{aligned}
$$

$$
\text { FL DGF } 6624
$$ SOCS5P2 \qquad PPP1R26-AS1 \qquad Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

LNG
chromHMM tracks from Roadmap
 FL RRBS 66

 Lung BS 02
FL RRBS 27
FL RRBS 66

Lung НзK27ac 0161
Lung HKK27aca 0248

 Lung H3K4me1 0166
Lung HKK4me1 0298

 Lung Input 026

(Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

$$
\begin{array}{lll}
\text { VLL } \\
& \text { GTEx RNA signal from female Lung (GTEXX-YFC4-1126-SM-5ROJN) }
\end{array}
$$

Simple Nucleotide Polymorphisms (dbSNP 147) Found in $>=1$

Lng
\square chromHMM tracks from Roadmap

Gene Expression in 53 tissues from GTEx RNA-seq of 8555 samples (570 donors)

cg13427149

cg17333211

$\mathrm{N}=964$ Bandwadth $=0.005024$
cg07156990

cg 13289553

[^0]: PII: S0091-6749(18)32788-X
 DOI: https://doi.org/10.1016/j.jaci.2018.11.043
 Reference: YMAI 13798

[^1]: * DMRcate annotates to UCSC RefGene from Illumina annotation file.
 ** Comb-p uses a one-step Sidak multiple-testing correction on the regional P-value assigned using Stouffer-Liptak method.
 *** DMRcate takes the minimum Benjamini-Hochberg False Discovery Rate (FDR) corrected P-value in the region as representative after recalculating P-values using Gaussian kernel smoothing.

[^2]: * p-value<0.05

[^3]: * Annotation based on UCSC Known Gene also fills in nearest gene within 10 MB .
 ** Odds ratio of developing asthma for a 1% absolute increase in methylation.

[^4]: * Annotation based on UCSC Known Gene also fills in nearest gene within 10 MB .

[^5]:

[^6]: * Based on DMRCate annotation to RefGene from Illumina annotation file

[^7]: GTEx RNA signal from femaie Whole Biood (GTEX-Y $\overline{\mathrm{CCC}} 4-000 \overline{6}-\mathrm{SM}-4 \mathrm{RGLV}$)

 GTEx RNA signal from male Whole Blood (GTEX-ZPU1-0000-SM-4WWAT)
 RNA-seq Signal from REMC

