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A B S T R A C T

Background: The evaluation of the chemical impact on human health is usually constrained to the analysis of the
health effects of exposure to a single chemical or a group of similar chemicals at one time. The effects of chemical
mixtures are seldom analyzed. In this study, we applied three statistical models to assess the association between
the exposure to a mixture of seven xenobiotics (three phthalate metabolites, two phenols, and two pesticides)
and obesity.
Methods: Urinary levels of environmental phenols, pesticides, and phthalate metabolites were measured in
adults who participated in the U.S.-based National Health and Nutrition Examination Survey (NHANES) from
2013 to 2014. Body examination was conducted to determine obesity. We fitted multivariable models, using
generalized linear (here both logistic and linear) regression, weighted quantile sum (WQS) regression, and
Bayesian kernel machine regression (BKMR) models to estimate the association between chemical exposures and
obesity.
Results: Of 1269 individuals included in our final analysis, 38.5% had general obesity and 58.0% had abdominal
obesity. In the logistic regression model established for each single chemical, bisphenol S (BPS), mono (car-
boxyoctyl) phthalate (MCOP), and mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) were associated with
both general and abdominal obesity (fourth vs. first quartile). In linear regression, MCOP was associated with
BMI and waist circumference. In WQS regression analysis, the WQS index was significantly associated with both
general obesity (OR=1.63, 95% CI: 1.21–2.20) and abdominal obesity (OR=1.66, 95% CI: 1.18–2.34). MCOP,
bisphenol A (BPA), bisphenol S (BPS), and mono ethyl phthalate (MEP) were the most heavily weighing che-
micals. In BKMR analysis, the overall effect of mixture was significantly associated with general obesity when all
the chemicals were at their 60th percentile or above it, compared to all of them at their 50th percentile. MCOP,
BPA, and BPS showed positive trends. By contrast, MECPP showed a flat and modest inverse trend.
Conclusion: When comparing results from these three models, MCOP, BPA, and BPS were identified as the most
important factors associated with obesity. We recommend estimating the joint effects of chemical mixtures by
applying diverse statistical methods and interpreting their results together, considering their advantages and
disadvantages.

1. Introduction

Obesity is one of the most serious global public health issues. In
2016, the World Health Organization (WHO) estimated that 39% of

adults were overweight worldwide, of whom 13% were obese (WHO,
2018). Obesity increases the risk of many chronic diseases such as
cardiovascular diseases, neurological disorders, diabetes, and even
some types of cancer (Gallagher and LeRoith, 2015; O'Brien et al., 2017;
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Picon-Ruiz et al., 2017). Annually, at least 2.8 million deaths globally
can be attributed to being overweight or obese (WHO, 2018). The
control and management of obesity require identification of the po-
tential factors associated with it.

Previous studies have demonstrated that many factors, including
genetic predisposition, excessive energy intake, lack of physical ac-
tivity, etc., can play a role in the development of obesity (Alamuddin
et al., 2016; van der Klaauw and Farooqi, 2015). However, these factors
cannot completely account for the obesity epidemic. Over recent years,
the role of obesogenic endocrine disruptors that promote the develop-
ment of obesity has been investigated (Muscogiuri et al., 2017; Wang
et al., 2016), and environmental phenols, phthalates, and pesticides
may play important roles (Dong et al., 2017; Hatch et al., 2008; Liu
et al., 2017; Ye et al., 2014). These chemicals have been extensively
used in consumer products and detected in consumers (Bradley et al.,
2013; Huang et al., 2012; Wei et al., 2014). Humans are exposed to
these chemicals through various sources such as from inhalation of
dust, ingestion of contaminated foods, and from dermal contact with
personal care products (Bui et al., 2016; Vandenberg et al., 2009; Ye
et al., 2014). However, to estimate exposures from all the sources and
routes accurately is a very difficult task. An alternative method (used
here), requiring information of eventual biotransformation pathways, is
to assess the combined body exposure from measurement of excreted
compounds or their representative metabolites. In this study, urinary
phenols, pesticides, and representative metabolites of the phthalates
were measured and represent the exposure to multiple sources and
routes. Several previous studies have demonstrated correlations be-
tween the urinary concentration of these chemicals and obesity. How-
ever, most of these focused on the effect of a single chemical at one time
(Buser et al., 2014b; Hatch et al., 2008; Li et al., 2015; Twum and Wei,
2011; Ye et al., 2014). In reality, however, the average person is being
exposed to various chemicals simultaneously. This can lead to inter-
actions between co-administered chemicals (Czarnota et al., 2015b;
Kim et al., 2017; Kim et al., 2013; Kim et al., 2015). Consequently,
today, most researchers support the need to study the simultaneous
effect of common environmental contaminants (Artacho-Cordon et al.,
2016; Chiu et al., 2018; Coker et al., 2018; Coker et al., 2017; Czarnota
et al., 2015a; Valeri et al., 2017). The complex exposure pattern, high
correlation, and complicated interactions within environmental che-
micals require a tailored strategy to assess the mixed effects of multiple
pollutants (Billionnet et al., 2012).

We undertook this study to identify urinary chemicals or metabo-
lites that may be associated with obesity based on the U.S. nationwide
population data from NHANES participants from 2013 to 2014. We
included seven urinary phenols, pesticides, and phthalate metabolites,
based on previous studies reporting their association with obesity or
their potential obesogenic effects (Liu et al., 2017; Tang-Peronard et al.,
2011; Ye et al., 2014). The mixed effects of these chemicals were
analyzed using generalized linear regression, weighted quantile sum
(WQS) regression, and Bayesian kernel machine regression (BKMR)
models. All three models had advantages and disadvantages. The results

of the three methods were interpreted jointly afterward. Our results can
offer some advice for longitudinal epidemiological studies and experi-
mental studies to explore the relationship between chemical exposure
and obesity further.

2. Materials and methods

2.1. Study population

The NHANES is a cross-sectional, nationwide study aiming to assess
the health and nutrition status of children and adults in the USA, car-
ried out periodically since the 1960s. The study population is nationally
representative, recruited through a multistage, stratified sampling de-
sign. We used publicly available data from participants recruited be-
tween 2013 and 2014. Subsample B was the representative sample of
the 2013–2014 cycle by first using an algorithm to divide all the sam-
ples randomly into 12 groups, and combinations of these groups were
predetermined to create the various subsamples (CDC, 2016). In-
dividuals in this subsample had provided urine specimens for mea-
surement of urinary phenol, pesticide, and phthalate metabolites. We
included participants aged 20 years and older who had completed
measurements of body weight, height, and waist circumference in
subsample B. We excluded participants with missing data on covariates,
pregnant women, and persons diagnosed with cancer or malignancy
(affecting their body weight). We also excluded those with BMI under
18.5 to exclude disturbance from some unknown reasons that induced
underweight. Finally, 1269 participants were left for the analysis
(Fig. 1). The NHANES survey 2013–2014 was approved by the National
Center for Health Statistics Research Ethics Review Board. All partici-
pants gave their written consent to participate in the study.

2.2. Measurement of chemicals in urine

Spot urine samples were collected at mobile examination centers
(MECs). The samples were stored at −20 °C until analysis by the Division of
Laboratory Sciences, Organic Analytical Toxicology Branch, at the National
Center for Environmental Health (Atlanta, GA). Each of the recruited par-
ticipants who had all seven urinary phenols, pesticides, and phthalates
metabolites analyzed for monoethyl phthalate (MEP) [metabolite of diethyl
benzene-1,2-dicarboxylate (DEP)], mono (carboxyoctyl) phthalate (MCOP)
[metabolite of di-iso-nonyl phthalate (DINP)], and mono (2-ethyl-5-car-
boxypentyl) phthalate (MECPP) [metabolites of diethylhexyl phthalate
(DEHP)] were selected as the representatives of phthalate metabolites be-
cause their primary chemicals claimed over 75% global share (Benjamin
et al., 2017), and they were the first three phthalate metabolites of the
highest concentration in this population (results not shown). Thus, the fi-
nally analyzed chemicals were bisphenol A (BPA), bisphenol S (BPS), and
two chlorophenol pesticides [2,4-dichlorophenol (2,4-DCP) and 2,5-di-
chlorophenol (2,5-DCP)] as well as three representative phthalate metabo-
lites (MEP, MCOP, and MECPP). Urinary concentrations of BPA, BPS, 2,4-
DCP, and 2,5-DCPwere measured by on-line, solid-phase extraction coupled

Abbreviations

BKMR Bayesian kernel machine regression
BMI body mass index
BPA bisphenol A
BPS bisphenol S
BPF bisphenol F
CI confidence interval
DINP di-isononyl phthalate
DEHP diethylhexyl phthalate
DEP diethyl benzene-1,2-dicarboxylate
GPAQ Global Physical Activity Questionnaire

LOD lower limit of detection
MEC mobile examination center
MCOP mono (carboxyoctyl) phthalate
MECPP mono (2-ethyl-5-carboxypentyl) phthalate
MEP mono ethyl phthalate
MET metabolic equivalent time
NHANES National Health and Nutrition Examination Survey
OR odds ratio
VIF variance inflation factor
WQS weighted quantile sum
2,5-DCP 2,5-dichlorophenol
2,4-DCP 2,4-dichlorophenol
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to high-performance liquid chromatography and tandemmass spectrometry
(on-line SPE-HPLC-isotope dilution-MS/MS). Phthalate metabolites were
measured by high-performance liquid chromatography-electrospray ioni-
zation-tandemmass spectrometry (HPLC-ESI-MS/MS). Detailed information
about the chemical measurement methods can be obtained from the
NHANES laboratory methods (https://wwwn.cdc.gov/nchs/data/nhanes/
2013-2014/labmethods/PHTHTE_H_MET_Phthalates.pdf; https://wwwn.
cdc.gov/nchs/data/nhanes/2013-2014/labmethods/EPHPP_H_MET.pdf).
The lower limit of detection (LOD) for BPA; BPS; 2,4-DCP; 2,5-DCP; MEP;
MCOP; and MECPP were 0.2 μg/L, 0.2 μg/L, 0.1 μg/L, 0.1 μg/L, 1.2 μg/L,
0.3 μg/L, and 0.4 μg/L, respectively. For analytic results below the lower
limit of detection, we imputed the lower limit of detection divided by the
square root of two. The urinary creatinine concentration in grams per liter
was determined with an Enzymatic Roche Cobas 6000 analyzer and used as
an internal reference to account for urinary dilution, thus adjusted in the
following analysis as a covariate according to the recommendation (Barr
et al., 2005).

2.3. Outcomes and covariation assessment

Trained health technicians measured body weight, height, and waist
circumference at the MECs. General obesity was defined as BMI of
30 kg/m2 or higher. Abdominal obesity was classified as absolute waist
circumference of 102 cm or above in men and 88 cm or above in
women.

Covariates, including age, gender, ethnicity, education levels, fa-
mily income, physical activity, total energy intake levels, and smoking
status were obtained by direct interview. Age and natural ln-trans-
formed creatinine concentration were treated as continuous variables.
The categories of other covariates were as follows: gender (female,
male), ethnicity (Hispanic, non-Hispanic white, non-Hispanic black,
and others), education levels (lower than high school, high school,

some college or AA degree, college graduation, or above), family in-
come–to-poverty ratio (≤1.30, 1.31–3.50,> 3.50), physical activity
(< 600, 600–1199, ≥1200 MET min per week), total energy intake
(low: males< 2000 kcal/day, females< 1600 kcal/day; adequate:
males 2000–3000 kcal/day, females 1600–2400 kcal/day; high:
males> 3000 kcal/day, females> 2400 kcal/day), smoking status
(never smoker:< 100 cigarettes in life; former smoker:> 100 cigar-
ettes in life and did not smoke at the time of survey; current
smoker:> 100 cigarettes in life and smoked every day or some days at
the time of survey). Participants were asked about their physical ac-
tivity during a typical week, based on the Global Physical Activity
Questionnaire (GPAQ). Metabolic equivalent (MET) per week was cal-
culated according to the GPAQ guideline. Total energy intake per day
was based on dietary interview data, from which the total energy intake
of the first two days was averaged as the participants' energy intake.
When data from the second day was absent, the data of the first day
represented the typical total energy intake per day.

2.4. Statistical analysis

We compared variations of continuous and categorical variables,
using the t and χ2 tests, respectively. Because concentrations of these
seven chemicals were seriously right-skewed, the data were ln-trans-
formed to improve a normal distribution when they were treated as
continuous variables. We calculated the Pearson correlation coefficients
between ln-transformed concentrations of the seven chemicals.

2.4.1. Statistical model 1: generalized linear regression model
First, we assessed the association between individual chemicals and

general obesity or abdominal obesity by comparing the second, third,
and fourth quartiles to the first quartile of a chemical's concentration,
using multivariate logistic regression. In addition, we fitted a logistic

Fig. 1. Flowchart of population included in our final analysis (N= 1269), NHANES, USA, 2013–2014.
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regression model for each chemical, adjusting for the concentration of
other chemicals. Next, we conducted linear regression with ln-trans-
formed concentration of each chemical as continuous variables and BMI
or waist circumference as continuous outcome variables. All multi-
variable analyses were adjusted to gender, ethnicity, educational levels,
age, family income–to-poverty ratio, smoking status, energy intake le-
vels, physical activity, and ln-transformed creatinine concentration.

2.4.2. Statistical model 2: weighted quantile sum (WQS) regression model
Second, we used the WQS regression model to evaluate the effects of

mixed exposure to seven chemicals, which was a weighted quartile sum
approach in conjunction with either linear (continuous outcomes) or
logistic (binary outcomes) regression (Carrico et al., 2014; Czarnota
et al., 2015a; Czarnota et al., 2015b). This approach took all the mea-
sured chemicals into consideration, and chemicals included in this
model were constrained to have the same effect direction for the obesity
association. By grouping different chemicals into ordinal variables
(quartiles), the WQS regression model calculated a weighted linear
index, which represented the whole body burden of all seven chemicals.
The corresponding weight of each chemical showed how much a par-
ticular chemical contributed to the WQS index. The function of the
WQS model was as follows.
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where β0was the intercept; z′ and Φ represented the matrix of covariates
and coefficient of covariates; c was the number of chemicals considered

in the analysis (here, seven). The sum of the entire weighted index (ωi)
was equaled to 1, with value of each ranging from 0 to 1 ( 1i
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i b0 == ,

0≤ωi≤1). β1 was the regression coefficient of the WQS index. iq in-
dicated quartiles of the value that a chemical scored ( iq =0, 1, 2, or 3
represented the 1st, 2nd, 3rd, or 4th quartile, respectively). ℊ(μ) was a
logit link function when the outcomes of interest were binary (general
obesity or not, abdominal obesity or not). A linear link was assumed for
ℊ(μ) when outcomes are continuous variables (BMI or waist cir-
cumference). The data were randomly split into two data sets (40% as
training set and 60% as validation set). In addition, we set β1 as a non-
constrained positive coefficient. By bootstrapping the training set, we
obtained the ωi of each chemical and the estimated β1at each time. After
bootstrapping 10,000 times, we got 10,000 sets of ωi and β1 indices. All
the obtained ωis of each chemical were averaged to get the empirical
weights when β1 was positive and iteration of the same set was suc-
cessfully converged (with the parameter conv (converge) not equal to
2). The averaged ωi of each chemical was applied to the function to
calculate the statistical significance in the validation data. We also
conducted the model with β1 constrained to be negative to determine
whether there was a signal in that direction.

2.4.3. Statistical model 3: Bayesian kernel machine regression (BKMR)
model (Bobb et al., 2015)

Third, we used the BKMR model, a non-parametric Bayesian vari-
able selection framework, to evaluate the joint effect of chemicals on
obesity and body indices. BKMR combines Bayesian and statistical
learning methods to regress an exposure–response function iteratively
by a Gaussian kernel function. BKMR can identify nonlinear and non-
additive relationships within chemicals. Because the chemicals in our
analysis were highly correlated, we conducted a hierarchical variable
selection method with 50,000 iterations by a Markov chain Monte Carlo

Table 1
Characteristics of study population (N=1269), NHANES, USA, 2013–2014.

Characteristics No obesity General obesity P value No abdominal obesity Abdominal obesity P value

N=780 N=489 N=533 N=736

Age, year 47.16 (17.08) 47.99 (15.92) 0.381 43.79 (16.47) 50.15 (16.26) <0.001
Gender 0.001 <0.001
Male 399 (51.2%) 205 (41.9%) 344 (64.5%) 260 (35.3%)
Female 381 (48.8%) 284 (58.1%) 189 (35.5%) 476 (64.7%)

Ethnicity < 0.001 <0.001
Hispanic 174 (22.3%) 126 (25.8%) 112 (21.0%) 188 (25.5%)
Non-Hispanic white 311 (39.9%) 207 (42.3%) 201 (37.7%) 317 (43.1%)
Non-Hispanic black 147 (18.8%) 129 (26.4%) 100 (18.8%) 176 (23.9%)
Non-Hispanic Asian 121 (15.5%) 12 (2.5%) 100 (18.8%) 33 (4.5%)
Other 27 (3.5%) 15 (3.1%) 20 (3.8%) 22 (3.0%)

Education level < 0.001 <0.001
Lower than high school 175 (22.4%) 113 (23.1%) 112 (21.0%) 176 (23.9%)
High school 158 (20.3%) 127 (26.0%) 105 (19.7%) 180 (24.5%)
Some college or AA degree 206 (26.4%) 164 (33.5%) 130 (24.4%) 240 (32.6%)
College graduate or above 241 (30.9%) 85 (17.4%) 186 (34.9%) 140 (19.0%)

Family income-to-poverty ratio 0.014 0.017
≤1.30 262 (33.6%) 178 (36.4%) 171 (32.1%) 269 (36.5%)
1.31–3.50 252 (32.3%) 182 (37.2%) 173 (32.5%) 261 (35.5%)
>3.5 266 (34.1%) 129 (26.4%) 189 (35.5%) 206 (28.0%)

Smoking status 0.785 0.393
Never smoker 462 (59.2%) 280 (57.3%) 323 (60.6%) 419 (56.9%)
Past smoker 159 (20.4%) 105 (21.5%) 103 (19.3%) 161 (21.9%)
Current smoker 159 (20.4%) 104 (21.3%) 107 (20.1%) 156 (21.2%)

MET time/week 0.011 <0.001
<600 284 (36.4%) 219 (44.8%) 167 (31.3%) 336 (45.7%)
600–1199 89 (11.4%) 52 (10.6%) 68 (12.8%) 73 (9.9%)
≥1200 407 (52.2%) 218 (44.6%) 298 (55.9%) 327 (44.4%)

Total calories, kcal per day 0.917 0.145
Low 320 (41.0%) 195 (39.9%) 201 (37.7%) 314 (42.7%)
Adequate 324 (41.5%) 208 (42.5%) 229 (43.0%) 303 (41.2%)
High 136 (17.4%) 86 (17.6%) 103 (19.3%) 119 (16.2%)

MET time: Metabolic equivalent (MET) per week. Data presented are mean ± SD or n (%). The t-test and χ2 test were between the general obesity and no obesity
groups or between the abdominal obesity and no abdominal obesity groups.
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algorithm. Based on Pearson correlation coefficient values and their
similar exposure sources (Andaluri et al., 2018; Czaplicka, 2004;
Wittassek et al., 2011), we grouped MCOP, MEP, MECPP, BPA, and BPS
into group 1, and 2,5-DCP and 2,4-DCP into group 2.

Y h Group MCOP MEP MECPP BPA BPS Group

DCP DCP Z e

[ ( , , , , ),

(2, 5 , 2, 4 )]
i

T
i i

1 2= =

= + +

where h() was the exposure–response function based on nonlinearity
and/or interaction among the mixture components, Zi, and β re-
presented covariates and their coefficients, respectively. Confidence
intervals obtained from the BKMR model incorporated the additional
uncertainty due to estimation of a high-dimension set of exposures and
accounting for multiple-testing penalty. We assumed that the within-
group correlation was high and the across-group correlation was low.
Using a hierarchical variable selection method, we calculated the group
posterior inclusion probability (groupPIP) representing the probability
of a mixture group, which was included in the final model after 50,000
iterations. Based on groupPIP, we calculated the conditional posterior
inclusion probability (condPIP), which represented the probability that
a particular chemical within the group was included in the model. A PIP
threshold of 0.5 is usually used (Coker et al., 2018) to determine
whether it is important. The BKMR model could analyze the association
between mixed exposure and a binary outcome ([1/0] variable; here,
whether general/abdominal obesity or not) as well as continuous
variables (here, BMI and waist circumference). At the former situation,
a probit link function was assumed (Bobb et al., 2018). With probit
regression in BKMR, h() could be interpreted as the exposure–response
relationship between exposure and a latent continuous outcome (> 0
equal to disease,< 0 equal to control).

In the NHANES survey, samples were weighted to reduce the se-
lection bias among subgroups for age, gender, and ethnicity. Therefore,
we used unweighted estimation because variables used to count sample
weights had already been included in the adjusted model, as re-
commended previously (Blount et al., 2006; Kim et al., 2017).

All significance levels were set to 0.05 in this study. All analyses
were conducted with R (3.5.1). WQS and BKMR were implemented
with the R packages “gWQS” (version 1.1.0) and “bkmr” (version
0.2.0), respectively.

3. Results

3.1. Population characteristics

General characteristics of the study population are presented in
Table 1. In total, 1269 participants were included in the analysis. The
prevalence of general obesity and abdominal obesity were 38.5% and
-58.0%, respectively. Gender, ethnicity, education level, family income,
and physical activity were significantly different between obese and

non-obese participants in both analyzed groups. Age was significantly
different between those with abdominal obesity and those without.

3.2. Measurement of urinary phenols and phthalate metabolites and their
correlation

All seven chemicals were detectable in ≥90% of the study popu-
lation. The mean concentration, geometric mean concentration, and
distribution of these chemicals are shown in Table 2. BPA and its sub-
stitute BPS were detected in 95.0% and 90.0% of participants, respec-
tively, and the concentration of BPA was about two times higher than
that of BPS. It was revealed that the concentration of 2,5-DCP was much
higher than 2,4-DCP. The urinary concentration of MEP was the highest
among the phthalate metabolites, whereas MCOP and MECPP were
second and third, successively.

Correlations between the concentrations of these seven chemicals
(Fig. 2) were statistically significant (P value < 0.001) (r ranging from
0.16 to 0.77). MECCP was found to be moderately associated with
MCOP and BPA (both r= 0.51), and there was a strong correlation
between 2,4-DCP and 2,5-DCP (r= 0.77). The other correlations were
relatively weak.

3.3. Generalized linear regression model to assess the association between
chemical concentration and obesity

We used multivariable logistic regression and linear regression to
assess the individual effect of each chemical on obesity. In the multi-
variable logistic regression analysis, after adjusting for all the covari-
ates, MCOP, MECPP, and BPS showed significant associations with
general obesity in the upper two quartiles (Table 3). Meanwhile, there
were only significant associations between BPA and both general obe-
sity and abdominal obesity in quartile 3 but not in quartile 4 (Tables 3
and 4). We did not find significant associations between other chemi-
cals and obesity. To adjust for confounding effects of other chemicals,
we fitted a separate logistic regression model including all the chemi-
cals. In this analysis, only MCOP was found to be significantly asso-
ciated with both general (OR: 1.72, 95% CI: 1.14–2.60) and abdominal
obesity (OR: 1.57, 95% CI: 1.03–2.39) (Supplementary material Tables
S1 and S2).

We assessed the relationship between chemical exposure and body
indices, using multivariable linear regression (Table 5). After adjusting
for covariates, MCOP was the only chemical found to be associated with
BMI and waist circumference in single-chemical analysis. After further
adjusting other chemicals simultaneously in one model, MCOP was the
only chemical associated with body indices as well (Supplementary
material Table S3). All the variance inflation factors (VIFs) in the
multivariable linear regression model were fewer than 10 (results not
shown), which meant there was little multicollinearity among the
chemicals, although some of them were highly correlated.

Table 2
Distribution of exposure biomarkers (N=1269), NHANES, USA, 2013–2014.

Exposure biomarkers Detection frequency GM Mean Percentile

5th 25th 50th 75th 95th

Phenols (μg/L)
BPA 95.0% 1.33 3.15 0.14 0.60 1.30 2.70 8.50
BPS 90.0% 0.46 1.34 0.07 0.20 0.40 1.00 3.90

Pesticides (μg/L)
2,5-DCP 98.2% 3.67 91.89 0.20 0.80 2.50 11.85 278.45
2,4-DCP 94.8% 0.72 3.22 0.07 0.30 0.60 1.40 10.65

Phthalate metabolites (μg/L)
MEP 99.8% 42.79 189.15 4.50 14.70 36.10 111.50 614.15
MECPP 99.7% 10.26 17.41 1.80 5.50 11.00 18.60 51.05
MCOP 99.8% 19.18 52.55 2.15 7.55 17.80 48.35 221.25

GM: geometric mean.
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3.4. WQS regression model to assess the association between chemical
concentration and obesity

The WQS indices were statistically associated with both general and
abdominal obesity. Detailed results of rough and fully adjusted models
are presented in Table 6. In the former ones, the WQS index was sig-
nificantly associated with general obesity (OR: 1.50, 95% CI:
1.13–1.98) and abdominal obesity (OR: 1.49, 95% CI: 1.07–2.07). In
the fully adjusted models, a quartile increase in the WQS index was
statistically significantly associated with both general (OR=1.63, 95%
CI: 1.21–2.19) and abdominal obesity (OR=1.66, 95% CI: 1.18–2.33).

The estimated chemical weight for each WQS index is shown in
Supplementary material Table S4 and Fig. 3. The highest weighted
chemical in both general and abdominal obesity models was MCOP
(weighted 0.40 and 0.29, respectively). Following MCOP, MEP, BPA,
and BPS were weighted highly in general obesity (weighted 0.21, 0.18,

and 0.09, respectively), whereas BPA, MEP, and BPS weighted highly in
abdominal obesity (weighted 0.24, 0.17, and 0.13, respectively).
MECPP was assigned the lightest weight in both models.

To analyze mixture exposure–induced body index changes further,
we recoded BMI and waist circumference in continuous outcomes and
fitted a WQS model to assess the effects of exposure to seven environ-
mental chemicals on body indices. The results showed that the WQS
index was not significantly associated with BMI in a rough model
(Table 7) but was statistically significant when further adjusted for
other covariates (β=1.08, 95% CI: 0.17–2.00). A quartile increase of
the WQS index was associated with waist circumference increase by
3.02 cm (96% CI: 0.89–5.15) after adjusting for all covariates. The
weight of each chemical is reported in Supplementary material Table S5
and Fig. 4, and MCOP, BPA, BPS, and MEP were the most weighted
chemicals in both models. MECPP was weighted lightest in both
models.

Fig. 2. Pairwise Pearson correlations among urinary concentrations of seven chemicals or metabolites in the population (N=1269), NHANES, USA, 2013–2014. All
the correlations were statistically significant (P value < 0.001).

Table 3
Association between single urinary chemical/metabolite concentration and general obesity (N=1269), NHANES, USA, 2013–2014.

Exposure biomarkers Quartile 1 Quartile 2 Quartile 3 Quartile 4

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Phenols
BPA Ref 1.35 (0.93, 1.97) 0.116 1.90 (1.28, 2.80) 0.001 1.53 (0.99, 2.35) 0.055
BPS Ref 1.05 (0.73, 1.52) 0.782 1.52 (1.07, 2.16) 0.019 1.44 (1.01, 2.07) 0.045

Pesticides
2,5-DCP Ref 1.11 (0.78, 1.57) 0.571 1.20 (0.83, 1.72) 0.327 0.98 (0.68, 1.43) 0.935
2,4-DCP Ref 0.99 (0.69, 1.41) 0.945 0.89 (0.62, 1.28) 0.528 1.10 (0.77, 1.57) 0.603

Phthalate metabolites
MCOP Ref 1.20 (0.83, 1.72) 0.337 1.74 (1.20, 2.51) 0.003 1.80 (1.22, 2.65) 0.003
MECPP Ref 1.61 (1.10, 2.36) 0.014 1.57 (1.04, 2.38) 0.033 1.62 (1.04, 2.51) 0.032
MEP Ref 0.92 (0.64, 1.32) 0.658 1.05 (0.72, 1.52) 0.814 1.28 (0.87, 1.88) 0.213

OR: odds ratio; CI: confidence interval. Estimated odds ratios (ORs) were compared with the first exposure quartile; quartile cut points were based on all the
participants in this study (N=1269). Models were adjusted for gender, ethnicity, educational levels, age, family income–to-poverty ratio, smoking status, energy
intake levels, physical activity, and ln-transformed creatinine.
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We also analyzed whether there was a negative association with the
chemical mixture and obesity as well as body indices. No significant
negative association was found (results not shown).

3.5. BKMR model to assess the association between chemical concentration
and obesity

We treated the ln-transformed concentration of each chemical as
continuous variables and first fitted the BKMR model to assess the joint
effect of chemical exposures on binary outcomes (general and abdom-
inal obesity). The probabilities of inclusion derived from the BKMR
model for the two groups (groupPIP) and each chemical (condPIP) are
summarized in Table 8. In general obesity, the groupPIP of the phtha-
late metabolites and bisphenol group was higher than 0.5. In addition,
the condPIP of MCOP was extremely high at 0.96 within this group,
whereas the condPIPs of others in this group were low. The groupPIPs
in the abdominal analysis were both<0.5. The overall associations
between the chemical mixture and the latent continuous outcomes are
shown in Fig. 5. Although confidence intervals were wide, the latent
continuous outcome of general obesity showed significant increase
when all the chemicals were at their 60th percentile or above, com-
pared to their 50th percentile, indicating a significant, positive asso-
ciation with general obesity. Although no statistically significant dif-
ference was found in the abdominal obesity model, there was an
increasing trend. The trends of exposure–response functions of the
seven chemicals are shown in Fig. 6. When all the other chemicals were
at their median levels, MCOP showed increasing associations with
general and abdominal obesity with a little decrease in general obesity
in the highest concentration. MEP, BPA, and BPS showed a positive
relationship with obesity, whereas MECPP showed a flat or inverse

relationship. We further investigated the interactions between chemi-
cals. We fixed other chemicals at their median levels and determined
the exposure–response function of a single chemical for the second
chemical fixed at its 10th, 50th, and 90th percentages, respectively. The
results are shown in Supplementary material Fig. S1. There was a po-
tential interaction between 2,4-DCP and 2,5-DCP. The other slopes of
the exposure–response function of a certain chemical were similar at
different quantiles of another chemical, with others fixed at their
middle levels, which indicated no interactions.

To analyze mixture exposure–induced body index changes in the
BKMR model, we treated BMI and waist circumference as continuous
outcomes. The probabilities of inclusion derived from the BKMR model

Table 4
Association between single urinary chemical/metabolite concentration and abdominal obesity (N=1269), NHANES, USA, 2013–2014.

Exposure biomarkers Quartile 1 Quartile 2 Quartile 3 Quartile 4

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Phenols
BPA Ref 1.19 (0.81, 1.75) 0.368 1.59 (1.05, 2.39) 0.028 1.36 (0.87, 2.13) 0.175
BPS Ref 1.14 (0.78, 1.65) 0.495 1.26 (0.88, 1.82) 0.211 1.47 (1.01, 2.16) 0.045

Pesticides
2,5-DCP Ref 1.14 (0.79, 1.64) 0.484 1.18 (0.81, 1.74) 0.383 1.00 (0.68, 1.47) 0.989
2,4-DCP Ref 0.73 (0.50, 1.06) 0.099 0.83 (0.57, 1.21) 0.335 0.84 (0.58, 1.23) 0.367

Phthalate metabolites
MCOP Ref 1.25 (0.87, 1.81) 0.230 1.48 (1.01, 2.16) 0.044 1.70 (1.14, 2.54) 0.009
MECPP Ref 1.45 (0.98, 2.13) 0.061 1.44 (0.94, 2.19) 0.093 1.59 (1.01, 2.51) 0.044
MEP Ref 1.07 (0.74, 1.54) 0.722 1.04 (0.71, 1.52) 0.855 1.30 (0.87, 1.95) 0.201

OR: odds ratio; CI: confidence interval. Estimated odds ratios (ORs) were compared with the first exposure quartile; quartile cut points were based on all the
participants in this study (N=1269). Models were adjusted for gender, ethnicity, educational levels, age, family income–to-poverty ratio, smoking status, energy
intake levels, physical activity, and ln-transformed creatinine.

Table 5
Association between single urinary chemical/metabolite concentration and BMI or waist circumference (N=1269), NHANES, USA, 2013–2014.

Exposure biomarkers BMI Waist circumference

β 95% CI P value β 95% CI P value

Phenols
BPA 0.16 (−0.26, 0.57) 0.459 0.32 (−0.66, 1.30) 0.525
BPS 0.24 (−0.08, 0.56) 0.145 0.61 (−0.15, 1.37) 0.117

Pesticides
2,5-DCP 0.09 (−0.10, 0.27) 0.366 0.20 (−0.24, 0.64) 0.376
2,4-DCP 0.23 (−0.06, 0.53) 0.118 0.46 (−0.23, 1.15) 0.192

Phthalate metabolites
MCOP 0.36 (0.06, 0.66) 0.019 0.98 (0.28, 1.69) 0.006
MECPP 0.16 (−0.32, 0.63) 0.511 0.68 (−0.44, 1.80) 0.236
MEP 0.12 (−0.15, 0.39) 0.385 0.17 (−0.47, 0.80) 0.612

CI: confidence interval; all urinary chemical/metabolite concentrations were in micrograms per liter and were naturally ln-transformed. Models were adjusted for
gender, ethnicity, educational levels, age, family income–to-poverty ratio, smoking status, energy intake levels, physical activity, and ln-transformed creatinine.

Table 6
Association between WQS regression index and general and abdominal obesity
(N=1269), NHANES, USA, 2013–2014.

Outcomes OR 95% CI of OR P value

General obesity
Model 1 1.50 (1.13, 1.98) 0.005
Model 2 1.63 (1.21, 2.−20) 0.001

Abdominal obesity
Model 1 1.49 (1.07, 2.08) 0.019
Model 2 1.66 (1.18, 2.34) 0.004

OR: odds ratio; CI: confidence interval; OR estimates represent the odds ratios
of general or abdominal obesity when the WQS index was increased by one
quartile. Model 1: Adjusted for gender, ethnicity, age, and ln-transformed
creatinine. Model 2: Adjusted for gender, ethnicity, educational levels, age,
family income–to-poverty ratio, smoking status, energy intake levels, physical
activity, and ln-transformed creatinine.
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are summarized in Table 9. The groupPIPs in both the models were
relatively small. We analyzed the overall effect of the chemical mixture
on body indices, and the waist circumference and BMI showed in-
creasing trends when all the chemicals were at their 60th percentile or
above, compared to their 50th percentile (Fig. 7).

4. Discussion

In this study, we considered the results of diverse statistical methods
to examine the effects of seven correlated environmental chemicals on
obesity in the general population of the United States. On one hand, the
generalized linear regression pointed out the association between

Fig. 3. WQS model regression index weights for general (A) and abdominal obesity (B). Models were adjusted for gender, ethnicity, educational levels, age, family
income-to-poverty ratio, smoking status, energy intake levels, physical activity, and ln-transformed creatinine.

Table 7
Association between weighted quantile sum regression index and body indices
by WQS (N=1269), NHANES, USA, 2013–2014.

Outcomes β 95% CI P value

BMI
Model 1 0.91 (−0.01, 1.82) 0.052
Model 2 1.08 (0.17, 2.00) 0.020

Waist circumference
Model 1 2.50 (0.36, 4.64) 0.022
Model 2 3.02 (0.89, 5.15) 0.006

CI: confidence interval; β estimates represent mean differences in BMI or waist
circumference when the WQS index was increased by one quartile. Model 1:
Adjusted for gender, ethnicity, age, and ln-transformed creatinine. Model 2:
Adjusted for gender, ethnicity, educational levels, age, family income–to-pov-
erty ratio, smoking status, energy intake levels, physical activity, and ln-
transformed creatinine.

Fig. 4. WQS model regression index weights for BMI (A) and waist circumference (B). Models were adjusted for gender, ethnicity, educational levels, age, family
income–to-poverty ratio, smoking status, energy intake levels, physical activity, and ln-transformed creatinine.

Table 8
Posterior inclusion probabilities (PIPs) for group inclusion and conditional in-
clusion into obesity models, using Bayesian kernel machine regression (BKMR)
model (N= 1269), NHANES, USA, 2013–2014.

Chemicals Group General obesity Abdominal obesity

groupPIP condPIP groupPIP condPIP

MCOP 1 0.96 0.96 0.44 0.63
MECPP 1 0.96 0.01 0.44 0.09
MEP 1 0.96 0.01 0.44 0.02
BPA 1 0.96 0.01 0.44 0.06
BPS 1 0.96 0.02 0.44 0.19
2,5-DCP 2 0.06 0.20 0.38 0.27
2,4-DCP 2 0.06 0.80 0.38 0.73

Models were adjusted for gender, ethnicity, educational levels, age, family in-
come–to-poverty ratio, smoking status, energy intake levels, physical activity,
and ln-transformed creatinine.
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MCOP, MECPP, and BPS and obesity. On the other hand, the WQS
model identified the roles of MCOP, BPA, MEP, and BPS in the devel-
opment of obesity, whereas MECPP had a marginal role. In the BKMR
model, we found that overall mixed exposure was significantly asso-
ciated with general obesity. Although no significant association be-
tween overall mixed exposure and other outcomes (abdominal obesity
and body indices) appeared, there were increasing trends. The uni-
variate exposure–response function showed a positive relationship be-
tween MCOP, BPA, BPS, and MEP to obesity, but not for MECPP. This
study highlighted the importance of assessing the joint effects of che-
micals on health outcomes by using different statistical methods and

comparing their results, with consideration of the advantages and dis-
advantages of particular methods.

The generalized linear regression model, including multivariable
logistic and linear regression, is most commonly used to assess the
health effects of chemicals (Bhandari et al., 2013; Kim et al., 2017;
Scinicariello and Buser, 2016; Wei et al., 2014; Ye et al., 2014). The
results are straightforward and easily interpreted. Previous studies with
multivariable logistic and linear regression analyses found associations
between obesity and many environmental chemicals such as high mo-
lecular weight–phthalate metabolites (including MECPP, MEHHP,
MEOHP, MEHP, MBZP, MCNP, and MCOP) and MEP and BPA in adults

Fig. 5. Joint effect (95% CI) of the mixture on general obesity (A) and abdominal obesity (B) by BKMR model when all the chemicals at particular percentiles were
compared to all the chemicals at their 50th percentile. h(Z) can be interpreted as the relationship between chemicals and a latent continuous outcome (continuous
marker of the binary obesity outcomes). The results were adjusted for gender, ethnicity, educational levels, age, family income–to-poverty ratio, smoking status,
energy intake levels, physical activity, and ln-transformed creatinine.

Fig. 6. Univariate exposure–response function (95% CI) between selected chemical concentrations and general obesity (A) and abdominal obesity (B) while fixing the
concentrations of other chemicals at median values. h(Z) can be interpreted as the relationship between chemicals and a latent continuous outcome (continuous
marker of the binary obesity outcomes). The results were assessed by the BKMR model adjusted for gender, ethnicity, educational levels, age, family income–to-
poverty ratio, smoking status, energy intake levels, physical activity, and ln-transformed creatinine.
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(Buser et al., 2014a; Hatch et al., 2008; Liu et al., 2017; Stahlhut et al.,
2007). Usually a single chemical or a group of similar chemicals were
included in these analyses, making their results easy to understand.
However, to study causality, we need to take into account mixed en-
vironmental exposures and their complex, nonlinear interactions (Kim
et al., 2017; Valeri et al., 2017). Ignoring the joint effects of other
chemicals could contribute to false positive or false negative results
(Czarnota et al., 2015a). In our analysis, MCOP and MECPP exposures
were highly correlated. The positive relationship of either MCOP or
MECPP with obesity in single-chemical analysis might be due to the
confounding effect of the other chemical. Including all the chemicals of
interest in one generalized linear regression model is not correct, be-
cause high correlation between chemicals might lead to result distor-
tion (Marill, 2004). In addition, chemical interaction cannot be found in
a simple model.

WQS and BKMR are two models recently developed to analyze the
effects of chemical mixtures on health. A series of chemicals with high
correlations can be taken into account. However, they both have ad-
vantages and disadvantages. The WQS regression model examined the
whole-body burden of chemical exposures based on the weights em-
pirically determined by bootstrap sampling. This approach better en-
compasses the real-life complex exposures. In our analysis, MCOP, BPA,
MEP, and BPS were weighted highly; of these, MEP did not show sig-
nificant association with obesity in the generalized linear regression
model. MECPP was weighted lightly in WQS analysis, which was in-
consistent with our results in generalized linear regression analysis.
This suggested that the positive relationship between MECPP and
obesity observed when estimating the effect of individual chemicals

might be due to the interaction with its highly correlated MCOP. Our
results support previous findings indicating that the WQS regression
model is more sensitive than single-chemical analyses in identifying
important factors (Artacho-Cordon et al., 2016; Nieves et al., 2016).
One important limitation of WQS is that the joint effects of chemicals
with diverse effect directions cannot be assessed simultaneously. If
chemicals with inverse associations with obesity were misclassified in
the WQS model, they would be assigned negligible weights in the WQS
index, positively associated with obesity (Czarnota et al., 2015a;
Czarnota et al., 2015b).

The BKMR analysis can identify nonlinear effects and between
chemical interactions (Bobb et al., 2015). Compared to the WQS re-
gression model, BKMR analysis could capture the exposure–response
relationship, with other chemicals fixed at certain levels. In addition,
the interaction between each two of these chemicals can be detected. In
our analysis, MCOP showed a positive association with the latent con-
tinuous outcome of general obesity, whereas there was a negative trend
in the highest concentration with wide confidence interval. MEP, BPA,
and BPS showed a positive association with obesity. However, MECPP,
the metabolite of DEHP, showed a flat or negative association, which
was, to some extent, consistent with its light weight in WQS regression
analysis. Previous studies about secondary metabolites of DEHP and
obesity could not draw a solid conclusion (Dong et al., 2017; Hatch
et al., 2008; Stahlhut et al., 2007; Yaghjyan et al., 2015). These con-
flicting results were probably due to lack of accounting for other highly
correlated chemicals in the same models. One limitation of the BKMR
model results from its kernel algorithm. Fixing other chemicals at cer-
tain levels to extrapolate the exposure–response function does not allow
estimation of the effects of co-exposure patterns with both high and low
levels of chemicals. Our analysis with the BKMR permitted the eva-
luation of the whole-body effect of chemicals with different effect di-
rections as well as interactions among them. Positive associations were
found between chemical mixture and obesity as well as between the
chemical mixture and body indices. However, significant positive as-
sociation was found only between overall exposure and general obesity
in the BKMR model. This might due to the negative exposure–response
relationship of MECPP, which to some extent neutralized the positive
association. To date, the WQS and BKMR models have not been directly
compared. Using both of them simultaneously allowed consideration of
their strengths and weaknesses, to disentangle the interactions between
chemical mixtures.

A descriptive summary of results and comparison of these three
statistical models appears in Table 10. In environmental epidemiology

Table 9
Posterior inclusion probabilities (PIPs) for group inclusion and conditional in-
clusion into body index models, using the Bayesian kernel machine regression
(BKMR) model (N=1269), NHANES, USA, 2013–2014.

Chemicals Group BMI Waist circumstance

groupPIP condPIP groupPIP condPIP

MCOP 1 0.14 0.70 0.25 0.94
MECPP 1 0.14 0.08 0.25 0.03
MEP 1 0.14 0.07 0.25 0.01
BPA 1 0.14 0.06 0.25 0.01
BPS 1 0.14 0.10 0.25 0.01
2,5-DCP 2 0.03 0.06 <0.01 0.10
2,4-DCP 2 0.03 0.94 <0.01 0.90

Fig. 7. Joint effect (95% CI) of the mixture on BMI (A) or waist circumference (B) when all the chemicals at particular percentiles were compared to all the chemicals
at their 50th percentile. The results were assessed by the BKMR model, adjusted for gender, ethnicity, educational levels, age, family income–to-poverty ratio,
smoking status, energy intake levels, physical activity, and ln-transformed creatinine.
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studies, generalized linear regression can provide a simple relationship
between single chemicals and outcomes. The WQS model can explore
the effect that a mixed exposure burden has on the outcomes in one
direction per occasion. The BKMR model can explore the ex-
posure–response function of each chemical while controlling other
chemicals at certain levels and, in addition, explore interactions be-
tween any two of the chemicals. Thus, these three models evaluate
different aspects, and a joint interpretation afterward will reveal their
strengths, limitations, and eventual complementation.

Our analyses have some limitations. We used unweighted data and
assumed that the study population was representative of the U.S. adult
population. Previously, authors have argued that when covariates used
to calculate sample weights are already included in the regression
model, the unweighted estimation is preferred to the weighted one
(Blount et al., 2006; Graubard and Korn, 1999). However, whether this
rule also applies to WQS and BKMR models is not clear. Because the aim
of our analysis was to compare different methods and find an analysis
strategy to solve the problem of mixture exposure, the unweighted data
analysis was not the purpose of our study. Another limitation of our
study was in simply substituting the values below the lower limit of
detection with a fixed value. Although a previous study found that in-
serting a single value is unbiased when the percentage of measurements
below detection limits is small (5–10%) (Lubin et al., 2004), using
multiple imputations is a better approach to ensure unbiased estimates
of effects. In addition, we used data from a cross-sectional survey.
Chemicals measured in this study could only reflect recent exposures,
but obesity is a disorder developed over a long time. It might introduce
confounding by neglecting the long-term influence of chemicals. Fi-
nally, our analysis could not draw a causal inference of mixed chemical
exposure on obesity. Large prospective cohort studies and experimental
studies are needed to provide more evidence.

5. Conclusions

We applied generalized linear regression, WQS regression, and
BKMR regression models to assess the association between obesity and
seven potential obesogens. When considering the results of these three
models, we concluded that the whole-body burden of seven chemicals
was significantly associated with both general and abdominal obesity.
MCOP, BPA, and BPS were the most significantly associated with obe-
sity. Our study demonstrated the importance of applying different
methods to evaluate health effects of chemical mixtures. We re-
commend using different methods and interpreting their results to-
gether to yield a more reliable conclusion.

Conflicts of interest

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the Key Program of the National
Natural Science Foundation (81630085, 81330067), the Qing Lan
Project of Jiangsu Province, the Six Talent Peaks Project in Jiangsu
Province (JY-052), the Second Level of Training Object of the Jiangsu
Province “333” Project, and the Medical Science and Technology
Projects of Jiangsu Province (BE2016633).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2018.11.076.

References

Alamuddin, N., Bakizada, Z., Wadden, T.A., 2016. Management of obesity. J. Clin. Oncol.Ta
bl
e
10

A
co
m
pa

ri
so
n
of

th
e
st
at
is
tic

al
to
ol
s
to

as
se
ss

th
e
as
so
ci
at
io
n
be
tw

ee
n
se
le
ct
ed

ch
em

ic
al

co
nt
am

in
an

ts
an

d
ob

es
ity

,N
H
A
N
ES

,U
SA

,2
01

3–
20

14
.

M
et
ho

ds
O
ut
co
m
es

fo
cu
se
d

Ch
em

ic
al
s
as
so
ci
at
ed

w
ith

ou
tc
om

es
A
dv

an
ta
ge
s

Li
m
ita

tio
ns

G
en

er
al
iz
ed

lin
ea
r
re
gr
es
si
on

m
od

el
O
be
si
ty

W
ith

ob
es
ity

:M
CO

P,
M
EC

PP
,B

PS
,

BP
A

St
ra
ig
ht
fo
rw

ar
d
an

d
ea
si
ly

in
te
rp
re
te
d

Li
m
ite

d
to

m
ix
ed

en
vi
ro
nm

en
te

xp
os
ur
es

an
d
no

nl
in
ea
r
in
te
ra
ct
io
ns

Bo
dy

in
di
ce
s

W
ith

bo
dy

in
di
ce
s:
M
CO

P
Po

te
nt
ia
ld

is
to
rt
io
n
ca
us
ed

by
hi
gh

co
rr
el
at
io
n
an

d
m
ul
tic

ol
lin

ea
ri
ty

W
Q
S

O
be
si
ty

H
ig
he

st
w
ei
gh

ts
:M

CO
P,

BP
A
,M

EP
,

an
d
BP

S
Ex

am
in
in
g
th
e
w
ho

le
-b
od

y
bu

rd
en

of
ch
em

ic
al

m
ix
tu
re

ex
po

su
re
s

Li
m
ite

d
in

as
se
ss
in
g
jo
in
t
eff

ec
ts

of
ch
em

ic
al
s
w
ith

di
ve
rs
e
eff

ec
t
di
re
ct
io
ns

Bo
dy

in
di
ce
s

Li
gh

te
st

w
ei
gh

t:
M
EC

PP
BK

M
R

O
be
si
ty

Po
si
tiv

e
tr
en

d:
M
CO

P,
BP

A
,a

nd
BP

S
Id
en

tif
yi
ng

in
te
ra
ct
io
ns

be
tw

ee
n
ch
em

ic
al
s

Li
m
ite

d
in

es
tim

at
in
g
th
e
eff

ec
ts

of
co
-e
xp

os
ur
e
pa

tt
er
ns

w
ith

bo
th

hi
gh

an
d

lo
w

le
ve
ls
of

ch
em

ic
al
s

N
eg
at
iv
e
tr
en

d:
M
EC

PP
Ex

tr
ap

ol
at
in
g
no

nl
in
ea
r
ex
po

su
re
–r
es
po

ns
e
fu
nc
tio

ns

Bo
dy

in
di
ce
s:
In
cl
ud

in
g
BM

Ia
nd

w
ai
st

ci
rc
um

fe
re
nc
e
in

th
is
st
ud

y.

Y. Zhang et al. Environment International 123 (2019) 325–336

335

https://doi.org/10.1016/j.envint.2018.11.076
https://doi.org/10.1016/j.envint.2018.11.076
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0005


Off. J. Am. Soc. Clin. Oncol. 34, 4295–4305.
Andaluri, G., Manickavachagam, M., Suri, R., 2018. Plastic toys as a source of exposure to

bisphenol-A and phthalates at childcare facilities. Environ. Monit. Assess. 190 (65).
Artacho-Cordon, F., Leon, J., Saenz, J.M., Fernandez, M.F., Martin-Olmedo, P., Olea, N.,

Arrebola, J.P., 2016. Contribution of Persistent Organic Pollutant Exposure to the
Adipose Tissue Oxidative Microenvironment in an Adult Cohort: A Multipollutant
Approach. vol. 50. pp. 13529–13538.

Barr, D.B., Wilder, L.C., Caudill, S.P., Gonzalez, A.J., Needham, L.L., Pirkle, J.L., 2005.
Urinary creatinine concentrations in the U.S. population: implications for urinary
biologic monitoring measurements. Environ. Health Perspect. 113, 192–200.

Benjamin, S., Masai, E., Kamimura, N., Takahashi, K., Anderson, R.C., Faisal, P.A., 2017.
Phthalates impact human health: epidemiological evidences and plausible me-
chanism of action. J. Hazard. Mater. 340, 360–383.

Bhandari, R., Xiao, J., Shankar, A., 2013. Urinary bisphenol A and obesity in U.S. chil-
dren. Am. J. Epidemiol. 177, 1263–1270.

Billionnet, C., Sherrill, D., Annesi-Maesano, I., 2012. Estimating the health effects of
exposure to multi-pollutant mixture. Ann. Epidemiol. 22, 126–141.

Blount, B.C., Pirkle, J.L., Osterloh, J.D., Valentin-Blasini, L., Caldwell, K.L., 2006. Urinary
perchlorate and thyroid hormone levels in adolescent and adult men and women
living in the United States. Environ. Health Perspect. 114, 1865–1871.

Bobb, J.F., Valeri, L., Claus Henn, B., Christiani, D.C., Wright, R.O., Mazumdar, M.,
Godleski, J.J., Coull, B.A., 2015. Bayesian kernel machine regression for estimating
the health effects of multi-pollutant mixtures. Biostatistics 16, 493–508 Oxford,
England.

Bobb, J.F., Claus Henn, B., Valeri, L., Coull, B.A., 2018. Statistical software for analyzing
the health effects of multiple concurrent exposures via Bayesian kernel machine re-
gression. Environ. Health 17 (67).

Bradley, E.L., Burden, R.A., Bentayeb, K., Driffield, M., Harmer, N., Mortimer, D.N.,
Speck, D.R., Ticha, J., Castle, L., 2013. Exposure to phthalic acid, phthalate diesters
and phthalate monoesters from foodstuffs: UK total diet study results. Food Addit.
Contam. Part A Chem. Anal. Control Expo. Risk Assess. 30, 735–742.

Bui, T.T., Giovanoulis, G., Cousins, A.P., Magner, J., Cousins, I.T., de Wit, C.A., 2016.
Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Sci.
Total Environ. 541, 451–467.

Buser, M.C., Murray, H.E., Scinicariello, F., 2014a. Age and sex differences in childhood
and adulthood obesity association with phthalates: analyses of NHANES 2007–2010.
Int. J. Hyg. Environ. Health 217, 687–694.

Buser, M.C., Murray, H.E., Scinicariello, F., 2014b. Association of urinary phenols with
increased body weight measures and obesity in children and adolescents. J. Pediatr.
165, 744–749.

Carrico, C., Gennings, C., Wheeler, D.C., Factor-Litvak, P., 2014. Characterization of
weighted quantile sum regression for highly correlated data in a risk analysis setting.
J. Agric. Biol. Environ. Stat. 20, 100–120.

CDC, 2016. National health and nutrition examination survey webpage: about the na-
tional health and nutrition examination survey. CDC (Centers for Disease Control and
Prevention)https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx:.

Chiu, Y.H., Bellavia, A., James-Todd, T., Correia, K.F., Valeri, L., Messerlian, C., Ford,
J.B., Minguez-Alarcon, L., Calafat, A.M., Hauser, R., Williams, P.L., 2018. Evaluating
effects of prenatal exposure to phthalate mixtures on birth weight: a comparison of
three statistical approaches. Environ. Int. 113, 231–239.

Coker, E., Gunier, R., Bradman, A., Harley, K., Kogut, K., Molitor, J., Eskenazi, B., 2017.
Association between pesticide profiles used on agricultural fields near maternal re-
sidences during pregnancy and IQ at age 7 years. Int. J. Environ. Res. Public
Health 14.

Coker, E., Chevrier, J., Rauch, S., Bradman, A., Obida, M., Crause, M., Bornman, R.,
Eskenazi, B., 2018. Association between prenatal exposure to multiple insecticides
and child body weight and body composition in the VHEMBE South African birth
cohort. Environ. Int. 113, 122–132.

Czaplicka, M., 2004. Sources and transformations of chlorophenols in the natural en-
vironment. Sci. Total Environ. 322, 21–39.

Czarnota, J., Gennings, C., Colt, J.S., De Roos, A.J., Cerhan, J.R., Severson, R.K., Hartge,
P., Ward, M.H., Wheeler, D.C., 2015a. Analysis of environmental chemical mixtures
and non-Hodgkin lymphoma risk in the NCI-SEER NHL study. Environ. Health
Perspect. 123, 965–970.

Czarnota, J., Gennings, C., Wheeler, D.C., 2015b. Assessment of weighted quantile sum
regression for modeling chemical mixtures and cancer risk. Cancer Informat. 14,
159–171.

Dong, R., Zhou, T., Chen, J., Zhang, M., Zhang, H., Wu, M., Li, S., Zhang, L., Chen, B.,
2017. Gender- and age-specific relationships between phthalate exposures and obe-
sity in Shanghai adults. Arch. Environ. Contam. Toxicol. 73, 431–441.

Gallagher, E.J., LeRoith, D., 2015. Obesity and diabetes: the increased risk of cancer and
cancer-related mortality. Physiol. Rev. 95, 727–748.

Graubard, B.I., Korn, E.L., 1999. Analyzing health surveys for cancer-related objectives. J.
Natl. Cancer Inst. 91, 1005–1016.

Hatch, E.E., Nelson, J.W., Qureshi, M.M., Weinberg, J., Moore, L.L., Singer, M., Webster,
T.F., 2008. Association of urinary phthalate metabolite concentrations with body
mass index and waist circumference: a cross-sectional study of NHANES data,
1999–2002. Environ. Health 7 (27).

Huang, Y.Q., Wong, C.K., Zheng, J.S., Bouwman, H., Barra, R., Wahlstrom, B., Neretin, L.,

Wong, M.H., 2012. Bisphenol A (BPA) in China: a review of sources, environmental
levels, and potential human health impacts. Environ. Int. 42, 91–99.

Kim, S., Park, J., Kim, H.J., Lee, J.J., Choi, G., Choi, S., Kim, S., Kim, S.Y., Moon, H.B.,
Kim, S., Choi, K., 2013. Association between several persistent organic pollutants and
thyroid hormone levels in serum among the pregnant women of Korea. Environ. Int.
59, 442–448.

Kim, S., Park, J., Kim, H.J., Lee, J.J., Choi, G., Choi, S., Kim, S., Kim, S.Y., Moon, H.B.,
Kim, S., Choi, K., 2015. Association between several persistent organic pollutants and
thyroid hormone levels in cord blood serum and bloodspot of the newborn infants of
Korea. PLoS One 10, e0125213.

Kim, S., Kim, S., Won, S., Choi, K., 2017. Considering common sources of exposure in
association studies - urinary benzophenone-3 and DEHP metabolites are associated
with altered thyroid hormone balance in the NHANES 2007–2008. Environ. Int. 107,
25–32.

Li, S., Zhao, J., Wang, G., Zhu, Y., Rabito, F., Krousel-Wood, M., Chen, W., Whelton, P.K.,
2015. Urinary triclosan concentrations are inversely associated with body mass index
and waist circumference in the US general population: experience in NHANES
2003–2010. Int. J. Hyg. Environ. Health 218, 401–406.

Liu, B., Lehmler, H.J., Sun, Y., Xu, G., Liu, Y., Zong, G., Sun, Q., Hu, F.B., Wallace, R.B.,
Bao, W., 2017. Bisphenol A substitutes and obesity in US adults: analysis of a po-
pulation-based, cross-sectional study. Lancet Planet. Health 1, e114–e122.

Lubin, J.H., Colt, J.S., Camann, D., Davis, S., Cerhan, J.R., Severson, R.K., Bernstein, L.,
Hartge, P., 2004. Epidemiologic evaluation of measurement data in the presence of
detection limits. Environ. Health Perspect. 112, 1691–1696.

Marill, K.A., 2004. Advanced statistics: linear regression, part II: multiple linear regres-
sion. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med 11, 94–102.

Muscogiuri, G., Barrea, L., Laudisio, D., Savastano, S., Colao, A., 2017. Obesogenic en-
docrine disruptors and obesity: myths and truths. Arch. Toxicol. 91, 3469–3475.

Nieves, J.W., Gennings, C., Factor-Litvak, P., Hupf, J., Singleton, J., Sharf, V., Oskarsson,
B., Fernandes Filho, J.A., Sorenson, E.J., D'Amico, E., Goetz, R., Mitsumoto, H., 2016.
Association between dietary intake and function in amyotrophic lateral sclerosis.
JAMA Neurol. 73, 1425–1432.

O'Brien, P.D., Hinder, L.M., Callaghan, B.C., Feldman, E.L., 2017. Neurological con-
sequences of obesity. Lancet Neurol. 16, 465–477.

Picon-Ruiz, M., Morata-Tarifa, C., Valle-Goffin, J.J., Friedman, E.R., Slingerland, J.M.,
2017. Obesity and Adverse Breast Cancer Risk and Outcome: Mechanistic Insights
and Strategies for Intervention. 67. pp. 378–397.

Scinicariello, F., Buser, M.C., 2016. Serum testosterone concentrations and urinary bi-
sphenol A, benzophenone-3, triclosan, and paraben levels in male and female chil-
dren and adolescents: NHANES 2011–2012. Environ. Health Perspect. 124,
1898–1904.

Stahlhut, R.W., van Wijngaarden, E., Dye, T.D., Cook, S., Swan, S.H., 2007.
Concentrations of urinary phthalate metabolites are associated with increased waist
circumference and insulin resistance in adult U.S. males. Environ. Health Perspect.
115, 876–882.

Tang-Peronard, J.L., Andersen, H.R., Jensen, T.K., Heitmann, B.L., 2011. Endocrine-dis-
rupting chemicals and obesity development in humans: a review. Obes. Rev. 12,
622–636.

Twum, C., Wei, Y., 2011. The association between urinary concentrations of di-
chlorophenol pesticides and obesity in children. Rev. Environ. Health 26, 215–219.

Valeri, L., Mazumdar, M.M., Bobb, J.F., Claus Henn, B., Rodrigues, E., Sharif, O.I.A., Kile,
M.L., Quamruzzaman, Q., Afroz, S., Golam, M., Amarasiriwardena, C., Bellinger,
D.C., Christiani, D.C., Coull, B.A., Wright, R.O., 2017. The joint effect of prenatal
exposure to metal mixtures on neurodevelopmental outcomes at 20–40months of
age: evidence from rural Bangladesh. Environ. Health Perspect. 125, 067015.

van der Klaauw, A.A., Farooqi, I.S., 2015. The hunger genes: pathways to obesity. Cell
161, 119–132.

Vandenberg, L.N., Maffini, M.V., Sonnenschein, C., Rubin, B.S., Soto, A.M., 2009.
Bisphenol-A and the great divide: a review of controversies in the field of endocrine
disruption. Endocr. Rev. 30, 75–95.

Wang, Y., Hollis-Hansen, K., Ren, X., Qiu, Y., Qu, W., 2016. Do environmental pollutants
increase obesity risk in humans? Obes. Rev. 17, 1179–1197.

Wei, Y., Zhu, J., Nguyen, A., 2014. Urinary concentrations of dichlorophenol pesticides
and obesity among adult participants in the U.S. National Health and Nutrition
Examination Survey (NHANES) 2005–2008. Int. J. Hyg. Environ. Health 217,
294–299.

WHO, 2018. Obesity and overweight. http://www.who.int/news-room/fact-sheets/
detail/obesity-and-overweight.

Wittassek, M., Koch, H.M., Angerer, J., Bruning, T., 2011. Assessing exposure to phtha-
lates - the human biomonitoring approach. Mol. Nutr. Food Res. 55, 7–31.

Yaghjyan, L., Sites, S., Ruan, Y., Chang, S.H., 2015. Associations of urinary phthalates
with body mass index, waist circumference and serum lipids among females: National
Health and Nutrition Examination Survey 1999–2004. Int. J. Obes. 2005 (39),
994–1000.

Ye, X., Wong, L.Y., Zhou, X., Calafat, A.M., 2014. Urinary concentrations of 2,4-di-
chlorophenol and 2,5-dichlorophenol in the U.S. population (National Health and
Nutrition Examination Survey, 2003–2010): trends and predictors. Environ. Health
Perspect. 122, 351–355.

Y. Zhang et al. Environment International 123 (2019) 325–336

336

http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0005
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0010
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0010
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0015
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0015
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0015
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0015
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0020
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0020
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0020
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0025
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0025
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0025
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0030
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0030
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0035
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0035
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0040
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0040
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0040
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0045
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0045
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0045
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0045
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0050
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0050
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0050
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0055
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0055
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0055
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0055
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0060
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0060
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0060
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0065
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0065
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0065
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0070
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0070
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0070
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0075
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0075
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0075
https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx:
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0085
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0085
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0085
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0085
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0090
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0090
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0090
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0090
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0095
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0095
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0095
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0095
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0100
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0100
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0105
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0105
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0105
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0105
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0110
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0110
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0110
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0115
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0115
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0115
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0120
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0120
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0125
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0125
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0130
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0130
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0130
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0130
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0135
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0135
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0135
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0140
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0140
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0140
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0140
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0145
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0145
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0145
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0145
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0150
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0150
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0150
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0150
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0155
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0155
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0155
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0155
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0160
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0160
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0160
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0165
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0165
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0165
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0170
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0170
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0175
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0175
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0180
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0180
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0180
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0180
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0185
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0185
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0190
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0190
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0190
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0195
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0195
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0195
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0195
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0200
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0200
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0200
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0200
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0205
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0205
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0205
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0210
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0210
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0215
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0215
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0215
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0215
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0215
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0220
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0220
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0225
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0225
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0225
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0230
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0230
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0235
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0235
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0235
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0235
http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0245
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0245
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0250
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0250
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0250
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0250
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0255
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0255
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0255
http://refhub.elsevier.com/S0160-4120(18)31673-8/rf0255

	Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models
	Introduction
	Materials and methods
	Study population
	Measurement of chemicals in urine
	Outcomes and covariation assessment
	Statistical analysis
	Statistical model 1: generalized linear regression model
	Statistical model 2: weighted quantile sum (WQS) regression model
	Statistical model 3: Bayesian kernel machine regression (BKMR) model (Bobb et al., 2015)


	Results
	Population characteristics
	Measurement of urinary phenols and phthalate metabolites and their correlation
	Generalized linear regression model to assess the association between chemical concentration and obesity
	WQS regression model to assess the association between chemical concentration and obesity
	BKMR model to assess the association between chemical concentration and obesity

	Discussion
	Conclusions
	Conflicts of interest
	Acknowledgements
	Supplementary data
	References




