
	 1	

PREPRINT1: Key Lessons from Tailoring Agile
Methods for Large-Scale Software Development
Abstract: We describe advice derived from one of the largest development programs
in Norway, where twelve Scrum teams combined agile practices with traditional
project management. The Perform program delivered 12 releases over a four-year
period, and finished on budget and on time. In this article, we summarize 12 key
lessons on five crucial topics, relevant to other large development projects seeking to
combine Scrum with traditional project management.

By Torgeir Dingsøyr, Tore Dybå, Mette Gjertsen, Anette Odgaard Jacobsen,
Tor-Erik Mathisen, Jan Ole Nordfjord, Kjetil Røe, Kjetil Strand

In the past years, we have seen a major change in how software is developed with
the emergence of agile development methods [1]. These methods were believed to
best suit small development teams that make software which is not life-critical [2].
However, with the popularity of agile methods, many have started using the methods
also in large projects.

Large projects pose great risk and are often associated with cost overruns, late
completions and outright project failures [3]. The perils of large-scale development is
illustrated by a number of examples such as HealthCare.gov in the US [4]. To ensure
successful projects, practitioners using agile methods ask questions like "How do you
scale up a large project over many months or even years"[5], and "agile in the large"
has been voted the "top burning research question" [6].

Frameworks for managing large agile development projects have started to appear,
such as the Scaled Agile Framework [7] and Large-Scale Scrum [8]. However, there
are few studies of these frameworks, and the frameworks primarily describe product
development, while many organizations choose to establish projects or programs for
developing new systems. Projects are different as they are limited in time, will
involve setting up a project organization and usually have project participants who
need to learn a new domain.

In this article, we describe 12 key lessons from one of the largest development
programs in Norway, which provides an example of how twelve Scrum [9] teams
combined agile practices with traditional project management [9]. The Perform
program (see description in box) delivered a new pension solution after a public
reform to the Norwegian Public Service Pension Fund ("the Pension Fund"). The
program delivered 12 releases over a four-year period, and finished on budget and on
time. In this article, we summarize key advice, which we think is relevant to other
large development projects seeking to combine Scrum with traditional project
management:

																																																								
1 (C) IEEE, accepted for publication in IEEE IT Professional.

	 2	

Backlog management

The most prominent artifact in agile development is the 'product backlog’, which
depicts a prioritized queue of high-level ‘epics’ and ‘user stories’. The product
backlog is a representation of the scope of an agile software development initiative.

Lesson1. The product backlog process: The overall analysis of needs and solution
description were made jointly in what was called ‘the product backlog process’ (see
Figure 2). To get the right level of detail in this process, the program management
opted for what was ‘just enough’ in a process of rolling wave planning.

At the top level, Epics defined the scope of the Perform program. The Epics were
prioritized by importance and were roughly estimated using planning poker [10] so
they had a relative size to each other. Through the product backlog process for each
release the Epics were broken down into user stories that formed the product backlog
items. All product backlog items were prioritized in the order the Product Owners
thought they should be performed. However, these priorities could change during the
construction process. ‘Just enough’ in this context, was to detail user stories in the
product backlog for two iterations ahead, providing a solution description and an
estimate for each user story. To ensure development of high-priority user stories
assigned to the right teams at the right time, we recommend rolling wave planning of
the product backlog.

Lesson2. A common backlog: Initially, three main vendors were responsible for their
own subprojects, with three separate product backlogs. This was suboptimal for
several reasons:

• It was complicated to move user stories from a vendor/product backlog to
another

• It was difficult to prioritize across the backlogs and ensure that the program as a
whole was constantly working on the highest priority tasks

The solution to this was to organize the entire program scope in the same product
backlog with epics and user stories. From this common product backlog user stories
were then distributed to vendors, as they were described more in detail. This enabled
that several vendors could work in parallel with the same epic.

A common priority regime across subsystems and vendors ensured that the program
constantly worked on the highest priority tasks. It gave a better overview of
dependencies between stories, and enabled a more efficient development path. It was
easier to communicate and coordinate. Our experience confirms the advice given in
most agile methods on having one common backlog.

	 3	

Solution descriptions

From the start, the program planned to have solution descriptions ready for a whole
release before starting construction (See Figure 2), in order to ensure that it was high
priority user stories that were given to development teams and also to make sure that
the description of user stories were of high quality. It was very important that the
development teams did not get low-priority items to work on, or that insufficient
understanding of user stories led to stories being assigned to the wrong team.

As the program progressed, participants in the Business project (see project
organization in box) experienced an increasing workload, focusing on analysis of
needs and solution description of coming releases, supporting the development teams
with domain knowledge on user stories in the current release, and also clarifying
issues regarding releases that were in production. A second challenge was that due to
all the learning from feedback and changes in rules and legislation, user stories
changed priority before being implemented. This led to resources spent on describing
solutions that were not developed. These challenges made the program do two
changes in operation:

Lesson3. Continuous solution description: User stories were described during the
work on one release. Also, the analysis of needs and solution descriptions (Figure 2)
phases were merged. This led to efficient use of resources in solution description, as it
was only user stories that were going to be implemented that were described, and also
the people making the descriptions knew the knowledge of the construction team and
could make more concise descriptions. It was easier to predict dependencies between
user stories dye to the short time period from solution description to actual
implementation.

Lesson4. Varying level of details: The teams describing details in varying details up-
front. This was due to the nature of work tasks and to working culture in the
companies. One of the provider companies wanted more specification up-front in
order to reduce rework, while the other focused on more open specifications but
continuous collaboration to resolve details. We recommend being open to specifying
work to suit needs of the construction teams.

	 4	

Coordinating teams

In large-scale projects where work is divided between many development teams,
coordination of the teams is crucial. Early agile methods advised one forum for
managing dependencies between the teams, such as the Scrum of Scrums, while
Large-Scale Scrum suggests to give the teams the responsibility for coordination and
recommend to "just talk". One of the key lessons from the Perform program was how
the teams were coordinated, not only using a forum for managing dependencies but
through additional roles and additional arenas:

Lesson 5. Extra roles: Extra roles were set at the start of the program and
implemented in all development teams: Every team had a technical architect
responsible for technical design, a functional architect responsible for solution
descriptions, a test responsible and a mixture of senior and junior developers (Table
1). This matrix organization (Figure 1) where team members worked also in cross-
team projects (Architecture and Test) had several advantages, including saving time
by communicating orally, avoiding handovers between subprojects and establishing a
feeling of "working on this together". We recommend extra roles to establish
coordination between the teams, which in our experience led to development quality,
commitment and efficient knowledge sharing.

Lesson 6. Extra arenas: To deliver the highest priority user stories and epics early,
and to meet external government set milestones, it was necessary to utilize the entire
program on the same main components and functionality. The team- and within-
iteration dependencies grew. To keep up the speed of the delivery it was important to
increase coordination and communication cross teams and vendors. The number of
arenas for coordination was much larger than in early advice for agile development.
There were daily meetings in the development teams, Scrum of Scrum meetings
within each vendor, and a "Metascrum" forum for project managers and subproject
managers. In addition, there were arenas for coordination, learning and
standardization within the projects Architecture, Business and Test. Retrospectives
[11] were also held within these groups. There were also a number of informal arenas
such as open space meetings and experience sharing fora.

When scaling agile development our experience is that you need additional roles and
arenas to ensure efficient coordination between the teams. We recommend a matrix
structure to ensure that important concerns are addressed, and to avoid the handover
needed if these themes were handled outside of the development teams.

	 5	

Quality first

While Large-Scale Scrum emphasizes agreeing on a "definition of done", Perform
took a more formal approach to quality assurance to ensure that the new solution had
the right functionality, reliability, user friendliness, performance and maintainability.
The strategy was to automate as much of the testing as possible. To handle the scale
of the program, we emphasize three changes to standard agile development practices:

Lesson 7. Test project: Testing was organized as a separate project with resources
from all development teams in addition to a team-external project manager, testers
who mainly worked with preparing the approval process described below, and test
managers for each of the three development subprojects. This project defined
definitions of "done" and acceptance criteria in cooperation with the Business,
Development and Architecture projects. At team level, there was one person
responsible for making sure that testing took place, but work was divided between all
team members. Some teams followed test-driven development, the product was
automatically regression-tested every night.

Lesson 8. Approval process for releases: A new release went through an approval
process in the program before being transferred to acceptance testing, which was
conducted by IT operations. This extra process was needed because it is often difficult
to verify longer value chains at the last iteration, and the approval process puts a
larger emphasis on non-functional requirements such as operability, robustness and
performance. To ensure that pensions were calculated correctly, four special test tools
were developed to regression test the new solution and compare results with known
correct results. These tools included simulated changes in 20,000 pensions,
calculation of rights for 8,000 users and regression testing on 250,000 postings for a
new solution for settlement. The testers responsible for the approval process did not
work in the development teams.

For large programmes, the three lessons above have served to ensure high quality, we
recommend that such programs consider these practices.

	 6	

Continuous improvement

Continuous improvement is emphasized in agile methods, mainly through conducting
retrospectives at the end of iterations and after releases. An important condition for
implementing continuous improvement is support and mandate from enterprise
management. This was fully in place in Perform. The program was trusted to
implement proposals for organization, processes and concepts, and to adjust these
based on experience.

In Perform, the central program management focused on solving problems at the team
level whenever possible. Two examples of improvements during the program were
establishment of a separate team responsible for development and test environments
(a joint venture with the line organization), and that the warranty period for external
suppliers was removed after establishing a common product backlog. Some of the
most important facilitators of continuous improvement were:

Lesson 9. Retrospectives: All teams were required to conduct retrospectives at the end
of each iteration, and the minutes were posted on the program wiki. All minutes were
read by the central program management, and this feedback from the teams was used
to implement changes, and was also used in weekly risk assessments. A team member
stated that "this is the first project I have taken part in where the management have
been willing to implement changes". Changes were decided in the program
management meetings and the Metascrum forum. Sometimes, extra retrospectives
were held, for example after having challenges with getting deliverables accepted in
the early processes of the program. An internal evaluation of the program, shows that
retrospectives were seen as the main instrument for being proactive in continuous
learning.

Lesson 10. Demos as a learning arena: Teams were given 10 minutes to demonstrate
progress after each iteration, and everyone, both in the program and the Pension Fund
organization, were invited. In the beginning of the program, there were episodes of
team members blaming others when they failed to demonstrate functionality. The
central program management held the teams collectively responsible for the progress
on their tasks, and this together with developing the team through retrospectives
eliminated this problem. The demos were important in communicating what the teams
were working on, and the only arena where everyone would be present. Although
demos represented a large cost for the program, this was taken because of the
importance as a learning arena.

Succeeding with agile methods for large-scale software development is not a
matter of course. The method needs to be adapted to changing needs during a
programme lifecycle. While there is much good advice in frameworks such as Scaled
Agile Framework and Large-Scale Scrum, we believe the advice above will help other
programs seeking to combine agile and traditional methods at scale.

	 7	

References

[1]	 T.	Dingsøyr,	S.	Nerur,	V.	Balijepally,	and	N.	B.	Moe,	"A	Decade	of	Agile	
Methodologies:	Towards	Explaining	Agile	Software	Development,"	
Journal	of	Systems	and	Software,	vol.	85,	pp.	1213-1221,	2012.	

[2]	 L.	Williams	and	A.	Cockburn,	"Agile	Software	Development:	It’s	about	
Feedback	and	Change,"	IEEE	Computer,	vol.	36,	pp.	39-43,	2003.	

[3]	 B.	Flyvbjerg	and	A.	Budzier,	"Why	Your	IT	Project	May	Be	Riskier	Than	
You	Think,"	Harvard	Business	Review,	vol.	89,	pp.	23-25,	Sep	2011.	

[4]	 K.	C.	Desouza	and	K.	L.	Smith,	"The	perils	of	petascale	IT	projects,"	FCW:	
The	Business	of	Federal	Technology,	2014.	

[5]	 P.	Gregory,	L.	Barroca,	K.	Taylor,	D.	Salah,	and	H.	Sharp,	"Agile	Challenges	
in	Practice:	A	Thematic	Analysis,"	in	Agile	Processes,	in	Software	
Engineering,	and	Extreme	Programming.	vol.	212,	C.	Lassenius,	T.	
Dingsøyr,	and	M.	Paasivaara,	Eds.,	ed:	Springer	International	Publishing,	
2015,	pp.	64-80.	

[6]	 S.	Freudenberg	and	H.	Sharp,	"The	Top	10	Burning	Research	Questions	
from	Practitioners,"	IEEE	Software,	pp.	8-9,	2010.	

[7]	 D.	Leffingwell,	A.	Yakyama,	R.	Knaster,	D.	Jemilo,	and	I.	Oren,	SAFe	
reference	guide:	Scaled	Agile	Framework	for	Lean	Software	and	Systems	
Engineering:	Addison	Wesley,	2017.	

[8]	 C.	Larman	and	B.	Vodde,	Large-Scale	Scrum:	More	with	LeSS:	Addison-
Wesley	Professional,	2017.	

[9]	 T.	Dingsøyr,	N.	B.	Moe,	T.	E.	Fægri,	and	E.	A.	Seim,	"Exploring	software	
development	at	the	very	large-scale:	a	revelatory	case	study	and	research	
agenda	for	agile	method	adaptation,"	Empirical	Software	Engineering,	pp.	
1-31,	2017.	

[10]	 K.	Molokken-Ostvold,	N.	C.	Haugen,	and	H.	C.	Benestad,	"Using	planning	
poker	for	combining	expert	estimates	in	software	projects,"	Journal	of	
Systems	and	Software,	vol.	81,	pp.	2106-2117,	Dec	2008.	

[11]	 T.	Dingsøyr,	"Postmortem	reviews:	Purpose	and	Approaches	in	Software	
Engineering,"	Information	and	Software	Technology,	vol.	47,	pp.	293-303,	
2005.	

[12]	 K.	Strand	and	K.	Karlsen,	Agile	Contracting	and	Execution.	PROMIS,	2014.	

	 8	

How this article was written

This article is based on results of a workshop with all authors: Six key participants
from the Perform program and two researchers. We started with an open brainstorm
on key learning from the program, and structured these into 11 broad groups. Then,
we used planning poker to aid our decision as a group to focus on five of the most
important topics for this article. We first gave individual votes on how important the
topic would be for others, heard arguments for low and high importance, and then
gave a final vote. The researchers facilitated a structured discussion on the most
important topics, and this material was integrated with an internal experience report, a
book on agile contracting and execution where this program is an example [12], and
material from 12 separate focus groups covering topics such as project management,
inter-team coordination, knowledge management, requirements engineering and
architectural work (published in a separate article [9]). The researchers wrote draft
sections, which were commented on and expanded by the participants.

Key terminology

Daily meeting - a short meeting where team members describe work completed, work
to be done and any impediments they see for progress within an iteration.

Demo - the development team demonstrates completed functionality in a software
product to key stakeholders.

Iteration - a period, usually of 1-4 weeks, where a team develops new user stories.

Matrix organization - many people were both working in development teams focusing
on developing user stories, as well as being assigned to the Architecture, Business or
Test project with specific responsibilities

Metascrum meeting - forum for project managers of all main program projects.

Retrospectives - a meeting for a development team to reflect on how the work method
could be improved in future iterations.

Rolling wave planning - progressive elaboration of plans, "plan a little, do a little".

Scrum - agile development method, focuses on evolving a product through small
increments, typically involving work from 1-4 weeks.

Scrum of Scrum meetings - forum where participants from several Scrum teams would
coordinate.

User story - a brief statement about a need that a certain user has for functionality in a
software solution.

IN A BOX:

	 9	

The Perform Program

The Perform program is one of the largest IT programs in Norway, with a final budget
of around EUR 140 million. The program started January 2008 and lasted until March
2012. 175 people were involved in the program, of which 100 were external
consultants from five companies. About 800,000 person hours were used to develop
around 300 epics, with a total of about 2,500 user stories. These epics were divided
into 12 releases. The whole programme was co-located on the same floor.

The program was managed by a program director who mainly focused on external
relations, a program manager focusing on the operations, a controller and four project
managers responsible for the projects Business, Development, Architecture and Test:

• Business - responsible for analysis of needs through defining and prioritizing
epics and user stories in a common product backlog. This project was manned
with product owners and a total of 30 employees from the line organization in
the department. In addition, functional and technical architects from
development teams contributed to this project. The project was led by a
Pension Fund project manager.

• Development - development was divided into three subprojects, one led by the
public department, the Pension Fund (6 teams) with own employees and
people from five consulting companies. The two other subprojects were led by
Accenture (3 teams) and Sopra Steria (3 teams). These feature teams worked
according to Scrum with three-week iterations, delivering on a common
demonstration day. The feature teams had roles as listed in Table 1. In
addition to the 12 feature teams, the project had an environment team
responsible for development and test environments. The project was led by a
Pension Fund project manager.

• Architecture - responsible for defining the overall architecture in the program
and also for detailing user stories in the solution description process.
Consisted of a lead architect and technical architects from the feature teams.
Suppliers Accenture and Sopra Steria participated on a time & material basis.
Sometimes, domain experts from the teams participated in solution description.
The project was led by an external project manager.

• Test - responsible for testing procedures and for approving deliverables from
the development teams. Consisted of the test project manager (external), a test
manager and testers who mainly worked with preparing the approval process
described below and test resources from development teams.

	 10	

Figure 1: Program organization, showing the four main projects Business,
Development, Architecture and Test. The matrix structure was a key to managing the
complexity in the program.

Business' Development*Business*

Architecture*

Test*

Program'director'

Program'manager'

Solu3on'
descrip3on'
team'
'

Applica3on'
architecture'
team'

Acceptance'
criteria'
'

Func3onal'
test'
'

Subproject'
Pension'Fund'(6'
teams)'
'Subproject'
Accenture'(3'
teams)'
'Subproject'
Sopra'Steria'(3'
teams)'
'

	 11	

Table 1: Roles in the teams in project Development:

Role Description

Scrum master Facilitated daily meetings, iteration planning,
demonstration and retrospective.

Technical architect Responsible for technical design, working 50% on this and
50% on development.

Functional architect Responsible for this role was usually allocated 50% to
analysis and design, and 50% to development.

Test responsible Made sure that testing was conducted at team level: unit
tests, integration tests, system tests and system integration
tests. Delivered test criteria to the subproject test.

Developers 4-5 developers were allocated to a team, a mixture of junior
and senior developers.

Figure 2: Initial development process, showing the products of each process. Note
that processes were running in parallel for the releases: One release could undergo
approval, while another release was under construction and a third in solution
description.

Initially, the development process included the four processes described in Figure 2:

• Analysis of needs - this process starts with a walkthrough of target
functionality of a release, and identification of epics. The product backlog is
prioritized by product owners.

• Solution description - epics are divided into smaller user stories, and the user
stories are described more in detail, including design and architectural choices.
User stories are estimated and assigned to a feature team.

Analysis(
of(needs(

Solu/on(
descrip/on(Construc/onN(Approval(2Construc/on1(

Product(Backlog(
(User(Stories)(

Product(Backlog(
(Epics)(

Approved(Increments((
according(to(defini/on(of(done(

Release(deployed(
in(produc/on((
environment(

Release(ready(for((
approval(

	 12	

• Construction - development and delivery of functionally tested solutions from
the product backlog. Three to seven iterations per release.

• Approval - a formal functional and non-functional test to verify that the whole
release works according to expectations. This includes internal and external
interfaces as well at interplay between systems.

In order to keep the schedule of the project, releases were constantly under planning,
being constructed and under test.

