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Abstract

Background: Health researchers often use survey studies to examine associations between risk factors at one time
point and health outcomes later in life. Previous studies have shown that missing not at random (MNAR) may
produce biased estimates in such studies. Medical researchers typically do not employ statistical methods for
treating MNAR. Hence, there is a need to increase knowledge about how to prevent occurrence of such bias in the
first place.

Methods: Monte Carlo simulations were used to examine the degree to which selective non-response leads to
biased estimates of associations between risk factors and health outcomes when persons with the highest levels of
health problems are under-represented or totally missing from the sample. This was examined under different
response rates and different degrees of dependency between non-response and study variables.

Results: Response rate per se had little effect on bias. When extreme values on the health outcome were
completely missing, rather than under-represented, results were heavily biased even at a 70% response rate. In
most situations, 50–100% of this bias could be prevented by including some persons with extreme scores on the
health outcome in the sample, even when these persons were under-represented. When some extreme scores
were present, estimates of associations were unbiased in several situations, only mildly biased in other situations,
and became biased only when non-response was related to both risk factor and health outcome to substantial
degrees.

Conclusions: The potential for preventing bias by including some extreme scorers in the sample is high (50–100%
in many scenarios). Estimates may then be relatively unbiased in many situations, also at low response rates. Hence,
researchers should prioritize to spend their resources on recruiting and retaining at least some individuals with
extreme levels of health problems, rather than to obtain very high response rates from people who typically
respond to survey studies. This may contribute to preventing bias due to selective non-response in longitudinal
studies of risk factors and health outcomes.
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Background
Health researchers often use survey studies to examine
associations between risk factors at one time point and
health outcomes later in life. A possible threat to
generalizability of findings from such studies is selective
non-response [1]. When non-responders do not differ
from responders, the situation is termed missing com-
pletely at random (MCAR) [2]. This situation does not
lead to bias, only to decreased power due to reduced
sample size. If responders and non-responders differ
regarding variables with no missing values, the situation
is termed missing at random (MAR) [2]. An example of
this is when responders and non-responders differ in
terms of age and gender, and this information is avail-
able to the researcher for non-responders as well as
responders through a national registry. If non-response
is related to variables with missing information, the situ-
ation is called missing not at random (MNAR) [2]. An
example of this is when participants in a survey study
about risk factors for poor health have better health or
fewer risk factors than those who do not participate.
MNAR is considered the most serious situation [2, 3].
Unlike MAR, treatment of MNAR requires accounting

for the missing data mechanism [4]. Two of the most
common approaches are selection models and pattern
mixture models [4, 5]. In selection models, missingness
is conditioned on study variables, and the joint distribu-
tion of missingness and the outcome is modeled. The
Heckman sample selection model is a well-known ex-
ample of this [6]. In pattern mixture models, parameters
are assumed to differ between those who respond and
those who do not respond, and the true population pa-
rameters are estimated as a mix of these [4].
Because the data do not provide information about the

true missing data mechanism, it is advised to perform
several analyses under different scenarios when treating
MNAR [4, 7]. Multiple analyses could give information
about the degree to which results differ depending on
the missing data model, and the fit of different models
can be compared. However, different fit criteria may sug-
gest different models as best fitting [8], and different se-
lection models may lead to similar fit, but to different
results [4, 9]. Selection models and pattern mixture
models can be highly sensitive to strong assumptions
that are not readily testable [6]. Correct specification of
the missingness model may be very important, but also
very difficult [4].
Several detailed approaches for treating MNAR have

been developed. For example, Ibrahim, Lipsitz and col-
leagues have proposed methods for including the miss-
ing data mechanisms into the log-likelihood of the study
variables [7, 9–11]. It has been shown that valid results
may be obtained when missing data are properly
accounted for in this way [7, 11]. MNAR approaches

have been implemented in several R packages. One ex-
ample is the ‘brlrmr’ package for treating MNAR in the
outcome of logistic regression models [12]. Another R
package, miceMNAR, [13, 14], allows combining selection
modeling with multiple imputation (MI) for treating
MNAR in continuous and binary outcomes. Other im-
portant contributions in recent years are simulation stud-
ies performed for better understanding and improvement
of criteria for selecting the true missingness model under
MNAR [8], and comparison of different imputation
methods for different missing mechanisms [15].
Despite available approaches for treating missing data

under MNAR, most researchers seem not to take advan-
tage of these methods. In fact, most medical researchers
do not even apply methods for handling MAR, even if
these methods are implemented in statistical software
used by many researchers, such as SPSS and Stata. Ac-
cording to Ibrahim, Chu and Chen, the most common
way of “dealing” with missing data in medical studies, is
to analyze complete cases [16]. Little and colleagues
reviewed 80 empirical studies published in the Journal of
Pediatric Psychology in the year 2012. None mentioned
treating MNAR, and only 13 studies used MAR methods
such as MI and full information maximum likelihood
(FIML). Almost half of the 80 studies did not mention
missing data explicitly at all, and most of those who did,
analyzed only complete cases [17]. Lang & Little found
similar results when they reviewed 169 empirical studies
published in Prevention Science between 2013 and 2015
[6]. Again, the most common method was complete case
analysis. Ibrahim and colleagues argue that the reason
for the common use of complete case analysis may be
that this is the default of many statistical software pack-
ages [16]. Approaches for handling MNAR are not as
easily available in standard software as are MAR
methods (except for the Heckman methods). MNAR
methods seem to require more statistical understanding,
and researchers should make sure they have sufficient
statistical expertise if they use them [4–6]. This may be
particularly relevant regrading categorical variables. Lit-
tle and Rubin warn that MNAR models for categorical
variables may lead to more biased results than MAR
models in some situations, even when data are MNAR
[4]. Others warn that approaches appropriate in some
situations (e.g. for continuous outcomes or for nor-
mally distributed variables), have been misused in situ-
ations where they are not valid (e.g. with binary
outcomes or highly skewed variables) [4, 13, 18]. Such
misuse of MNAR methods may introduce, rather than
alleviate, bias [4].
The fact that most medical researchers do not treat

missing data appropriately, and particularly not MNAR
data, emphasizes the importance of preventing MNAR
bias in the first place. Hence, the aim of the current
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paper is to guide researchers in how to prevent bias, in
order to avoid creating MNAR situations that are not
treated correctly.
Different MNAR situations may produce varying degrees

of bias, from practically unbiased to very misleading esti-
mates of associations [1, 13, 19–22]. We therefore need
more knowledge about when MNAR leads to serious ver-
sus less serious bias. Previous studies have demonstrated
that degree of dependency between non-response and
study variables is directly linked to degree of bias in logistic
regression with dichotomous outcomes as well as in linear
regression with continuous outcomes [1, 13, 19, 22]. Fur-
ther, missingness related to the outcome has been found to
be particularly problematic in some studies [19, 23].
A further important distinction between different

MNAR situations may be whether or not extreme cases
are present in the sample. However, we lack knowledge
about this. Previous studies have generally examined
effects of underrepresentation of extreme cases (e.g.
those who have heaviest health problems are under-
represented). Findings about bias from studies where
extreme cases are under-represented may not be gener-
alized to studies where they are not present at all. Know-
ledge on the degree to which total absence of extreme
cases leads to more biased estimates than under-
representation of these cases may help researchers spend
their resources in better ways, and may contribute to
prevent bias in health studies.
Persons with low risk and low levels of health prob-

lems/diseases typically respond more often to survey
studies than do persons with high risk of such problems/
diseases [1, 24–29]. Hence, recruiting and retaining the
latter participants may require more resources than
recruiting and retaining the former. With the same
amount of resources, researchers will thus probably get
a higher response rate in a study by spending all their
resources on recruiting as many persons as possible
without doing any particular effort to recruiting and
retaining persons with the highest levels of health prob-
lems. Even if researchers spend extra resources on
recruiting and retaining some persons with extreme
levels of health problems, these persons may still be
under-represented in the sample. Hence, researchers
may be left with a sample that is not fully representa-
tive and with lower response rate than if they had
spent the resources on obtaining and retaining as
many participants as possible from the group of
people who typically respond to survey studies (i.e.
persons who have lower levels of health problems). It
is important to know the degree to which succeeding
in recruiting and retaining at least some persons with
extreme levels of health problems may prevent bias
substantially or whether results are less biased only if
high response rates are obtained.

Health survey studies often use ordinal scales to meas-
ure health outcomes (e.g. a five- or four-point scale ran-
ging from ‘no problems’ to ‘very heavy problems’) [30–34].
Selective non-response may lead to skewed distributions
and floor/ceiling effects in such variables, requiring ana-
lyzing them as ordered categorical variables [34, 35].
Previous studies have shown that missingness may be
more difficult to handle in categorical than in continuous
data [36, 37]. Hence, there seems to be a particular need
for more knowledge about prevention of MNAR situa-
tions in studies using ordered categorical variables.
Data simulation studies are ideal for systematically in-

vestigating under what circumstances bias occurs [35].
This is because the researcher knows the true population
values and can compare estimates obtained under differ-
ent scenarios to these true population values [35].
Aims of the study: The main aim of the current study

was to increase current knowledge on how to prevent
biased estimates in longitudinal survey studies of associ-
ations between risk factors and health outcomes. More
specifically, the aims were to examine relative bias in sit-
uations where 1) extreme scores are under-represented,
but present in the sample and 2) extreme scores are to-
tally missing, and to compare these situations. The dif-
ference between relative bias in these two types of
situations suggests the potential for preventing bias by
succeeding to include some individuals with the highest
levels of health problems, compared to failing to include
them. The aim was to examine this under different
response rates, and different degrees of dependency be-
tween missingness and study variables.
The health outcome was simulated as a continuous

trait in the population, measured with an ordered cat-
egorical scale by the researcher. This is in accordance
with what is done in many survey studies [38–46] and in
accordance with the assumption that the underlying li-
ability of many complex diseases seems to be continuous
[47]. Three predictors were modeled – two predicting
the health outcome as well as missingness, and one add-
itional predictor of missingness.

Methods
Analyses were performed in Mplus version 8 [35] and in
R version 3.4.3 [48]. First, populations were defined, and
500 random samples were drawn from each population.
Analyses were performed on these 500 samples. The
high number of samples was chosen to avoid random
variation between samples to affect the results.
The four study variables (× 1, × 2, × 3, and the health out-

come) were modeled as continuous and normally distrib-
uted traits with mean = 0 and variance 1.15. This variance
was chosen to allow the residual variance of the health out-
come to be 1. The associations between health outcome
and predictors will be termed bpred. This association was set
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to be bpred = 0.20 for × 1, bpred = 0.30 for × 2, and bpred =
0.00 for × 3 in the population. Predicted health outcome
was thus given by:

y = 0.2*× 1 + 0.3*× 2 + random component

The random component was normally distributed with
a mean of zero and variance fixed to 1. The choice of
magnitude of the associations between predictors and
health outcome ensured that studies with a sample size
of 100–150 participants would have sufficient power to
detect it. This makes the results relevant for many stud-
ies, not only those with very large samples. The size of
the associations also approximates real life effects be-
tween social skills and later depressive symptoms as
identified by Nilsen and colleagues [49].
Missingness was modeled in the health outcome, while

predictors (× 1, × 2, and × 3) were completely observed.
MNAR situations where extreme scores on the health
outcome were under-represented, but present in the
samples, were modeled in accordance with previous
simulation studies of non-response [1, 22]. Different de-
grees of dependency between non-response and predic-
tors and health outcome were modeled by constructing
liability of non-response (termed L) as a latent normally
distributed continuous variable with mean = 0 and
variance = 1.15. Dependency between L and the study
variables (× 1, × 2, × 3, and health outcome) is termed
bnon. This was set to vary from bnon = 0.10 for predictors
(× 1, × 2, and × 3) and health outcome to a maximum of
bnon = 0.30, in accordance with previous simulation stud-
ies [1, 22]. This dependency was given by:

L = b0 + bnon1*× 1 + bnon1*× 2 + bnon1*× 3 + bnon2*y +
random normal component

The random component had a mean of zero and a
variance of 1.15 minus the variance explained by × 1, ×
2, × 3, and y. The random component thus had slightly
different variance in the different conditions. This was
done to ensure that all variables had the same total vari-
ance of 1.15 in all conditions, which makes regression
coefficients more easily interpretable. In each situation,
the association with liability of non-response was the
same for all three predictors (× 1, × 2, and × 3), as indi-
cated by the same regression coefficient (bnon1) for all of
them. A dichotomous missingness indicator was termed
M, with the value 0 for individuals with data on the
health outcome, and 1 for individuals without data on
the outcome. In the 70% response-rate situation, M was
1 if the predicted value of the latent continuous liability
of non-response (L) was > 0.52 standard deviations (SD)
above the mean. In the 50% response-rate situation, M
was 1 when predicted L was above the mean.

The 50% response rate mimics the mean response rate
for large survey studies (N > 1000) reported in a review
[50]. See Fig. 1 for an overview of modeling the data.
In the situations described above, the most extreme

values on the health outcome (i.e. 10% highest values on
the continuous health outcome) were underrepresented
in the samples because missingness was related to the
study variables. However, the extreme cases were not to-
tally excluded.
To examine MNAR situations where none of the ob-

servations with the most extreme scores on the health
outcome were present, the 10% highest values on the
health outcome were removed. Additional non-response
was modeled in the same way as above. Hence, in the
70% response rate situation, observations with the 10%
highest scores on the health outcome were removed,
and 20% of the observations were removed as in the
situations above. M was thus 1 if predicted value on the
health outcome was > 1.28 SD above the mean, or pre-
dicted value on L was > 0.84 SD above the mean. Vary-
ing degrees of dependency between study variables and
L in the different scenarios lead to different degrees of
overlap between the two criteria for missingness (pre-
dicted value on the outcome and predicted value on L).
The cut-off value of L was changed accordingly, so that
30% of the observations were assigned M = 1.
The situation with 50% response rate was produced in

the same way. M was 1 if predicted health outcome was >
1.28 SD above the mean or predicted L was > 0.25 SD
above the mean. Again, different degrees of dependency
between study variables and L made it necessary to vary
the cut-off value for L, to ensure 50% non-response in all
situations.
We wanted to mimic using an ordinal scale for meas-

uring a trait that is normally distributed in the popula-
tion. Hence, the health outcome variable that was
defined as continuous and normally distributed in the
population was used as basis for creating an observed
ordinal health outcome variable. This ordinal observed
health outcome variable was constructed with four cat-
egories. The first category corresponded to scoring one
SD or more below the mean on the continuous normally
distributed health outcome variable. The second cat-
egory corresponded to scoring between one SD below
the mean and the mean on that variable. The third cat-
egory corresponded to scoring between the mean and
one SD above the mean, and the fourth category corre-
sponded to scoring one SD or more above the mean on
the continuous normally distributed outcome variable.
Hence, observations with values one SD or more below
the mean on the continuous population health outcome
variable, were allocated to the first category on the ob-
served ordinal health outcome variable. Those with
values between one SD below the mean and the mean
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on the continuous population outcome variable were
allocated to category two on the observed ordinal out-
come variable and so forth.
Analyses were performed with this ordinal observed

health outcome treated as a categorical variable, using
probit regression. The risk factor variables (× 1 and × 2)
were predictors. Data were analyzed with complete cases
(CC), with FIML and MI with 50 imputed data sets. CC
and FIML analyses were performed in Mplus. × 3 was

used as an auxiliary variable in FIML, and as pre-
dictor in the imputation model. Performing multiple
imputations on each of 500 randomly drawn data sets
required creating loops. MI and analysis of the MI
data were therefore performed in R, using the mice
package and the ‘pmm’ method (predictive mean
matching) [51].
The probit regression model in Mplus assumes a nor-

mally distributed continuous latent response variable with

Fig. 1 Overview of modeling the data. Notes: μ is population mean. σ2 is population variance. CC = complete case analysis, FIML = full
information maximum likelihood, MI =multiple imputation
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residual variance fixed to one underlying the observed cat-
egorical variable [35]. This analytic model thus matched
the simulated scenario where an ordinal variable was
used for measuring a trait that was normally distributed
in the population. Probit regression in Mplus provides
standardized estimates that correspond to the associ-
ation between a predictor and the normally distributed
continuous underlying latent response variable (with
mean = 0, residual variance = 1). The unbiased estimate
from the probit regression was therefore the same as
the population value of the association between the
predictor and the normally distributed continuous popu-
lation health outcome variable (i.e. bpred × 1 = 0.20 and
bpred × 2 = 0.30). The association between the observed
score on the ordinal variable and the estimated score
on the underlying continuous normally distributed la-
tent variable in probit regression is given in the fol-
lowing way: The probability (P) of obtaining a
category (k) on the observed ordinal variable is:

P ordinal category k j μ; σ; θ1;……; θk−1ð Þ ¼ ϕ θkð Þ−ϕ θk−1ð Þ

where ϕ is the standardized cumulative normal function,
μ is the mean and σ the standard deviation of the latent
normally distributed underlying variable, and θ is the
threshold [34]. For the first observed category, the
threshold θk-1 on the latent normal underlying variable
is negative infinity. For the highest observed category
(k), the threshold θk is positive infinity [34].
To enable comparison of results from MI analyses

performed in R to the CC and FIML results from
Mplus, results from probit regression in R were stan-
dardized with respect to the latent underlying con-
tinuous health variable, in the same way as is done in
Mplus:

bs ¼ b � SD xð Þ=SD u�ð Þ

and

SD u�ð Þ ¼ SQRT b2 � V xð Þ þ 1
� �

where bs is the standardized estimate, b is the unstan-
dardized estimate, SD(x) is standard deviation of x,
SD(u*) is standard deviation of the latent underlying
continuous variable, and V(x) is variance of x [52].
Relative bias was calculated as the difference be-

tween the true population value (i.e. bpred × 1 = 0.20
and bpred × 2 = 0.30) and the estimate, divided by the
true population value [35]. Difference between rela-
tive bias in the situation where extreme scores were
totally missing versus situations where they were
under-represented was calculated. Potential for pre-
venting bias by ensuring that the 10% most extreme
scorers are not totally missing from the sample, was

calculated as this difference divided by the relative
bias in the first situation and multiplied by 100:

Potential for preventing bias ¼ R1−R2
R1

� 100

where R1 and R2 are relative bias in situations without
and with extreme scores present, respectively.
The 95% coverage was also used to evaluate bias. This is

a measure of the proportion of the randomly drawn sam-
ples that gives a 95% confidence interval containing the
true population value. The higher the 95% coverage, the
less risk of drawing a sample yielding a biased estimate.
The sample size before non-response was 1000 in all

situations, the same as the baseline sample size in the
TOPP study.

Follow-up analyses
We then wanted to examine the degree to which results
were specific to situations with four categories on the
health outcome variable. The observed ordinal outcome
variable was therefore modeled to have five categories
and two categories. For five categories, four thresholds
were defined (1 SD below the mean, 0.5 SD below the
mean, 0.5 SD above the mean, and 1 SD above the mean
on the population continuous normally distributed out-
come variable). For two categories, one threshold was
defined at the mean.
Analyses were also performed without using an ordinal

variable for the health outcome. This was done to exam-
ine if results could be generalized from situations with
an observed ordinal variable to situations with an ob-
served continuous outcome variable. Linear regression
analyses were then run with the continuous normally
distributed health outcome variable, without construct-
ing an ordinal variable. The follow-up analyses were per-
formed for situations with 50% response rate.

Results
First, a probit regression model was run with the categor-
ical observed outcome variable without any missing
values. This showed that the unbiased results for bpred × 1
was 0.20, and the unbiased bpred × 2 was 0.30. These
values were the same as those defined in the population
for the normally distributed outcome variable of risk for
health problems. The more the estimates with missing
data deviate from these values, the more biased they are.
The 95% coverage should be close to 95 for unbiased re-
sults. We will first comment on results from situations
where extreme scores are totally missing from the sample.
Next, results from situations where extreme scores are
under-represented, but present will be commented. Com-
parison of these results indicates the potential for prevent-
ing bias by successfully including some individuals with
the highest levels of health problems, compared to failing
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to include these persons. These two types of situations are
presented next to each other in Tables 1 and 2, and in
Figs. 2 through 5, for ease of comparing results from sam-
ples with versus without extreme scores present. We then
present the proportion of bias in the situations without
extreme cases present that can be prevented if the ex-
treme cases are not totally missing from the sample.

Extreme scores of the health outcome totally missing
We modeled situations where the 10% most extreme
scores on the health outcome were totally missing from
the samples. Hence, these were situations in which the
liability of non-response (L) was dependent on the pre-
dictors and outcome with persons with low scores being
more likely to respond than persons with higher scores,
and in addition none of those with the 10% highest
scores on the health outcome had responded at all. The
dotted bars in Figs. 2 and 3 show that estimates are
clearly biased in all situations where the 10% most ex-
treme cases are removed. This is true at 70 and 50% re-
sponse rates. Figure 2 shows results for × 1 and × 2 at
70% response rate, Fig. 3 for × 1 and × 2 at 50% response
rate. The figures show that even if non-response is only
weakly related to the study variables (e.g. dependency
between L and predictors and outcome is bnon = .10) for
the majority of the missingness, results are clearly biased
when the 10% most extreme scores are missing. All esti-
mates were biased between 10 and 40%. Relative bias in-
creased as dependency between L and study variables
increased, and was highest when bnon was 0.30 for both
health outcome and predictors. More details are given in
Tables 1 and 2 (showing 70 and 50% response rate, re-
spectively). Tables 1 and 2 also show that results were
similar for complete case analysis, FIML and MI.
Figures 4 and 5 show the 95% coverage of the esti-

mates (dotted bars). Figure 4 shows coverage for × 1 and
× 2 at 70% response rate, and Fig. 5 at 50% response
rate. All 95% coverages were below 90% for × 1 and × 2
when response rate was 70%. When response rate was
50%, the highest 95% coverages were 91% for × 1 and ×
2, and most 95% coverages were below 90%.

Extreme scores on health outcome under-represented,
but not totally missing
The solid bars in Figs. 2 and 3 show results for situations
where extreme scores are under-represented, but not to-
tally missing. Figure 2 shows results at 70% response
rate, and Fig. 3 at 50% response rate. The solid bars in
the figures show that estimates are unbiased or weakly
biased in several of the situations. Estimates for × 1 were
unbiased when liability of non-response (L) was rela-
tively weakly related to study variables (bnon1 = 0.1
and bnon2 = 0.1), and when L was related to predictors
(× 1, × 2, × 3) or to the health outcome. Estimates for × 2

were weakly biased (< 4%) in these situations. This was
true for 70 and 50% response rates. Bias increased as de-
pendency between L and study variables got stronger.
When dependency was bnon = .30 between L and both
health outcome and predictors, estimates of associations
between risk factor and health outcome were clearly
biased at both response rates (70 and 50%, but more
biased with lower response rate). Estimates are relatively
similar across the 70 and 50% response rates when ex-
treme scores are present in the sample (solid bars).
Tables 1 and 2 show more details. These tables also show
that results from complete case analysis, FIML and MI are
similar. Table 1 shows results at 70% response rate and
Table 2 at 50% response rate.
Figures 4 and 5 show 95% coverage for the estimates

(solid bars), for × 1 and × 2 at 70 and 50% response
rates, respectively. 95% coverages exceeded 90% for × 1
and × 2 in all situations, except when bnon = .30 for both
health outcome and predictors. This was true for 70 and
50% response rates.

Potential for preventing bias
Potential for preventing bias by not totally excluding in-
dividuals with extreme values from the sample is shown
in Figs. 6 and 7. Figure 6 shows prevention of relative
bias at 70% response rate, and Fig. 7 at 50% response
rate. The x-patterned parts of the bars show relative bias
that was present when extreme cases were totally miss-
ing from the sample, but that was not present in the sit-
uations where extreme values were under-represented
but not totally missing. In other words, this is relative
bias that was prevented by having persons with extreme
values in the sample, even if they were under-
represented. The dark grey parts of the bars show rela-
tive bias that was present even when extreme cases were
in the sample. When there is no dark grey part of a bar,
all of the bias (100%) was prevented by not totally ex-
cluding extreme scorers. When the dark grey part and
the x-patterned part are of equal size, 50% of the bias
was prevented. The sum of the dark grey part and the x-
patterned part, is the total amount of relative bias when
extreme scores were totally missing from the sample.
The figures show that the potential for preventing bias

was 100% in several situations, and 50–80% in other sit-
uations. Hence, in some situations, there was no bias left
when extreme scorers were in the sample (100% of bias
prevented), even if they were under-represented. In
other situations 20% or 50% of the bias was left when
extreme cases were in the sample (80% or 50% of the
bias was prevented, respectively). When dependency be-
tween liability of non-response and study variables was
relatively strong for both health outcome and predictors,
the potential for preventing bias was lower, but never
less than 10%.
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Follow-up analyses
Follow-up analyses were performed to examine if the
number of categories on the observed ordinal outcome
variable affected the results. Figures 8 and 9 show results
from dividing the health outcome variable into five and
two categories, respectively. Results for × 1 at 50%
response rate are shown. The figures show that results
were similar regardless of number of categories on the
ordinal outcome variable.
Follow-up analyses were also performed to examine if

results were generalizable to situations where an observed
continuous outcome variable was used. The results for × 1

at 50% response rate are shown in Fig. 10. The finding that
results were clearly more biased when extreme scores
were totally missing from than sample than when extreme
scores were under-represented but present, also applied to
this situation.

Discussion
The main aim of the current study was to increase
current understanding of how health researchers can
prevent bias in estimates from longitudinal survey stud-
ies. Previous studies have shown that MNAR situations
can lead to serious bias in association estimates. The

Fig. 3 Relative bias in the associations between predictors and health outcome at 50% response-rate. Notes: × 1 to the left, and × 2 to the right.
Solid bars represent situations where extreme scores are present even if they are under-represented in the samples. Dotted bars represent
situations where the 10% most extreme scores on the health outcome are totally missing from the samples. bnon 1 = dependency between
liability of non-response and each of the three predictors (× 1, × 2, × 3). b non 2 = dependency between liability of non-response and the health
outcome. Different degrees of dependency between study variables and liability of non-response are modeled. Relative bias is calculated by
dividing the difference between the estimated and the true value on the true value of bpred = 0.20 for × 1 and 0.30 for × 2

Fig. 2 Relative bias in the associations between predictors and health outcome at 70% response-rate. Notes: × 1 to the left, and × 2 to the right.
Solid bars represent situations where extreme scores are present even if they are under-represented in the samples. Dotted bars represent
situations where the 10% most extreme scores on the health outcome are totally missing from the samples. b non 1 = dependency between
liability of non-response and each of the three predictors (× 1, × 2, × 3). b non 2 = dependency between liability of non-response and the health
outcome. Different degrees of dependency between study variables and liability of non-response are modeled. Relative bias is calculated by
dividing the difference between the estimated and the true value on the true value of bpred = 0.20 for × 1 and 0.30 for × 2
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current study added to this by showing that the degree of
bias in MNAR situations may vary from mild to very ser-
ious, depending on whether at least some individuals with
the heaviest health problems are included in the sample.
These results suggest that bias due to MNAR to a large
extent can be prevented if researchers manage to recruit
and retain at least some individuals with extreme levels of
health problems. Results from Monte Carlo simulations
showed that estimates of longitudinal associations be-
tween a predictor and a health outcome were relatively ro-
bust against selective non-response when at least some
extreme values of the health outcome were present in the
sample, even if missingness was MNAR, extreme cases
were under-represented, and response rate was relatively
low. Estimates were clearly biased even at high response
rates when extreme values were totally missing.
Several studies have shown that most medical re-

searchers only analyze complete cases, despite the fact that
approaches for treating MNAR are available [6, 16, 17].
This emphasizes a need for more information about

how to prevent bias due to MNAR. Previous real life
studies have shown mixed results regarding the de-
gree to which association estimates are biased due to
selective non-response, with some studies reporting
serious bias and other studies reporting relatively un-
biased results [29, 53, 54]. A recent study showed
that missingness on the outcome variable may lead to
serious bias [19]. The current findings may contribute
to an increased understanding of how researchers can
prevent bias, even if the sample is not perfectly repre-
sentative of the population.
First, the current findings demonstrate that simply

increasing response-rate, without regards to who the
responders are, is not an effective way to prevent bias.
The results showed that a study with 70% response
rate can yield much more biased results than a study
with only 50% response rate, even if data in both studies
are MNAR.
Second, the findings showed that MNAR leads to in-

creasing degrees of bias when the association between

Fig. 4 95% coverage of the associations between predictors and health outcome at 70% response-rate. Notes: Illustration of 95% coverage of the
estimates of the associations between predictors (× 1 and × 2) and health outcome in situations with different degrees of dependency between
study variables and liability of non-response. × 1 to the left, and × 2 to the right. Solid bars represent situations where extreme scores are present
even if they are under-represented in the samples. Dotted bars represent situations where the 10% most extreme scores on the health outcome
are totally missing from the samples. 95% coverage is the proportion of samples randomly drawn from the population that has a 95% confidence
interval containing the true population value of bpred × 1 = 0.20, and bpred × 2 = 0.30. bnon 1 is dependency of liability of non-response on
predictors (× 1, × 2, and × 3).bnon 2 is dependency of liability of non-response on health outcome
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Fig. 6 Bias prevented when extreme cases were not totally missing (70% response-rate). Notes: × 1 to the left, and × 2 to the right. The x-patterned parts
of the bars show relative bias that was present when extreme cases were totally missing from the sample, but that was not present in the situations
where extreme values were under-represented but not totally missing. In other words, this is relative bias that was prevented by having persons with
extreme values in the sample, even if they were under-represented. Dark grey parts of the bars show bias still present when extreme cases were in the
sample. When there is no dark grey part of a bar, all of the bias (100%) was prevented by not totally excluding extreme scores. The sum of the x-
patterned and dark grey parts of a bar, is the total amount of relative bias present in situations where extreme scores were totally missing from the
sample. The percentages in the figure were calculated by dividing the difference in relative bias in the two situations by the amount of relative bias in
the situations without extreme cases, and multiplied by 100Percentage prevented bias ¼ R1−R2

R1 �100 where R1 and R2 are relative bias in situations
without and with extreme scores present, respectively. bnon 1 is dependency of liability of non-response on predictors (× 1, × 2, and × 3).bnon 2 is
dependency of liability of non-response on health outcome

Fig. 5 95% coverage of the associations between predictors and health outcome at 50% response-rate. Notes: Illustration of 95% coverage of the
estimates of the associations between predictors (× 1 and × 2) and health outcome in situations with different degrees of dependency between
study variables and liability of non-response. × 1 to the left, and × 2 to the right. Solid bars represent situations where extreme scores are present
even if they are under-represented in the samples. Dotted bars represent situations where the 10% most extreme scores on the health outcome
are totally missing from the samples. 95% coverage is the proportion of samples randomly drawn from the population that has a 95% confidence
interval containing the true population value of bpred × 1 = 0.20, and bpred × 2 = 0.30.bnon 1 is dependency of liability of non-response on
predictors (× 1, × 2, and × 3).bnon 2 is dependency of liability of non-response on health outcome
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non-response and study variables gets stronger. This is
in accordance with previous research on continuous and
dichotomous variables [1, 13, 19, 22], and the current re-
sults showed that this was also the case for studies using
ordinal categorical outcome variables. When the associ-
ation between non-response and study variables was
substantial (bnon = 0.3) for both predictors and health
outcome, association estimates were clearly biased, even
at a high (70%) response rate. When this association was
weak for both predictors and health outcome, bias was
mild or non-existent, even at a low (50%) response rate.
When non-response was substantially related to out-
come or predictors, but not to both predictor and out-
come, bias was also relatively mild or non-existent.
Third, the current findings demonstrated that bias to a

large extent can be prevented if persons with extreme
levels of health problems are successfully recruited and
retained in the samples. In some situations, 100% of the
bias could be prevented by including some extreme
values in the sample, and 50–80% could be prevented in
other situations. The impact of MNAR depended heavily
on whether or not at least some extreme values on the
health outcome were included in the sample. When the
10% most extreme scores on the health outcome were
totally missing, all estimates were biased, most of them
between 10 and 20%, and some as much as 40%. Hence,
an important distinction between different MNAR situa-
tions may be whether at least some of the most troubled
individuals are present in the sample. When they are

not, bias may be more severe than what is indicated by
previous studies examining bias in situations where the
most troubled individuals are under-represented, but
present in the sample. This shows that recruiting and
retaining at least some participants with extreme values
on the health outcome may have dramatic positive ef-
fects on preventing bias in association estimates.
Follow-up analyses showed that including some indi-

viduals with extreme scores in the sample contributed to
preventing bias in different situations (i.e. when using an
ordinal outcome measure with different numbers of cat-
egories as well as when using a continuous outcome
measure).
These results imply that researchers should spend

more resources on recruiting and retaining persons with
known risk of non-response (high scores on health prob-
lems) than on recruiting and retaining more of those
persons typically responding (low scores on health prob-
lems). Journal editors considering papers should be more
critical to studies where there is no examination of level
of selectiveness of non-response than to studies with low
response rates where there have been thorough exami-
nations of the selectiveness of non-response. Further, the
most important issue may not be whether the sample is
fully representative of the population, but whether the
range of values from the population is represented in
the sample.
To get an idea of whether or not extreme scores on

health outcomes are present in a population-based

Fig. 7 Bias prevented when extreme cases were not totally missing (50% response-rate). Notes: × 1 to the left, and × 2 to the right. The x-patterned
parts of the bars show relative bias that was present when extreme cases were totally missing from the sample, but that was not present in the
situations where extreme values were under-represented but not totally missing. In other words, this is relative bias that was prevented by having
persons with extreme values in the sample, even if they were under-represented. Dark grey parts of the bars show bias still present when extreme
cases were in the sample. When there is no dark grey part of a bar, all of the bias (100%) was prevented by not totally excluding extreme scores. The
sum of the x-patterned and dark grey parts of a bar, is the total amount of relative bias present in situations where extreme scores were totally missing
from the sample. The percentages in the figure were calculated by dividing the difference in relative bias in the two situations by the amount of
relative bias in the situations without extreme cases, and multiplied by 100Percentage prevented bias ¼ R1−R2

R1 �100 where R1 and R2 are relative bias
in situations without and with extreme scores present, respectively. bnon 1 is dependency of liability of non-response on predictors (× 1, × 2, and × 3).
bnon 2 is dependency of liability of non-response on health outcome
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sample, health researchers could for example compare
the highest levels of health problems in their sample to
problem levels in clinical samples. If the population-
based sample contains some values matching high values
from clinical samples, the researchers might not need to
worry too much about whether these high values are
under-represented in the sample.
The two predictors used as risk factors for the health

outcome as well as an additional third covariate predict-
ing missingness, were included in the FIML and MI
models. Applying FIML and MI did not change results
noteworthy. This was expected as these were MAR
methods, and missingness was MNAR. Also, the third
predictor added to FIML and MI was only weakly asso-
ciated with one of the two risk factors.

Limitations
The current study only examined some selected sce-
narios that were believed to be relevant for real life

research, and we cannot conclude that the findings
will apply to all other types of situations. However, to
increase generalizability to different situations, we
varied several dimensions and examined effects of
non-response under different levels of response rates
and different levels of dependency between non-
response and risk factors and health outcome. We
also performed follow-up analyses where number of
categories of the observed ordinal outcome variable
varied, as well as analyses using an observed continu-
ous outcome. Nevertheless, it is important to
emphasize that the current results should not be gen-
eralized to situations that differ substantially from
those examined here.
A further limitation is that the dependency between

non-response and study variables is not known in
real-life studies. Nevertheless, the current results
emphasize the importance of using available informa-
tion to examine and report the degree of selectiveness

Fig. 8 Relative bias in the association between × 1 and health outcome with 5 categories.Notes: Results are from situations with 50% response-
rate. Solid bars represent situations where extreme scores are present even if they are under-represented in the samples. Dotted bars represent
situations where the 10% most extreme scores on the health outcome are totally missing from the samples. Different degrees of dependency
between study variables (× 1, × 2, × 3, and health outcome) and liability of non-response were modeled. bnon 1 is dependency of liability of non-
response on predictors (× 1, × 2, and × 3). bnon 2 is dependency of liability of non-response on health outcome
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in non-response rather than only reporting non-
response rates.
Statistical power has not been an issue in the current

study, as statistical power as a function of sample size
is easily calculated using standard software. Researchers
must ensure that they have large enough samples to be
able to detect associations they examine.

Conclusions
The current results showed that MNAR data might lead
to very different degrees of bias in estimates of associa-
tions between risk factors and health outcomes, depend-
ing on whether or not at least some of those with the
heaviest health problems are included in the study. This

knowledge might guide researchers in preventing biased
estimates of longitudinal associations between risk fac-
tors and health outcomes. Association estimates may in
many situations be valid even if data are MNAR and
extreme scores on the health outcome are under-
represented in the sample, as long as they are not totally
missing. This implies that health researchers should
spend resources on recruiting and retaining at least
some participants with high scores on health problems
rather than prioritizing recruiting very large numbers of
those who typically respond to survey studies (i.e. per-
sons with low scores on risk factors and health prob-
lems). This may contribute to preventing bias by 80–
100% in many situations. The main question regarding

Fig. 9 Relative bias in the association between × 1 and health outcome with 2 categories. Notes: Results are from situations with 50% response-
rate. Solid bars represent situations where extreme scores are present even if they are under-represented in the samples. Dotted bars represent
situations where the 10% most extreme scores on the health outcome are totally missing from the samples. Different degrees of dependency
between studyvariables (× 1, × 2, × 3, and health outcome) and liability of non-response were modeled. bnon 1 is dependency of liability of non-
response on predictors (× 1, × 2, and × 3). bnon 2 is dependency of liability of non-response on health outcome
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generalizability may not be if the sample is totally repre-
sentative of the population, or if data are MNAR or not,
but whether or not at least some extreme values are
present in the sample. Spending resources on increasing
response rate, without making special efforts to include
and retain the most troubled individuals, is not an effect-
ive way to prevent bias.
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