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Human mobility plays a major role in the spatial dissemination of infectious
diseases. We develop a spatio-temporal stochastic model for influenza-like
disease spread based on estimates of human mobility. The model is
informed by mobile phone mobility data collected in Bangladesh. We com-
pare predictions of models informed by daily mobility data (reference) with
that of models informed by time-averaged mobility data, and mobility
model approximations. We find that the gravity model overestimates the
spatial synchrony, while the radiation model underestimates the spatial syn-
chrony. Using time-averaged mobility resulted in spatial spreading patterns
comparable to the daily mobility model. We fit the model to 2014–2017 influ-
enza data from sentinel hospitals in Bangladesh, using a sequential version
of approximate Bayesian computation. We find a good agreement between
our estimated model and the case data. We estimate transmissibility and
regional spread of influenza in Bangladesh, which are useful for policy plan-
ning. Time-averaged mobility appears to be a good proxy for human
mobility when modelling infectious diseases. This motivates a more general
use of the time-averaged mobility, with important implications for future
studies and outbreak control. Moreover, time-averaged mobility is subject
to less privacy concerns than daily mobility, containing less temporal
information on individual movements.
1. Introduction
Mathematical models are an essential tool to understand and predict epidemic
spread in space and time [1]. Human mobility is a main driver for the spatial
dissemination of infectious diseases. It is therefore pivotal to include a sensible
model for human movement in spatial disease models.

The gravity model [2] is the most widely used model for human mobility. It
assumes that the flux of movements between locations increases with popu-
lation sizes and decays with distance. The recently proposed radiation model
[3] puts more emphasis on the population density between the locations, not
only their distance. The models have primarily been developed and assessed
for developed countries [4], with use of commuting and long-range travel.
However, few data have been published on the transportation and commuting
networks in developing countries.
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Figure 1. The divisions of Bangladesh. The city corporations are marked by
grey points, while Dhaka city, the capital, is marked by an orange point. The
black points are the earliest detected influenza cases for 2017.
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In recent years, there has been a surge in the availability
of large data on human movements. For example, exploiting
telecommunication data allows mobility observations of large
populations with high resolution in time and space. Mobile
phonedatahavepreviouslybeenused to improveunderstanding
of infectious disease spread, see e.g. [4–6]. In contrast, census data
on human mobility offer a snapshot of the mobility behaviour,
and are subject to recall bias and limitation in size [7].

Because mobile phone mobility data contain rich location
data about individuals, they are subject to privacy challenges
[8]. In practice, it is often difficult to get access to mobile
phone data for research purposes, privacy concerns being a
major hindrance. Use of time-aggregated mobile phone
data provides a means to protect peoples’ identities.
Additionally, such data are not specific to calendar dates,
and therefore they may have a broader use outside the time
period where they were collected. However, until now there
have been few attempts to compare, in a coherent way, the
use of mobile phone data with different time resolutions to
predict infectious disease dynamics. Not least for developing
countries, where human mobility data are scarce. Under-
standing the limitations of using time-averaged mobile
phone data and model approximations to human movement
is essential to guide the choice of mobility measures in
models and further development in this field. Additionally,
mathematical models are important for use in public health
emergency planning.

Bangladesh is a suitable study setting to address these
questions. The country does not have detailed census data
for commuting and travel flow prediction, and synthetic
models formovement patterns ormobile phone data are there-
fore in demand. Bangladesh belongs to the group of least
developed countries in the world, and respiratory infections
are among the leading causes of death. Seasonal influenza
has been estimated to cause an estimated 6097 and 16 804
deaths in 2010 and 2011 [9], with a total cost of about US$
169 million in 2010 [10]. Moreover, the country is a likely
source of novel avian influenza viruses capable of causing
pandemics [11]. Timely modelling of influenza outbreaks is
important for public health pandemic preparedness planning.

Here, we conduct a data-driven simulation study to com-
pare the spatial dissemination of influenza in Bangladesh
using highly detailed mobile phone data. To this aim, we
extend a fine-scaled stochastic SEIIaR metapopulation
model developed in [12], and fit the model to influenza
hospital case data. We integrate the model with different
mobility approximations, and investigate the spatial
transmission for each model at different geographical
resolutions, and for different location-specific seeds.

We demonstrate that time-averaged mobile phone mobi-
lity data capture well the disease spreading pattern of daily
mobile phone data. Exploring synthetic mobility models,
we show that the gravity model produces consistent out-
comes at a global scale, but has poor ability to predict
disease spread at lower spatial granularity. The radiation
model predicted overall delayed and too heterogeneous dis-
ease spreading patterns. Using hospital sentinel data from
2014 to 2017, we provide novel evidence for the transmissibil-
ity of seasonal influenza in a developing country. Finally, we
document the feasibility of applying sequential Monte Carlo
approximate Bayesian computation (ABC-SMC)-techniques
to estimate parameters in a stochastic metapopulation
model informed by scarce influenza case data.
2. Data
2.1. Mobile phone data
The mobile phone data are provided by Telenor, through its
subsidiary Grameenphone. The data are aggregated and
anonymized, and contain movement information for 60
million customers throughout the country (≈37% of the
population) from 1 April 2017 to 30 September 2017 (183
calendar days), covering the typical influenza season.
Bangladesh is divided into seven administrative units
(figure 1), which are further divided into 64 districts and
544 subdistricts called upazilas.

Whenever a phone call is made or a text message is sent, it
is routed through the nearest cell tower. Each day, users are
assigned to their most frequent cell tower location. This
provides a time series of locations for each user. The mobile
phone data are aggregated into 183 daily mobility matrices
at upazila level, by counting the subscribers who have transi-
tioned between upazilas, or remained in the same location,
from one day to the next. We do not have individual identi-
fiers in the mobility data. We use the transition matrices to
estimate the population size in each upazila, by scaling the
average number of subscribers to the total population of Ban-
gladesh: 163 million as of 2016 [13]. The mobility matrices are
scaled up to match the estimated population sizes in each
upazila. In addition, we calculate one time-averaged mobility
matrix for the entire study period. A few upazilas are
missing in the mobility data, and left out from the model
(see electronic supplementary material, section S1 for details).

The estimated mean daily proportion travelling between
upazilas is 0.278, with standard deviation (s.d.) 0.0148,
indicating little variation between days in the proportion tra-
velling. The estimated daily proportion of the population
travelling between upazilas displays weekly cycles and
marked dips and peaks during major holidays (figure 2).

The most popular travelling routes are connected to major
cities, and around each there is a star-like flow (figure 3). The
mobility network is dense. The density of the time-averaged
mobility (the ratio of existing links to potential links) is 82%.
The average density of the daily networks is 42% (s.d. 3.1%).
More network statistics are provided in the electronic
supplementary material, section S16.
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Figure 2. Estimated proportion of population travelling between upazilas
each day. Eid al-Fitr occurred on 25–26 June, Eid al-Adha occurred on
1–2 September and Ramadan on 26 May–24 June.

Figure 3. The mobility routes with more than 2000 travellers daily. The city
corporations are marked.
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Figure 4. Weekly incidence of positive influenza cases in hospital sentinel
data from Bangladesh, 2017.
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2.2. Influenza data
The influenza data are provided by International Centre for
Diarrhoeal Disease Research, Bangladesh. The data contain
daily laboratory-confirmed influenza cases from 12 sentinel
hospitals, covering all seven divisions of Bangladesh.

The patients eligible for testing are the inpatients with
severe acute respiratory infection (SARI, inpatients aged 5
years and above), severe pneumonia (inpatients younger
than 5 years), and outpatients with influenza-like illness.
From July 2017, the SARI case definition was used for all
ages. The total number of influenza cases for 2017 is 890,
out of 4229 tested. We use patient residence information to
obtain observed case counts in each upazila. The weekly inci-
dence for the 2017 seasonal influenza shows a dip right
before the unimodal peak at the June–July transition
(figure 4), coinciding with the mass migration due to Eid
al-Fitr where Islamic people return to their hometowns [14].
It is expected that healthcare-seeking behaviour changes
during holidays, as has been reported in other countries
[15,16]. More descriptive statistics for the case data for all
seasons considered, 2014–2017, are provided in electronic
supplementary material, section S2.
3. Models and methods
The influenza spread model is a closed metapopulation
model on upazila level [17,18] for Bangladesh, with a local
stochastic disease process in every upazila. The local trans-
mission processes are coupled through individuals who
travel, according to mobility estimates.

3.1. Infectious disease model
Tomodel the influenza dynamicswithin each upazila, a stochas-
tic compartmental SEIIaR model is used. The detailed model
description, equations, parameter definitions and values are
provided in electronic supplementary material, section S3.

Let wi,j,t denote the number of travellers from location i to
location j on day t, estimated from the mobile phone data. For
days that are not covered by the mobile phone data (before 1
April 2017 and after 30 September 2017), we use the time-
averaged mobility. The number of people in location i on
calendar day t, Nt

i , is given by

Nt
i ¼ Ni þ

X

j

w j,i,t �
X

j

wi,j,t,

where Ni is the population size in location i. The travelling
individuals are selected uniformly at random from the
home population. The model is as follows: at the beginning
of each day, the individuals travel according to the mobility
estimates. Then they mix at their destination location for 1
day, before we send them back to their home location.

We assume that the number of observed cases on a day can
be modelled as a binomial process, with the number of trials
equal to the actual number of new symptomatic cases, and suc-
cess probability r. Thus, r is the probability for a symptomatic
influenza case to be reported in the hospital sentinel data. We
estimate two parameters: the transmission rate parameter β,
which is directly related to the effective reproductive
number, Re, and the reporting probability r, which is related
to the severity of the influenza season. In severe seasons, one
expects more hospitalized cases, and thus a higher reporting
probability than for milder influenza seasons.

We estimate the parameters using approximate likelihoods
based on model simulations, through ABC-SMC [19], using
the 2017 case data. The idea is based on a Monte Carlo
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scheme, where the accepted parameters are such that the simu-
lated epidemic with these parameters is sufficiently close to the
observed data, measured in summary statistics. We choose four
summary statistics: duration, final size, peak height and global
incidence curve. All of the summary statistics are computed on
a national level, due to the limited spatial coverage of the data.
The ABC-SMC algorithm and details on the summary statistics
are provided in the electronic supplementary material, section
S6. The algorithm is similar to that used in [20].

3.2. Mobility models
Instead of using the mobile phone movement data, one could
assume certain classical models. We compare the usefulness
of the telecommunication data with a gravity model [2] and
the radiation model [3].

The estimated number of travellers between locations i
and j for the gravity model, wg

ij, and the radiation model,
wr

ij, are given by

wg
ij ¼ C

Na
i N

b
j

rgij
, wr

ij ¼ wi
NiNj

(Ni þ sij)(Ni þNj þ sij)
,

where Ni and Nj are the population sizes in locations i and j,
respectively, rij is the distance between the locations, α, β, γ
and C are adjustable parameters, found by fitting the gravity
model to the time-averagedmobility, sijdenotes the total popu-
lation in the circle of radius rij, centred at location i, andwi is the
total number of travellers from location i. We assume that wi is
proportional to population size as in [3], and use the time-
averaged mobility to estimate the total number of travellers.
The fit of the gravity model to the time-averaged mobility is
measured by the sum of squared deviations.

The estimated gravity model is

wij ¼ 0:404
N0:690

i N0:688
j

r0:946ij
:

3.3. Simulation set-up, seeding and model outcomes
To simulate the 2017 influenza season using the SEIIaRmodel,
we use the posterior modes fromABC-SMC as point estimates
for β and r. These parameter estimates are used for all
simulations, except the 2014–2016 simulations, where the par-
ameters are tuned to match the case data for these seasons.

We choose as outcome measures: initial date, final size,
peak date and peak prevalence. The initial date is defined
as the date where, for seven consecutive days, the prevalence
in the location exceeds 0.1% of the population. We compare
initial dates on upazila and division level. The final size is
defined as the total number of symptomatic infections, the
peak date is the date with the largest number infected and
the peak prevalence is the proportion infected on the peak
date. These are compared on a national level. As the process
is stochastic, we perform 100 simulations in each setting and
compare the averages.

We seed the epidemic with 10 infectious individuals in
each of the 11 upazilas with earliest confirmed influenza
cases in 2017 (figure 1). The seeding date (set to day 0) is
tuned to match the observed peak in the case data. When
investigating spatial spread with different seeding locations,
the same total number of infectious cases (110) is placed in
a single upazila of high population density in the respective
division. To simulate the 2014–2016 influenza seasons, we
seed in the 11 upazilas with the earliest cases for these sea-
sons, and tune the seeding date to match the case data.
Details on the seeding locations are provided in electronic
supplementary material, section S7.

Four different mobility proxies are considered: (i) daily
mobility data 1 April 2017–30 September 2017, (ii) 6-month
averaged daily mobility data, ‘time-averaged mobility’,
(iii) gravity model informed by time-averaged mobility, and
(iv) radiation model. In addition, in order to assess the
advantage of having daily mobility in the initial period, we
also seed on 1 April 2017 using the daily mobility data,
with the same seeding scenarios. An overview of the different
simulation scenarios is provided in table 1.
4. Results
4.1. Influenza in Bangladesh
We estimated an Re for 2017 of 1.220 (table 2, first row). The
best match between the peak in the influenza data and the
model was obtained by seeding on 30 September 2016. The
posterior distributions of β and r were both unimodal (figure
5). The estimated r suggests that approximately 4 per 100 000
infectious cases in Bangladesh were detected in the hospital
sentinel data. The overall shape of the simulated incidence
curve fits well the up-scaled hospital data in accordance
with the estimated reporting probability (figure 6), but the
case data are spiky due to the limited case numbers and vari-
ation in testing activity. The correlation between the
simulations and the case data was 0.63.

The estimated transmissibility for the 2015 influenza
season was lower than for the other seasons (table 2). This
coincides with the fact that this season had the lowest pro-
portion of A(H3) cases. Seasons dominated by A(H1N1) and
B have been found to be milder than seasons dominated by
A(H3) [21]. The transmissibilities for 2014 and 2017 were
higher than for the other seasons. Note that the posterior cred-
ible intervals for r were overlapping, indicating that the data
do not contain enough information on r. There was less
overlap for β, and the posterior credible intervals were narrow.

The model had a good qualitative fit for the 2014–2016
seasons. The simulations and posterior distributions are
provided in electronic supplementary material, section S15.

We simulated the 2017 epidemic using the daily mobility
model and the estimated parameters. The order of initial dates
was Chittagong, Barisal, Dhaka, Khulna, Sylhet, Rangpur and
Rajshahi. Similarly, in the case data, Dhaka divisionwas reached
first, followed by Chittagong and then Barisal (figure 7).

We compare epidemic simulations using the daily mobility
model when seeding in early locations for 2017, Dhaka, Chitta-
gong, Khulna, Rangpur and Sylhet. The distribution of initial
dates for the different divisions are given in figure 8. The relative
order of arrival is provided in table 3, top rows. Regardless of
seeding location, Chittagong and Dhaka seemed to be reached
early. In general, Rajshahi, Rangpur and Sylhet were hit later,
unless we seeded in these divisions. The spatial spread was
more coherent when seeding in Dhaka and Chittagong, than
when seeding in Khulna, Rangpur or Sylhet. Seeding in
Dhaka, the delay was 4 days between the epidemic sparked in
the latest and earliest hit division. The corresponding delay
was approximately one week when seeding in Chittagong,
threeweeks when seeding in Khulna, four weeks when seeding
in Rangpur and six weeks when seeding in Sylhet.



Table 1. Overview of simulation scenarios. Overview of the different simulation scenarios considered, in terms of mobility proxy, seeding location and seeding
date. For the mobility proxies that do not use daily information, the seeding date is arbitrary. ‘2017’, ‘2016’, ‘2015’, ‘2014’ means that we seed in the locations
with early confirmed cases for the relevant years.

mobility model seeding location seeding date mobility model seeding location seeding date

daily 2017 30 Sep 2016 radiation 2017 —

daily Dhaka 30 Sep 2016 radiation Dhaka —

daily Chittagong 30 Sep 2016 radiation Chittagong —

daily Khulna 30 Sep 2016 radiation Khulna —

daily Rangpur 30 Sep 2016 radiation Rangpur —

daily Sylhet 30 Sep 2016 radiation Sylhet —

daily 2017 1 Apr 2017 time-averaged 2017 —

daily Dhaka 1 Apr 2017 time-averaged Dhaka —

daily Chittagong 1 Apr 2017 time-averaged Chittagong —

daily Khulna 1 Apr 2017 time-averaged Khulna —

daily Rangpur 1 Apr 2017 time-averaged Rangpur —

daily Sylhet 1 Apr 2017 time-averaged Sylhet —

gravity 2017 — time-averaged 2016 8 Aug 2015

gravity Dhaka — time-averaged 2015 4 July 2014

gravity Chittagong — time-averaged 2014 22 Sep 2013

gravity Khulna —

gravity Rangpur —

gravity Sylhet —

Table 2. Parameter estimates. Posterior modes for Re, β and r for different seasons. 95% posterior credibility intervals are given in parenthesis.

year Re β r

2017 1.220 (1.201, 1.237) 0.487 (0.479, 0.494) 3.52 × 10−5 (5.02 × 10−6, 8.34 × 10−5)

2016 1.196 (1.180, 1.211) 0.478 (0.471, 0.484) 2.15 × 10−5 (2.75 × 10−6, 8.07 × 10−5)

2015 1.152 (1.141, 1.164) 0.460 (0.455, 0.465) 2.49 × 10−5 (3.58 × 10−6, 1.10 × 10−4)

2014 1.213 (1.198, 1.235) 0.484 (0.478, 0.493) 2.89 × 10−5 (3.65 × 10−6, 7.74 × 10−5)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190809

5

The early spatial diffusion is provided in electronic sup-
plementary material, section S8. The early spread seemed
to be both radially from the seeding location, but also to
larger cities, in particular the capital.
4.2. Comparison of mobility models
We evaluated the disease-spreading pattern of the meta-
population model integrated with different mobility
approximations, by their deviation from outcomes of the
model informed by daily mobility, henceforward named
‘daily mobility model’. We compared the model perform-
ances at different geographical resolutions, and for different
seeding scenarios.

At national scale, the daily mobility model predicted a
final size of about 0.23 of symptomatic infections in the
Bangladeshi population, independent of seeding (table 4,
top). The peak date of the 2017 epidemic was about
272 days, similar to that obtained by a seed in Dhaka or
Chittagong. Seeding in the other divisions delayed the peak
by 1–5 days. The peak prevalence was roughly 0.7%, and
was relatively constant across all seeding scenarios. The
time-averaged mobility model gave similar output (table 4,
middle-top). The gravity model produced almost constant
outputs for all seeds, with 2–7 days earlier peak dates and
a slightly larger peak compared to the daily mobility model
(table 4, middle-bottom). The radiation model predicted
similar and constant final sizes (table 4, bottom), delayed
peak dates by 1–5 weeks, while it underestimated the peak
prevalence on the order of 5–20% compared to the reference.

At a finer spatial scale, we compared the initial date dis-
tribution at the division level, and by seed region, provided
in figure 8 for the daily mobility model. The initial dates
distributions for the gravity model, the radiation model, the
time-averaged mobility and the daily mobility when seeding
on 1 April 2017 are provided in figures 9–12, respectively.
When seeding on 30 September 2016, we had daily mobility
for the period with most epidemic activity. When seeding on
1 April 2017, we had daily mobility in the start of the epi-
demic. The initial dates distributions indicate
overestimation of the spatial synchrony for the gravity
model, and underestimation of the spatial synchrony for the
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radiation model, by comparing the overlap of the distri-
butions for the different divisions and seeding scenarios.
For the time-averaged mobility, the initial dates distributions
were similar to both seeding dates with daily mobility.

The orders of the mean initial date for each division are
provided in table 3. The results with the gravity model give
a false impression of the spatial spread being robust to seed-
ing location. For the radiation model, the earliest initial date
was consistently for the seeding division. For the time-
averaged mobility, the ordering was similar to that of the
daily mobility, for both seeding dates. In particular, the rela-
tive arrival times were identical for four of the seeding
scenarios, with minor variations for the rest.

Finally, we compared the mobility approximations on the
upazila level. The differences in mean initial dates between the
mobility approximations and the daily mobility for each upazila
are given in figure 13, for the 2017 simulation setting. The gravity
model resulted in slightly more negative values than positive,
indicating too early initial dates (figure 13a). The upazilas of
the northwest experienced too early initial dates under the
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gravitymodel. The correlation between themean initial dates on
upazila level under the gravity model and the daily mobility
model was 0.74. The upazilas in the southeast experienced too
early initial dates under the radiation model, and the upazilas
in the northwest experienced delayed initial dates (figure 13b).
The correlation between the mean initial dates under the
radiation model and the daily mobility model was 0.69.

The difference in initial dates between the time-averaged
mobility model and the daily mobility model for each upazila
is given in figure 13c.Most of these valueswere positive,with a
mean of 0.90 (s.d. 0.82), indicating slightly delayed spreadwith
the time-averaged mobility. The epidemic in the upazilas of
the northeast was slightly delayed under the time-averaged
mobility, while the upazilas in the northwest were hit slightly
too early. The differences weremuch smaller than for the grav-
ity and radiation models. The correlation between the mean
initial dates under the time-averaged mobility and the daily
mobility model was 0.96. The correlations between the initial
dates under the mobility approximations and the daily mobi-
lity for the other seeding scenarios are provided in electronic
supplementary material, section S9. The correlations with the
time-averaged mobility were high, and higher than with the
gravity and radiation models.

The difference in initial dates between the time-averaged
mobility setting and the daily mobility setting when seeding
on 1 April 2017 for each upazila is given in figure 13d. The
differences were small, with a mean of 0.12 (s.d. 0.62). The
correlation between the mean initial dates was high, 0.98.

In the electronic supplementary material, sections S8, S10
and S11, we plot the early spatial spread for the different
seeding scenarios, by the prevalence at early time points.
The spread was faster with the gravity model than with the
daily mobility, and slower with the radiation model. For the
radiation model, the early spread is mainly to proximate
locations. The early spread using time-averaged mobility
was similar to the early spread using daily mobility.

We assessed the relative performance of the radiation
model and the gravity model on replicating the mobile
phone mobility in electronic supplementary material, section
S14. The radiation model had a higher correlation with the
mobile phone data, but greatly overestimated the travel on
some links. The radiation model performed overall best, but
the gravity model outperformed the radiation model for
short distances and travel between small and large popu-
lation sizes. The density of the radiation mobility network
was much lower than for the time-averaged mobility net-
work, while the density of the gravity mobility network
was much higher. This might explain why the gravity
model overestimates the spatial synchrony and early
spread, while the radiation model underestimates it.
5. Discussion
5.1. Evaluation of mobility approximations
Using time-averaged mobile phone data resulted in a good
approximation to the spatio-temporal disease dynamics in
Bangladesh, projected by models informed by daily mobility
data. Thus, this type of data appears to be a viable alternative
to model human movements in the context of directly trans-
missible respiratory infections. Our finding is in accordance
with studies of individual mobile phone mobility trajectories,
showing that human mobility is highly predictable and
regular in both time and space [22–24].



Table 3. Order of arrival (N = 100 simulations). Relative order of arrival in terms of mean initial dates for the different seeding scenarios, for the analysis based
on daily mobility, gravity model, radiation model, time-averaged mobility, and on daily mobility when seeding on 1 April 2017. Each row gives the arrival order
when seeding in different locations.

seeding division Dhaka Chittagong Khulna Rangpur Sylhet Barisal Rajshahi

daily mobility:

Dhaka 3 2 4 6 7 1 5

Chittagong 3 1 5 7 4 2 6

Khulna 3 4 1 7 6 2 5

Rangpur 3 4 5 1 7 6 2

Sylhet 3 2 5 7 1 4 6

2017 3 1 4 6 5 2 7

gravity model:

Dhaka 1 2 4 6 7 3 5

Chittagong 1 2 4 7 6 3 5

Khulna 1 2 4 7 6 3 5

Rangpur 1 2 4 7 6 3 5

Sylhet 1 2 4 7 7 6 5

2017 1 2 4 7 6 3 5

radiation model:

Dhaka 1 2 5 7 3 4 6

Chittagong 4 1 3 7 5 2 6

Khulna 3 4 1 7 6 2 5

Rangpur 3 6 4 1 5 7 2

Sylhet 2 3 7 5 1 6 4

2017 3 1 5 6 4 2 7

time-averaged mobility:

Dhaka 3 2 4 7 6 1 5

Chittagong 3 1 5 7 4 2 6

Khulna 3 4 1 7 6 2 5

Rangpur 3 4 5 1 7 6 2

Sylhet 3 2 5 7 1 4 6

2017 3 1 4 5 7 2 6

seeding 1 April 2017:

Dhaka 3 1 4 6 7 2 5

Chittagong 3 1 5 7 4 2 6

Khulna 3 4 1 7 6 2 5

Rangpur 3 4 5 1 7 6 2

Sylhet 3 2 5 7 1 4 6

2017 3 1 4 5 6 2 7
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Both model-derived approximations to human movement
resulted in significant loss of accuracy to predict the epidemic
spread. The unconstrained gravity model, in particular, pro-
duced epidemics that rapidly leapt across the country, resulting
in almost synchronous epidemic signals. The opposite tendency
occurred with the radiation model. The dissemination was
slower, evolving in forest-fire-like patterns. Consequently, the
spatial synchrony and peak prevalence were underestimated.
Our analyses suggest that the simplified gravity and radiation
models are thus not detailed or accurate enough to capture all
the relevant aspects of the information-rich mobile phone data.
Similarly, Finger et al. [4] and Wesolowski et al. [5] found that
the gravity model was unsatisfactory compared to mobile
phone mobility to model a cholera outbreak in Senegal and
dengue transmission in Pakistan, respectively. Wesolowski
et al. [25] compared the use of gravity and radiation models to
mobile phonemobilitydata inKenya, and found that neitherper-
formed well, in particular for rural areas. Similar to our result,
they found that the gravity model overestimated spatial travel.

The mobile phone data are aggregated and potentially
biased. However, we use the daily mobility as the ‘gold stan-
dard’, as they represent our only observation of the true,
underlying human mobility. We note that even though the
daily mobility data are not perfect, there is little reason to



Table 4. Global final size, peak date and peak prevalence (N = 100 simulations). Final sizes, peak dates and peak prevalences on country level itemized by
seeding region, for the analysis based on the daily mobility, the gravity model, the radiation model and the time-averaged mobility.

seeding region

Dhaka Chittagong Khulna Rangpur Sylhet 2017

mobile phone data

daily mobility:

final size 0.227 0.227 0.227 0.227 0.228 0.227

s.d. 0.00017 0.00019 0.00017 0.00019 0.00018 0.00018

peak date 271.6 271.4 273.4 274.1 275.7 271.9

s.d. 6.3 5.8 6.9 6.1 6.6 6.1

peak prev. 0.00719 0.00719 0.00715 0.00712 0.00704 0.00719

s.d. 1.73 × 10 −5 1.62 × 10 −5 2.17 × 10 −5 3.26 × 10 −5 3.13 × 10 −5 1.85 × 10 −5

time-averaged mobility:

final size 0.227 0.227 0.227 0.227 0.227 0.227

s.d. 0.000181 0.000199 0.000161 0.000205 0.000188 0.000194

peak date 270.9 272.0 271.3 273.4 275.7 272.8

s.d. 6.1 5.8 6.4 6.5 5.4 6.5

peak prev. 0.00720 0.00719 0.00715 0.00712 0.00706 0.00719

s.d. 1.67 × 10 −5 1.79 × 10 −5 2.43 × 10 −5 3.17 × 10 −5 3.47 × 10 −5 2.01 × 10 −5

models

gravity model:

final size 0.231 0.231 0.231 0.231 0.231 0.231

s.d. 0.000178 0.000170 0.000180 0.000186 0.000162 0.000172

peak date 268.4 269.5 268.7 269.3 268.8 269.8

s.d. 6.0 5.6 6.2 5.9 6.1 6.6

peak prev. 0.00745 0.00745 0.00745 0.00745 0.00745 0.00745

s.d. 1.83 × 10 −5 1.71 × 10 −5 1.65 × 10 −5 1.77 × 10 −5 1.87 × 10 −5 1.72 × 10 −5

radiation model:

final size 0.227 0.227 0.227 0.227 0.227 0.227

s.d. 0.000173 0.000196 0.000203 0.000173 0.000162 0.000207

peak date 279.9 305.7 291.6 297.6 292.5 278.5

s.d. 5.8 7.2 5.6 7.0 6.8 6.2

peak prev. 0.00649 0.00588 0.00603 0.00584 0.00618 0.00688

s.d. 0.000110 0.000164 0.000123 0.000154 0.00132 0.000238
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expect that the time-averaged mobility would perform worse
compared to daily mobility for higher quality mobility data.

5.2. Generalizability and alternatives for time-averaged
mobility

We chose to use the time-averaged mobility for the days
without daily information, and for the influenza seasons
2014–2016. This approach relies on two implicit assumptions.
One is that the time-averaged mobility sufficiently describes
the daily mobility, which we have justified. The other is
that the mobility patterns do not change much from season
to season. The model was able to capture the data for the var-
ious influenza seasons well. This further motivates and
supports a more general use of time-averaged mobility. The
time-averaged mobility tends to smooth the mobility network,
because human flow between locations that are only realized
on particular days, in this approximation will be effective
every day, but with a lower travel volume. An alternative to
the use of time-averaged mobility would be to add noise
to the time-averaged mobility matrix. Another alternative
is to employ separate matrices for weekends and weekdays,
or even one matrix per weekday. In [4], mobile phone data
from 2013 were used to assess the effect of a mass gathering
on a cholera outbreak in 2005 in Senegal. They found that
none of their more detailed mobility approximations per-
formed better than the time-averaged mobility matrix. This
further justifies our parsimonious choice of using time-aver-
aged mobility, instead of more detailed models including
higher order effects like for instance weekends.
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5.3. Privacy concerns and implications
Mobile phone data are sensitive and subject to privacy
challenges [8]. Human mobility is unique and thus also identifi-
able, and even coarse datasets are not fully anonymous [8]. Our
data are therefore aggregated in both time and space, and do not
allow tracking trips that last formore than 1 day.We have found
that for our setting, averaging mobility over multiple days is a
good approximation to daily mobility. This is advantageous,
as this matrix contains less temporal information on individual
movement than the daily mobility matrices.

Aggregation leads to fewer privacy concerns. However,
we have not formally tested the effect sizes, as it would
require individual level data which we have not had access
to. Future studies should compare uniqueness and re-identi-
fication of individuals for the daily mobility and the
time-averaged mobility.

5.4. Implications for Bangladesh
Our model fits the case data well, considering the scarcity of
the data. The ability to accurately predict epidemic spread in
developing countries like Bangladesh has many useful impli-
cations for public health. In particular, insights into those
spatio-temporal trends can improve pandemic preparedness
planning. One quantitative important finding is the coher-
ency in the predicted epidemic spread. When seeding in
Chittagong or Dhaka, it took approximately a week from
the epidemic sparked in the earliest division until it had
sparked in all divisions, and hence there is little time to
implement targeted interventions if the epidemic starts in
Chittagong or Dhaka. However, when the epidemic started
in one of the other divisions, the spread was less coherent,
and the corresponding time ranged from three to six weeks,
with more time to implement targeted interventions. The
results when we seed in one, single upazila are likely to be
more relevant for epidemics that start locally, like for instance
avian influenza, than for an imported epidemic, which would
likely have multiple seeding events.

Our results are in agreement with [26], who found that
the 2007 seasonal influenza epidemic likely started in Chitta-
gong and Dhaka. We find that Chittagong and Dhaka
experienced early initial dates, regardless of seeding location.
Though the scarce case data limit our ability to assess how
well our model captures the spatial spread, the relative arri-
val times of our model in the different divisions are in
good agreement with the data, with Dhaka, Chittagong,
and Barisal being hit before the other divisions.

Our estimates of Re range from 1.15 to 1.22. In a systema-
tic review, Biggerstaff et al. [27] found a median value of Re

for seasonal influenza of 1.28 with an IQR of 1.19–1.37,
hence our estimates lie in the lower range. Variations in the
reproductive number between different populations are
expected, due to for instance varying contact rates, age struc-
ture, humidity and other climatic factors [27]. Local estimates
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of the reproductive number are important, as small variations
can be crucial for determining the success of a control
measure in containing the epidemic. Moreover, local esti-
mates of the reproductive number for seasonal influenza in
tropical countries are needed to determine if and how
transmissibility depends on geographical and social factors [27].

5.5. Limitations
5.5.1. Limited case data and forecasting
The limited spatial information in the casedataprevents us from
formally assessing which mobility model best captures the
actual disease spread. Though the sentinel surveillance plat-
form is comprehensive and very valuable for public health
purposes, etc., spatial mathematical models of transmission
performbestwithmore spatial granularity and a larger volume.

The case data are not rich enough to assess forecasting accu-
racy. This would require estimating the parameters based on
only a few weeks of data, and given our data volume, the cred-
ible intervals would be very wide. In addition, the summary
statistics we have used in our ABC-SMC procedure cannot be
used early in the epidemic. An alternative summary statistic
in such settings is the early growth rate. The model can,
however, be used to predict relative arrival times in different
regions, since they are not very sensitive to the exact
epidemiological parameters [28].

5.5.2. Observation process
We assume that the number of observed cases follows a bino-
mial distribution with a constant reporting probability. It
might however be that a beta-binomial observation model is
more suitable, due to high variance. We have chosen to use
the simpler binomial model due to the scarce case data, as
the beta-binomial distribution requires estimation of an
additional parameter. In addition, the reporting rate might
depend on the process, i.e. temporal dependence through the
infectious disease activity. The detection probability for the
surveillance system has been found to decrease with distance
to the hospitals [29]. In addition, healthcare seeking depends
on socio-economic status [29], which can also be space depen-
dent. However, the 12 hospitals are spread out throughout the
country. We have chosen to use a constant reporting prob-
ability, due to scarce data. Moreover, these choices are
computationally more efficient, as fewer parameters have to
be estimated. Computational cost is a limitation of our fitting
procedure–fitting the model for one influenza season took
approximately one week running in parallel on 112 cores.

5.5.3. Mobility assumptions
As we do not have individual identifiers in the data, we
choose to let individuals travel in the morning according to
the mobile phone mobility data, and send them back to the
home location after 24 h. In this way, we do not allow trips
which last for more than 24 h. We choose to model travel
like this, as it is reasonable to assume that individuals prefer-
entially return to their home location, since human mobility
is characterized by preferential return and reproducible pat-
terns [22,24]. Moreover, humans have a tendency to return
home on a daily basis [24]. Alternatively, one could have let
individuals move permanently to their destination location.
However, this would overestimate the synchrony between
the locations, and could result in very varying population
sizes. In addition, since we do not have individual identifiers,
the travellers are randomly drawn from the home population.
In reality, there is likely some regularity in who travel on the
same link on different days, as human mobility is character-
ized by preferential return to a few locations [22,24]. The
fact that we cannot capture regular movements is likely to
overestimate the spread [30].

5.5.4. Bias in mobile phone data
A potential source of bias is the mobile phone data, and
whether the population captured in the data is representative
of the Bangladeshi population. As of June 2017, 54% of the
Bangladeshi population subscribed to mobile services [31].
Grameenphone is the largest mobile operator in Bangladesh,
but there may be market share bias. Young children typically
do not own a mobile phone. Women in Bangladesh are 32%
less likely to own a mobile phone than men [31]. For Kenya,
mobile phone mobility estimates were found to be robust to
ownership bias [32]. To the extent that these results can be
translated to Bangladesh, the mobile phone mobility esti-
mates are a good proxy for human mobility, despite the
ownership bias. A good agreement between commuting net-
works based on mobile phone data and census data was also
found in [33], for Spain, Portugal and France.

The mobile phone data are however likely to be subject to
overestimation bias, since the population who travel most fre-
quently are those with fewest economic constraints, and thus
more likely to own a mobile phone [32]. Overestimation of
mobility might overestimate the spatial synchrony of the epi-
demic. It is, however, not likely to affect the relative arrival
times in the locations, given that the mobile phone mobility
is otherwise unbiased (i.e. the overestimation is constant in
space). For example, Tizzoni et al. [33] found that mobile
phone data overestimated commuting, but that the overesti-
mation did not greatly affect the order of arrival times in
different spatial regions. Travel surveys, on the other hand,
have been found to underestimate human mobility [34]. We
claim that underestimating human mobility is a more
severe problem, resulting in underestimation of spatial syn-
chrony, and thus too optimistic estimates of how much time
one has to implement targeted interventions. Moreover, we
only have mobile phone data for six months, and we thus
do not capture seasonal variations.

Another limitation is that we do not have information on
spatial dependence of mobile phone subscriptions. We have
therefore assumed uniform coverage when we estimate the
population sizes and the mobility matrices from the mobile
phone data. Alternatively, the population sizes could have
been estimated by use of satellite imagery [35].

5.5.5. Aggregation scale
The temporal aggregation scale is 24 h, hence regular com-
muting and short-range travel are not well captured. The
mobile phone data are inherently noisy, since the user’s
location is only captured when a service takes place [7]. Con-
sequently, a location change can fail to be captured if there is
no phone activity, and the estimated location for a given day
might not correspond to the location where they spent the
most time. The spatial scale is a trade-off between capturing
relevant signal and details, computational intensity, and
aggregating out noise. With a high resolution, the accuracy
of the mobility estimates depends on cell tower density,
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individual calling behaviour and frequency, which are
sources of noise and bias [36]. Aggregated mobility is less
biased by these factors [36]. Moreover, a coarser spatial resol-
ution means less privacy concerns. However, a finer spatial
scale makes the homogeneous mixing assumption more
reasonable, and captures more heterogeneity and details.
The computational cost scales with the number of compart-
ments and links, and for each additional location, there are
five additional compartments and many links. For conven-
ience, we use administrative units. The influenza case data
are provided on the scale of administrative units. For compu-
tational efficiency, we have chosen to use the upazila scale, as
a finer resolution would be very computationally expensive,
and district level would be too coarse.

5.5.6. Bias in influenza data
Hospital data with confirmed cases are less noisy than for
instance general practitioner data, which are subject to varying
healthcare seeking behaviour and noise due to other respiratory
infections. For fatal respiratory infections in Bangladesh, [29]
found that elderly peoplewere underrepresented in surveillance
cases, while children under 5 years were overrepresented, com-
pared to the cases in the population. This is a potential source of
bias in the temporal pattern.Children have beenhypothesized to
drive local transmission, while adults spread the disease to new
locations, resulting in shifted epidemic timings for different age
groups [37]. This effect can also interactwith the specific seasonal
influenza strain, as some seasons are associated with cases
among the elderly, while others are associated with more and
earlier cases among children [37].

5.6. Contributions and future perspectives
Our study is a contribution to understanding the detail level of
mobile phone mobility data needed for modelling infectious
diseases, with important privacy-conserving consequences.
We further contribute to understanding how the gravity and
radiation models perform in a developing country. We provide
estimates of the relative arrival time in the different divisions
for various seeding scenarios, with important preparedness
planning implications. We obtain the first local estimates of
the reproductive number for seasonal influenza in Bangladesh.
Our example shows the use of ABC in a setting with scarce
influenza case data, which can contribute to motivate the use
of rigorous statistical methods in infectious disease modelling.

The fact that the time-averagedmobilitywas a good approxi-
mation of the dailymovementsmotivatesmore general use. This
finding is an encouraging result for futuremodelling of influenza
to guide preparedness planning and response. Daily mobile
phonedata are unlikely to be available in real-timeduring an epi-
demic or a pandemic, in particular in low-income countries
where census data are scarce. Future studies are needed to
assess the generalizability of time-averaged mobility to future
outbreaks and epidemics by investigating whether the essential
mobility patterns relevant to high-impact respiratory infections
remain relatively constant over time. Another topic for future
studies would be to compare the performance of the different
mobility proxies by properties of the seeding nodes, such as cen-
trality, as done in [38].

Our study is a contribution to using novel data sources in
infectious disease modelling, utilizing mobile phone data as
a proxy for human mobility. This is especially useful for
countries with little or low-quality census data. In recent
years, novel data streams have been increasingly popularized
in disease surveillance and prediction [39]. These data sources
are often noisier than traditional surveillance data sources, but
can improve timeliness, spatial and temporal resolution [39].
In the future, it would be interesting to combine the good
signal, low-volume hospital sentinel data with large-volume
novel data sources, to inform the model parameters and
assess the spatial spread, for instance by exploiting search
queries, social media like Twitter, or Wikipedia access logs.
Incorporatingmultiple data sources inABC is straightforward.
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