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An organism’s genomic base composition is usually summarized by its AT or GC content due to Chargaff's
parity laws. Variation in prokaryotic GC content can be substantial between taxa but is generally small
within microbial genomes. This variation has been found to correlate with both phylogeny and environ-
mental factors. Since novel single-nucleotide polymorphisms (SNPs) within genomes are at least partially
linked to the environment through natural selection, SNP GC content can be considered a compound
measure of an organism’s environmental influences, lifestyle, phylogeny as well as other more or less ran-
dom processes. While there are several models describing genomic GC content few, if any, consider AT/
GC mutation rates subjected to random perturbations. We present a mathematical model that describes
how GC content in microbial genomes evolves over time as a function of the AT — GC and GC — AT muta-
tion rates with Gaussian white noise disturbances. The model, which is suited specifically to non-
recombining vertically transmitted prokaryotic symbionts, suggests that small differences in the AT/GC
mutation rates can lead to profound differences in outcome due to the ensuing stochastic process. In
other words, the model indicates that time to extinction could be a consequence of the mutation rate tra-

Jjectory on which the symbiont embarked early on in its evolutionary history.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

GC content varies considerably between prokaryotic species but
is remarkably stable genome-wide, despite the fact that bacterial
genomes are predominantly functional and expressed in some
sense (Rocha and Feil, 2010). Bacteria can have an average genomic
GC content of as low as 13.5% (Candidatus Zinderia insecticola) or
of as high as 75% (Anaeromyxobacter dehalogenans) (Bohlin et al.,
2018). While both large and small bacteria can be either GC-rich
or AT-rich, there seems to be a tendency—at least in some phylo-
gentic groups—for symbionts with smaller genomes to be more
AT-rich, while soil-dwelling bacteria with large genomes tend to
be more GC-rich (Bohlin et al., 2014; Agashe and Shankar, 2014).

The mechanisms responsible for GC richness in bacteria with
large genomes are poorly understood; far more can be deduced from
AT-rich bacteria with small genomes (see Agashe and Shankar, 2014
for a general review of GC content in prokaryotes). For instance, it
was conjectured (Bentley and Parkhill, 2004) (before being later
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demonstrated (Hershberg and Petrov, 2010)) that mutations are
generally AT-biased due to frequent methylation of cytosine that
can subsequently change to thymine. Phylogenetic relatedness, on
the other hand, exerts strong selective pressures against changes
in GC content. This is due in large part to the significant role that pro-
tein coding genes play in bacteria and to the fact that mutations in
the first two positions of a codon change the amino acid it codes
for (Reichenbergeretal., 2015). Phylogenetic influence on base com-
position in prokaryotes seems to be most prominent at the genus
level and below (Bohlin et al., 2017).

Free-living bacteria can develop a sustained symbiotic relation-
ship with a host, typically an insect, either through a facultative, hor-
izontal exchange of nutrients or vertically, through cultivation within
bacteriocytes (Wernegreen, 2017). Host-symbiont relationships typ-
ically start with horizontal exchange of beneficial nutrients (Fisher
et al., 2017; Boscaro et al., 2017). According to some recent findings,
a host that is dependent on a symbiont can exchange it with another
as long as it receives the necessary nutrients (Moran and Bennett,
2014; Wernegreen, 2015; Hosokawa et al., 2016; Boscaro et al.,
2017). Sometimes an established horizontal host-symbiont relation-
ship will progress to a vertical relationship resulting in a strong host-
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symbiont dependecy (Fisher et al., 2017; Boscaro et al., 2017). This
can, for instance, happen when the host is able to access particular
environments, due to the symbiont, that it would not survive in other-
wise (Fisher et al., 2017). The symbionts can, in turn, come to rely on
provisions from the within-host environment. This environment will
then drive the genomic evolution of the symbiont (Wernegreen,
2015).In a stable within-host environment the host may render sev-
eral bacterial products redundant. That is, proteins, amino acids and
nutrients that the symbiont expresses but are also available from
the host could give a symbiont an advantage over another if lost
(Batut et al., 2014). Ensuing mutations may accumulate in such
genetic regions and form novel proteins that may eventually be ben-
eficial to the host/symbiont relationship or not expressed at all and
subsequently lost (Boscaro et al., 2017). Furthermore, maintaining a
large genome requires energy and so genome size reduction may be
advantageous (Lane and Martin, 2010). Indeed, genome reduction
appears to start early in a microbial symbiont with an established ver-
tical relationship with a host (Sabater-Murioz et al., 2017; Bennett
and Moran, 2015). If the host has a low effective population size
(Ne), genetic drift may further influence the size and base composition
of the symbiont’s genome (Wernegreen, 2017; Lynchetal., 2016). The
outside environment can thus also affect genomic base composition
in symbionts (Foerstner et al., 2005).

There are several indicators that genome size reduction in
microbial symbionts occur before genomic GC content drops
(Wernegreen, 2017). Loss of DNA mismatch repair (MMR) genes
and proofreading enzymes can nevertheless lead to a relatively
quick decrease in genomic GC content (Lind and Andersson,
2008). An increase in genomic GC content, on the other hand,
can result in increased fitness (Raghavan et al., 1450), and this is
associated with stronger selection on base composition
(Hildebrand et al., 2010; Bohlin et al., 2017; Bobay and Ochman,
2017). Abundance of nitrogen, as in soil, has been identified as a
driver for increased genomic GC content (Seward and Kelly, 2016).

A recent study (Bohlin et al., 2018) found that single-nucleotide
polymorphisms (SNPs) in microbial core genomes from different
taxa were surprisingly GC-rich, except in cases where the genomes
themselves were already among the most GC-rich. The study pre-
sented a mathematical model describing SNP GC content as a func-
tion of core genome GC content. The model indicated that GC — AT
mutations occurred at roughly double the rate of AT — GC muta-
tions, which suggests that most GC — AT mutations are lost prior
to fixation (Bohlin et al., 2018).

In another recent study (Bohlin et al., 2019), it was shown that
while GC — AT mutation rates are remarkably consistent across
bacterial taxa, AT — GC mutation rates vary considerably. Since
the environment exerts selective pressure on bacterial base com-
position (Foerstner et al., 2005; Reichenberger et al., 2015), it
should, at least partly, be reflected in core genome SNPs, together
with evolutionary history, lifestyle and taxon.

Even in stable environments, stochastic events impact the influ-
ence of the environment on genomic base composition in sym-
bionts (Wernegreen, 2017). Inspired by Motoo Kimura’s seminal
paper (Kimura, 1980), we modify a previously described model
(Bohlin et al., 2018) to investigate GC content evolution with
respect to time; we extend the model with the assumption that
changes to genomic GC content with respect to time, i.e. SNP GC
content, can be described by parameters multiplied by genomic
GC- and AT content, respectively, both randomly perturbed accord-
ing to Gaussian white noise. We thus assume that SNP GC content
is subject to Chargaff's parity rules (Elson and Chargaff, 1954). In
practice, this means that SNP GC content is assumed to be com-
puted from base pair substitutions that are selected for and not
from random mutations that are purged before fixation in a gener-
ation or two. We employ Itd calculus to solve the stochastic differ-
ential equation (SDE) that accounts for the random perturbations

in the AT — GC and GC — AT mutation rate parameters. The degree
to which these random perturbations will affect the mutation rates
can also be adjusted for. Finally, we discuss implications of the
model and demonstrate that Muller’s ratchet (Moran et al., 1996)
can take on several different scenarios that may be unavoidable
due to the mutation rates of the symbiont.

2. Methods
2.1. The mathematical model

The mathematical model presented here is an extension of the
model presented in Bohlin et al. (2018). The original model, which
describes the change in core genome SNP GC content with respect
to core genome GC content, is

d
% = tFc (%) + B(1 — Fac()). v

x represents core genome GC content, while Fgc(x) represents
SNP GC content. These terms are subject to the constraints
0 <x<1andO0 < Fge(x) < 1.In Bohlin et al. (2018), the parameters
o and f were estimated by fitting the model to empirical data using
either non-linear least square regression (Bohlin et al., 2018) or
Bayesian inference (Bohlin et al., 2019).

In the present study, we are concerned with genomic GC con-
tent with respect to time in a stochastic setting. That is, we are
now interested in the relation

Froa(@) = Fe(@) + oF ()AL + (1 — Fi(w))At, ()

where F, (@) — F¢(w) represents change in GC content, or SNP GC
content, at time t + At for trajectory @ € Q. SNP GC content is thus
modeled as a parameter o times F;(w) (GC content at time t) mul-
tiplied by time duration At plus a parameter f times 1 — F,(w)
(AT content at time t) times At. In other words, SNP GC content is
assumed to be determined by the sum of parameter multiples, that
represent base substitution rates, of genomic GC- and AT content,
respectively. In classical calculus notation, we write

dF(w)
dt

= aFe(w) + p(1 — Fe(w)), 3)

Here, % represents SNP GC content and F,(w) genomic GC
content at time t, and we let mutation rates o = a -+ W () and
B=Db+Ww), wherea,b € Rand W(w) is a Gaussian white noise
process with respect to trajectory @ € Q. Eq. (3) is subject to the
probability space (Q,F(,P) as well as the measure space
(R",G,dt). Q is the space of all trajectories , F, is its filtration
with respect to each time t ¢ R' (i.e. [0,00) of which g is the corre-
sponding Borel algebra and dt Lebesgue measure), and P is a prob-
ability measure on Q. We now have:

B0 (@ + Wi(@))Fe() + (b + We(@))(1 — Fi())
= QF () + F()Wy()+
+b(1 — Fe()) + We(w)(1 — Fe(w))
= () + b(1 ~ Fy()) + W ().

Hence,

dF(w)
dt

It is important to note that, in the present form, this derivative
does not exist in the classical sense or in the Radon-Nikodym
sense for F,(w). However, if we assume that F,(w) is a semimartin-
gale (allowing for countable and bounded jumps), the Doob-Meyer
decomposition theorem (pp. 129-133 of Protter (2005)) guaran-
tees that F,(w) = Fo+A(t) + X,(w), where A(t) is a function of
bounded variation and X, () is a local martingale. Moreover, this

= aF(w) +b(1 - F(w)) + Wi(w). (4)
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decomposition is unique, and both A(t) and X((w) are adapted to
F. If we assume that X,(®) is a Brownian motion, then by chapter
3 of @ksendal (2005), (4) can be written as

dF(w) = (aF(w) + b(1 — Fi(®)))dt + dB,(w). (5)

Though the term (aF () + b(1 — F,(w)))dt resembles (1) it has
a Brownian motion term dB;(w) and must therefore be handled
in a non-classical way. We allow the Brownian motion to have
scaled volatility c, as it is not unreasonable to expect variance dif-
ferences across organisms and/or environments in addition to time
t. It can be shown that a scaled Brownian motion is also a Brownian
motion: Let U; be a Brownian motion (see, for instance, ch. 2 of
@ksendal (2005)). Then,

2
ue %du.

E(Ur)—ﬁ./w

Letting u = cz and % =, it follows that

1
V2t Ju

1

t
215 /R

w2 222
ue zdu = ze = cdz

= 1 /cze Fdz — [E(CZ(LZ)A

\/@.ua

E is the expectation operator with respect to probability mea-
sure P(w), i.e. E(X) = [, XdP.

We do not presume that F,(w) can see into the future. We
assume that F¢(w) is adapted to the filtration F, for each t, which
motivates the use of the It6 integral instead of the Fisk-Stratono-
vich integral (Protter, 2005). It is therefore enough to assume that
Fi(w) is a cadlag process, i.e. lim; . Fs(w) = F(w) (left-continuous
with right limits; see ch. 2 of Protter (2005)), implying that F,(w)
has a countable number of bounded jumps. We can then use the
1t formula (see ch. 4 of @ksendal (2005)) to solve (5). Furthermore,
since we assume that 0 < F,(w) < 1 and that a,b are finite con-
stants, it is guaranteed that (5) has a strong and unique solution
(see ch. 5 of @ksendal (2005)).

First, we must identify an integrating factor that removes F;(w)
from the right-hand side. Let

dF () = (aF(w) +b(1 = Fe(w)))dt + dB,(w)
— (aF () — bFy(w) + b)dt + dB(w)
= ((a— b)Fi(w) + b)dt + dB;(w),
where B(w) is a c-scaled Brownian motion. Letting
g(t,x) =el @bx we get the integrating factor g(t,F(w))=

Y(w) = et @DOF (). Applying 1td's formula (p. 44 of @Oksendal
(2005)), we see that

og g 10%g
dY (o) = (:Tt([a"—r(w))df +ﬁ(f~ Fi(w))dFi(w) +§ e
* (£ Fy())(dFe())*. (6)
Because ;j%%(r,x) =0, the last term of (6) is equal to zero. As a
result,
dYe(w) = % (t,F(w))dt + % (¢, Fo(@))dFi (@)

= —(a—b)et @OOF (w)dt + e @ DIF ()
= —(a—b)eC@F (w)dt+
+e000 (((a ~ b)Fy(e) + b)de + dB,)

= be" PV dt 4 el-(a-DdB,.

Thus, we have the differential
dY (@) = be" “PVdt + e @DV dB,, (7)
and so
dY,(w) = d(e" @ PIF (@) = be"“ "V dt 4 e @B,

We can then find the formula for F,(w), by setting s € [0, t], and
letting
d(e("”’b)”F[(w)) — be"@btgr 4 e"“"””dﬁ,

which gives

e-@hIF, () — Fo(w) = /  pel-o-D9gs + / et b)) dB;,
0 o

and

t t
Fi(®) = Fo(w)e® ™t + / be* 55 4 / el DE)gp,. ®)
Jo Jo
F.(w) is a semimartingale and [} be“ " *ds is of bounded vari-
ation. However,

t
/ @D,
Jo

is not a local martingale and therefore this is not the unique Doob-
Meyer decomposition (see pp. 129-133 of Protter (2005)) described
earlier. While the latter Brownian motion term must be solved
numerically, the anti-derivative of the bounded variation term can
be solved using the chain rule:

t
b
(a-b)(t-s) o (a-b)t
/U be dsfcﬂ+7(aib)(e 1).

We thus obtain the explicit equation for F,(w):

t
F[(w) _ Fo(w)e‘“"’)‘ + b (emflm _ 1) 4 / emfh)lr—s)de
(a—b) Jo

that can be written as:

b b \eune
R e M G =)

t
+ / e bt s)dB”S 9)
0
which is subject to the constraints t € [0,00) and 0 < F((®) < 1. The

integration constant ¢, is just assumed included in F,. It should be
noted that for Fy =0,

E(F (@) = (el —1). (10

b
(a=b)

Since the Brownian motion term vanishes (see p. 30 of
Oksendal (2005)), we get the solution to (1) when t = x (Bohlin
et al., 2018). Furthermore, we do not need to bother with the
Brownian motion term when estimating parameters a and b.
The variance is given by Var(F(w)) = IE((F[((u) - IE(F;(w))Z).
which we can solve by setting

b

. (a-b)t
A :=Fy(w)e +—(a—b)

(e[a byt _ ])
and

t
B:- / €@ DI,
Jo
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This gives:
Var(Fe(w)) = [((Fl(w) —E(Fe(w))? = [[((A +B?-2(A +B)A+A2)

= It(AZ+2AB+BZ —2A° —2AB+A2) = It(BZ)

" 2
:[(( [[eeecas,) )
Jo

The It6 isometry (see p. 26 of @ksendal (2005)) gives:

2
|E<(/re(ﬂ,b)(r,;)dés) ) - IE(/‘ (e(a,b)(rﬂ))zds)
Jo Jo

t
_ / p2@-b)(t-5) g
Jo

We can solve jf,ez“‘ bt s ds explicitly by calculating its anti-
derivative,

ot 1
2(a-b)(t-s) Jo 2(a-b)t _
/)e dS—do+2(a_b)(£’ 1).
Hence, we recover the expectation for F(w),
o b o
E(Fi()) = Fo(w)e@ bt 4 @b (e@ Dt —1), (11)

and the corresponding variance (integration constant do set to zero),

Var(Fi(w))

1 2(a-b)t
=505 1), (12)

2.2. The parameters a and b

We note that
_b (e b _ 1) <1 (13)
(a—b)

For t =0 we see from condition (13) that 0 < Fo(w) < 1. For
(a—b) > 0,el® bt approaches infinity so this condition is not rea-
sonable. We are therefore left with the condition (a — b) < 0. Since
0 < Fy <1 we get

0 < E(F(w)) = Fo(w)e@ Mt +

b
(a—b)

Letting t — oo we see that

0 < Fo(w)e@™" 4

(e —1) <1

b
0<m<l

which implies that b > 0 and that a < 0. For a = b the bounded vari-
ation term A(t) in Eq. (9) collapses into a linear equation:

A(r) =g (€ = 1)
:ﬁ(l+(a—b)t+%+~-+‘”’f¢+m—l)

(a-b)'e (a=b)" e
ﬁ+f+%+...+%+m,ﬁ) (14)

-
)

We will henceforth assume that Fy > 0 and (a — b) < 0.
2.3. The Brownian motion term

We use Gaussian white noise to model perturbations in the
AT — GC (a) and GC — AT (b) mutation rates. We also allow for

scaling of ¢ > 0, as mentioned above. The scale can be determined
by factors such as species/strain, environment, host and presence
of MMR genes. The Brownian motion term,

t -
/L7 e D9gB,, (15)

depends on the parameters a and b as well as on the duration of the
time period. Since we assume that (a — b) < 0, (15) approaches 0 as

t — oo and Brownian motion B,(w) for a = b. For (a - b) < 0 it can
be seen that (15) increases as s — t.

We can reach the same conclusion by examining the variance of
F,(w) (described in (12) above). The Brownian motion is assumed

to have mean p = 0 and variance IE(B%((;))) = t. Thus, the variance

of Brownian motion is in general expected to increase with time t.
Since there is no simple way to calculate (15) analytically, we do so
numerically:

t R SN . ~

/ €PN, — Y oD (W, () — Wi () As, (16)
Jo S

where WS((U) is c-scaled white noise, As;=s;,; —s;, and
So=0,....85=ti..., Sy ="t

2.4. The Girsanov transform

Eq. (7) can be written as
dF () = ((a — b)F(w) + b)dt + dB, ().

Since we know from (9) that

b ( b ) ~ b b B
————+ (Fo(w) + e ")’+/ e@bt-)gp
@ "\ ) b :
is a semimartingale, if we let
Zi(w) = ((a— b)Fi(w) +b),

we can write

Fi(w) =

dF (@) = Z(w)dt + dB(w).

The Girsanov theorem allows us to compute the Radon-
Nikodym derivative (see ch. 3, p. 143 of Protter (2005)) of a mea-
sure Q with respect to the probability measure P as follows:

dQ rt =1,
P exp(— /) Zy(w)dBs -3 ‘A Z; (m)ds).

This means that F(w) is a Brownian motion under the measure
Q, since we assume that (a — b) < 0 which implies that Kazamaki’s
(and hence Novikov's condition) apply Vt (see chs. 4 and 8 of
@ksendal (2005)).

2.5. Further generalizations

The model describing SNP GC content can be made more gen-
eral if we assume that the parameters a and b are functions. It is
important to note that if a and b are functions with respect to time,
obtaining an analytical solution may be impossible. While up to
this point we have assumed that variation in the model is
described by a white noise process, a more complicated noise term
X, could also be used. For instance, if we let
FUD) (04 X)) + b+ X @)1 - Fi(o),

we have

dF(w)

a - aF () + Xe(0)Fi(®) + b + Xi() — (b + Xi(@))Fe(w).



J. Bohlin et al./Journal of Theoretical Biology 503 (2020) 110389 5

This reduces to
dF(w)
dt

where

= (a-b)F(w) +b+X(w),

Xe(w) = 0(t,w) + K(t, w)Wr((u).
Thus,
dF(w)
dt
and after rearranging:
dF(w) = ((a — b)Fi(®) + 0(t, ) + b)dt + K(t,w)dB,(w).
— bel @DV gr 4 ol-@bgp, (17)

= aFy(@) + b(1 = Fy(w)) + (()(t, )+ K(t, m)W,(m)),

We could, for instance, let X;(w) be a mean-reverting Ornstein—
Uhlenbeck process, i.e.

dX:(w)
e
Hence, we let 0(t,w) = GCy — F((w) and k(t,w) = 1. Plugging

these into (17), we see

dF () = ((a — b)Fi(®) + GCo + b)dt + dB, (). (18)

We can now use the integrating factor g(t,Fi(w)) =Y(w) =
el @bOF (w) to solve (18) in a similar fashion to (5).

GCo — Fy(w) + W (w).

3. Results
3.1. Genomic evolution in microbial symbionts

Vertically transmitted symbionts tend to have reduced mis-
match and repair (MMR) genes (Moran et al., 1996). This could
be mediated by selection for AT nucleotides that are involved in
ATP production as they are the least costly nucleotides in terms
of energy (Chen et al., 2016; Batut et al., 2014). Purines A and G
always bind to pyrimidines C and T and therefore A and T, as well
as G and C, increase or decrease at similar rates, i.e. genomic % AT
content = 100-% GC content. These relations are known as Char-
gaff's parity laws (Elson and Chargaff, 1954). In the present study,
we are primarily concerned with modeling change in GC content
with respect to time as fractions of genomic GC and AT content,
respectively:

Feiac(@) — Fe(w) = aF(w)At + (1 — Fr(w))At (19)

The change in F,, 5 (@) — F;(w) can be considered as the SNP GC
content in a colony during time At, which may be a very long time.
Nevertheless, we let At — 0 and write the equation out as a differ-
ential equation:

PO o) + 41 o), (20)

We allow the GC and AT mutation rates, oF(w) and
B(1 — F(w)) respectively, to be subjected to random perturbations,
ie. o =a+ W (w) and f=b+W,(w), where W () is Gaussian
white noise with respect to every trajectory w € Q. After some
algebra (see Methods section) we get:

IO _ 4k () + b1 ~ () + Wi(o), 1)

where 4 js the change in GC content (alternatively the SNP GC
content) at any time during At — dt. In practice this can be accom-
plished by carrying out metagenomic sequencing focusing on a par-
ticular strain of a specific symbiont species in a host, or from an

environment, at a given time, subsequently performing SNP calling

and, finally, assessing the GC content of the SNPs. This has been
demonstrated recently from an mutation accumulation experiment,
albeit for a shorter time span, in the facultative symbiont Teredini-
bacter turnerae (Senra et al., 2018). If metagenomic sampling and
sequencing is carried out within shorter periods of time, as is the
case in the previously mentioned study (Senra et al., 2018), many
of the called SNPs will only be spurious mutations that will be
purged by purifying selection (Castillo-Ramirez et al., 2011). In
the present work, however, we are concerned with base substitu-
tions (Bohlin et al., 2017) that are selected for and that comply with
Chargaff's parity rules. Hence, the sampling frequency will typically
be centuries and millennia.

Reduction or loss of the efficiency of the symbionts’ MMR system
will result in cumulated mutations since homologous recombina-
tion among intracellular, vertical symbionts is rare (McCutcheon
and Moran, 2012). Since increased AT-content is associated with
dysfunctional or loss of MMR genes genome reduction, certainly
pseudogenization, may already be an ongoing process (Klasson,
2017) as the first genes lost are, unlike MMR genes, typically those
least conserved within a species (Bolotin and Hershberg, 2016).
Hence, it is only after a vertical symbiotic relationship has been
established with the host that a dramatic drop in genomic GC con-
tent seems likely to occur (McCutcheon and Moran, 2012). If we
assume that the host-symbiont relationship has become stable we
can let a and b respectively represent the fraction of AT — GC and
GC — AT base substitutions to be fixed parameters. In a recent study
(Bohlinetal., 2018), we found that a similar model with fixed param-
eters (See Eq. (5) in Methods section), describing changes in core
genome SNP GC content with respect to core genome GC content
for 35 different species/core genomes (716 genomes in total), fitted
empirical genomic data remarkably well regardless of the fact that
most species were distantly related (See Fig. 2 in Bohlin et al.
(2018)). Indeed, it has been shown that mutation rates may be quite
similar amongst species with the same effective population size N,
(Lynch et al., 2016). Although the interpretation of the present
model is somewhat different than the model described by Eq. (5) it
is concerned with how the population of only one species evolve
over time. We therefore believe that it is not unreasonable that the
mutation parameters a and b are constant, although the model can
describe the mutation rates a and b as respective functions a(t)
and b(t) as it is argued in Section 2.5.

The effective population size N, is typically small for microbial
symbionts, reducing the effect of genome streamlining, leading to
further cumulation of mutations (Lynch et al., 2016). Moreover, if
the symbionts MMR system is deficient, or lost, the cumulated
mutations will typically lead to increased protein evolution as well
as biased genomic amino acid content due to the increasingly AT-
biased base composition (Wernegreen, 2015). Indeed, genes related
to protein folding, such as chaperones, are typically highly expressed
in symbionts compared to other bacteria (McCutcheon and Moran,
2012). Fitness decreasing or lethal mutations must be purged by
purifying selection otherwise Muller’s ratchet sets in leading even-
tually to extinction (Moran et al., 1996). We mainly interpret an
uncontrollable increase in the variance of the mutation rates, as
can be observed in Fig. 1 and described by the Brownian motion term
in the presented model (see Section 2.3 for more details)

rt
/ e@bEsgp,, (22)
0

as the onset of Muller’s rachet since this process is a consequence of
cumulation of fitness decreasing and or deleterious mutations.
However, it could also, potentially, represent a speciation event
(Campbell et al., 2015). The mutation rate parameters a and b of a
species influence the Brownian motion term. The scaling c that
determines the variance of the Brownian motion term discussed
in Section 2.1, not unlike the concept of 'quasi species’ described
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Fig. 1. The model (9) with different combinations of parameters a,b and Brownian scaling coefficient c, all starting at F, = 0.5. The vertical axis describes SNP GC content,

while the horizontal axis describes time ¢t from Ty = 0to T — 1.

for virus (Eigen, 1993), will likely also have an impact on the evolu-
tionary history of the species. Thus, changes to mutation rate
parameters a and/or b, as well as the variance/scaling c, could have
dramatic implications for the evolutionary history of the species
(see Fig. 1) something that has recently been shown for the spittle-
bug endosymbiont Candidatus Zinderia insecticola (Zinderia) (Koga
et al,, 2013). The symbiont has an extremely low GC content of only
13.5% and a genome size of 208 kilobases. There are indications that
Zinderia is about to reach the drift-barrier (Lynch et al., 2016) how-
ever as it has been demonstrated that several of its hosts is replac-
ing it with another symbiont (Koga et al., 2013).

While Gaussian white noise has been used to describe the ran-
dom perturbations of the mutation rates it can be seen in Sec-
tion 2.5 that more advanced models for instance, a mean-
reverting Ornstein-Uhlenbech process to account for GC content
’intertia’ in the symbiont or, alternatively, in the host, can be used
instead but at the cost of more complicated calculations. Changing
the scale of Brownian motion alters its variance but it is still a
Brownian motion as can be seen in Section 2.1. In the Methods Sec-
tion 2.4 it is shown that when the mutation rate parameters a and
b are constants the solution to the stochastic differential Eq. (9) is
essentially a Brownian motion, if looked at from a different per-
spective, i.e. the Girsanov transform.

4. Discussion

Randomness is widespread in genomics; it has been stated that
mutations are the engine of evolution and mutations are, by most

accounts, random (Hershberg, 2015). Eq. (9) describes a model for
genomic GC content in prokaryotes which takes random variations
of mutation rates into account. Using It6 calculus we see that the
resulting model handles stochastic fluctuations in a natural man-
ner; it's not merely a deterministic model with added 'noise’ but
a model that incorporates random events naturally. In the present
study, the AT — GC and GC — AT mutation rates directly influence
how the Brownian motion term evolves with time. In addition, the
variance of the Brownian motion term can be set independently
from the deterministic part of the model. From the previous Sec-
tion 3, we can see (Fig. 1) that the Brownian motion term contains
information not obtainable with traditional differential equation
models, even if these models were to add random 'noise’. By ana-
lyzing the Brownian motion term we can se how random perturba-
tions of the mutation rates increasingly influence the outcome over
time eventually leading to dramatic consequences such as specia-
tion or extinction (Campbell et al., 2015).

The model described here is based on a previous model describ-
ing core genome SNP GC content with respect to core genome GC
content (Bohlin et al., 2018; Bohlin et al, 2019). However, the
model has been altered to describe change in genomic GC content
over time for a particular symbiont species and allowing for ran-
dom perturbations of the AT/GC mutation rates. The solution to
the differential Eq. (9) is a function describing genomic GC content
in a symbiont species. The use of Itd calculus has provided us with
novel insights into how genomic evolution in microbial symbionts
may progress that would have been impossible using the previ-
ously described models based on ordinary differential equations.
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One of the striking results from the Itd calculus based model is that
a microbial symbiont may have been set for dramatic events, such
as speciation or extinction, long before any signs of such events
appear. Indeed, the path to extinction may already have been
determined as a mathematical and statistical consequence at the
time the symbiont entered a stable relationship with its host
although the event would not occur for thousands or even million
years before any signs of it. While it is difficult to present evidence
of microbial symbionts going through all the phases of extinction
described by our model there have recently been published several
examples of different genome evolution in same species symbionts
that certainly give some support to what our model indicates
(Campbell et al., 2015; Bennett and Moran, 2015; Santos-Garcia
et al, 2017). Another interesting consequence of our presented
model that has some support in the scientific literature is that an
event that alters the mutation rate parameters of the symbiont,
for instance the introduction of an additional symbiont species to
the host (Van Leuven et al., 2014), may also influence the fate of
the first symbiont (Mao et al., 2018).

Intracellular pathogens do not appear to engage in symbiotic
relationships with a host, most likely due to the increased con-
straints of a pathogen-host relationship (Weinert and Welch,
2017). Although these pathogens may undergo genome reduction,
they do not seem to experience the same dramatic gene loss
observed in some symbionts (Moran and Bennett, 2014;
Wernegreen, 2015). It is not uncommon, however, for the genomic
base composition of intracellular pathogens to be AT-biased but
less so than what is observed for microbial symbionts (Weinert
and Welch, 2017).

There appear to be some similarities between the evolutionary
mechanisms of symbionts and those of free-living bacteria that
undergo changes in environment even if not through attachment
to a host (Batut et al., 2014; Klasson, 2017). There are only a few
documented examples of free-living bacteria that experience gen-
ome reduction. One of these is the cyanobacterium Prochlorococcus
spp. (Martinez-Cano et al., 2015; Batut et al., 2014), whose high-
light ecotypes living close to the water surface are more AT-rich
and have smaller genomes than the low-light ecotypes living at
greater depths (Batut et al., 2014). Microbial organisms in the same
environments often acquire the same nucleotide biases if enough
time is allowed to pass (Reichenberger et al., 2015). Such environ-
mental signatures become particularly evident in SNPs since, as
discussed above and in Section 1, these polymorphisms arise as a
consequence of natural selection regulated by the environment
(Foerstner et al., 2005).

5. Conclusions

We have presented a mathematical model that describes the
evolution of genomic GC content in a microbial symbiont over
time. This was modeled using a stochastic differential equation
where the difference in GC content with respect to time (alterna-
tively, SNP GC content) was equal to parameter multiples a and b
of genomic GC- and AT content, respectively. The model contains
a stochastic term that indicates that minuscule, random changes
in mutation rates early on can lead to abrupt, fluctuations in geno-
mic GC content considerably later.

In the model, the variance of the mutation rates, as described by
a Brownian motion term, must be kept low to avoid genomic base
composition spiraling out of control, which becomes progressively
harder as time passes. The model also indicates that differing
mutation rate parameters a, b as well as the variance c in the Brow-
nian motion term, could lead to severe consequences for the evo-
lutionary history of microbial symbionts. Furthermore, the model
demonstrates that a microbial symbiont may have been destined

for speciation events and/or the onset of Muller's ratchet, long
before any variation in the genomic base composition could have
been detected, as a consequence of the AT/GC mutation rates.
Our model, based on the use of stochastic differential equations
that allow for seamless integration of certain random processes,
revealed that the evolution of genomic base composition in micro-
bial symbionts could differ dramatically from what a non-
stochastic model describes (Bohlin et al., 2019). Although concep-
tually simple, the model demonstrated here provides novel insight
into stochastic evolutionary processes with mathematical rigor.
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