
ARTICLE

Genome-wide association study reveals dynamic
role of genetic variation in infant and early
childhood growth
Øyvind Helgeland 1,2, Marc Vaudel 1, Petur B. Juliusson 3,4,5, Oddgeir Lingaas Holmen6,7,

Julius Juodakis 8, Jonas Bacelis 8,9, Bo Jacobsson 2,8, Haakon Lindekleiv10, Kristian Hveem6,11,

Rolv Terje Lie1,12, Gun Peggy Knudsen2, Camilla Stoltenberg 12,13, Per Magnus14,15, Jørn V. Sagen 1,3,16,

Anders Molven1,17,18, Stefan Johansson 1,19,20 & Pål Rasmus Njølstad 1,4,20

Infant and childhood growth are dynamic processes with large changes in BMI during

development. By performing genome-wide association studies of BMI at 12 time points from

birth to eight years (9286 children, 74,105 measurements) in the Norwegian Mother, Father,

and Child Cohort Study, replicated in 5235 children, we identify a transient effect in the leptin

receptor (LEPR) locus: no effect at birth, increasing effect in infancy, peaking at 6–12 months

(rs2767486, P6m= 2.0 × 10−21, β6m= 0.16 sd-BMI), and little effect after age five. We

identify a similar transient effect near the leptin gene (LEP), peaking at 1.5 years (rs10487505,

P1.5y= 1.3 × 10−8, β1.5y= 0.079 sd-BMI). Both signals are protein quantitative trait loci for

soluble-LEPR and LEP in plasma in adults independent from adult traits mapped to the

respective genes, suggesting key roles of common variation in the leptin signaling pathway

for healthy infant growth.
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BMI patterns in infancy and childhood follow well-
characterized trajectories: a rapid increase soon after
birth until ~9 months, the adiposity peak, followed by a

gradual decline until ~4–6 years of age, and then the adiposity
rebound, when BMI starts to increase again until the end of
puberty1. Recently, a study revealed that the most powerful
predictor of obesity in adolescence is an increase in BMI
between 2 and 6 years of age2, but the underlying cause for this
remains unknown. While large genome-wide association stu-
dies (GWAS) have revealed many loci associated with adult
BMI and adiposity traits3, less is known about the genetic
influences on infant and childhood BMI development. The
most recent meta-analyses of childhood BMI suggest a strong
overlap between the genetic architecture of childhood BMI and
adult BMI. However, these studies mainly involve BMI mea-
surements after the adiposity rebound4–6. Thus, there is little
knowledge regarding the genetic factors influencing growth
during the first 5 years of life.

To explore how common genetic variation influences BMI
development in infancy and early childhood, we here perform a
GWAS of BMI measurements at 12 time points from birth to
eight years of age (9286 children, 74,105 measurements) in the
Norwegian Mother, Father, and Child Cohort Study7,8, with
replication in 5235 children (41,502 measurements). We identify
variants in five loci including LEPR, ADCY3, LEP, LCOR, and
FTO associating with BMI at distinct developmental stages. Both
LEPR and LEP signals are protein quantitative trait loci (pQTLs)
for soluble LEPR and LEP in plasma in adults and independent
from signals associated with other adult traits mapped to the
respective genes. Hence, our longitudinal analysis uncovers a
complex and dynamic influence of common variation on BMI
during infant and early childhood growth, dominated by the LEP-
LEPR axis in infancy.

Results
Genotyping the Norwegian Mother, Father, and Child Cohort
Study. A total of 17,474 children in the Norwegian Mother,
Father, and Child Cohort Study (Supplementary Table 1) were
genotyped in discovery and replication combined. The children’s

BMI was measured at birth, 6 weeks, 3, 6, 8 months, and 1, 1.5, 2,
3, 5, 7, and 8 years of age (Fig. 1 and Supplementary Table 2). We
performed genotype quality control (QC), imputation using the
Haplotype Reference Consortium (HRC), and phenotype QC,
leaving 9286 and 5235 samples for the discovery and replication
cohorts, respectively, all of Norwegian ancestry.

Five loci associated with BMI at distinct developmental stages.
We conducted separate linear regression analyses of standardized
BMI for each time point using an additive genetic model (Fig. 2
and Supplementary Fig. 1). The lead SNPs at independent loci
reaching P < 1.0 × 10−7 at one or more time points in the dis-
covery sample were taken forward for replication (Table 1). This
revealed a dynamic pattern of association during early growth.
SNPs in five independent loci reached genome-wide significance,
presenting peak association at different time points: (1) an
intronic SNP rs2767486 in the LEPR locus peaking at 6 months;
(2) an intronic SNP, rs13035244, near ADCY3 peaking at 1 year;
(3) an intronic SNP rs6842303 near LCORL peaking at 1.5 years;
(4) an intergenic SNP rs10487505 near LEP peaking at 1.5 years;
and (5) an intronic SNP rs9922708 near FTO peaking at seven
years (Figs. 2–4, and Supplementary Data 1).

A novel transient effect on BMI by a variant in LEPR. The
strongest association with BMI was found for rs2767486 at
6 months (P6m= 2.0 × 10−21, β6m= 0.16) in the LEPR/LEPROT
locus. The locus associated with BMI from 3 months of age, with
effects peaking at 6–12 months, and waning from age three with
little effect at eight years (Figs. 3 and 4). We found no evidence of
association at birth for rs2767486 or nearby markers in our data
or in recent large publicly available GWASs of birth weight9 and
adult BMI3,10. Thus, this locus most likely affects BMI develop-
ment primarily during infancy. Conditioning on rs2767486
revealed a putative additional signal in the LEPR locus,
rs17127815 (P6m= 7.5 × 10−5 after conditioning on the top signal
rs2767486), that followed the same association pattern over time
as the main signal (Fig. 5).
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Fig. 1 BMI distribution at the 12 time points analysed. BMI values in kg⋅m−2 for all samples (discovery and replication) are plotted at each time point. BMI
values are uniformly distributed along the x-axis between the tick of the time point and the value of the normalized density of the sex-stratified BMI at this
time point, to the left for females (blue) and to the right for males (green). Ribbons and box plots, showing the median and quartiles, are plotted in
background and foreground, respectively
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rs2767486 is a pQTL for soluble LEPR in plasma in adults.
LEPR encodes the leptin receptor, which functions as a receptor
for the adipose cell-specific hormone leptin. High leptin levels
suppress hunger by interacting with the long form of the leptin
receptor (OB-RL) in the hypothalamus11. The soluble form of
leptin receptor (sOB-R), which is produced through ectodomain
shedding of OB-RL in peripheral tissues, can bind leptin in cir-
culation, and thereby reduce its effect on the central nervous
system12. The LEPR locus has previously been implicated in
monogenic morbid obesity13,14, severe childhood obesity15, age of
menarche16, age of voice breaking17, levels of fibrinogen18 and C-
reactive protein19, several blood cell count traits20,21, and plasma

sOB-R levels21,22. To test whether any of the established variants
for these traits explain the observed association with BMI in
infancy, we repeated the analysis conditioning on the top SNPs
reported in these studies. The association with infant BMI
remained unaffected by conditioning on these SNPs, except for
rs2767485 (Supplementary Fig. 2a), the strongest pQTL for sOB-
R-plasma levels in adults22. This SNP is located only 12.2 kb
upstream our top SNP rs2767486, with strong LD (r2= 0.9)
between the BMI-raising and the sOB-R-increasing alleles. We
next surveyed GnomAD for putative coding LEPR SNPs that
could explain the association in the region. None of the three
known common missense variants in the gene revealed any
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significant LD with our top SNP (all r2 < 0.1). Thus, it is unlikely
that the main effect in the region is acting through a coding
polymorphism. We could, however, not rule out a role for
rs1805094 encoding p.Lys656Asn for the putative second inde-
pendent signal in the region that is tagged by rs17127815 (pair-
wise LD: r2= 0.83, Supplementary Fig. 3).

A variant in LEP is a pQTL for circulating leptin levels. The
association between variants in the LEPR locus and infant BMI
suggests an important role of leptin signaling in early growth. The
genome-wide significant association with infant BMI for
rs10487505 located 20 kbp upstream of LEP is therefore note-
worthy. This SNP is a known pQTL for circulating leptin levels in
adults23. The leptin-increasing allele from Kilpeläinen et al.23 is
associated with lower infant BMI in our data. The effect presents
a rise-and-fall pattern, rising during the 3–12 months period
when the LEPR signal is at its plateau, reaching its peak at 1.5
years (P1.5y= 1.3 × 10−8, β1.5y= 0.08) before waning (Figs. 3 and
4). Children homozygous for the alleles associating with higher
sOB-R and lower leptin levels exhibited higher mean standar-
dized BMI (+ 0.65) than children homozygous for the opposite
alleles (Fig. 6).

Effects on BMI by variants in LCORL and ADCY3. We iden-
tified an association with BMI in the LCORL locus for rs6842303,
presenting a similar rise-and-fall pattern with peak effect at 1.5
years (P1.5y= 7.5 × 10−9, β1.5y= 0.09) (Figs. 3 and 4). Previously,
this marker has been associated with related traits such as birth
weight, birth length, infant length, and adult height. Interestingly,
rs6842303 has also been associated with peak height velocity in
infancy24, but no association was reported in the largest adult
BMI GWASs to date3,10. This supports our finding of a transient
effect of LCORL in early growth.

The second strongest signal was found at the ADCY3 locus.
Biallelic mutations in ADCY3 have recently been found to cause
severe syndromic obesity25,26. ADCY3 is known to interact with
MC4R, and rare mutations in MC4R account for 3–5% of severe
obesity27. The lead ADCY3 SNP, rs13035244, showed no
association at birth, became genome-wide significant with a peak
effect between one and 1.5 years (P1y= 7.9 × 10−13, β1y= 0.10),
and then stabilized during the course of childhood (Figs. 3 and 4).
This result is in agreement with a previous study of growth
trajectories in children from one to 17 years of age4.

FTO is robustly associated with BMI only from age seven. In
contrast to the rise-and-fall pattern reported here for signals in
the LEPR, ADCY3, LEP, and LCORL loci, the FTO risk allele was
not associated with BMI at birth or around adiposity peak, and
being robustly associated with BMI only from seven years of age
(P7y= 2.8 × 10−12, β7y= 0.12). These results are in agreement
with previous reports4,28, establishing the timing of this transition
of effect to around five years of age (Figs. 3 and 4).

The biology of BMI shifts around adiposity rebound. Previous
studies have suggested a tight genetic overlap between child and
adult BMI, but the details of this relationship across the first years
of life remain elusive4,5. We used LD score regression29 in LD
Hub30 to quantify the shared genetic contribution between BMI
at each of the 12 time points and other traits (Fig. 7a, b and
Supplementary Fig. 5). These results show that BMI in infancy
show modest genetic correlation with adult BMI and related
traits, before there is a shift towards higher correlation from three
years and onwards indicating a transition of BMI biology at
around the adiposity rebound. Notably, the genetic correlation
with a range of non-anthropometric traits varied substantially atT
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infant age (Supplementary Fig. 6). However, it should be noted
that the LD score regression estimates have large uncertainties at
this sample size, and these results should thus be considered
exploratory. Polygenic risk score analyses across all time points
for markers associated with birth weight9, childhood BMI5, and
adult BMI3,10 revealed similar patterns (Fig. 7c). We also used LD
score regression to estimate the SNP-based heritability of BMI
measurements across infancy and childhood. The LD score
regression-based heritability estimates varied with age, with
relatively modest levels at birth and during the adiposity rebound,
and high levels when adiposity is high, i.e. around adiposity peak
and from seven years of age onwards (Fig. 7a). This finding is
supported by twin-studies that also show high heritability esti-
mates for BMI in infancy, lower levels around four years of age,
followed by higher estimates in later childhood31. Collectively,
these results further indicate that the genetic mechanisms
underlying BMI change from infancy to adulthood.

Partitioned LD-score regression also has the potential of
identifying tissues, cells, and functional annotations that show
heritability enrichment and thus provide better insight into the
biology of the trait. Applying the GTEx and Franke Lab
annotations32,33, we did not find any study-wide significantly
enriched annotations at any time points, probably due to limited
power, as these methods typically require very large sample sizes.
It is, however, notable that the lowest p-values clustered in the
adipose and musculoskeletal/connective tissue categories at
around six to eight months (Supplementary Fig. 7 and
Supplementary Data 2).

Discussion
Here we report a GWAS with dense measurements of BMI during
the first years of life. The few GWASs published on BMI in
infancy and childhood mainly involve children above five years of
age, i.e. during adiposity rebound4,5. These studies point toward a
strong genetic correlation for BMI around adiposity rebound and
adulthood. Our results confirm a strong overlap of the genetics of
BMI from five to eight years and adulthood, however, this asso-
ciation is much less pronounced during infancy. Infant weight

and height have considerable heritable components34. Our results
suggest that there are distinct molecular mechanisms that dyna-
mically and specifically influence weight gain in infancy, partly
acting through leptin signaling. However, recent secular changes
in childhood growth patterns35 illustrate that also non-genetic
factors play central roles during early infancy and childhood.
Future studies in large cohorts such as the Norwegian Mother,
Father, and Child Cohort Study might be able to shed light on
how diet, parenting, life-style, and genetic factors influence the
growth-pattern in early life and later adulthood.

Leptin has an important role in fetal growth, and is positively
correlated with birth weight36. Leptin levels are high at birth and
decrease quickly, whereas sOB-R levels are low at birth and
increase rapidly during the first postnatal days37. This pattern is
hypothesized to be an important mechanism for suppressing
leptin-induced energy expenditure during the first neonatal days.
The sOB-R level remains very high during the first two years of
life and then declines38, mirroring the association of LEPR with
infant BMI observed in our study (Fig. 3). An effect of genetic
variant(s) on the level of sOB-R in infancy is therefore a possible
causal mechanism underlying the association with BMI. An
interaction between the LEPR- and LEP-associated variants with
increased BMI in individuals who carry both the sOB-R-raising
and leptin-lowering alleles would further support a mechanism
where sOB-R in circulation sequesters leptin, reducing its mem-
brane receptor activation, hence promoting energy intake during
infancy. The SNPs associated with increased BMI during infancy
near LEPR and LEP are not known to affect adult BMI. In fact,
they are not in LD with any marker associated with adult diseases,
and might thus promote healthy weight gain during infancy, a
notion further supported at the genome level by LD score
regression. This result is further supported by a recent indepen-
dent study39 suggesting that SNPs in the LEPR/LEPROT locus are
associated with BMI at the adiposity peak.

A strength of the study is that all samples are drawn from the
same birth cohort with harmonized data collection practices
across the study, something that is rarely possible with a more
traditional meta-analysis of many different cohorts and study
designs. It is likely that this has contributed to our ability to
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discover and replicate several genome-wide significant loci
despite considerably lower sample sizes compared to current
mega studies performed on birthweight and adult BMI. By uti-
lizing a replication sample from the same study cohort that was
genotyped using a different genotyping array, we were also able to
perform very specific replication of the initial time-dependent
associations found in the discovery sample. While that provides a
very pure and powerful replication design, it should be noted that
the absence of an external non-Norwegian replication sample
might limit the generalizability of our findings towards other
populations.

In summary, our first GWAS performed in the Norwegian
Mother, Father, and Child Cohort Study capitalizing on a wealth
of phenotypes, the longitudinal analysis uncovers a complex and
dynamic influence of common genetic variation on BMI during
infant and early childhood growth, dominated by the LEP-LEPR
axis in infancy. Improved understanding of infant weight biology
is important as childhood obesity as well as undernutrition and
premature births are worldwide challenges. Our study provides
knowledge of time-resolved genetic determinants for infant and

early childhood growth, suggesting that weight management
intervention should be tailored to developmental stage and
genetic profile of the patients.

Methods
Ethics. Informed consent was obtained from all study participants. The adminis-
trative board of the Norwegian Mother, Father, and Child Cohort Study led by the
Norwegian Institute of Public Health approved the study protocol. The establish-
ment of MoBa and initial data collection was based on a license from the Nor-
wegian Data Protection Agency and approval from The Regional Committee for
Medical Research Ethics. The MoBa cohort is currently regulated by the Norwegian
Health Registry Act. The study was approved by The Regional Committee for
Medical Research Ethics (#2012/67).

Study population. The Norwegian Mother, Father, and Child Cohort Study is an
open-ended cohort study that recruited pregnant women in Norway from 1999 to
2008. Approximately 114,000 children, 95,000 mothers, and 75,000 fathers of
predominantly Norwegian ancestry were enrolled in the study from 50 hospitals all
across Norway7. Anthropometric measurements of the children were carried out at
hospitals (at birth) and during routine visits by trained nurses at 6 weeks; 3, 6, and
8 months; and 1, 1.5, 2, 3, 5, 7, and 8 years of age. Parents later transcribed these
measurements to questionnaires. In 2012, the project Better Health By Harvesting
Biobanks (HARVEST) randomly selected 11,490 umbilical cord blood DNA
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samples from the Norwegian Mother, Father, and Child Cohort Study’s biobank
for genotyping, excluding samples matching any of the following criteria: (1)
stillborn, (2) deceased, (3) twins, (4) non-existing Medical Birth Registry data, (5)
missing anthropometric measurements at birth in Medical Birth Registry, (6)
pregnancies where the mother did not answer the first questionnaire (as a proxy for
higher fallout rate), and (7) missing parental DNA samples. In 2016, HARVEST
randomly selected a second set of samples, 5984, using the same criteria.

Genotyping. For the discovery sample, genotyping was performed using Illumina’s
HumanCoreExome-12 v.1.1 and HumanCoreExome-24 v.1.0 arrays for 6938 and
4552 samples, respectively, at the Genomics Core Facility located at the Norwegian
University of Science and Technology, Trondheim, Norway. The replication
sample was genotyped using Illumina’s Global Screening Array v.1.0 for all
5984 samples at the Erasmus University Medical Center in Rotterdam, Nether-
lands. We used the Genome Reference Consortium Human Build 37 (GRCh37)
reference genome for all annotations and included autosomal markers only for
this study.

Genotypes were called in Illumina Genome Studio (for discovery v.2011.1 and
for replication v.2.0.3). Cluster positions were identified from samples with call rate
≥0.98 and GenCall score ≥0.15. We excluded variants with low call rates, signal
intensity, quality scores, heterozygote excess, and deviation from Hardy–Weinberg
equilibrium (HWE) based on the following QC parameters: call rate <98%, cluster
separation <0.4, 10% GC-score <0.3, AA T Dev >0.025, HWE p-value < 10−6.
Samples were excluded based on call rate <98% and heterozygosity excess >4 SD.
Study participants with non-Norwegian ancestry were excluded after merging with
samples from the HapMap project (ver. 3). Sample pairs with PI_HAT > 0.1 in
identical-by-descent (IBD) calculations were resolved by removing a random
sample in each pair. After genotype calling and QC, 9286 (80.8%) from the
discovery sample set, and 5235 (87.5%) from the replication sample remained
eligible for analysis.

Pre-phasing and imputation. Prior to imputation, insertions and deletions
were removed to make the dataset congruent with Haplotype Reference Con-
sortium (HRC) v.1.1 imputation panel using HRC Imputation preparation
tool by Will Rayner version 4.2.5 (see URLs): insertions and deletions were
excluded. Allele, marker position, and strand orientation were updated to
match the reference panel. A total of 384,855 and 568,275 markers
remained eligible for phasing and imputation for the discovery and replication
set, respectively. Pre-phasing was conducted locally using Shapeit v2.79040.
Imputation was performed at the Sanger Imputation Server (see URLs) with
positional Burrows-Wheeler transform41 and HRC version 1.1 as
reference panel.

Phenotypes. Age, height, and weight values were extracted from hospital records
through the Norwegian Medical Birth Registry (NMBR) for measurements at
birth, and from the study questionnaires for remaining time points. Pregnancy
duration in days was extracted from Medical Birth Registry and pregnancies
with duration <37 weeks 0 day were excluded (515 pregnancies). Height and
weight values were inspected at each age and those provided in centimeter or
gram instead of meter and kilogram, respectively, were converted. Extreme
outliers, typically an error in handwritten text parsing or a consequence of
incorrect units, were excluded (47 length and 8 weight measurements). A value x
was considered as an extreme outlier if x >m+ 2 × (perc99−m) or x <m−2 ×
(m− perc1), where m represents the median and perc1and perc99 the 1st and 99th

percentiles, respectively.
Subsequently, height and weight curves were inspected for extreme outliers by

monitoring the variation of height and weight over time as follows: (i) the height
and weight ratio between consecutive ages were calculated at each time point but
the last: ri ¼ xiþ1=xi where ri is the ratio at time point i and xi is height or weight at
i; (ii) the ratios were scaled after logarithm base 2 transformation, ri′ ¼ f log2 rið Þ� �
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using the function f of Eq. 1:

f xs;i
� �

¼ xs;i�ms;i

F�1
s;i Φ zð Þð Þ�ms;i

;

z ¼ 1 if xi � ms;i � 1 otherwise
n ð1Þ

Where xs,i is the value for an individual of sex s at time point i, ms,i is the median,
F�1
s;i the empirical quantile function of the values at i of individuals of sex s

presenting at least three values before age two (exclusive) and at least two values
after age two (inclusive), and Φ the distribution function of the standard normal
distribution; (iii) the height or weight of an individual at time point i, presenting
surrounding scaled ratios r′i�1 and r′i was considered as an outlier and excluded if
r′i�1 > 1 and r′i < � 1 or if r′i�1 < � 1 and r′i > 1, corresponding to peaks or gaps
in the curve, respectively.

If for an individual of sex s, two consecutive height values, hi and hi+1 presented
a decrease in height, i.e. hi+1 < hi, this was considered an artefact and corrected as
follows.

If the individual presented three or more other height measurements, hj with
j ≠ i and j ≠ i+ 1, for each j the corresponding height at i and i+1 was estimated by
interpolating the height curve using the ratios as in Eq. 2:

xi;j ¼ bri;j ´ xj ð2Þ
where xi,j is the value at i interpolated from j, xj is the value at j, and bri;j ¼ Qi

j brk if
j < i and bri;j ¼ 1Qj

i
brk if j > i, with brk the median of the ratios r at time point k for the

individuals of sex s presenting at least three values before age two (exclusive) and at
least two values after age two (inclusive). If, for all j, hi > hi,j, hi was considered an
outlier and excluded. Similarly, if, for all j, hi+1 < hi,j, hi+1 was considered an outlier
and excluded.

Alternatively, if the individual presented two or fewer other height measurements,
and hi > hhigh, hi was considered as outlier and removed, with hhigh defined as in Eq. 3:

hhigh ¼ ms;i þΦ�1ð0:99Þ ´ F�1
s;i ðΦ 1ð ÞÞ �ms;i

� �
ð3Þ

where ms,i is the median and F�1
s;i the empirical quantile function of the heights at i

of individuals of sex s presenting at least three values before age two (exclusive) and
at least two values after age two (inclusive), Φ and Φ−1 the distribution and
quantile functions of the standard normal distribution, respectively. Similarly, if the
individual presented two or less other height measurements, and hi+1 < hlow, hi+1

was considered as outlier and removed, with hlow defined as in Eq. 4:

hlow ¼ ms;i �Φ�1ð0:99Þ ´ ms;i � F�1
s;i ðΦ �1ð ÞÞ

� �
ð4Þ

If hi and hi+1were not considered as outliers, hi0 and hiþ10
were defined as the

median of hi,j as defined in Eq. 2, for all j ≠ i and j ≠ i+1, respectively. Starting from
hik ¼ hi; hiþ1k

¼ hiþ1; hi and hi+1 were iteratively decreased or increased,
respectively, until hi+1 ≥ hi as described in Eqs. 5 and 6.

hikþ1
¼ hi0 þ 0:9 ´

n
hik � hi0

� �
if hik � hi0

��� ���> hiþ1k
� hiþ10

��� ���hikotherwise ð5Þ

hiþ1kþ1
¼ hiþ1k

if
n

hik � hi0

��� ���> hiþ1k
� hiþ10

��� ���hiþ10
þ 0:9 ´ hiþ1k

� hiþ10

� �
otherwise

ð6Þ
Subsequently, height and weight missing values were imputed from the

individual height and weight curves at all ages for individuals presenting at least
three values before age two (exclusive) and at least two values after age two
(inclusive), and until age two (exclusive), for individuals presenting at least three
values before age two (exclusive). A missing value at i was imputed to xi=median
(xi,j), with xi,j as defined in Eq. 2. Importantly, missing values were imputed only if
at least two non-imputed values were present at both earlier and later ages. Upon
imputation of missing values, outlier removal and height decrease correction was
conducted as described previously, and the new missing values were imputed using
the same rules. The number of imputed samples per time point for discovery and
replication is available in Supplementary Table 2.

Finally, BMI was computed where both height and weight values were available.
At each time point, BMI values were scaled prior to association as described in
Eq. 1. These scaled values are referred to as standardized BMI in the text.

The quality control of the phenotypes was conducted in R version 3.5.1 (2018-
07-02) -- “Feather Spray” (https://www.R-project.org).

Statistical analyses. Genome-wide analyses were performed using SNPTEST
v.2.5.2 using dosages of alternate allele with an additive linear model using sex,
batch, and ten principal components as covariates. LD score regression was per-
formed with LD Hub v.1.9.0 using LDSC v.1.0.029 using all markers remaining after
performing pruning recommended by the LD Hub30 authors.

Cell type specific partitioned LD score regression was performed on a local
server using LDSC v.1.0.0. We used baseline LD scores (v.2.2), regression weights,
allele frequencies, and segregated LD scores for the respective cell types built from
1000 G Phase 3 obtained from the LDSC repository (see URLs) to run cell type
specific analyses on all 12 time points.

Polygenic risk scores (PRS) were derived using effect sizes from genome-wide
significant loci in the original studies on birth weight9, childhood BMI5 and adult
BMI3. For each of the three comparisons traits, PRS were compared against sd-BMI
across all 12 time points. Only directly genotyped and imputed markers with
information score >0.7 were included in the analyses leaving 58, 40, and 94 markers
for birth weight, childhood BMI, and adult BMI, respectively. Imputed markers
were hard called to their most likely genotype prior to calculating the scores. PRS
were calculated for each individual as the sum of the effect weighted count of birth
weight- or BMI-increasing alleles. Thus, each child got three different polygenic
scores, one for each of the three traits compared, which where then tested for their
ability to predict sd-BMI at each of the 12 time points. Hence the same weights and
markers were applied to all time-points for each of the compared traits.
Furthermore, Pearson correlation coefficient, r, was calculated for the correlation
between birth weight/BMI and PRS for all samples in for compared trait and at
each age separately.

All p-values in the manuscript are presented as nominal unless where otherwise
stated in the manuscript.

Figures. All figures in the manuscript were generated in R version 3.5.1 (2018-07-
02) -- “Feather Spray” (https://www.R-project.org). In addition to the system
packages, the following packages were used: ggplot2 version 3.0.0, scico version
1.0.0, gtable version 0.2.0, ggrepel version 0.8.0, and ggdendro version 0.1–20.

URLs. For HRC or 1000 G Imputation preparation and checking, see http://www.well.
ox.ac.uk/~wrayner/tools/; for Sanger Imputation Service, see https://imputation.sanger.
ac.uk/; for

LD Score repository, see https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Data availability
Summary data from the discovery analysis is available for download at the Norwegian
Mother, Father, and Child Cohort Study website. Access to genotypes and phenotypes
can be obtained by direct request to the Norwegian Institute of Public Health (https://
www.fhi.no/en/studies/moba/for-forskere-artikler/gwas-data-from-moba/).
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