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Abstract

The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake
(TDI) for fumonisin B1 (FB1) of 1.0 lg/kg body weight (bw) per day based on increased incidence of
megalocytic hepatocytes found in a chronic study with mice. The CONTAM Panel considered the
limited data available on toxicity and mode of action and structural similarities of FB2–6 and found it
appropriate to include FB2, FB3 and FB4 in a group TDI with FB1. Modified forms of FBs are phase I
and phase II metabolites formed in fungi, infested plants or farm animals. Modified forms also arise
from food or feed processing, and include covalent adducts with matrix constituents. Non-covalently
bound forms are not considered as modified forms. Modified forms of FBs identified are hydrolysed
FB1–4 (HFB1–4), partially hydrolysed FB1–2 (pHFB1–2), N-(carboxymethyl)-FB1–3 (NCM-FB1–3), N-(1-
deoxy-D-fructos-1-yl)-FB1 (NDF-FB1), O-fatty acyl FB1, N-fatty acyl FB1 and N-palmitoyl-HFB1. HFB1,
pHFB1, NCM-FB1 and NDF-FB1 show a similar toxicological profile but are less potent than FB1.
Although in vitro data shows that N-fatty acyl FBs are more toxic in vitro than FB1, no in vivo data
were available for N-fatty acyl FBs and O-fatty acyl FBs. The CONTAM Panel concluded that it was not
appropriate to include modified FBs in the group TDI for FB1–4. The uncertainty associated with the
present assessment is high, but could be reduced provided more data are made available on
occurrence, toxicokinetics and toxicity of FB2–6 and modified forms of FB1–4.
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Summary

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food
Chain (CONTAM) assessed whether it is appropriate and feasible to set a group health-based guidance
value (group HBGV) for fumonisins B1 and B2 (FB1 and FB2) and their modified forms related to their
presence in food and feed, and to consider, whether it would be appropriate to use the parent
compound as a marker for toxicity.

In the context of this opinion, modified mycotoxins comprise all forms that differ in their chemical
structure from the parent toxin. These include phase I and II metabolites formed in fungi or infested
plants used for food and feed production, or food and feed products of animal origin. It does not
include metabolites formed in humans, even if these may be similar. Moreover, modified forms include
products of food and feed processing, and covalent adducts with matrix constituents. In contrast, non-
covalent binding to the matrix is not considered as a modification of the mycotoxin as it does not
change the chemical structure of the toxin. Such forms are considered as ‘hidden’ forms.

Previous risk assessments on fumonisins and on modified mycotoxins have been used as a starting
point for the present assessment. In addition, a systematic literature search has been carried out to
obtain up-to-date and comprehensive information on fumonisins and its modified forms. In this opinion,
the general principles for risk assessment were followed. Before assessing whether other fumonisins can
be included in a group HBGV for FB1 and FB2 and also if modified forms can be included in such a group
HBGV, the CONTAM Panel decided to review new relevant data on fumonisins and its modified forms
since the year 2000 and to evaluate whether the Scientific Committee for Food (SCF) tolerable daily
intake (TDI) for FB1, FB2 and FB3 alone or in combination needed to be revised, and, in addition, if there
was a need also to set an acute reference dose (ARfD) for FBs and their modified forms.

Fumonisins are mycotoxins produced predominantly by Fusarium verticillioides and Fusarium
proliferatum. They are long-chain aminopolyols with two tricarballylic acid side chains. The most
relevant compounds are the B-type fumonisins FB1–FB4 which differ in the number and position of
hydroxy-groups in the backbone. Of relevance are also modified FBs, predominantly the hydrolysed
FBs (HFBs) and partially hydrolysed FBs (pHFBs) which are formed upon alkaline hydrolysis as well as
FB sugar conjugates which have been detected in food samples. Plant and fungal metabolites such as
N- and O-fatty acyl FBs are also described, however, only traces have been detected in food samples
so far. Besides HFBs, pHFBs, N-fatty acyl fumonisins with acyl-chain lengths ranging from C16:0 to
C24:1 are the only known FB in vivo metabolites. Their formation is catalysed by ceramide synthases
(CerS), key enzymes in sphingolipid metabolism which are inhibited by FBs. N-fatty acyl fumonisins are
much more cytotoxic in vitro as compared to FBs.

Analytical methods for FB1–4 and for modified forms of FB1 are well established and are mainly
based on mass spectrometry. However, the strong physical interaction of fumonisins with food matrix,
may significantly affect the analytical performance. Therefore, indirect methods, usually based on
alkaline hydrolysis of the matrix, have been proposed. Only FB1–3 are available on the market as
calibrant solutions, while FB4 can be purchased as purified powder. Except for HFB1, analytical
standards for modified forms are not commercially available.

The occurrence of FB1–3 is well documented in maize and products thereof, whereas little
information is available for occurrence of FB4. Occurrence of HFB1–3 has been reported following food
processing (e.g. nixtamalisation). Very few data are available on other modified FBs such as O-fatty
acyl and N-fatty acyl FBs and it can be assumed that these modified FBs occur at low concentrations
compared to their parent compounds. No information was identified on the transfer of modified forms
of fumonisins to food and feed of animal origin.

FBs are poorly absorbed (< 4% of an oral dose) from the gastrointestinal tract and absorbed FBs
and their metabolites are rapidly excreted, mainly in the bile of experimental animals, resulting in low
plasma, tissue and urinary concentrations. Metabolism comprises the hydrolysis of the ester groups of
the parent FBs and the formation of N-fatty acyl FBs. Metabolic activity is low in mammalian tissues
and hydrolytic metabolism involves the colonic microbiome. Few studies have been identified on the
toxicokinetics of modified FBs. There is preliminary evidence for the partial release of FB1 from N-(1-
deoxy-D-fructos-1-yl)-fumonisin B1 (NDF-FB1) in rats after oral ingestion.

The key event in the toxic mode of action of FBs is inhibition of CerS. FBs and in particular HFBs
are structural analogues of sphingoid bases and they competitively inhibit CerS, causing disruption of
sphingolipid metabolism and pathological changes seen after FBs exposure. Modified FBs may cause
inhibition of CerS, but apparently with variable potencies, which could not be established precisely
based on the studies available.
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Although FBs are poorly absorbed, unchanged FBs excreted into urine have been used as a
biomarker of exposure in humans. In animal studies changes in sphinganine (Sa) and sphingosine (So)
and the Sa/So ratio can be determined in urine following FB exposure. A dose related increase in the
sphinganine 1-phosphate (Sa 1-P)/sphingosine 1-phosphate (So 1-P) ratio in blood spots which
correlated with urinary FB1 levels has been reported in human studies. This result is consistent with
fumonisin inhibition of CerS in humans.

Toxicity studies deal mainly with effects of FB1, but FB2–4 are considered as having similar
toxicological profiles and potencies. FB1 is considered not to be acutely toxic. In repeated dose studies
with rodents, FB1 causes liver and kidney toxicity. Apoptosis, necrosis, proliferation, regeneration and
hyperplasia of the bile duct are early signs of liver toxicity. Early signs of kidney toxicity were increases in
free sphingoid bases, apoptosis and cell regeneration in the renal tubules of the outer medulla. Upon
chronic exposure liver and kidney tumours are observed. FB1 is not mutagenic in bacteria and does not
cause unscheduled DNA synthesis in mammalian cells, but is clastogenic via an indirect mechanism
(induction of oxidative stress). FB1 caused embryotoxicity in mice, rats and rabbits, but only at doses
where maternal toxicity was observed. In Syrian hamsters, such effects were observed in the absence of
maternal toxicity. There are indications that FB1 causes neural tube defects (NTD) in sensitive mice
strains but, overall, the evidence is inconclusive. In in vitro studies FB1–4 were approximately equipotent
inhibitors of CerS and cause cytotoxicity in several mammalian cell types in vitro.

As compared to FB1, only limited in vivo data on modified FBs are available. HFB1 is less toxic than
FB1 but shows a similar toxicological profile. Also pHFB1, N-(carboxymethyl)-fumonisin B1 (NCM-FB1)
and NDF-FB1 are less toxic than FB1 showing a similar toxicological profile, however, the data base is
even more limited than that for HFB1. No in vivo toxicity data were available for N-fatty acyl FBs and
O-fatty acyl FBs. In brine shrimp, N-palmitoyl-HFB1 is more toxic than HFB1 and has about the same
toxicity as FB1 suggesting that acylation could potentially increase toxicity in shrimp. Overall, the
available data on modified forms suggest a similar toxicological profile as their parent compounds but
the data are too limited and inconsistent to assess their relative potencies in quantitative terms.

There are only limited data available on the in vitro toxicity of modified fumonisins. For HFB1–2 in vitro
toxic potencies relative to FB1 vary between 0.01 and 0.9. Notably, HFB1 is taken up by cells more rapidly
and completely than FB1. For pHFB1–2, there were no data available for assessing the toxicity relative to
their parent compounds. In one single study, NCM-FB1 had a relative potency of 0.02 as compared with
FB1. There is no information available on in vitro toxicity of O-fatty acyl FBs. N-fatty acyl FB1 and N-fatty
acyl HFB1–2 are up to 10 times more toxic in vitro than FB1. Notably, these compounds are more rapidly
and to a greater extent taken up by cells than FB1 and also HFB1. Overall, the available in vitro data on
modified FBs do not allow extrapolations to the human in vivo situation.

Several clinical effects have been discussed in humans (such as oesophageal cancer, liver cancer, NTD
or growth impairment), but so far none of these have been causally related to fumonisin exposure.

Data from humans indicate that inhibition of CerS (changes in Sa 1-P and the Sa 1-P/So 1-P ratio
as measure in blood) may occur above a total FB1–3 exposure resulting in 0.5–1 ng FB1/mL in urine,
corresponding to a total intake of FBs of about 1.7 lg FBs/kg body weight (bw) per day.

A dose–response analysis was conducted using data from a chronic feeding study in mice in which
the incidence of liver lesions and an increase in Sa levels were observed at low doses. Because of a
likely non-genotoxic mechanism of tumourigenicity, the CONTAM Panel considered it appropriate to
conduct dose–response analyses of liver effects. Increased incidence of megalocytic hepatocytes in the
liver was established as the critical effect and a BMDL10 of 0.1 mg FB1/kg bw per day was derived.
The CONTAM Panel used the BMDL10 of 0.1 mg/kg bw per day and an uncertainty factor (UF) of 100
for intra and interspecies variability to derive a TDI of 1.0 lg FB1/kg bw per day.

Based on structural similarity, and the limited data available indicating similar toxic profile and toxic
potencies in the same order of magnitude, the CONTAM Panel decided that FB2, FB3 and FB4 should be
included in a group TDI with FB1. It should be noted that the in vivo toxicology database for FB2–4 is very
limited. Because of the currently insufficient data modified forms of FB1–4 could not be included in this
group TDI. The CONTAM Panel noted that based on the available evidence it can be assumed that modified
forms of FB1–4 exert lower toxicity than their parent compounds. However, this could not be quantified.

Standards and calibrants for FB2–6 and for modified forms of FBs are needed for analytical and
toxicological purposes as well as more information on occurrence of FB2–6 and of modified FBs in order
to prioritise toxicity testing. More information on the in vivo toxicokinetics for modified forms of FBs
and also for FB2–6 is needed together with in vivo toxicity data on FB2–6 and of any modified FBs using
pure compounds and in particular on the toxicity of hydrolysed FBs using pure compounds to assess if
toxicity mitigation measures (e.g. nixtamalisation) are effective.
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1. Introduction

1.1. Background Terms of Reference as provided by the requestor

Following a request from the European Commission, the risks to human and animal health related
to modified forms of the Fusarium toxins zearalenone, nivalenol, T-2 and HT-2 toxins and fumonisins
were evaluated in the scientific opinion on the risks for human health related to the presence of
modified forms of certain mycotoxins in food and feed1, adopted by the EFSA Panel on Contaminants
in the Food Chain (CONTAM) on 25 November 2014.

The CONTAM Panel considered it appropriate to assess human exposure to modified forms of the
various toxins in addition to the parent compounds, because many modified forms are hydrolysed into
the parent compounds or released from the matrix during digestion. In the absence of specific toxicity
data, toxicity equal to the parent compounds was assumed for modified mycotoxins. Risk characterization
was done by comparing exposure scenarios with reference doses of the parent compounds.

The regulatory follow-up to this scientific opinion was discussed at the Expert Committee
“Agricultural contaminants” on 15 January 2015. The Standing Committee on Plants, Animals, Food
and Feed has been informed thereof at its meeting on 11 February 20152.

Before taking regulatory measures as regards the modified mycotoxins, it was agreed to request EFSA
to assess whether it is appropriate and feasible to set a group health based guidance value for the parent
compound and its modified forms and to consider, if relevant, the appropriateness to use the parent
compound as a marker for presence and toxicity of the parent compound and its modified forms.

1.2. Terms of Reference as provided by the requestor

In accordance with Art. 29 (1) (a) of Regulation (EC) No 178/2002, the Commission asks EFSA for
scientific opinions to assess whether it is appropriate and feasible to set a group health based guidance
value for the parent compound and its modified forms for zearalenone, fumonisins, nivalenol and T-2 and
HT-2 toxin and to consider, if relevant, the appropriateness to use the parent compound as a marker for
presence and toxicity of the parent compound and its modified forms for these mycotoxins.

The four requested scientific opinions are:

1) assessment whether it is appropriate and feasible to set a group health based guidance
value for zearalenone and its modified forms identified in the CONTAM opinion on the risks
for human health related to the presence of modified forms of certain mycotoxins in food
and feed, and to consider, if relevant, the appropriateness to use the parent compound as a
marker for presence and toxicity of zearalenone and its modified forms.

2) assessment whether it is appropriate and feasible to set a group health based guidance value
for fumonisin B1 and B2 and their modified forms identified in the CONTAM opinion on the
risks for human health related to the presence of modified forms of certain mycotoxins in food
and feed and to consider, if relevant, the appropriateness to use the parent compounds as a
marker for presence and toxicity of fumonisin B1 and B2 and their modified forms.

3) assessment whether it is appropriate and feasible to set a group health based guidance
value for nivalenol and its modified forms identified in the CONTAM opinion on the risks for
human health related to the presence of modified forms of certain mycotoxins in food and
feed and to consider, if relevant, the appropriateness to use the parent compound as a
marker for presence and toxicity of nivalenol and its modified forms.

4) assessment whether it is appropriate and feasible to set a group health based guidance
value for T-2 and HT-2 toxin and their modified forms identified in the CONTAM opinion on
the risks for human health related to the presence of modified forms of certain mycotoxins
in food and feed and to consider, if relevant, the appropriateness to use the parent
compound as a marker for presence and toxicity of T-2 and HT-2 toxin and their modified
forms.

1 EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2014. Scientific Opinion on the risks for human and
animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal 2014;12
(12):3916, 107 pp. https://doi.org/10.2903/j.efsa.2014.3916 Available online: www.efsa.europa.eu/efsajournal

2 Summary report of the Standing Committee on Plants, Animals, Food and Feed, held in Brussels on 11 February 2015
(Section Toxicological Safety of the Food Chain), agenda item A.06. Report available at: http://ec.europa.eu/food/committees/
regulatory/scfcah/toxic/docs/sum_20150211_en.pdf
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1.3. Introduction to mycotoxins and their modified forms

Mycotoxins are secondary metabolites of filamentous fungi. They are usually low molecular weight
compounds and serve no function in the intermediary metabolism of the fungus, but provide
advantages with respect to its competition for nutrients and habitat. Consequently, many mycotoxins
are toxic for bacteria and other microorganisms. As mycotoxins are also toxic for humans and animals,
their presence in food and feed may pose a potential health risk.

Numerous mycotoxins have been characterised to date. These toxic fungal secondary metabolites,
also called parent mycotoxins, may occur as free compounds in infested food and feed items, but may
also be converted into products with altered physicochemical, chemical and biological properties in
fungi, or in plants and animals used for food and feed production, and during food and feed
processing and storage. It is increasingly realised that such ‘modified’ forms of the parent ‘free’
mycotoxins occur in food and feed and should be taken into account for risk assessment, because they
may contribute to the toxicity of the parent toxins.

The chemical structure of the ‘modified’ mycotoxin is different from that of the parent toxin. This is
consistent with the recent proposal of a comprehensive definition of modified and other forms of
mycotoxins by Rychlik et al. (2014). There are several possibilities to convert free parent mycotoxins
into ‘modified’ forms:

1) Biotransformation in the fungus, infested plant and mammalian organism. This includes
phase I metabolism through oxidation, reduction or hydrolysis of the parent toxin, as well as
phase II metabolism involving conjugation with endogenous molecules. Phase II metabolites
formed in the plant through conjugation with polar low molecular weight molecules such as
glucose or sulfate have also been called ‘masked’ mycotoxins because they were difficult to
detect by routine analysis. However, after intake with the food or feed such conjugates may
be hydrolysed in the digestive tract, thereby releasing the parent free toxin which may add
to the total exposure. Therefore, phase II metabolism in plants or fungi is of paramount
importance for the risk assessment of mycotoxins.

2) Alteration of the chemical structure of the free parent mycotoxin by non-enzymatic
reactions, in particular:

2a) Processing of food and feed by thermal and/or chemical treatment, for example,
degradation reactions during roasting, frying and extruding, and hydrolytic reactions during
acidic or alkaline treatment (i.e. nixtamalisation).
2b) Covalent binding to food and feed matrix, for example to matrix components such as
proteins and starch. From a chemical perspective, such covalent binding products can be
considered to arise from a conjugation reaction, e.g. of a carboxylic acid group of the mycotoxin
with an amino or hydroxy group of matrix components such as starch or proteins to form an
amino or hydroxy group to form an amide or ester bond, respectively.

Products of non-covalent binding of the parent mycotoxin to food or feed matrix constituents are
not regarded as modified mycotoxins in this opinion3, because there is no change of the chemical
structure involved. Such non-covalent interactions, commonly named physical entrapments, may be
mediated by hydrogen- or ionic bonding and any other kind of non-covalent binding and appear to be
of particular importance for fumonisins as such physical entrapment can seriously affect the analytical
determination of parent fumonisins in food and feed, leading in some cases to underestimation of their
content (see Section 5.3). Due to their difficult analysis, matrix-associated mycotoxins have also be
named ‘hidden’ or ‘bound’, although these designations appear not to differentiate between covalent
and non-covalent binding and are therefore not used in the present opinion.

In recent years many newly discovered modified mycotoxins have been described. Nonetheless, there
are many knowledge gaps about modified mycotoxins. Currently, the terms ‘modified’, ‘masked’, ‘hidden’
and ‘bound’ are not used consistently and unambiguously in the scientific literature. Moreover, other
terms sometimes lead to confusion, because they have a different meaning in chemical and biological
disciplines: For example, conjugates are mainly considered as phase II metabolites in toxicology, but
more broadly as the products of any reaction between two functional groups in chemistry.

3 It should be noted that in the previous opinion on the risks for human and animal health related to the presence of modified
forms of certain mycotoxins in food and feed (EFSA CONTAM Panel 2014), the term modified mycotoxins included both
covalently and non-covalently bound forms for fumonisins in order not to underestimate exposure.
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In conclusion, in the context of risk assessment of mycotoxins in food and feed, modified
mycotoxins comprise all forms that differ in their chemical structure from the parent toxin.
These include phase I and II metabolites formed in fungi or infested plants used for food and feed
production, or food and feed products of animal origin. Moreover, modified forms include products of
food and feed processing, and covalent adducts with matrix constituents. In contrast, non-covalent
binding to the matrix is not considered as a modification of the mycotoxin as it does not
change the chemical structure of the toxin but rather as an analytical issue leading to poor
recoveries.

The modified forms of fumonisins which are regarded as relevant for this opinion are described in
detail in Section 4.3 and their analysis in Section 5.3.

1.4. Legislation

Article 2 of Council Regulation (EEC) No 315/934 stipulates that food containing a contaminant in
an amount unacceptable for public health shall not be placed on the market, that contaminant levels
should be kept as low as can reasonably be achieved and that, if necessary, the EC may establish
maximum levels for specific contaminants. These maximum levels (MLs) are laid down in the Annex of
Commission Regulation (EC) No 1881/20065 and may include MLs for the same contaminants in
different foods, analytical detection limits and reference to the sampling and analysis methods to be
used. MLs for the sum of fumonisins B1 and B2 are listed for unprocessed maize and maize-based
foods ranging from 200 to 2,000 lg/kg. Fumonisins B3 and B4 and modified forms of FBs are not
considered in the legislation.

1.5. Interpretation of Terms of Reference

The CONTAM Panel took the assumption that the previous risk assessment of FB1–3 by the Joint
FAO/WHO Expert Committee on Food Additives (JECFA) (FAO/WHO, 2012) is comprehensively covering
all relevant aspects of FB1–3 and therefore used it together with the recent opinion on modified
mycotoxins (EFSA CONTAM Panel, 2014) as a starting point for the present assessment.

The CONTAM Panel noted that, next to FB1 and FB2, mentioned in the Terms of Reference (ToR),
also FB3 and FB4 are among the more common forms of fumonisins, and therefore decided to also
consider these in the assessment as well. For FB5 and FB6, two other fumonisins of the B-type, very
little is known about their occurrence, and for FB5, the structure is not yet fully elucidated. Other
groups of fumonisins are the A, C and P series, usually representing less than 5% of total fumonisins.
These were not further considered as they were not part of the Terms of Reference (see Sections 4
and 6).

The CONTAM Panel reviewed the new relevant data on FB1–4 (i.e. published after 2011) to evaluate
whether the group tolerable daily intake (TDI) established for FB1–3 by the Scientific Committee for
Food (SCF 2003) needs to be revised and whether or not FB4 should be included in the group TDI. In
addition, for the modified forms of FB1–4 identified to date the methods currently available for their
analysis were reviewed.

In line with the previous EFSA opinion on modified mycotoxins (EFSA CONTAM Panel, 2014),
modified forms of fumonisins arising from both plant and fungal metabolism, formed as a consequence
of food processing and transfer from feed to animal tissues used as food were considered for possible
inclusion in the group health-based guidance values (HBGVs).

Moreover, for the evaluation of a group HBGV for fumonisins and their modified forms, the CONTAM
Panel has decided to include only chemically characterised compounds, for which it could be possible
to derive a relative potency factor compared to parent compounds. Therefore, only covalent
bound forms of fumonisins or other chemically characterised modified forms such as
hydrolysed fumonisins are considered for possible inclusion in a HBGV.

4 Council Regulation (EEC) No 315/93 of February 1993 laying down Community procedures for contaminants in food . OJ L 37,
13.2.1993, p. 1–5.

5 Regulation (EC) No 1881/2006 of the European Parliament and the Council of 19 December 2006 setting maximum levels for
certain contaminants in foodstuffs. OJ L 364, 20.12.2006, p. 5–24.
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2. Data and methodologies

2.1. Methodology for data collection and study appraisal

A pilot search in Web of Science6 in December 2015 for publications that could potentially be
relevant for the present assessment was carried out. From this, it became clear that due to the sheer
amount of publications, a review of abstracts and identification of potentially relevant publications
could not be done with the resources available at EFSA and the and the EFSA Working Group (WG),
and the given deadline for the present mandate. Therefore, a call for a literature search and review
was launched in March 2016 within the Framework Contract No OC/EFSA/AMU/2014/01 Lot 2
Chemical/toxicological – FWC 6 with the aim to identify and collect relevant literature related to
fumonisins and their modified forms to support preparatory work for the present opinion and that on
animal health risk assessment. A final project report has been delivered in November 2016 and was
published together with the present opinion (NFI-DTU, 2018). Briefly, nine search strings were
designed to identify potentially relevant studies and after removal of duplicates and applying inclusion/
exclusion criteria (as described in NFI-DTU, 2018) potentially relevant references were identified. The
year of publication of the SCF opinion on fumonisins that was considered as a starting point for the
present assessment) and consequently papers published in the period from 1/1/2000 until 21/7/2016
were considered. The first number in the brackets give, per scientific area, the total number of hits
obtained, the second the publications identified as potentially relevant: Chemistry and analysis (4,456/
532), Toxicokinetics (2,262/114), Mode of Action (1,649/273), In vivo Toxicity (3,555/87), In vitro
toxicity (1,632/138), Observations in humans (2,424/38), Adverse effects in farm and companion
animals (5,087/270), Occurrence in food (3,284/709) and Occurrence in feed and animal exposure
(3,283/270). The report contains as an annex all abstracts screened together with an evaluation of
their relevance and the key points of the individual publications.

The abstracts proposed as potentially relevant in the report were then screened by the WG members
and by applying expert judgement used in the assessment if relevant. The last comprehensive risk
assessment of fumonisins publicly available at the time of drafting this opinion was that of JECFA
(FAO/WHO, 2012). The technical report from a more recent JECFA evaluation (FAO/WHO, 2017) was also
available to the Panel, however this did not contain the details of the evaluation presented as an
Addendum that was still in press at that time. It was assumed that all relevant information on chemistry,
analysis, occurrence, in vitro and in vivo toxicity, biomonitoring and epidemiology of fumonisins had been
considered therein and therefore for these fields only studies published after 2011 have been considered
in addition to those already referenced in the JECFA assessment. Key studies on in vivo toxicity presented
by JECFA have been re-evaluated and presented again in the present assessment. After careful review,
the CONTAM Panel concluded that modified forms of fumonisins had not been considered in depth in the
last JECFA assessment or in other previous risk assessments available. Therefore, in vitro and in vivo
studies on modified forms available have been considered for the present opinion without any restriction
to a time period.

Since a series of previous assessments were available (IARC, 1993, 2002, EHC, 2000; SCF, 2000,
2003; FAO/WHO 2001, 2012, 2017, EFSA, 2005; EFSA CONTAM Panel, 2014) these were also considered
for the present assessment. Whenever necessary, original publications referenced in these assessments
were retrieved.

In addition to the systematic search and the use of previous evaluations for retrieval of relevant
literature, a ‘forward snowballing’ approach7 was applied by all WG members (see Jalali and Wohlin,
2012) in order to obtain any relevant information published until adoption of the opinion.

2.2. Methodology applied for hazard assessment

The CONTAM Panel applied the general principles of the risk assessment process for chemicals in
food as described by WHO/IPCS (2009), which include hazard identification and characterisation,
exposure assessment and risk characterisation. In addition to the principles described by WHO/IPCS
(2009), any EFSA guidance relevant for the present assessment has been duly considered for the
present assessment.

6 http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=
F1LIgWslvjSF389Rwfd&preferencesSaved=

7 Identifying articles that have been cited in articles found in a search.
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3. Previous assessments

In 2000, the SCF has published an opinion on FB1 (SCF, 2000). The Committee concluded that
there was insufficient evidence that FB1 is genotoxic and that in short-term, subchronic and chronic
studies with mice and rats, liver and kidney were targets of FB1 toxicity. In short term studies with pigs
adverse effects on lung and in horses equine leukoencephalomalacia (ELEM), secondary to
cardiovascular effects, was observed. Reproductive and developmental effects where either not
observed or only at dose levels with pronounced maternal toxicity. In chronic studies, FB1 induced
tumours in liver and kidney in rodents. The Committee noted that fumonisins interfere with the de
novo synthesis of ceramide and more complex sphingolipids which is reflected in early changes in the
sphinganine/sphingosine (Sa/So) ratio and which results in disturbance of cell growth, differentiation,
morphology, permeability and increased apoptosis. The latter appears to play a major role in FB1
toxicity including tumour formation. Considering the mode of action (MoA) and the lack of adequate
evidence on genotoxicity the SCF found it justified to apply a threshold approach for risk assessment
and set a TDI of 2 lg FB1/kg body weight (bw) based on an overall no observed adverse effect level
(NOAEL) of 0.2 mg/kg bw per day for effects in liver and kidney in rodents (Voss et al., 1995; NTP,
1999) and by applying an uncertainty factor (UF) of 100.

In 2001, JECFA published a risk assessment on FB1–3 (FAO/WHO, 2001). The assessment was
essentially based on FB1 data because for FB1 and FB2, which were considered having very similar
toxicological profiles, only little information was available. Similarly to the previous evaluation of the
SCF (2000), JECFA concluded that in repeated dose animal studies liver and kidney were the targets of
FB1 toxicity. Early signs of toxicity in liver were apoptosis, necrosis, proliferation and regeneration and
hyperplasia of the bile duct and elevated sphinganine (Delongchamp and Young, 2001; Kodell et al.,
2001) while in kidney early signs were increases in free sphingoid bases, apoptosis and cell
regeneration. In pigs, pulmonary oedema and hydrothorax and in horses, ELEM were observed upon
oral application of FB1. In mice, rats and rabbits embryotoxicity occurred only at doses paralleled by
maternal toxicity, whereas in one study with hamsters it was also observed in the absence of maternal
toxicity. In chronic studies, kidney tumours were observed in male rats and liver tumours were
observed in male rats and female mice. Neither FB1 nor other FBs have been shown to be clearly
genotoxic. There was only limited evidence for a carcinogenic effect of fumonisins in humans. With
regard to organ toxicity, JECFA noted that FB1 acts via interference with cellular lipid metabolism,
secondary to ceramide synthase inhibition. A group provisional maximum tolerable daily intake
(PMTDI) of 2 lg/kg bw for FB1–3 was allocated on the basis of a no observed effect level (NOEL) of
0.2 mg FB1/kg bw per day for renal toxicity observed in a subchronic and a chronic rat study (Voss
et al., 1995; NTP, 1999) and by applying an UF of 100. It should be noted that elevated levels of Sa
and the Sa/So ratio were observed in urine and kidney of male rats at the NOEL (NTP, 1999). The total
dietary human exposure to FB1 was estimated to range from 0.2 lg/kg bw per day (European diet) to
2.4 lg/kg bw per day (African diet).

After publication of the JECFA assessment, the SCF was requested to evaluate if the TDI of 2 lg
FB1/kg bw established in 2000 was applicable also for FB2–3. As these fumonisins are assumed to exert
similar effects when tested in male BD IX rats at a dose of 1,000 mg/kg diet for 21 days (Gelderblom
et al., 1993), the SCF concluded that the TDI for FB1 can be used as a group TDI for FB1–3 (SCF,
2003). However, a 28-day dose–response feeding study in B6C3F(1) mice using approximately
equimolar concentrations of purified FB1, FB2 or FB3 at concentrations of FB1 known to cause liver
tumours, found no evidence of any effect by FB2 or FB3 but clear evidence of FB1 hepatotoxicity and
disruption of sphingolipid metabolism (Howard et al., 2002).

In 2002, the International Agency for Research on Cancer (IARC) evaluated fumonisins considering
additional data becoming available after their previous assessment from 1993 (IARC, 1993) and
concluded that FB1 is possibly carcinogenic to humans (Group 2B) (IARC, 2002).

In 2005, EFSA published an opinion related to fumonisins as undesirable substances in animal feed
(EFSA, 2005) in which NOAELs and lowest observed adverse effect levels (LOAELs) for different
livestock species and farmed animals were established. Horses and pigs were identified as the most
sensitive species (no NOAELs could be derived) and LOAELs of 0.2 mg/kg bw per day were derived for
FB1 based on increased Sa/So ratio detected at that dose in serum of both species (Ross et al., 1991;
Zomborszky-Kov�acs et al., 2002).

In 2012, JECFA published an assessment of fumonisins in which all relevant studies available since
their previous assessment (FAO/WHO, 2001) were reviewed. The previously proposed disruption of
lipid metabolism as MoA of fumonisin toxicity was confirmed by additional studies. New studies also
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confirmed the previous conclusion that FB1 is not directly genotoxic and supported the notion that FB1-
mediated deoxyribonucleic acid (DNA) damage is a consequence of reactive oxygen species (ROS)
formation. Several new studies potentially useful for deriving a TDI became available, confirming
essentially the established toxicity profile and the target organs for FB1 toxicity. JECFA considered the
incidences of megalocytic hepatocytes observed upon oral application of FB1 in male mice in two
different strains in a new 6-month study (Bondy et al., 2010; unpublished) as most appropriate to
derive a BMDL10. Incidence data from the two strains were pooled and doses were rounded for the
calculations. Dose–response modelling was carried out using the USEPA BMD software (BMDS version
2.1.2.). A pathology score of 1 was selected as endpoint to be modelled. For that reason log-probit
and multistage models were excluded from analysis. Of the other seven models, the lowest BMDL10 of
165 lg FB1/kg bw per day was obtained with the log-logistic model. This BMDL value selected as
reference point for derivation of a PMTDI. Using an uncertainty factor of 100 for intraspecies and
interspecies variation, after rounding the Committee derived a PMTDI of 2 lg/kg body weight per day
that should be applied also for FB2 and FB3. Based on national and international estimates, mean
exposure estimates to FB1 for the general population ranges from 0.12 9 10�3 to 7.6 lg/kg bw per
day whereas 95th percentile exposure estimates were as high as 33.3 lg/kg bw per day. In FAO/WHO
(2012) dietary exposure estimates for average consumers, ranged from 0.087 9 10�3 to 14.4 lg/kg
bw per day, whereas for consumers with high consumption, exposure estimates would be up to
44.8 lg/kg bw per day.

In 2014, EFSA issued an assessment on the increase of the risk for public health related to a
possible temporary derogation from the ML of deoxynivalenol (DON), zearalenone (ZEN) and
fumonisins for maize and maize products (EFSA, 2014). As this assessment was conducted in response
to an urgent request it was not possible to carry out a full hazard characterisation. Therefore, EFSA
used the group PMTDI of 2 lg/kg bw established by JECFA (FAO/WHO, 2012). Average chronic
exposures to fumonisins (applying current MLs) in the children age groups ranged between 0.17 and
2.11 lg/kg bw (minimum lower bound (LB) and maximum upper bound (LB)) per day and was thus in
the region of the group PMTDI of 2 lg/kg bw as established by JECFA (FAO/WHO, 2012). At the 95th
percentile, corresponding numbers were 0.54 and 4.39 lg/kg bw per day. Chronic average exposures
in adult age groups ranged between 0.03 and 1.19 lg/kg bw per day and at the 95th percentile
between 0.08 and 2.30 lg/kg bw per day (minimum LB and maximum UB, respectively).

In the Scientific Opinion on the risks for human and animal health related to the presence of
modified forms of certain mycotoxins in food and feed (EFSA CONTAM Panel, 2014), no specific
information on the toxic effects of the modified forms of fumonisins could be identified. However, the
chemistry and toxicokinetics of fumonisins as well as general considerations of biotransformation
suggested that modified fumonisins may be cleaved in the gastrointestinal tract releasing fumonisins.
Taking a pragmatic approach until more information became available, the CONTAM Panel assumed
that modified forms of fumonisins have the same toxicological profile and potency as their parent
compounds. Based on occurrence data available at that time (2014) it was then assumed that
modified forms of fumonisins add 60% to the exposure to fumonisins. It should be noted that in the
opinion of 2014, the term ‘modified fumonisins’ included both covalently and non-covalently bound
forms (hidden forms).

In 2017, JECFA published a report of further assessment on fumonisins (FAO/WHO, 2017) in which
new studies becoming available since their last evaluation (FAO/WHO, 2012) were considered. Overall,
the previous conclusions were reaffirmed and the group PMTDI of 2 lg/kg bw for FB1–3 was retained
based on the data of Bondy et al. (2010, unpublished), which was used in the benchmark dose (BMD)
modelling in the 2011 evaluation (FAO/WHO, 2012).

Inclusion of modified forms of fumonisins in a group TDI with fumonisins was not considered in any
of the previous assessments presented above.

4. Chemistry

4.1. Chemical structure of fumonisins

The basic structural element of fumonisins is a C20 (or C19) long-chain aminopolyol with two methyl
groups as substituents (for FB1: 2S-amino-12S,16R-dimethyl-3S,5R,10R,14S,15R-pentahydroxyeicosane).
In addition, two propane-1,2,3-tricarboxylic acid (TCA, also named tricarballylic acid) side chains are
esterified to hydroxy groups at positions C14 and C15 of the aminopolyol backbone. Based on different
structural features, fumonisins are classified as A-, B-, C- and P-series as shown in Figures 1 and 2.
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Fumonisins of the B-type such as fumonisins B1 (FB1), B2 (FB2), B3 (FB3) and B4 (FB4) are the most
abundant and were described by Gelderblom et al. (1988) and Cawood et al. (1991). FBs vary in the
number and position of hydroxy-substituents at position 5 and 10 of the backbone as shown in
Figure 1. Besides FB1–4 other FBs, namely FB5–6, have been identified (Musser and Plattner, 1997;
Mansson et al., 2010). FB5 has the same structure as FB1 with an additional OH group in an unknown
position. FB6 is an isomer of FB1 with a hydroxy group at C4 instead of C10.

All fumonisins are highly polar and water soluble compounds. Structurally, the fumonisin backbone
resembles the sphingoid bases sphinganine (Sa) and sphingosine (So) especially with the amino and
hydroxy functions in positions C2 and C3 (Figure 1). The sphingoid base most closely related
structurally to fumonisin is 1-deoxysphinganine (deoxySa), which can be found in mouse liver and
kidney (Bondy et al., 2012).

FB1, (CAS No. 116355-83-0, C34H59NO15, molecular weight (MW) 721) contains 10 stereocenters
(1,024 different possible stereoisomers) and intensive studies have determined the absolute
configuration of the main isomer, as shown in Figure 1 (ApSimon, 2001; Hartl and Humpf, 2001).
Other stereoisomers such as epi-FB3 and epi-FB4 with 2S,3R-configuration as well as positional isomers
such as iso-FB1 (hydroxy group at C4 instead of C5) have been described (MacKenzie et al., 1998;
Gelderblom et al., 2007; Bart�ok et al., 2010a).

The A-type fumonisins (FAs) are characterised by an additional acetyl group at the amino function
(Figure 2). Besides FA1–4 (Bezuidenhout et al., 1988; Musser and Plattner, 1997; Abbas et al., 2006)
another A-type fumonisin was identified as keto amide FAK1, which contains a keto function instead of
the TCA side chain at C15 (Musser et al., 1995). Initially, it was suggested that the N-acetylated
fumonisins are possible artefacts of the isolation procedure that uses acetic acid, however, Musser and
Plattner (1997) have shown that the A-type fumonisins are also natural contaminants.

The C-series fumonisins lack the 1-methyl group resulting in a C19 long-chain aminopolyol
backbone (Figure 2). FC1 was described for the first time by Branham and Plattner (1993). The
number and location of the hydroxy groups of C-type fumonisins is based on the corresponding FBs.

The P-series consisting of FP1, FP2 and FP3 have a characteristic N-linked 3-hydroxypyridinium
moiety at C2 (Figure 2), and can occur at levels up to 30% of FB1 when grown on solid corn cultures
(Musser et al., 1996). Further isomers of the P-series have recently been identified in Fusarium
verticillioides cultures (Bart�ok et al., 2014).
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Figure 1: Structures of B-series fumonisins (FB1, FB2, FB3 and FB4), sphinganine (Sa) and 1-deoxy-
sphinganine and sphingosine (So)
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4.2. Biosynthesis

The fumonisin biosynthetic gene cluster has been identified by Proctor et al. (1999, 2003) in F.
verticillioides and is summarised in a review of Huffman et al. (2010). FUM1 is encoding a polyketide
synthetase (PKS) as the key enzyme that assembles the C3 to C20 part of the fumonisin backbone
(see Figures 1 and 2) from one molecule of acetyl-CoA, eight molecules of malonyl-CoA and two
molecules of S-adenosyl methionine. The backbone is completed in the next step with the introduction
of alanine by a 2-oxoamine synthase (FUM8) (Seo et al., 2001) which confirmed earlier studies with
labelled precursors (summarised in ApSimon, 2001). Further studies have shown that different
orthologues of FUM8 have different specificity for alanine or glycine, which determine whether
Fusarium produces B- or C-type fumonisins (Proctor et al., 2008).

4.3. Modified fumonisins

Fumonisins are highly polar mycotoxins, carrying one amino and several hydroxy groups, two of
which are esterified with TCA, leading to four free carboxyl groups in the TCA side chains (Figure 1).

These moieties can be hydrolysed as in the case of the TCA side chains or react with other
molecules under thermal processing conditions commonly applied in food production, leading to
modified forms of fumonisins.

Since the structure elucidation of FB1 in 1988, several modified forms and degradation/reaction
products of fumonisins have been identified and are summarised in Figure 3. The first fumonisin
degradation products described in the literature were the hydrolysed fumonisins HFBs (named also
aminopentol or aminopolyol (APs) in some publications). They are formed under alkaline conditions by
hydrolytic cleavage of the two tricarballylic acid side chains from the fumonisin backbone (reaction A,
Figure 3) (Humpf and Voss, 2004). When the hydrolysis is not complete, partially hydrolysed
fumonisins (pHFBs, Figure. 3) are formed by cleavage of only one of the two TCA side chains. As
either one of the TCA-side chains can be removed two forms of pHFBs exist which are named with ‘a’
or ‘b’ (Figure 3). Hydrolysed FB1 (HFB1) occurs mainly in nixtamalised corn products, but usually at

Figure 2: Structures of fumonisins of the A-series (FA1, FA2, FA3), C-series (FC1, FC2, FC3) and P-series
(FP1, FP2, FP3)
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lower concentrations than FB1 (Saunders et al., 2001). Nixtamalisation is a traditional alkaline cooking
process of corn to produce masa and tortilla chips (Humpf and Voss, 2004). TCA, which is also
liberated during alkaline hydrolysis, has also been evaluated in toxicity studies (see Section 10).
Besides the formation during food and feed processing, HFB1 and pHFB1 have also been described as
intestinal metabolites of FB1 in piglets (Fodor et al., 2007, 2008) and a non-human primate (Shephard
et al., 1994b).

Thermal reaction products of FB1, which are detectable in food samples, are N-(carboxymethyl)-
fumonisin B1 (NCM-FB1) and N-(1-deoxy-D-fructos-1-yl)-fumonisin B1 (NDF-FB1, Figure 3). Both
compounds are formed during thermal food processing via a Maillard-type reaction in the presence of
reducing sugars. It was shown that the primary amino group of FB1 reacts with the carbonyl group of
D-glucose to yield a Schiff base which then undergoes Amadori rearrangement to form NDF-FB1
(reaction B, Figure 3) and is further converted to NCM-FB1 (reaction C, Figure 3) as stable end product
(all basic reactions are summarised in Humpf and Voss, 2004). These reactions have been primarily
shown for FB1 and HFB1 but all other fumonisins with a free primary amino group can react in the
same way. Recently, NDF-FB2 and NDF-FB3 have been identified in corn samples (Matsuo et al., 2015).
NCM-FB1 has been detected in model experiments but also in processed food samples (Seefelder
et al., 2001; Humpf and Voss, 2004; Meca et al., 2010). In the case of NDF-FB1, the stability under
gastrointestinal conditions has been evaluated. While NDF-FB1 is already partially cleaved (about 41%)
during simulated digestion, it remained rather stable towards human colon microflora (Cirlini et al.,
2015). NDF-FB1 was stable during drying and storage (Hahn et al., 2015).

Fumonisins can also covalently bind to macromolecules such as starch and proteins via their two
reactive TCA side chains (see reaction D, Figure 3). These matrix-bound forms of fumonisins were first
described and partially characterised in model experiments with radiolabelled FB1 (Resch and Shier,
2000; Shier, 2000; Shier et al., 2000). Further studies characterised the covalent binding of FB1 via the
TCA side chains to starch and protein model compounds by liquid chromatography–tandem mass
spectrometry (LC–MS/MS) and in the case of starch also by NMR (Seefelder et al., 2003) (Figure 3).
Such covalent binding has been described so far only for FB1, which is the most abundant fumonisin in
crops. However, due to the chemical similarity of FB1 with other FBs, the formation of modified forms
of FB2, FB3 and FB4, is very likely. Although these compounds have been isolated and characterised in
model systems their direct determination in food as such is not possible, as the covalently bound
fumonisins have to be first released by chemical hydrolysis. Therefore, these matrix-bound forms of
fumonisins can be determined indirectly by quantifying free FBs and HFBs before and after chemical
hydrolysis or after digestion of the macromolecules (Dall’Asta et al., 2010) as described in Section 5.

Besides covalently matrix-bound forms of fumonisins as described above, the existence of non-
covalently bound (‘physically entrapped’) forms of fumonisins (see Section 1.3) has been postulated
based on poor recovery rates from different food matrices in interlaboratory studies (Dall’Asta et al.,
2009).

Furthermore it is expected that non-covalent bound forms of fumonisins are released in the
gastrointestinal tract, as starch and proteins are digested into their building blocks. Thus, the non-
covalently bound fumonisins are expected to preserve their full toxic potential; however, this has not
been confirmed experimentally.

Other modified forms of fumonisins are fatty acid esters of FB1 (O-fatty acyl FB1, in some
publications also abbreviated as O-acyl FB1 or esterified FB1 (EFB1)) and other fumonisins with
variation in fatty acid chain length and position of esterification (3-O-, 5-O- or 10-O-acyl-fumonisins)
(see Figure 3). These fumonisin esters are produced when F. verticillioides is grown on plant substrate
such as maize and rice (Bart�ok et al., 2010b, 2013b; Falavigna et al., 2016). Besides O-fatty
acylfumonisins, the corresponding N-fatty acyl fumonisins were also detectable in low amounts in
Fusarium (Bart�ok et al., 2013b). N-fatty acyl fumonisins and N-fatty acyl hydrolysed fumonisins with
fatty acid chain length ranging from C16:0 to C24:1 (specific fatty acids are indicated for example as
C16:0-HFB1 or N-palmitoyl-HFB1) are also described as in vitro and in vivo metabolites of fumonisins
(Seiferlein et al., 2007; Harrer et al., 2013, 2015). Their formation is catalysed by ceramide synthases
(CerS), a group of enzymes, which are responsible for the acylation of all free sphingoid bases
including Sa, So and the corresponding 1-deoxysphingoid bases (Zitomer et al., 2009). Six mammalian
isoforms exist (CerS1–6), which differ in their tissue distribution as well as in their specificity towards
the fatty acid chain length used for N-acylation. Besides N-fatty acyl FBs and hydrolysed/partially
hydrolysed fumonisins as in vivo metabolites, no phase I or phase II metabolites are known.

Another compound described in the literature is the mono methylester of fumonisin FB1 (MME),
which is an artefact formed during the isolation procedure of fumonisins when methanol is used as
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solvent (Cawood et al., 1991). The position of the methylester has not been specified. Nevertheless
this compound has been used in some structure-activity studies (see Gelderblom et al., 1991 and
Section 10).

Table 1 provides an overview about the modified FBs described in the literature together with their
synonyms as well as alternative names and abbreviations.

Table 1: Modified forms of fumonisin Bs described in the literature, their abbreviations and
synonyms (see Figures 1–3 for selected structures)

Form of FBs
Abbreviations used
in this document

Alternative names, abbreviations and explanations

Hydrolysed fumonisin B1–4 HFB1–4 Aminopentols/Aminopolyols (APs)

Partially hydrolysed
fumonisin B1–2

pHFB1–2a/pHFB1–2b As either one of the TCA-side chains can be removed two
forms exist which are named with ‘a’ or ‘b’ (see Figure 3)

N-(carboxymethyl)
fumonisin B1

NCM-FB1 –

N-(1-deoxy-D-fructos-1-yl)-
fumonisin B1–3

NDF-FB1–3 –

O-fatty acyl fumonisin B1 O-fatty acyl FB1 Fatty acid esters of fumonisin B1, esterified fumonisin B1
(EFB1), O-acyl-FB1

N-fatty acyl fumonisin B1 N-fatty acyl FB1 Fatty acid chain length ranging from C16:0 to C24:1. A
specific fatty acid is named as C16:0-HFB1 or N-palmitoyl-
HFB1, N-acyl-FB1/HFB1

N-fatty acyl hydrolysed
fumonisin B1–2

N-fatty acyl HFB1–2

N-palmitoyl hydrolysed
fumonisin B1

N-palmitoyl HFB1 N-fatty acyl-HFB1 with palmitic acid as fatty acid, C16:0-
HFB1, PAP1

N-acetyl fumonisin B1 FA1 N-acetylated FB1
Mono methylester of
fumonisin B1

MME Artefact formed during isolation and storage of fumonisins
in methanol
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Figure 3: Modified forms of FB1: hydrolysed fumonisin B1 (HFB1), partially hydrolysed fumonisin B1
(pHFB1a, pHFB1b), N-(carboxymethyl)-fumonisin B1 (NCM-FB1), N-(1-deoxy-D-fructos-1-yl)
fumonisin B1 (NDF-FB1), fatty acid (FA) esters of fumonisin B1 (O-fatty-acyl-FB1), N-fatty-
acyl-fumonisin B1 (N-fatty-acyl-FB1) and N-fatty-acyl-hydrolysed fumonisin B1 (N-acyl-fatty-
HFB1)
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5. Analytical methods

5.1. Extraction and analysis of fumonisins

FB1–4 are soluble in water and polar solvents such as methanol and acetonitrile, owing to the
presence of carboxyl moieties and hydroxy groups in FBs. They can be extracted from raw and
processed materials with water/methanol or water/acetonitrile mixtures. Besides the composition of
the extraction solvent, its temperature influences the effectiveness of the extraction (Lawrence et al.,
2000). As for other mycotoxins, for sample clean-up solid phase extraction (SPE) cartridges or
immunoaffinity columns may be used (H€ubner et al., 2012; Szekeres et al., 2013). However, antibodies
for immunoaffinity columns are usually developed for FB1 and show a 100% cross-reactivity for FB3,
while a lower cross-reactivity is reported for FB2 (40–60%). Very little information is available
regarding affinity towards FB4.

Over the last decade, liquid chromatography/mass spectrometry (LC/MS) protocols have become
the method of choice for analysis and have replaced LC-fluorescence detector (LC-FLD)-based
methods. However, the latter are still in use for routine testing. LC/MS techniques usually have a high
sensitivity, reaching a limit of quantification (LOQ) for FB1 and FB2 in the range of 10–50 lg/kg.

Compared to other mycotoxins such as trichothecenes the inclusion of fumonisins in multi-toxin
methods is still difficult, due to differences in polarity and the increased matrix effect. The detection of
fumonisins is hampered by relatively poor recovery (≤ 60%) and low accuracy in multianalyte
methods. However, when fumonisins are analysed using a targeted method, covering only FB1–4, a
better recovery can be obtained, usually in the range of > 90%.

5.2. Analytical issues related to non-covalent binding to the matrix

FB1–4 may interact with matrix macroconstituents through non-covalent binding, forming stable
complexes. Such non-covalent complexation can strongly affect the extractability of fumonisins from
the matrix and pH, temperature and water proportion are crucial parameters for an effective recovery
(Scott et al., 1999; Sewram et al., 2003).

Another crucial parameter for recovery is particle size, because a decrease in size results in an
increased surface for extraction, thereby increasing extractability.

The non-specific complexation of fumonisins can be disrupted by the use of sodium dodecyl sulfate
as described by Kim et al. (2003). However, this approach may affect the chromatographic separation
of analytes and instrumental performance.

A more general approach involves the alkaline hydrolysis of the matrix (i.e. by 2N aqueous KOH,
see also Section 4.3).

5.3. Extraction and analysis of modified fumonisins

Methods for modified FBs differing clearly in their chemical structure from their parent FBs are
commonly based on three different strategies: (i) direct analysis, (ii) alkaline hydrolysis and (iii)
enzymatic digestion. According to the selected strategy, the resulting final analyte may be different, as
summarised in Table 2. Comparison of results obtained by using different strategies may require
extensive stoichiometric calculations.
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5.3.1. Direct methods

Several different protocols for the direct determination of modified forms of fumonisins have been
proposed in recent years. Most of the protocols are for the detection of HFB1–4 that may occur in processed
maize products, such as masa flour.8 Extraction and analysis methods are very similar to those for the
parent compound, and therefore FB1–4 and HFB1–4 are often determined within the same chromatographic
run. Although in the past, many protocols were based on LC-FLD with o-phthaldialdehyde (OPA)
derivatisation, more recent methods are mainly based on MS methods (De Girolamo et al., 2014). Partially
hydrolysed FB1–2 (pHFB1–2) is less frequently measured, because of its lower stability, but the protocols in
use are the same as those for FB1–4 and HFB1–4.

N-alkyl conjugates of FB1, (i.e. NDF-FB1 and NCM-FB1) are extracted with the same methods as
used for FB1, which are mainly based on the use of water/methanol or water/acetonitrile mixture
(Castelo et al., 2001; Seefelder et al., 2001, 2003; Voss et al., 2001a,b).

Occurrence of fatty acid esters of FB1 has been reported in rice and maize (Bart�ok et al., 2010a;
Falavigna et al., 2013). These less-polar compounds are commonly extracted from the matrix using
water: methanol (25/75, v/v), followed by analysis with LC–MS/MS. A similar LC-ESI-MS/MS based
method for N-acyl fatty acid FB1 has been proposed by Bart�ok et al. (2013a,b). The method was
developed for fungal cultures of F. verticillioides and involves a SPE purification step before
chromatographic analysis.

Following extraction, analysis of modified fumonisins is almost exclusively based on LC–MS/MS. The
separation is obtained on a C18 column, using 0.1% aqueous formic acid or acetic acid and methanol/
water or acetonitrile/water as mobile phase, under positive electrospray ionisation (ESI) as ionisation
mode. Similar to parent compounds, determination of modified fumonisins is hampered by matrix
effects. Therefore, the use of matrix-matched calibration or of isotopic standards is required.

5.3.2. Indirect methods

It has been observed that performing alkaline hydrolysis of contaminated corn products often leads
to higher amounts of released hydrolysed fumonisins than calculated by routine analytical methods.
These additional amounts of FB1–4 may be due to the presence of both non-covalently and covalently
bound fumonisins and it is not possible to distinguish between the two forms.

Hydrolysis causes cleavage of the tricarballylic ester groups of FB1–4 releasing HFB1–4 that can be
easily quantified by LC–MS. As sugar, starch, peptide or protein conjugates are also attached to the FB
side chains through ester or amide bonds with the TCA side chain (see Figure 3), HFB1–4 can be
released from these conjugates upon such treatment (Dall’Asta et al., 2009, 2010).

Originally, the analytical approach based on alkaline hydrolysis comprised of two steps: (i) extraction
of ‘free’ fumonisins using water/methanol followed by LC–MS/MS determination of FB1–2; and
(ii) alkaline treatment of the extracted sample followed by LC–MS/MS determination of HFB1–3 (Kim
et al., 2003; Park et al., 2004).

Table 2: Final analytes monitored for the detection of fumonisin B1–4 and their modified forms
depending on the analytical approach

Compound in sample Direct analysis Alkaline hydrolysis Enzymatic digestion

FB1–4 FB1–4 HFB1–4 FB1–4
HFB1–4 or pHFB1–2 HFB1–4 or pHFB1–2 HFB1–4 HFB1–4 or pHFB1–2
Matrix-bound FB1
(covalently bound)

Not directly detectable HFB1 FB1 + unknown products

N-(carboxymethyl) FB1 N-(carboxymethyl) FB1 N-(carboxymethyl) HFB1 N-(carboxymethyl) FB1
N-(1-deoxy-D-fructos-1-yl)-
FB1

N-(1-deoxy-D-fructos-1-yl)-
FB1

N-(1-deoxy-D-fructos-1-yl)-
HFB1

N-(1-deoxy-D-fructos-1-yl)-
FB1

O-fatty acyl FB1 O-fatty acyl FB1 HFB1 Not tested
N-fatty acyl FB1 N-fatty acyl FB1 N-fatty acyl HFB1 Not tested

N-acetylated FB1 N-acetylated FB1 Not tested Not tested

FB1–4: fumonisin B1–4; HFB1–4: hydrolysed fumonisin B1–4; pHFB1–2: partially hydrolysed fumonisin B1–2.

8 Nixtamalised maize flour.
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Because this approach was time-consuming and difficult in terms of sample handling, methods
developed more recently are often based on a single step: after the alkaline hydrolysis of the sample,
fumonisins are quantified as HFB1–4 by LC–MS/MS and the sum is referred as ‘total fumonisins’
(Dall’Asta et al., 2012) and recovery for HFB1–3 ranges from 92% to 98% with an LOQ of 70 lg/kg.
Such indirect methods have been applied quantitatively only for FB1–3, and data on recovery of FB4 as
HFB4 after hydrolysis have not been yet been reported.

Although indirect methods based on alkaline hydrolysis are often used for total FB determination,
this approach is prone to bias because preformed HFBs are co-determined with total FBs, especially
when calculations are applied for free and bound FB1–3 (Dall’Asta et al., 2009; Bryla et al., 2014,
2016). Its main drawback is the lack of information obtained about the individual modified forms
occurring in the samples, since all forms are detected as HFB1–3 and then the results are given as
FB1–3 equivalents (this is also true for non-covalently bound FB1–3 present in a given sample).

As an alternative approach, some authors proposed the application of a digestion protocol to
completely degrade matrix macroconstituents (Dall’Asta et al., 2010).

Although it provides information on the pattern of modified forms occurring in the sample, this
procedure is rarely applied as the time-consuming digestion phase is not suitable for routine analysis.

5.4. Extraction and analysis of urinary exposure and effect biomarkers
of fumonisins

Exposure to fumonisins can be assessed using urinary biomarkers. FB1–3 and HFB1 have been
suggested as direct biomarkers of exposure by several authors (Shephard et al., 2007; Ediage et al.,
2012; Torres et al., 2014; Heyndrickx et al., 2015). However, because of the poor urinary excretion of
fumonisins and the consequent need for high sensitivity analytical procedures, the sample protocol
requires an extensive clean-up and concentration step, based on SPE C18 cartridge purification.

Fumonisin exposure may perturb sphingolipid metabolism and as a consequence changes in Sa and
So or their ratio in urine may occur. The increase in urinary Sa and the Sa/So ratio in rats was
primarily associated with dead cells sloughed into the urine (EHC, 2000). Although indicative of FB
exposure, such changes are regarded as biomarkers of effect rather than exposure (Riley et al., 1994;
Castegnaro et al., 1998; van der Westhuizen et al., 2011; Hahn et al., 2015). The protocol commonly
used is based on a liquid-liquid partition, using ethyl acetate or acetonitrile as organic phase, followed
by LC–MS/MS analysis. To obtain an effective recovery of Sa and So from urine, strict control of the pH
is crucial and often a hydrolysis step may be necessary. The use of sphingoid base analogues (i.e.
phytosphingosine or D-erythro-C20-dihydro-So) as an internal standard is often reported to allow
appropriate recovery correction.

6. Occurrence of fumonisin B1–4 and their modified forms

FB1–4 are mainly produced by Fusarium fujikuroi complex species, among these mainly F. verticillioides
and F. proliferatum which colonie predominantly maize and sorghum. It was also shown that for
F. verticillioides the pattern of FB1–4 production in maize and the relative amount of FB1 compared to FB2,
FB3 and FB4, is related to climatic factors, such as water activity and temperature (Marin et al., 2010;
Mylona et al., 2012).

FB2 and FB4, but not FB1 and FB3, are produced by Aspergillus sec. Nigri, mainly in vegetables and,
to a lower extent, in cereals (Frisvad et al., 2007). However, data on the co-occurrence of FB2 and FB4
produced by A. sec Nigri in grapes and raisins are still scarce (Logrieco et al., 2011; Knudsen et al.,
2011; Susca et al., 2014; Qi et al., 2016).

While climatic conditions prior to harvest are the most important determinants for fumonisin
production in the field, other important factors include maturity class of hybrids, nitrogen fertilisation,
time of sowing and harvest and grain moisture (Battilani et al., 2008; Pietri and Bertuzzi, 2012).

6.1. Occurrence of fumonisin B1–4

Only FB1 and FB2 are currently considered in EU regulations on food and feed and occurrence data
reported in the literature are mainly on these two compounds. Nevertheless, availability of MS-based
methods and appropriate analytical standards facilitated collection of information on the presence of
FB3 in maize and products thereof over the last decade. Still, there are only very few studies reporting
FB4 occurrence in grain.
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A series of studies reported the occurrence of FB1 and FB2 in maize and products thereof in
different European Countries (e.g. Candlish et al., 2000; D’Arco et al., 2009; Cano-Sancho et al., 2012;
Jaksic et al., 2012; Rubert et al., 2013; Christofidou et al., 2015). Although occurrence is widespread,
concentration levels ranged only between 0.2 and 2 mg/kg, with generally higher levels in
unprocessed material. Maize harvested in Italy in 2006–2008 showed mean FB concentrations (sum of
FB1 and FB2) in the range of 4.8 to 10.9 mg/kg (Berardo et al., 2011).

Occurrence of FB1–4 in Triticum spp. (i.e. soft wheat and spelt) in association with F. proliferatum was
reported (Castoria et al., 2005; Desjardins et al., 2007; Chehri et al., 2010; Cendoya et al., 2014).
Several studies reported occurrence of fumonisins in spices and herbs, black tea, herbal infusions and
maize-based beer (Martins et al., 2001; Monbaliu et al., 2009, 2010; Bertuzzi et al., 2011).

Bakker et al. (2009) assessed the exposure of children to FB1–2 in the Netherlands, using a 24-h
diet recall and FB1 and FB2 were detected in about 28% and 7% of the samples, respectively.
Estimated mean daily intake levels for FB1 and FB2 were 291 and 28 ng/kg bw per day, respectively.

FB2 is produced also by Aspergillus niger (Frisvad et al., 2007), which can infect grapes, wheat and
maize (Logrieco et al., 2009, 2014; Nielsen et al., 2009; Mogensen et al., 2010; Chiotta et al., 2011).
Although data on the occurrence of FB2 in raisins, must and wine are still scarce, it was shown that
FB2 can co-occur with ochratoxin A in grape-based products (Logrieco et al., 2010; Abrunhosa et al.,
2011). In raisins, FB2 co-occurred with FB4 (Knudsen et al., 2011).

FB3 is often detected together with FB1 and FB2 in maize and products thereof, but its
concentration usually does not exceed those of FB1 and FB2, and usually accounts for an additional
10–15% to FB1 levels (Hahn et al., 2015).

Occurrence data on FB4 in maize products are scarce. However, in a recent survey, FB4 was
detected at concentrations above the limit of detection (LOD) in 28% of the analysed maize samples
(n = 1,113), with a maximum concentration of 4.3 mg/kg accounting for up to 13% of the maximum
concentration reported for FB1 (31.8 mg/kg) (Kovalsky et al., 2016). The same survey reported
occurrence of FB3 in 40% of the analysed samples and at concentrations comparable to those of FB4.

6.2. Effect of processing on fumonisin B1–4

The effect of processing on FB1 distribution and occurrence in maize has been studied extensively.
Due to structural similarities, results obtained for FB1 may likely be extrapolated to other FBs.

Fumonisins are heat-stable, but when contaminated maize undergoes thermal processing, a
reduction in FB content is often observed. Upon baking or canning, where temperatures are < 175°C,
little or no loss of fumonisins is observed. Processes such as frying and extrusion cooking, where
temperatures are > 175°C, result in greater losses (up to 90%) especially when reducing sugars are
added. This is consistent with the formation of modified forms via Maillard-type reaction (Bullerman
et al., 2002). The choice of reducing sugar used for product formulation may affect FB reduction.
Castelo et al. (2001) showed that concentrations of FB1 in maize grits decreased in the following
order: addition of glucose > fructose > sucrose > no addition of sugars.

Extrusion cooking has been shown to decrease the content of FB1 in final products, which can be
explained by Maillard-type modification. Seefelder et al. (2001) demonstrated the formation of
NCM-FB1 upon extrusion cooking (160–180°C, 16–20% moisture content), at different amounts based
on the sugar added (D-glucose >> sucrose). However, the authors reported a total recovery of FB1,
expressed as the sum of residual FB1 in the final product and formed NCM-FB1, ranging between 10%
and 40% of the initial contamination. Alkali-treatment led to the further release of HFB1 (up to 15%),
but not in sufficient amount to explain the mass unbalance. Therefore, the authors suggested the
occurrence of matrix-bound fumonisins (Seefelder et al., 2001).

Notably, NaCl, which is usually present in commercial products, may affect the reliability of
fumonisin analysis when strong anion-exchange (SAX) columns are used for the clean-up step. The
choice of proper analytical methodologies is thus crucial to effectively study the impact of processing
on FB content.

Nixtamalisation, an alkaline treatment used for the production of masa flour, is known to cause FB
reduction via TCA cleavage and formation of HFBs (Dombrink-Kurtzman et al., 2000; Palencia et al.,
2003; De La Campa et al., 2004; Voss et al., 2006; De Girolamo et al., 2011).

A significant reduction in fumonisin content was also reported in fermented maize (Mokoena et al.,
2005; Chelule et al., 2010). Fermentation due to lactic acid bacteria is often used for staple food
preparation in rural areas. However, the mechanism of reduction has not yet been elucidated.
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Dry milling of maize revealed a heterogeneous distribution of fumonisins in the different parts of
the grain, with higher levels in outer layers and lower levels in material from inner parts, such as corn
meal and flaking grits (Castells et al., 2008; Aprodu and Banu, 2015). Levels are usually two to four
times higher in germ and bran than in the whole corn. During milling, redistribution leads to a strong
concentration in corn grits and middlings (Broggi et al., 2002). Similar results were obtained in the
processing of precooked maize semolina (Generotti et al., 2015).

Becker-Algeri et al. (2013) showed that thermal treatment is effective in reducing FB1 content in
rice. In particular, cooking and dry heat treatment led to a reduction of 70–80%, while no significant
reduction was obtained by autoclaving.

Bryla et al. (2014) studied the effect of baking on fumonisins content in gluten-free products.
Results indicate a significant reduction of about 30% in FB1–3 concentrations. However, after prior
alkaline hydrolysis of the sample, further reduction of FBs was only 10%.

When FB1–3 content in maize-based products (n = 88) was measured before and after alkaline
hydrolysis, FB levels above the limit of quantification (LOQ) were found in 57% of all tested samples
before hydrolysis (mean concentration: 390 lg/kg), whereas they were above the LOQ in 77% of the
samples after alkaline hydrolysis (mean concentration: 574 lg/kg). The highest concentration was
observed in maize snacks, and the lowest in maize-based starch concentrate products. None of the
tested products had FB1–3 concentrations above the LOQ before hydrolysis, whereas after alkaline
hydrolysis, a mean FB1–3 concentration of 82 lg/kg was found. Overall, the differences were more
pronounced in thermally processed products like corn flakes and snacks processed at higher
temperatures than in maize flour, groats or raw popcorn grains (Bryla et al., 2016).

In a recent survey from Brazil (Oliveira et al., 2015), 72 maize samples were analysed using direct
and indirect protocols. The ranges of concentrations of total fumonisins (expressed as HFB1–3) found
were 1.5–3.8 times the concentration of free FB1–3, and in 25% of the samples, concentrations
exceeded 5 mg/kg. A strong positive correlation was found between free and total fumonisins, in
agreement with previous studies (Dall’Asta et al., 2012; Bryla et al., 2014, 2016).

6.3. Occurrence of modified fumonisin B1–4

Occurrence of modified FBs is reported from a number of studies, mainly aimed at investigating
their formation and stability during maize processing. Most of these studies are based on model
systems or originated from multi-parameter experimental designs and only a few deal with occurrence
in naturally contaminated samples.

6.3.1. Partially and totally hydrolysed fumonisin B1–4

Whereas in several studies occurrence and formation of HFB1–4 in alkali processed foods, was
determined, little is known on the (co)-occurrence of partially hydrolysed forms with their parent
compounds, likely due to the lack of appropriate standards.

A recent study described the formation of HFB1–2 in naturally contaminated maize during the
production of masa flour. FB1–2 and pHFB1–2 were found in raw maize, while no pHFBs or HFBs were
detected. While concentrations of FB1 and FB2 ranged from 4.0 to 16.7 mg/kg and 1.2 to 3.7 mg/kg,
respectively, levels of pHFB1 and pHFB2 were two orders of magnitude lower (i.e. ranging from 0.06 to
0.25 mg/kg and 0.05 to 0.26 mg/kg, respectively). During alkaline-cooking processing, FB1–2 were
converted to both pHFB1–2 and HFB1–2 and at the same time, pHFB1–2 were converted to HFB1–2. The
authors reported that the total amount of FB1–2, pHFB1–2 and HFB1–2 measured after alkali-cooking
accounted for a total of 85–115% of the original amount (on a molar base) when maize was cooked
without lime, 166–183% when maize was cooked with 1% lime and 153–165% when maize was
cooked with 5% lime, suggesting that nixtamalisation releases matrix-associated FB1–2 that are then
converted to both pHFB1–2 and HFB1–2 (De Girolamo et al., 2016).

An exposure survey in Germany reported occurrence of HFB1–3 in thermally and/or alkali-treated
maize products, such as nibbles and extruder products, cereal grits and breakfast cereals including
corn flakes. In corn flakes and cereal grits, HFB1–3 were more frequently found (62.4% vs 55.8%,
respectively) and at higher concentration level than FB1–3 median concentration (13.0 lg/kg vs
10.0 lg/kg, respectively) (Zimmer et al., 2008).
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6.3.2. N-(carboxy methyl)-fumonisin B1 and N-(1-deoxy-D-fructos-1-yl)-
fumonisin B1

While the formation of NCM-FB1 and NDF-FB1 has been extensively studied, their occurrence in
food is rarely reported in the literature and limited to FB1 conjugates (Seefelder et al., 2001) measured
the presence of NCM-FB1, together along with FB1 and HFB1 in maize-based retail products (n = 10)
from the German market (Seefelder et al., 2001). All samples contained FB1 (22–194 lg/kg) and HFB1
(5–247 lg/kg and six out of ten samples also contained also NCM-FB1 (10–76 lg/kg).

6.3.3. O-fatty acyl fumonisin B1

Occurrence of O-fatty acyl esters of FB1 (i.e. O-linoleoyl-FB1, O-oleoyl-FB1) was reported from highly
contaminated raw maize. The mean concentration of FB1 (n = 3) was 321.7 mg/kg whereas mean
concentration of the sum of O-linoleoyl-FB1 and O-oleoyl FB1 was 2.1 mg/kg (i.e. 0.6% when compared
with FB1) (Falavigna et al., 2013).

No information on the (co)occurrence of O-acyl conjugates of FB2–4 has been identified by the
CONTAM Panel.

6.3.4. N-fatty acyl fumonisin B1

N-fatty acyl FB1, i.e. N-linoleoyl FB1, N-oleoyl FB1, N-stearyl FB1 and N-palmitoyl FB1, have been
analysed in retail alkali-processed and fried maize foods (i.e. maize chips, taco shells, and tortilla chips).
N-acyl conjugates were found only in one out of 38 samples, at a total concentration of 65 lg/kg
(Park et al., 2013).

Information on the occurrence of N-acyl conjugates of FB2–4 has not been identified by the
CONTAM Panel.

6.4. Transfer of fumonisins B1–4 and their modified forms

There is limited information about the transfer of fumonisins to food of animal origin. Gazzotti et al.
(2009) reported the occurrence of FB1 in bovine milk in 8 out of 10 samples tested (mean
concentration: 0.26 lg/kg). The same authors reported the occurrence of FB1 in five out of seven liver
tissue samples from pigs fed for 7 weeks with naturally contaminated feed (two concentration levels in
feed: 0.91 mg/kg for the first 3 weeks; 2.3 mg/kg for the next 4 weeks). The authors reported a
mean concentration in liver of 28 lg/kg (range: 15.7–42.5 lg/kg), whereas HFB1 was found in 1 out
of 7 samples and at a concentration of 17.3 lg/kg. Fodor et al. (2006) reported a mean accumulation
of FB1 and FB2 in the liver (99.4 lg/kg and 1.4 lg/kg, respectively), kidney (30.6 lg/kg for FB1), and
fat (2.6 lg/kg for FB2) in weaned barrows treated with 50 mg FB1, 20 mg FB2 and 5 mg FB3/animal
per day for 22 days. A higher accumulation was reported by Meyer et al. (2003), with a mean FB1
concentration in pig liver of 231 lg/kg.

The CONTAM Panel did not identify information on the transfer of modified FBs.

7. Toxicokinetics of fumonisin Bs and their modified forms

Previous evaluations of fumonisins by the SCF (2000) and the JECFA (FAO/WHO, 2012) have
concluded that FB1 is poorly absorbed after oral ingestion in farm animals (e.g. swine, cow, laying hen)
and experimental animals (rat, mouse, monkey). The bioavailable amount (less than 4% of the dose)
is rapidly distributed to all organs and eliminated by biliary excretion without biotransformation. Faecal
excretion vastly predominates over urinary excretion. Small amounts of partly hydrolysed and fully
hydrolysed FB1 were detected as metabolites in faeces and are believed to be generated by the colonic
microbiome. Modified forms of fumonisins have not been addressed in depth in the previous
evaluations (EHC, 2000; SCF, 2000, 2003; FAO/WHO, 2001, 2012).

In this opinion, the characteristic features of the toxicokinetics of fumonisins will be discussed in
more detail, including more recent studies and modified forms.

The vast majority of the toxicokinetic studies on fumonisins (summarised by Shier, 2000; Voss
et al., 2001a,b, 2007; Wang et al., 2016) have been conducted with FB1 or with a natural mixture of
fumonisins obtained from fungal cultures, which contained predominantly FB1 and smaller amounts of
FB2 and FB3. No studies have been identified on the toxicokinetics of FB3 and FB4, and only limited
data have been identified on the modified forms HFB1, pHFB1 and NDF-FB1 and no data on NCM-FB1
although the latter compound is relevant as it was also detected in food samples (Seefelder et al.,
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2001). It is generally assumed that the toxicokinetics and metabolism of FB2, FB3 and FB4 are similar
to that of FB1 due to the similarity of their chemical structures and polarities. However, there is some
evidence that the toxicokinetics of FB2 and FB3 may be different than FB1 in that they may be less
bioavailable and less accumulated in the liver and kidney as seen in some animal studies (Fodor et al.,
2006; Riley et al., 2006) and less well excreted in urine as suggested in human studies (Riley et al.,
2012; Torres et al., 2014). Modified forms resulting from hydrolysis or Maillard-type reactions (see
Section 4) have markedly different structures and polarities, and therefore their toxicokinetics may
differ from that of FB1.

7.1. Absorption

7.1.1. Fumonisin Bs

Several studies in rats indicate that the gastrointestinal absorption of FB1 is very low (Norred et al.,
1996; Voss et al., 2001a,b). For example, a bioavailability of 3.5% was determined for a single dose of
10 mg FB1/kg bw administered orally to male Wistar rats (Martinez-Larranaga et al., 1999). Plasma
levels of FB1 peaked at 1.0 h and declined thereafter with a half-life of 3.1 h. The low but rapid
intestinal absorption and short half-life are consistent with an earlier study in bile-duct cannulated male
Wistar rats using 14C-labelled FB1, whereas 67% of a single dose of 7.5 mg 14C-FB1/kg bw were found
in the 4-h bile after i.p. administration, less than 0.2% were present in the bile after oral gavage of
the same dose (Shephard et al., 1994a). This indicates low bioavailability resulting from low absorption
and not from rapid biliary excretion. When a single dose of 7.5 mg 14C-FB1/kg bw was injected i.p. into
male BD IX rats, 32% of the radioactivity was recovered in the 24-h urine, but only traces of urinary
activity were found after oral gavage of the same dose (Shephard et al., 1992a,b). This finding again
supports the low absorption after oral administration.

14C-FB1 was also used to determine an oral bioavailability of only 3–6% in swine (dose 0.5 mg/kg
bw, Prelusky et al., 1994) and 0.7% in laying hens (dose 2.0 mg/kg bw, Vudathala et al., 1994). No
FB1 could be detected in plasma of cows after a single oral dose of 5 mg/kg bw of unlabelled FB1
(Prelusky et al., 1995). After administration of a single oral dose of 100 mg FB1/kg bw to turkey poults
and ducks, plasma levels peaked at 3 h and at 1–2 h, and bioavailability was about 3% and 2% in
turkey poults (Tardieu et al., 2008) and in ducks (Tardieu et al., 2009), respectively. In vervet monkeys
receiving a single dose of 6.4 mg 14C-FB1/kg bw by oral gavage, FB1 peaked in plasma within 2 h at a
very low level (Shephard et al., 1995b).

Gastrointestinal absorption of FB2 has been studied in male BD IX rats (dose 7.5 mg FB2/kg bw,
Shephard et al., 1995a) and vervet monkeys (7.5 mg FB2/kg bw, Shephard and Snijman, 1999), and
has been found to be similar to that of FB1, i.e. very low.

Very limited data from humans consuming fumonisin-contaminated maize diets suggest that the
low gastrointestinal absorption of FB1 found in animal studies is also true in humans (Riley et al.,
2012; and literature cited therein). This is based on the very low urinary excretion of FB1 consistently
observed in all such reports (see Section 7.4.1). In vitro studies using differentiated Caco-2 cells,
(human epithelial colorectal adenocarcinoma cell line) which represent an established model for human
intestinal absorption, confirm that FB1 is very poorly absorbed (De Angelis et al., 2005).

7.1.2. Modified fumonisin Bs

No in vivo studies on the gastrointestinal absorption of modified forms of FB1–4 in animals or
humans have been identified. From a study on the urinary, biliary and faecal excretion of radiolabelled
FB1, HFB1 and NDF-FB1 in rats (Dantzer et al., 1999; see Section 7.4.2), it was concluded that HFB1 is
about 2.5-fold better absorbed than FB1 and the sugar conjugate NDF-FB1. However, this finding was
not supported by a more recent rat study (Hahn et al., 2015) using LC-MS/MS and showing that the
urinary excretion of HFB1 and NDF-HBF1 is equally low as FB1 and marginal in comparison to faecal
excretion (see Section 7.4.2).

In the Caco-2 model for human intestinal absorption, HFB1 was found to cross the plasma
membranes in both directions, although the passage from the apical (representing the intestinal
lumen) to the basolateral (blood) side was lower than the reverse (De Angelis et al., 2005), suggesting
that the rate of intestinal cell flux of HFB1 may exceed the rate of intestinal absorption. A somewhat
similar situation was seen in cultured pig kidney renal epithelial cells (LLC-PK1) where the rate of
14C-FB1 accumulation in cells required greater than 8 h to reach equilibrium with the external
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concentration, indicative of passive accumulation, but the rate of efflux required only a few minutes
suggesting an active process (Enongene et al., 2002).

7.2. Distribution

7.2.1. Fumonisin Bs

The general observation made in studies in numerous animal species was that FB1 is distributed to
virtually all organs after absorption from the gastrointestinal tract, although liver, kidney and muscle
appear to be preferred. As an example, radioactivity remaining in various organs of male vervet
monkeys 24 h after a single oral dose of 6.4 mg 14C-FB1/kg bw accounted for 0.6% of the dose in the
liver, 0.14 in muscle, 0.03 in kidney, 0.02 in brain, and 0.01 or less in spleen, gonads, heart, lung, and
red blood cells (Shephard et al., 1995a). In various rat strains (Sprague–Dawley, Wistar, BD IX) orally
exposed to FB1, the toxin is found unchanged primarily in kidney and liver, and the differential
sensitivity of these two organs appears to correlate with the tissue concentration (Riley and Voss, 2006
and references cited therein).

7.2.2. Modified fumonisin Bs

No studies on the distribution of modified forms have been identified by the CONTAM Panel.

7.3. Metabolism

7.3.1. Fumonisin Bs

The in vivo and in vitro metabolism of fumonisins has recently been reviewed by Wang et al. (2016).
In summary, two metabolic pathways have been demonstrated for FB1 in mammals: (1) hydrolysis of the
ester groups with the consecutive release of the two tricarballylic acid moieties, (2) fatty acylation of the
amino group (Figure 4).

The hydrolytic pathway (1) gives rise to the isomeric pHFB1a and pHFB1b and eventually to HFB1,
also termed aminopentol (AP or AP1). The two isomers of pHFB1 appear to be converted to each other
in solution by intramolecular transesterification (migration of the tricarballylic acid between the hydroxy
groups at C14 and C15). A mixture of the two pHFB1 isomers has been identified together with small
amounts of HFB1 in the faeces of vervet monkeys receiving a single oral dose of 14C-FB1 (8 mg/kg bw,
Shephard et al., 1994b). pHFB1 and HFB1 were also found in the colon but were not detectable in the
bile of vervet monkeys, even after i.v. administration of 14C-FB1 (1.7 mg/kg bw, Shephard et al.,
1995b). Likewise, the bile of rats after oral gavage of FB1 contained only unchanged FB1 and no

Figure 4: Metabolic pathways of FB1. For the N-acyl (H)FBs the fatty acid acyl chain length ranges
from C16:0 to C24:1
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evidence for any metabolic product (Shephard et al., 1994a). However, when rats were fed a diet
containing FB1 for three weeks, small amounts of both pHFB1 isomers (together 2–6% of the total
faecal metabolites) together with traces of HFB1 were detected in the faeces (Hahn et al., 2015).
Therefore, it is likely that hydrolysis of FB1 does not occur in mammalian tissues, but is rather
mediated by the colonic microbiome of some species (Shephard et al., 1995b; Fodor et al., 2008). In
support of this notion are the observations that neither hydrolytic nor other metabolic products were
detected upon incubation of FB1 with primary rat hepatocytes or with rat or bovine liver microsomes
(Cawood et al., 1994; Spotti et al., 2001). Moreover, FB1 was not a substrate of rat hepatic triglyceride
lipase or porcine pancreatic lipase (Cawood et al., 1994), On the other hand, FB1 was efficiently
hydrolysed to pHFB1 and also to small amounts of HFB1 in anaerobic incubations with suspensions of
pig caecal contents (Fodor et al., 2007). In contrast, no hydrolysis products of FB1 were found in
anaerobic incubations with ruminal fluid (Caloni et al., 2000). There was also no indication of
hydrolysis of FB1 by human intestinal bacteria, as its concentration did not decrease in the culture
medium during a 72 h incubation period (Becker et al., 1997). Thus, bacterial hydrolysis of fumonisins
may vary among species.

In contrast to the hydrolysis of fumonisins, the acylation of the amino group (pathway 2 in
Figure 4) is clearly a mammalian metabolic reaction, probably mediated by CerS, the physiological role
of which is the fatty acylation of free sphingoid bases (see MoA). Harrer et al. (2013) first
demonstrated the formation of N-fatty acyl FB1 in several mammalian cell lines, including cells
overexpressing CerS. Acyl groups ranged from C16:0 (palmitoyl) to C24:1 (nervonoyl), and the extent
of fatty acylation depends on the acyl group and the cell line. More recently, N-fatty acyl FB1
metabolites were also identified in the kidney and liver of male Sprague–Dawley rats after i.p.
administration of FB1 for five consecutive days (Harrer et al., 2015). While the metabolites in the
kidney contained predominantly C16:0 acyl groups, C24 groups predominated in the liver. This tissue-
specific N-fatty acylation is due to different isoforms of CerS expressed in kidney and liver (Harrer
et al., 2015).

Deamination has thus far not been reported for fumonisins but has been reported for their
hydrolysis products, which are considered modified forms (see below).

7.3.2. Modified fumonisin Bs

Limited information is available on the hydrolytic metabolism of pHFB1 and NDF-FB1 from the study
of Hahn et al. (2015), which is described in more detail in Section 7.4.2: Whereas the two isomers of
pHFB1 are prone to further hydrolysis to HFB1, NDF-FB1 appears to be hydrolysed to a significant
extent to FB1 in the rat in vivo, possibly by the colonic microbiome.

Two pathways for the metabolism of the fully hydrolysed fumonisins HFB1 and HFB2 have been
demonstrated, i.e. fatty acylation (Figure 3) and deamination.

Following the earlier report that CerS acylates HFB1 to N-palmitoyl-HFB1 ((C16:0-HFB1, Humpf
et al., 1998). Seiferlein et al. (2007) showed that HFB1 and HFB2 were converted to their respective N-
acylated metabolites by rat hepatic microsomes in the presence of the cosubstrates palmitoyl-CoA or
nervonoyl-CoA. Moreover, the presence of N-acyl HFB1 with acyl groups derived from fatty acids of
various chain length (predominantly C24) was demonstrated in the liver of rats after i.p. dosing with
HFB1 (Seiferlein et al., 2007).

Deamination, which represents the conversion of a free amino group to a carbonyl group, is a
common reaction of aliphatic amines in mammalian cells. It has not been demonstrated as a pathway
in the mammalian metabolism of fumonisins to date. However, it has been established in yeast and
bacteria as the second step in the degradation of fumonisins, following the hydrolysis as a first step
(Blackwell et al., 1999; Hartinger et al., 2011). As the free amino group is essential for the toxicity of
fumonisins (see MoA), deamination is generally considered as an important detoxification reaction.

According to in vitro studies reported by Cirlini et al. (2015) the modified forms HFB1 and NDF-FB1
appear to not to be stable in the human gastrointestinal tract. Although HFB1 was rather stable in an
artificial system simulating human digestion in the small intestine, it was, however, partially
metabolised to unknown compounds in an in vitro human colonic fermentation. Conversely, NDF-FB1
was partially cleaved in the digestive model system, but was not affected by the human colon
microflora.
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7.4. Excretion

7.4.1. Fumonisins Bs

Numerous studies in experimental and farm animals have shown that the vast majority of orally
ingested FB1 and FB2 is excreted unchanged with the faeces and only a minor proportion with the
urine (Shier, 2000; Voss et al., 2001a,b, 2007; Wang et al., 2016). For example, only 0.5% of the total
radioactivity of a single dose of 0.69 lmol 14C-labelled FB1/kg bw, administered by oral gavage to male
and female F344/N rats, was excreted in the urine within 84 h, whereas the faeces contained 90%
after the same time (Dantzer et al., 1999). Most of the urinary and faecal excretion occurred during
the first 12 and 48 h, respectively, and there was no gender difference. Biliary excretion in bile duct-
cannulated female Sprague–Dawley rats after the same dosing protocol amounted to 1.5% of the
administered radioactivity within 4 h (Dantzer et al., 1999). Hence, the major fraction is not absorbed
but is passed unchanged in the faeces.

Hahn et al. (2015) fed a diet equivalent to 13.9 lmol FB1/kg bw to male Sprague–Dawley rats and
determined the pattern of parent toxin and hydrolytic metabolites in the 24-h urine and faeces after 1,
2 and 3 weeks. Only traces of FB1 and no metabolites could be detected in rat urine by LC–MS. In
contrast, considerable amounts of FB1 were observed in the faeces at all sampling points, together
with small quantities of pHFB1a, pHFB1b and HFB1; the amount of FB1 was about 100-fold higher in
faeces than in urine, and the hydrolytic metabolites in faeces accounted for about 5% of the faecal
FB1. This study confirms that faecal excretion predominates over urinary excretion, and is consistent
with partial hydrolytic metabolism of FB1 in the rat digestive tract.

For humans, estimations of the urinary and faecal excretion of parent fumonisins are based on
studies with volunteers eating food prepared from maize naturally contaminated with fumonisins. Very
low concentrations of FB1 (usually below 1 ng/mL) were detected in urine in several studies (Gong
et al., 2008; Xu et al., 2010; van der Westhuizen et al., 2011; Riley et al., 2012, 2015a; Robinson
et al., 2012; Torres et al., 2014). In one study, it was estimated that urinary excretion accounted for
0.05–0.1% of the ingested amount of FB1 (van der Westhuizen et al., 2011). Although the
contaminated maize, in addition to FB1 also contained FB2 and FB3, the latter two fumonisins were
either not detected in urine (Riley et al., 2012) or present only at much lower concentrations
compared to their levels relative to FB1 in maize (Riley et al., 2012; Torres et al., 2014). This suggests
that FB2 and FB3 are less well absorbed or less excreted in the urine compared to FB1. Results from
studies in pigs, rats and mice are also consistent with the hypothesis that FB2 is either absorbed or
eliminated to a different extent than FB1. In rats (Riley and Voss, 2006) and pigs (Fodor et al., 2006),
the amounts of accumulated FB2 relative to FB1 were less than what would be expected based on their
relative amounts in the diets which contained both FB1 and FB2. The possible difference in how FB2 is
absorbed or excreted is also consistent with the results of the study of Howard et al. (2002) where FB2
was without any effects in mice but FB1 was both hepatotoxic and disrupted sphingolipid metabolism
in the liver.

After ingestion of fumonisin-contaminated maize food by volunteers, faecal concentrations of FB1 in
the range of several lg/g (about the same levels as in maize) have been reported by Chelule et al.
(2001). Thus, like in other mammalian species, faecal excretion appears to markedly predominate over
urinary excretion of parent fumonisins in humans.

7.4.2. Modified fumonisin Bs

Dantzer et al. (1999) also studied the urinary, faecal and biliary excretion of radioactivity in rats
after oral administration of 14C-labelled HFB1 and NDF-FB1 (equimolar single doses of 0.69 lmol/kg
bw). Within 84 h, 4.4% of the dosed radioactivity was recovered in urine for NDF-FB1 but markedly
higher amounts for HFB1, i.e. 17.3% in females and 12.8% in males. Faeces of both sexes contained
92% of the radioactivity after dosing NDF-FB1 and 89% after dosing HFB1. Biliary excretion of
radioactivity within 4 h of administering NDF-FB1 and HFB1 was 0.8 and 1.7%, respectively. The
excreted radioactivity was not analysed for metabolites.

Hahn et al. (2015) fed a diet containing 13.9 lmol/kg bw of unlabelled pHFB1 (mixture of a and b
isomer) or HFB1 or NDF-FB1 to male Sprague–Dawley rats and analysed the 24-h urine and 24-h
faeces after 0, 1, 2 and 3 weeks by LC–MS for FB1, pHFB1, HFB1a, pHFB1b and NDF-FB1. Only traces
of some of the modified forms were detected in urine. In the faeces of rats dosed with the mixture of
the pHFB1 isomers, pHFB1a and pHFB1b were the main forms excreted, together with smaller amounts
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of HFB1. Faeces of rats fed HFB1 contained large amounts of HFB1, indicating that the hydrolytic
metabolism of FB1 is irreversible. However, in the faeces of rats dosed with NDF-FB1, large amounts of
NDF-FB1 were detected together with significant amounts of FB1 (about 30% of the faecal
metabolites), suggesting some hydrolysis of NDF-FB1 with the release of FB1.

7.5. Summary remarks on toxicokinetics

Animal studies indicate that FB1 is poorly absorbed from the gastrointestinal tract (less than 4% of
the dose), rapidly cleared from the blood (with half-lives of less than 4 h) by the biliary route, and
preferentially excreted with the faeces (usually more than 90% of the dose).

Small amounts of FB1 are found in liver and kidneys, with even smaller amounts in other organs.
Metabolic pathways of FB1 in mammals comprise (1) hydrolysis of the ester groups leading to two
isomers of pHFB1 and to HFB1 and (2) formation of N-acyl fumonisins with long-chain fatty acids. The
biotransformation of FB1 is low in mammalian tissues and pathway hydrolysis of the TCA moieties
appears to be restricted mostly to the lower gastrointestinal tract of some species, involving the
colonic microbiome. The few data on the excretion of FB1 in humans eating fumonisin-contaminated
maize food suggest that the toxicokinetics of FB1 in humans is the same as in other mammalian
species.

8. Mode of action

8.1. Fumonisin Bs

The MoA of fumonisins has been described in detail in previous evaluations (IARC, 1993, 2002;
EHC, 2000; FAO/WHO, 2001, 2012) and most recently in FAO/WHO (2017). The key event is fumonisin
inhibition of CerS. Inhibition of CerS results in the disruption of sphingolipid metabolism and, as a
consequence, alterations in other lipid pathways. Fumonisins are regarded as structural analogues of
free sphingoid bases (see Figure 1 in Section 4) and they competitively inhibit CerS, a group of key
enzymes in the biosynthesis of ceramide and more complex sphingolipid (Wang et al., 1991).

Ceramide synthases catalyse on the one hand the acylation of Sa to form (dihydro)-ceramide and
more complex sphingolipids. On the other hand, CerS are also responsible for the reacylation of
sphingosine derived from the turnover of more complex sphingolipids. The de novo sphingolipid
biosynthesis and turnover pathways as well as the cellular consequences of FB-disrupted metabolism
are summarised in Figure 5.

Note that FB1 inhibition of CerS causes Sa and Sa 1-P to increase more than So and So 1-P leading
to higher Sa/So ratios in the presence than in the absence of FB1 (see Figure 5). The sphingolipid
pathway is rather complex and in the case of CerS six mammalian isoforms exist (CerS1–6) which
differ in their tissue distribution as well as in their specificity of the fatty acid chain length used for N-
acylation (Tidhar and Futerman, 2013).

Knock-out (KO) mice for CerS2 cannot synthesise very long acyl chain (C22–C24) ceramides. This
phenomenon mimicking the FB1 MoA, results in elevated C16 ceramide and Sa levels. From 30 days of
age, increased rates of hepatocyte apoptosis and proliferation were observed in the KO mice with
nodules of regenerative hepatocellular hyperplasia progressing, at 10 months of age, to hepatomegaly
and non-invasive hepatocellular carcinoma (Pewzner-Jung et al., 2010).

The inhibition of CerS leads to elevated levels of free sphingoid bases and sphingoid base
1-phosphates, in particular Sa and Sa 1-P and to a less extent also So and So 1-P, in a dose dependent
manner in blood and tissues and to a depletion of complex sphingolipids (summarised in Riley et al.,
2015a and Riley et al., 2015b and FAO/WHO, 2012). Note that Sa and Sa 1-P increase more than So and
So 1-P leading to higher Sa/So and Sa 1-P/So 1-P ratios (this is indicated by the size of the open block
arrows in Figure 5). The increased levels of Sa and Sa 1-P (also relative to corresponding sphingosines)
are used as a biomarker for fumonisin exposure in animals as well as in humans (Riley et al., 2015b) (see
Section 11). Recently, Masching et al. (2016) reported increased Sa/So ratios in piglets receiving low
doses of 2 mg FB1+FB2 per kg feed, equivalent to 100 lg FB1+FB2/kg bw, for 42 days.

Besides inhibiting CerS, HFB1 and FB1 were shown to be substrates of CerS. They are converted
in vitro and in vivo (Harrer et al., 2013, 2015) to N-acyl fumonisins with various fatty acid chain length.
N-fatty acyl FB1 is more cytotoxic in vitro compared with FB1 (no in vivo data available). However, the
role of these N-fatty acyl fumonisins in the MoA is not clear yet. Note that these N-fatty acyl
fumonisins penetrate more readily into cells in vitro (Harrer et al., 2013)
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While the role of N-fatty acyl HFB1 in fumonisin toxicity in vivo is unknown, HFB1 has been shown
repeatedly to be much less toxic compared to FB1 in feeding studies (Grenier et al., 2012; Voss et al.,
2013; Masching et al., 2016). From these studies, it can be concluded that when HFB1 is fed to animals its
possible metabolism to N-fatty acyl HFB1 seems not to induce any toxic effects, although N-fatty acyl HFB1
has been detected in vivo and is more cytotoxic in vitro. Likewise, in male Sprague–Dawley rats, the
kidney is much more sensitive to FB1-induced toxicity compared to liver and in the study by Harrer et al.
(2015) the great majority (> 90%) of the total fumonisin in the kidney was unmetabolised FB1, whereas
in the liver approximately half of the total fumonisin consisted of the N-fatty acyl FB1 metabolites (Harrer
et al., 2015). Clearly, revealing the role of N-fatty acyl fumonisins should be a priority for future research.

Concerning structure–activity relationship it was shown in early studies that FB1–4 are inhibitors of
CerS in rat liver slices at equimolar concentrations (Norred et al., 1997). Based on these data, it can
be assumed that at the cellular level FBs have the same MoA, as the inhibition of CerS is the initial
step in the down-stream effects leading to fumonisin toxicity. However, toxicological outcomes are
influenced by differences in absorption, distribution, metabolism, and excretion.

Sphingolipids are both highly bioactive compounds and important structural components in cell
membranes. Ceramide, free sphingosine, and sphingoid base 1-Ps are bioactive molecules in signal
transduction pathways regulating cell growth and death. More complex sphingolipids play important
roles in cellular physiology through direction of protein sorting, lipid raft function, mediation of cell-to-
cell interactions and cell recognition (Bartke and Hannun, 2009). The disruption of sphingolipid
metabolism is closely related at an early stage with fumonisin-induced pathologies including tumour
promotion, carcinogenicity and neural tube defects (NTDs) in sensitive animal strains. This was shown
in many animal studies and more recently also confirmed with additional mechanistic details with
CerS2 null mice (summarised in FAO/WHO, 2017). However, it is not known whether FB1 induced CerS
inhibition is directly linked to any human disease.

Mitochondria were recently shown to be negatively affected by FB1 and effects in astrocytes were
observed at concentrations of 0.5 lM and higher with indications that the complex I of the respiratory
chain is the target of FB1 (Domijan and Abramov, 2011).

FB1 (28 lM) induced single strand breaks in DNA in human peripheral blood lymphocytes and this
effect was related to oxidative stress (Domijan et al., 2015).

FB1 induced DNA hypomethylation and histone demethylation in HepG2 (human hepatoma cell line)
cells which may be responsible for chromatin instability and represent an alternative MoA (Chuturgoon
et al., 2014).

Similarly, histone modifications leading to the disruption of epigenetic events following FB1 exposure
were observed in rat kidney epithelial cells (Sancak and Ozden, 2015).

Open block arrows show the increase (arrow up) or decrease (arrow down) of respective metabolites. Note that
Sa and Sa 1-P increase more than So and So 1-P leading to higher Sa/So and Sa 1-P/So 1-P ratios. The size of the
open block arrows in the figure reflects relative quantitative response in tissues and cells.

Figure 5: A simplified scheme of the de novo sphingolipid biosynthesis and turnover in mammalian cells
indicating the inhibition of CerS by fumonisins and the cellular and biochemical consequences
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FB1 (40 lM) induced an increase in nuclear Sa 1-P and corresponding decrease in histone
deacetylase activity and increased histone acetylation in mouse embryonic fibroblasts (MEF) suggesting
a possible role of FB1 in epigenetic effects (Gardner et al., 2016).

8.2. Modified fumonisin Bs

Some of the modified forms of FB1–4 are also inhibitors of CerS. Although FB1–4 as well as FC4 on a
molar basis have been identified as equipotent inhibitors of CerS in rat liver slices, the hydrolysed
forms HFB1–3 were only 30–40% as potent as the parent compounds (Norred et al., 1997). N-
acetylated FB1 with a C2 chain (FA1, Figure 2 Section 4) did not inhibit CerS in this study; however,
this seems to depend on the fatty acyl chain length as long-chain derivatives such as N-palmitoyl-HFB1
inhibited CerS under in vitro conditions (Humpf et al., 1998). Interestingly FA1 does not inhibit CerS
but is unstable and it can spontaneously rearrange to O-acetylated forms. These rearrangement
products are putative inhibitors of ceramide synthase (Norred et al., 2001). Although hydrolysed
fumonisins HFB1–3 inhibited CerS in rat liver slices several animal experiments have shown that
hydrolysed fumonisin HFB1 did not significantly elevate the Sa/So ratio, an early marker of CerS
inhibition in vivo (reviewed in Voss et al., 2017a). In a recent animal study with rats, FB1 at a single
dose of 10 mg/kg diet significantly increased the Sa/So ratio. In contrast, the modified fumonisins
HFB1, pHFB1 as well as NDF-FB1 did not raise the Sa/So ratio at a single dose equivalent to 10 mg
FB1/kg diet (Hahn et al., 2015). In a dose–response feeding study in mice (Howard et al., 2002), NCM-
FB1 (approximately 0, 14, 70 and 140 lmol/kg diet) for 28 days had no effect on the Sa/So ratio,
ceramide levels, serum analytes, organ weights, or hepatic structure, all of which were affected by FB1
(Howard et al., 2002) (for structures of modified forms of fumonisins see Figure 3).

In summary, the MoA of fumonisins is based on the inhibition of CerS, a group of key enzymes in
the sphingolipid pathway. The disruption of the sphingolipid metabolism is linked at an early stage with
fumonisin-induced pathologies including porcine pulmonary oedema, ELEM, liver and kidney toxicity,
tumour promotion, carcinogenicity and NTDs in animal studies.

9. Biomarkers

9.1. Biomarkers of exposure

Urinary FB1 itself is a biomarker of exposure. In several human studies, the fumonisin levels in food
were correlated with urinary FB1 levels. The results show a clear correlation between fumonisin
exposure and urinary FB1 levels (for a summary of the results until 2012 see FAO/WHO, 2012 and
Turner et al., 2012).

Several human studies have successfully used urinary FB levels as a biomarker for human exposure
to fumonisins (summarised by Van der Westhuizen et al., 2013 and Riley et al., 2015a). In a recent
human study with more than 1,200 participants, urinary fumonisin levels were analysed in women
from low- and high-exposure communities in Guatemala and correlated with the total intake of FB1,
FB2, and FB3 alone or in combination. Total FBs intake was estimated using the mean total FBs in
maize at each sampling interval over a period of one year, each individual’s reported tortilla
consumption and each individual’s body weight at each sampling time point. FB1-levels in maize in
high-exposure communities were much higher (average: 3.69 lg/g) compared with low-exposure
communities (0.69 lg/g). The same trend was observed for the urinary FB1 levels, which were
significantly higher in high-exposure (average: 2.27 ng/mL) compared with low-exposure communities
(average: 0.26–0.38 ng/mL). The results clearly showed a correlation between urinary FB1 and
estimated FB1 intake on an individual basis. Urinary FB1 levels above 0.1 ng/mL resulted in a dose
dependent increase in the risk to exceed 2 lg/kg bw per day (i.e. the JECFA PMTDI) compared with
women with no detectable urinary FB1. More than 50% of the participants exceeded 2 lg/kg bw per
day when urinary FB1-levels were above 0.5 ng/mL (Torres et al., 2014). The FB1 intake based on the
average percentage of urinary FB1 excretion (0.5%, range 0.12–0.9%) determined experimentally in a
recent kinetic study (Riley et al., 2012) was calculated. The predicted urinary FB1 concentration that
coincided with 2 lg/kg bw per day was approximately 0.6 ng/mL, which fitted very well to the values
obtained based on the individual maize consumption data (Torres et al., 2014).

Multimycotoxin biomarker studies have identified FB1 in human urine samples. However, these
studies are difficult to compare as the LOD and LOQ are different and different units for concentration
were used. Furthermore, it is not clear if spot urine, morning urine or 24 h urine samples have been
used. Human urine samples from the following countries and cities have been analysed and the
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number of positive samples and mean urinary FB1 levels were reported: Belgium (Heyndrickx et al.,
2015, 0; % positive samples), Bangkok (Warth et al., 2014, 0; % positive samples), Bangladesh
(Gerding et al., 2015, 1% positive samples), Cameroon (Abia et al., 2013, 3% positive samples, mean
urinary FB1: 0.33 ng/mg creatinine), Germany (Gerding et al., 2014, 2015, 0% positive samples), Haiti
(Gerding et al., 2015, 3% positive samples, mean urinary FB1: 0.29 ng/mg creatinine), Italy (Solfrizzo
et al., 2014, 56% positive samples, mean urinary FB1: 0.055 lg/L), Ivory Coast (Kouadio et al., 2014;
men: 22.8% positive samples, mean urinary FB1: 0.5 lg/L; women: 32% positive samples, mean
urinary FB1: 0.56 lg/L), Nigeria (Ezekiel et al., 2014, 13.3% positive samples, mean urinary FB1:
4.6 lg/L), Sweden (6% positive samples, mean urinary FB1: 0.004 lg/L) and South Africa (Shephard
et al., 2013, single-biomarker method: 87% positive samples, mean urinary FB1: 0.34 � 0.46 ng/mg
creatinine; multi-biomarker method: 96% positive samples, mean urinary FB1: 1.52 � 2.17 ng/mg
creatinine).

In summary, fumonisin biomarkers are helpful to estimate human exposure and recent studies with
large sample cohorts have shown a statistically significant correlation between fumonisin intake and
urinary FB1 levels. Urinary fumonisin levels are indicative of recent exposure to fumonisins and allow
the estimation of the individual chronic exposure especially in areas where maize is a main staple food.

9.2. Biomarkers of effect

Several animal studies have shown that the levels of free sphingoid bases and their 1-phosphates
increase in a dose-dependent manner in tissues and blood when animals consume fumonisin-
contaminated feed material (as summarised in FAO/WHO, 2012; Riley et al., 2015a,b). Similar results
were recently obtained in a large human study in Guatemala. In this study, urinary FB1 and Sa 1-P as
well as So 1-P in blood samples were measured of 1539 women from high and low exposure
communities (see Section 9.1). The results clearly show that high dietary FB1 intake is correlated with
changes in Sa 1-P and the Sa 1-P/So 1-P ratio in human blood in a manner consistent with FB1
inhibition of CerS (Riley et al., 2015a). It should be noted that the use of the Sa 1-P and Sa 1-P/So 1-P
ratio is not intended as a standalone biomarker of effect but is intended to be used in conjunction with
urine samples collected so as to obtain an individual and time-matched estimate of FB1 intake.

10. Toxicity

In this chapter, an overview and summary about the state of the art of the in vivo toxicity of
fumonisins is presented that is essentially based on the assessment as presented by JECFA (FAO/WHO,
2012) which is the latest comprehensive assessment of fumonisin toxicity. Key studies discussed by
JECFA are discussed again in detail below as are any relevant in vivo studies published after the JECFA
assessment was issued.

10.1. Overview of fumonisin Bs toxicity as established in previous
hazard assessments until 2012

The toxicity of fumonisins has been extensively reviewed by JECFA at three occasions, namely in
2001, 2011 and 2016 (FAO/WHO, 2001, 2012, 2017). However, only the technical report but not the
detailed outcome of the last assessment (i.e. the Addendum) was available to the CONTAM Panel at
the time of drafting the present opinion. The assessments published 2001 and 2012 were essentially
based on FB1 data because the other FBs, FB2 and FB3, were considered to have very similar
toxicological profiles. Similarly, in 2003 the SCF assessed FB1, FB2 and FB3, and included all three in a
group TDI based on data on FB1 (SCF, 2003). This was based on the results of a comparative study on
their relative cytotoxicity to primary rat hepatocytes, and their potential to induce hepatocyte nodules
in an initiation/promotion model using male Fischer rats. All three fumonisins were able to induce
hepatocyte nodules when fed at high dietary concentrations of 500 or 1,000 mg/kg feed over 21 days
to the rats (Gelderblom et al., 1993). In addition, in a study with ponies FB2 and FB3 raised free
sphinganine concentrations in liver and kidney of the animals although effects of FB3 were much less
severe.

10.1.1. Acute toxicity

There were few studies available using FB1 and in none of these was lethality observed. In acute
studies in rats, oral gavage doses up to 46.4 mg/kg bw have been tested. Other acute studies in rats
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showed that effects were similar to those occurring after repeated doses in longer term studies, i.e.
kidney and liver toxicity. In pigs, early signs of pulmonary oedema occurred following a single oral
dose of 5 mg/kg bw. Also the equine leukoencephalomalacia (ELEM) is considered a vascular effect.
Vascular toxicity of FBs in humans cannot be excluded, but the only in vivo vascular effects reported in
the literature are a chronic atherogenic effect associated with consumption by non-human primates of
diets containing fumonisins for extended periods of time (Fincham et al., 1992) but has not been
reported. Overall, FB1 is considered not to be acutely toxic in humans.

10.1.2. Short term and long term toxicity

Following oral exposure to FB1, the toxic effects range from hepatotoxicity and renal toxicity in
rodents, to species-specific effects such as pulmonary oedema and hydrothorax in pigs, and ELEM in
horses.

Early signs of FB1 liver toxicity in rodents were apoptosis, necrosis, proliferation and regeneration,
and hyperplasia of the bile duct. Females exhibited hepatic effects at lower doses than males.

In chronic studies, liver tumours were observed in male rats (Gelderblom et al., 2001) and female
mice (NTP, 1999). It is likely that the modulation of apoptotic and cell proliferative pathways
accompanied by increased hepatocellular hypertrophy attributable to the disruption of sphingolipid,
phospholipids and fatty acid metabolism plays a major role in the development of hepatocellular
cancer in female B6C3F1 mice and male BD IX rats.

In a two-year feeding study in male F344 rats fed diets containing pure FB1 (NTP, 1999), early
signs of kidney toxicity in rats were increases in free sphingoid bases, apoptosis and cell regeneration
in the renal tubules of the outer medulla. Kidney tumours were observed in male rats. Chronic
nephropathy referred to as atypical tubule hyperplasia with increased renal tubule epithelial cell
apoptosis, proliferation and increased incidence in renal tubule epithelial cell hyperplasia and
hyperplastic lesions developing into adenomas, has been regarded as a precursor lesion for rat kidney
carcinogenesis resulting in kidney cancer. The data from this study (NTP, 1999) and a 90-day study
(Voss et al., 1995) were used as the basis for setting the HBGVs at the 2001 meeting of JECFA (FAO/
WHO, 2001).

In 2011, JECFA (FAO/WHO, 2012) used data on FB1 induced liver toxicity and adenoma formation
in female wild type and p53+/� transgenic mice fed diets prepared with pure FB1 (Bondy et al., 2010)
as a basis for derivation of a HBGV. The data were provided as an unpublished report of a study
conducted by Health Canada. Megalocytic hepatocytes in male mice were considered as the most
appropriate outcome for establishing a HBGV and a benchmark dose lower confidence limit 10%
(BMDL10) of 165 lg/kg bw per day for FB1 was derived.

10.1.3. Reproductive and developmental toxicity

In mice, rats and rabbits, embryotoxicity occurred only at doses paralleled by maternal toxicity,
whereas in one study with Syrian hamsters exposed to high doses of FB1 it was also observed in the
absence of maternal toxicity. Results of studies using culture material from fumonisin-producing
F. verticillioides and FB1 indicated that they are not teratogenic in rodents and rabbits.

Because FB1 had been shown in cultured cells to disrupt the high affinity folate transporter located
in sphingolipid enriched rafts in the cell membrane, there was a concern that exposure to FB1 in
pregnancy, particularly in combination with folate deficiency, could be linked to an increased risk of
NTDs (Marasas et al., 2004; Gelineau-van Waes et al., 2005; Voss et al., 2011). This was further
investigated in mouse models using either LM/Bc mice (a sensitive strain), or CD-1 mice which are less
sensitive (Voss et al., 2017b). FB1 induced NTDs when given by either i.p. injection at doses of about
20 mg/kg bw per day or by gavage at gestation days (GD) 7.5 and 8.5 at doses of about 20 mg/kg
bw per day. Treatment (i.p.) with FB1 at 20 mg/kg bw per day caused reduced folate uptake in
embryos and placenta and folate supplementation partially reversed the incidence of NTDs. NTDs were
induced in one feeding study conducted in mice using cultured Fusarium material, but a follow-up
study that also included higher doses of FBs was unable to confirm these results.

10.1.4. Genotoxicity

FB1 was not mutagenic in bacterial assays. In mammalian cells in vitro, unscheduled DNA synthesis
was not observed, but FB1 caused chromosomal breaks in rat hepatocytes in one study. 8-hydroxy-20-
deoxyguanosine (8-OH-dG) adduct formation following lipid peroxidation was observed in an in vitro
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study in C6 glioma cells and MEF cells exposed to FB1 (Mobio et al., 2003). Theumer et al. (2010)
found that FB1 induced DNA single strand breaks and micronuclei in vitro and in vivo. These effects
were paralleled by in vitro and in vivo increases of malondialdehyde and catalase. Overall, the available
data support the hypothesis of oxidative stress mediated genotoxicity of FB1.

10.2. In vivo toxicity studies with FBs published after 2011

For studies reporting only concentrations of the toxin in the feed, doses have been calculated to mg or
lg/kg bw per day following the respective EFSA guidance (EFSA, 2012; EFSA FEEDAP Panel, 2012).

Studies with i.p. or i.v. administration have not been described in this section, except in cases when
they were informative with regards to hazard characterisation by the oral route as they do not reflect
oral bioavailability and in consequence oral toxicity of fumonisins.

10.2.1. Subacute toxicity studies

Mice

A group of 10 Swiss mice (5 males, 5 females) was administered an oral dose of 110 lg FB1/kg bw
for 7 days (Kouadio et al., 2013). Treated female but not male mice had lower weights than control
animals. While serum triglycerides and creatinine were enhanced in both sexes, cholesterol and protein
content was only increased in males. Alanine transferase (ALT), aspartate amino transferase (AST),
gamma glutamyl transferase (GGT) and creatine kinases were not affected by treatment. Based on
their results, the authors suggest, that the NOAEL for FB1 is lower than 110 lg/kg bw per day.

Rats

Abdel Salam et al. (2012) fed groups of 15 male rats with diets to which FB1 containing Fusarium
culture material was added. Groups were exposed to diets containing no FB1 for 8 weeks (control),
10 mg FB1/kg (equivalent to 1.2 mg/kg bw) for 8 weeks and 30 mg FB1/kg (equivalent to 3.6 mg/kg
bw) for 1, 4 or 8 weeks. Relative body weight gain and relative lung weight was reduced in the high-
dose animals at four and eight weeks. FB1 also induced dose and time dependent increase of various
gross and microscopic lung lesions such as pulmonary congestion, alveolar oedema, focal areas of
interstitial oedema, areas of haemorrhage, proliferation of alveolar cells, with inflammatory cellular
infiltration and alveolar septal oedema. At 8 weeks, scattered areas of atypia and endothelial cell
damage, distortion of alveolar epithelium and increased alveolar macrophages with apoptotic changes
were also observed. The CONTAM Panel noted that based on reporting of the results it is in many
instances unclear which effects were seen already at the low dose.

In order to investigate the effect of fumonisins on the developing enteric nervous system Sousa
et al. (2014) fed groups of 10 male Sprague–Dawley rats from day 21 to 63 of age with diets
containing 0.159 mg/kg FB1 and no FB2 that served as negative control, and mixtures of 0.996 mg/kg
fumonisins (0.73 mg FB1 + 0.267 mg FB2) and 2.819 mg/kg fumonisins (2.1 mg FB1 and 0.719 mg
FB2). Fumonisins were obtained by adding Fusarium verticillioides culture material. The concentrations
were equivalent to 0.12 and 0.39 mg FB1+FB2/kg bw, respectively. Five of the animals per group were
killed on day 15 after treatment and 5 on day 42. The treatment did not affect body weight or serum
ALT and AST activities or neuronal density in jejunum, whereas a reduction of the cellular area of
immunoreactive neurons in jejunum was seen. Based on their results, the authors conclude that food
containing fumonisins negatively affects myenteric neurons.

In order to investigate the effect of FB1 on kidney, Venancio et al. (2014) fed groups of 8 Wistar
rats with diets containing either no FBs or 6 mg FB1/kg (obtained by addition of Fusarium verticillioides
culture material) equivalent to 0.7 mg FB1/kg bw, for 42 days. FB1 did not affect feed intake, body
weight and growth, creatinine levels in plasma, water intake, osmolarity and urinary excretion of
sodium while increased urine volume and potassium excretion was observed which was paralleled by
mild tubulointerstitial changes in the outer kidney cortex.

Hahn et al. (2015) fed groups of four male Sprague–Dawley rats diets containing purified FB1 at
10 mg FB1/kg equivalent to 1.2 mg FB1/kg bw for 21 days. Urinary Sa/So ratios were measured on
days 0, 7, 14 and 21 and were increased from day 7 until the end of the study. Elevated Sa/So levels
were also seen in kidneys. In this study, modified forms of FB1 were also investigated. The results
from these investigations are therefore presented in detail in Section 10.3.

Abdellatef and Khalil (2016) gave 0, 50, 100 and 200 mg FB1/kg diet (equivalent to 0, 6, 12 and
24 mg/kg bw per day, respectively) to groups of six or seven male Sprague–Dawley rats for 4 weeks.
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The source of the FB1 was a strain of Fusarium moniliforme culture material. Fumonisin-treated
animals showed DNA fragmentation and decreases in glutathione (GSH) content, superoxide dismutase
(SOD) activity, and total antioxidant capacity (TAC) in liver and kidney most pronounced at the highest
dose. Lactic acid bacterial co-treatments had a protective effect. Because effects were observed at the
lowest dose tested the lowest observed adverse effect level (LOAEL) is 6 mg/kg bw per day.

Pigs

Grenier et al. (2012) gavaged groups of six piglets with F. verticillioides culture material extracts at
2.8 lmol FB1/kg bw per day (equal to 2.0 mg FB1/kg bw per day) for 14 days. FB1 induced increases in
serum albumin, total protein, cholesterol, triglycerides, fibrinogen and GGT, changes in cytokine
expression in liver, nuclear vacuolisation of hepatocytes and megalocytosis, cytokines expression in the
gastrointestinal tract and lesions in the intestine. The Sa/So ratios were 8- to 10-fold and 28-fold higher
in plasma and liver, respectively than in the control group. In this study also modified forms of FB1 were
investigated. The results from these investigations are therefore presented in detail in Section 10.4.

Bracarense et al. (2012) fed piglets with diets prepared from F. verticillioides culture material
containing 5.9 mg FBs/kg feed (4.1 mg FB1 and 1.8 mg FB2/kg), estimated by the authors to
correspond to 260 lg FBs/kg bw per day for 5 weeks. Effects observed were atrophy and fusion of
villi, decrease of villi height, cell proliferation in the jejunum, reduced number of goblet cells and
lymphocytes. Tumour necrosis factor (TNF)-a, interleukin (IL)-1b, interferon (IFN)-g, IL-6 and IL-10
were upregulated in the ileum or the jejunum and expression of the adherent junction protein
E-cadherin and the tight junction protein occludin in the intestine was seen.

A group of 12 specific pathogen-free (SPF) piglets were fed with a diet prepared with maize
naturally contaminated with FB1 and FB2 for 9 weeks (Burel et al., 2013). The final concentration in
the contaminated feed was 11.8 mg FBs/kg (8.6 mg/kg FB1 and 3.2 mg/kg FB2). This concentration is
equivalent to a dose of 0.6 mg FB1+FB2/kg bw per day (0.43 mg FB1 and 0.17 mg FB2/kg bw per
day). In treated animals, an increase in Sa/So ratio compared to control animals was seen.

In the study of Loiseau et al. (2015), six male piglets were gavaged once a day with culture
material extracts containing 1.5 mg FB1/kg bw (obtained from maize inoculated with F. verticillioides)
for 9 days. In treated animals, Sa/So ratios were increased in both lung and liver. While total ceramide
content in lung decreased by half, total sphingomyelin content doubled over the control group while in
the liver total ceramide increased 3.5-fold over the control group and total sphingomyelins content was
reduced by 50%, overall showing that changes in ceramide content are counterbalanced by changes in
sphingomyelin.

10.2.2. Subchronic toxicity studies

Mice

Alizadeh et al. (2015) fed a group of 15 female mice (strain not reported) with diets containing
150 mg FB1/kg (equivalent to 30 mg/kg bw per day) for 16 weeks. The source and purity of the FB1
was not specified. Compared to control animals (n = 14) parietal cell number was reduced together
with gastric body glandular cell height and atrophy in gastric mucosa in treated animals. The authors
attributed the effects to the increased apoptosis and the suppressed mitotic activity that was observed
in the respective tissue.

Pigs

Gbore (2013) gave diets containing 0.2 (control), 5.0, 10.0 and 15.0 mg FB1/kg (equivalent to
approximately 0.01, 0.25, 0.5 and 0.75 mg FB1/kg bw per day) to groups of six piglets for 6 months.
The diets were prepared using F. verticillioides culture material. Total protein concentrations in the
cerebellum, hypothalamus and the medulla oblongata and serum protein were significantly increased
at the two highest doses in these groups. Many of the effects reported were not dose-dependent. The
authors concluded that FB1 in feed at concentrations higher than 5 mg/kg diet interferes with protein
metabolism.

10.2.3. Long term toxicity studies

Bondy et al. (2012) gave (via the diet) 0, 0.39, 3.87 and 12.2 mg FB1/kg bw to groups of 10 male
wild-type p53 mice (WT p53+/+) and 0, 0.37, 3.88 and 12.6 mg FB1/kg bw, respectively, to groups of
10 male transgenic p53 mice (TG, p53+/�) for 26 weeks. The latter strain has a high sensitivity
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towards genotoxic carcinogens. While FB1 had no effect on body weight in WT mice, it was decreased
in the TG mice receiving the highest dose, from week 22 onwards. Although FB1 had no significant
effects on liver weight in either strain, kidney weight was elevated in TG mice treated with the highest
dose. Spleen weights were elevated in both strains at the highest dose while thymus weights remained
unaffected. Neutrophils and B lymphocytes (CD3-19+ cells) were increased in high-dose TG mice as
compared to controls. Total plasma immunoglobulin A (IgA) and IgM increased in both strains at the
highest dose while no change was seen in IgG levels. Likewise was plasma ALT activity increased in
both strains at the highest dose. Liver nodes were observed with both strains at the highest dose. In
liver, incidence of necrosis, multinucleated cells, focal inflammation and megalocytic hepatocytes
increased from the lowest to the highest dose in both strains. Megalocytic hepatocytes were observed
at the lowest dose, increased with dose and were widespread at the high dose in both strains, where
they occurred in aggregates or nodules that often contained extremely enlarged hepatocytes with
hyperchromatic chromatin and in which eosinophilic and vacuolated cytoplasm, cell necrosis and
apoptosis were frequently observed. Between these cells, there were small vacuolated hepatocytes,
oval cells and Kupffer cells.

A single liver adenoma was seen in a WT mouse in the lowest dose group and in the high-dose group
two animals with cholangiomas and three with adenomas were seen. With TG mice, neoplasms were only
observed at highest dose (two mice had two adenomas each and further two mice had one and in one
mouse a single cholangiocarcinoma was detected). No treatment related lesions were observed in either
strain in kidney, oesophagus, stomach, ileum, Peyer’s patch, mesenteric lymph nodes, spleen, thymus,
heart and lung. In liver, sphingosine levels were not affected by treatment while sphinganine levels were
increased at the mid- and high dose in WT mice and at high dose in TG mice. DeoxySa levels were
increased with mid- and high dose in both WTand TG mice. No changes were seen in So 1-P while Sa 1-P
was increased at high dose in both strains. In kidney, So, Sa, deoxySa and So 1-P levels were enhanced
in both strains at mid- and high dose while Sa 1 P levels were only elevated at the high dose. Overall, the
authors concluded that because the TG mice (that carry a mutation in a tumour suppressor gene and is
more sensitive to genotoxic carcinogens) were not more sensitive with regard to induction of tumours
than the WT mice, FB1 acts via a non-genotoxic MoA. The authors calculated BMDs combining both
strains for the incidences of hepatic apoptosis, megalocytic hepatocytes and hepatic Sa concentrations.
The resulting BMDL10 as calculated by the authors ranged from 0.16–0.46 mg/kg bw per day for
apoptosis and 0.15–1.11 mg/kg bw per day for megalocytic hepatocytes.

The CONTAM Panel notes that the JECFA used preliminary report of this study (Bondy et al., 2010)
for their previous evaluation (FAO/WHO, 2012). As noted in the technical report from the most recent
JECFA evaluation (FAO/WHO, 2017), the final study published in 2012 (Bondy et al., 2012) differs
slightly in the incidence of lesions and pathology scores for megalocytic hepatocytes and for apoptosis
due to the addition of four mice (one in the control group, one in the low-dose group and two in the
high-dose group) and the fact that for one mouse in the mid-dose group the pathology score was
adjusted from zero to one. JECFA concluded that these slight differences would not change the overall
previous toxicological assessment and retained the PMTDI derived from Bondy et al. (2010).

10.2.4. Genotoxicity studies

BALB/c mice received i.p. single dose or repeated injections of pure FB1 (0.1, 1.0 and 10 mg/kg
bw). Controls and positive controls were injected with single doses of saline and mitomycin C,
respectively. FB1 did not cause an increase in the frequencies of micronucleated erythrocytes in the
BALB/c mice neither in single nor in multiple dose studies (Karuna and Rao, 2013).

10.2.5. Developmental studies

Pellanda et al. (2012) fed groups of Wistar rat dams diets containing 0.9 mg/kg folate, 0.04 mg/kg
vitamin B12 and 2,100 mg/kg choline either without (control, n = 13) or with addition of pure FB1 at
4 lg/kg bw per day (n = 2) and to methyl-deficient diets (MDD, 0.01 mg/kg folate, 0 mg/kg vitamin B
and 0.06 mg/kg choline) either without (n = 15) or with addition of 4 lg FB1/kg bw per day (n = 3),
for 1 month before mating. Dams were sacrificed on GD 20 and gravid uteri were removed. For
analysis 2 of 13 (control), 3 of 15 (MDD), 2 FB1 and 3 MDD/FB1 animals were used. The number of
fetuses derived from each group was 23 (control), 39 (MDD), 25 (FB1) and 25 (FB1/MDD). For
analyses 8 fetuses per group were randomly selected for further analyses. A significant decrease in
body weight was seen in fetuses of the MDD and MDD/FB1 groups. Decreased liver folate
concentrations were seen in fetuses of the MDD and MDD/FB1 group but not in the FB1 group. In
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dams the combination of MDD and addition of FB1 aggravated the pericentrolobular steatosis seen in
the MDD group. A decrease in folate receptor messenger RNA as compared to controls was seen in
the FB1 group, reinforcing, according to the authors, the hypothesis that FB1 alters folate transport via
interference with sphingolipid metabolism. Overall, based on their results, the authors concluded that
low doses of FB1 interact with MDD. The CONTAM Panel noted that reporting of results in this study
lacks clarity in several instances.

Groups of 50 female LM/Bc mice were fed either control or folate-deficient diets for 5 weeks. On E7
and E8, 15 dams per group were then given i.p. injections of 0, 2.5, or 10 mg FB1/kg bw. Fetuses
were examined on E16. In the offspring of the control fed diet animals, 3 and 10 litters were affected
in the low- and high-dose groups, respectively, whereas in the folate-deficient groups, only 4 of a total
11 litters were affected at the high dose. In a second trial following a similar study design, the earlier
findings were corroborated as fewer litters were affected by NTD at the high dose in folate-deficient
animals. Overall, the authors concluded that folate deficiency does not exacerbate FB1 induced NTD in
LM/Bc mice (Voss et al., 2014).

Pregnant LM/Bc mouse dams were orally gavaged with pure FB1 for three consecutive days on
embryonic day (ED) 6.5, 7.5 and 8.5. The doses were 0 (n = 4), 5 (n = 2), 10 (n = 2), 15 (n = 3), 25
(n = 3), and 50 (n = 2) mg/kg bw per day (Riley et al., 2015a). The frequency of exencephaly in the
LM/Bc fetuses increased in a dose-dependent manner. No NTDs were observed in the control-treated
(0/4) or the 5 mg/kg bw per day dosed groups (0/2). Exencephalic fetuses were detected in the litters
from the three groups dosed orally with ≥ 10 mg/kg bw per day (8/11 litters).

10.2.6. Other studies

In order to investigate combined effects of FB1 and aflatoxin B1, Qian et al. (2016) fed groups of
13 rats normal diets for 56 days (control), diets containing FB1 (35 days normal diet followed by
21 days of 250 mg FB1/kg diet, equivalent to 30 mg/kg bw), or aflatoxin B1 (14 days of 150 lg
aflatoxin B1/kg diet, equivalent to 18 lg/kg bw, followed by 42 days of normal diet), or FB1 and
aflatoxin B1 (14 days of 18 lg aflatoxin B1/kg bw, followed by normal diet for 21 days and then by
21 days of 30 mg FB1/kg bw). A group given a single injection of 200 mg diethylnitrosamine (DEN)/kg
bw followed by a normal diet for 14 days and then followed by a diet containing 200 mg/kg
2-acetylaminofluorene (2-AAF, equivalent to 24 mg/kg bw) for 21 days serving as a positive control. A
series of serum parameters (e.g. total protein, AST, creatinine, ALP, cholesterol) were altered upon
treatment. In liver, glutathione S-transferase P+ (GSTP+) foci, not detected in the control and FB1
group, were induced with aflatoxin B1. This induction was even more pronounced in animals receiving
both toxins. For numbers of foci per area a more than additive effect was seen with animals receiving
both toxins sequentially.

10.2.7. Summary remarks on in vivo toxicity of FBs

The relevant toxicity studies with FBs published after the last comprehensive risk assessment
available (FAO/WHO, 2012), are described/summarised in the present chapter. The results of these
new studies confirm and further corroborate the hazard identification and characterisation of FBs
described in previous assessments (SCF, 2000; FAO/WHO, 2001, 2012; EFSA, 2005; EFSA CONTAM
Panel, 2014). Also available to the current Panel was the Technical Report of the 83rd JECFA meeting
(FAO/WHO, 2017). The Fumonisin Addendum prepared at the 83rd JECFA meeting was not published
at the time of drafting of this opinion. The CONTAM Panel reviewed both the toxicity studies already
described and evaluated in previous assessments and the newly available studies (which are described
in detail in the present chapter) and concluded that the study from Bondy et al. (2012) is the most
appropriate investigation, based on endpoints investigated, study design, results and reporting to be
used for derivation of a HBGV for FB1. The CONTAM Panel concluded further that the potentially most
appropriate endpoints to be considered for calculation of a BMDL for FB1 were incidence of hepatic
adenoma, focal hepatic inflammation, liver Sa concentration, incidence of multinucleated hepatocytes,
hepatic single cell necrosis and megalocytic (karyocytomegalic) hepatocytes.

10.3. In vivo toxicity of modified FBs

In the previous section on in vivo toxicity of FBs, with two exceptions, only in vivo oral studies
published after 2011 are presented in detail. For the present chapter, no time limit was applied for
studies to be evaluated and presented in detail and all relevant information was considered, since in
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the recent JECFA evaluations on fumonisins (FAO/WHO, 2012, 2017) HBGVs were only established for
FBs but not for their modified forms. In addition, studies with routes of administration other than oral
were considered for this section as they are potentially of value for deriving relative potencies of
modified forms based on comparisons with their respective parent compounds. In Table 3, in vivo
toxicity studies on modified FBs or comparative in vivo studies with FBs and their modified forms in
which pure compounds were applied are summarised. In Table 4, these in vivo toxicity data are listed
compound by compound.

10.3.1. Subacute studies

Mice

In order to investigate comparatively the toxicity of FBs and modified forms of FB1, Howard et al.
(2002) fed, diets containing approximately 0, 14, 70 and 140 lmol/kg diet (equivalent to 0, 2.8, 14
and 28 lmol/kg bw) of each of seven purified compounds: FB1, FB2, FB3, FP1, HFB1, NCM-FB1 and N-
acetyl-FB1 (described as FA1 in Figure 2) to groups of female B6C3F1 mice for 28 days. The control
group comprised of 16 and the treated groups of 8 animals, respectively. None of the compounds
affected bw or food consumption. Significant increases of serum cholesterol, ALP, and total bile acids
were seen at doses of 14 and 28 lmol/kg bw FB1. None of the other compounds affected these
parameters. Liver ceramide levels decreased significantly in the animals treated with 14 and
28 lmol/kg bw FB1 and increased Sa/So ratios were seen in all groups treated with FB1. These
parameters were not affected by the other compounds. Histopathology was carried out in liver, brain,
heart, kidney, thymus and mesenteric lymph nodes and changes (hepatocellular apoptosis,
macrophage pigmentation, centrilobular hypertrophy and cytoplasmatic vacuolisation and Kupffer cell
hyperplasia) were only observed in livers of animals treated with medium and high doses (14 and
28 lmol/kg bw) of FB1. At the highest dose also the relative liver weight was increased. Based on their
results the authors concluded that FB2, FB3, FP1, HFB1, NCM-FB1 and N-acetyl-FB1 tested in this study
must be at least twofold less toxic than FB1.

Rats

Voss et al. (1996) fed groups of 10 Sprague–Dawley rats with diets containing 8 or 71 mg FB1/kg
(equivalent to doses of 1 and 8.5 mg FB1/kg bw per day) or 58 mg/kg HFB1 (equivalent to 7 mg/kg
bw per day, containing no detectable amounts of FB1) for 4 weeks, aiming at evaluating the influence
of nixtamalisation of diets on FB toxicity. The diets were prepared using F. verticillioides culture
material with and without nixtamalisation. A control group received a diet containing < 0.5 mg FB1/kg
and < 0.002 mg/kg aflatoxin (not further specified). No changes in serum liver parameters were seen
in controls and low-dose FB1 group. ALT, AST and AP were increased in the HFB1 group while with the
high FB1 group all serum liver parameters (ALT, AST, AP, GGT, cholesterol, triglycerides and bilirubin)
were significantly increased. Relative kidney and liver weights were increased (compared to control) in
the low FB1- and HFB1-treated animals while in high FB1 animals only relative kidney weight was
increased. The authors report minimal signs of hepatopathy in the low-dose FB1 animals while clear
signs of hepatopathy were observed in the high-dose FB1 and HFB1 group, albeit to a much lesser
extent in the latter (signs of hepatopathy were not further specified). Nephrotic lesions were observed
in all treated groups without significant differences in their extent between the groups.

Voss et al. (1998) fed groups of 10 Sprague–Dawley rats with diets devoid of FB1 and HFB1, diets
containing 11.1 lmol/kg FB1 (containing trace amounts of FB2), 98.5 lmol/kg of FB1 and 143 lmol/kg
HFB1 (containing no FB1 and FB2) for 4 weeks. These concentrations are equivalent to doses of 0, 1.3
and 12 lmol FB1/kg bw per day and 17.2 lmol HFB1/kg bw per day. The diets were prepared using
F. verticillioides culture material with and without nixtamalisation. Body weight, serum chemistry and
liver and kidney effects did not differ between the FB1 and HFB1 diets (details not reported). Sa/So
ratios in the control groups in kidney and liver were 0.19 and 0.49 respectively, increasing to 8.81 and
0.68 in the low-dose (1.3 lmol FB1/kg bw per day) group (only levels in kidney differing significantly)
increasing further in the high-dose FB1 group (12 lmol/kg bw per day) to 15.0 and 4.85, respectively
(significantly differing from control in both organs). Corresponding values in the HFB1 (17.2 lmol/kg
bw per day) group were 11.0 and 1.51 in the kidney and liver, respectively (significantly differing from
control group in both organs). The authors conclude that their results provide further evidence that
inhibition of CerS may be a key event in toxicogenesis of fumonisins and related compounds noting
that that their results need to be verified in studies using purified HFB1. The CONTAM Panel noted that
based on the design of the study (in particular dosing) it was not possible to accurately estimate
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relative potency of HFB1 with regard to inhibition of CerS but the experiment suggests that HFB1 can
disrupt sphingolipid metabolism in liver and kidney, albeit to a lesser extent than FB1.

In order to assess the impact of nixtamalisation on FB1 toxicity, Burns et al. (2008) fed
uncontaminated maize, nixtamalised uncontaminated maize, contaminated maize or nixtamalised
contaminated maize to seven groups of eight male Sprague–Dawley rats for 1 week (3 rats per group) or
3 weeks (5 rats per group). The uncontaminated (UC) diet contained 0.2 and 0.18 lmoles FB1 and HFB1/
kg, respectively, approximately equivalent to 0.024 lmoles FB1/kg bw per day and 0.022 lmoles HFB1/kg
bw per day. The other groups received diets resulting in FB1/HFB1 doses equivalent to 0.004/0.026
(nixtamalised uncontaminated, NUC), 1.5/0.07 (contaminated, CM, positive control), 0.35/0.38
(nixtamalised contaminated, NCM), 0.0083/0.5 (nixtamalised mixture of CM and ground corn, NCMC),
0.2/0.16 (sham nixtamalised9 CM, SCM) and 0.19/0.11 lM/kg bw per day (sham nixtamalised mixture of
CM and ground corn, SCMC) of FB1 and HFB1, respectively. The source of the FB was F. verticillioides
culture material. No differences were found in the different treatment groups with regard to body
weight and relative kidney or liver weights. Kidney lesions (apoptosis, effects on mitosis, tubule
regeneration and necrosis) were observed in the CM group. The severity of these lesions was reduced in
nixtamalised CM (NCM, SCM). Total Sa levels in the different groups after 3 weeks were as follows
CM = NCM > SCM = SCMC > NCMC > NUC = UC. Overall, the authors concluded that the fate of FB1
(besides the obvious conversion to HFB1) after nixtamalisation remains to be fully elucidated but that the
method obviously reduces FB1 toxicity. The CONTAM Panel noted that the materials containing the
highest amounts of FB1 (CM, NCM) produced the most pronounced effects on Sa levels while those seen
with the diet containing relatively high amounts of HFB1 (NCMC) was very similar to that of the control.
The CONTAM Panel also notes that in the experiment Fusarium maize cultures were used and that it
cannot be excluded that other fumonisins or other mycotoxins (not tested) were present in the diet. In
addition, in all groups FB1 and HFB1 were present, albeit in strongly varying amounts. Thereby any
effects cannot be conclusively attributed to any specific compound.

Hahn et al. (2015) fed groups of four male Sprague–Dawley rats diets containing 0 (control group) or
10 mg/kg of FB1 (purity 97.2%, containing 1.3% FB3, 0.6% pHFB1a, 0.9% pHFB1b), 7.8 mg/kg pHFB1
(containing 3 mg/kg pHFB1a (purity 73.2%, containing 26.8% pHFB1b) and 4.8 mg/kg pHFB1b (purity
93.0%, containing 7.0% pHFB1a)), 5.6 mg/kg HFB1 (no impurities) and 12.2 mg/kg NDF-FB1 (containing
2.5% FB1) for 21 days. These concentrations are equivalent to doses of 1.2 mg FB1, 0.94 mg pHFB1,
0.7 mg HFB1 and 1.5 mg NDF-FB1/kg bw per day. Urinary Sa/So ratios were measured on days 0, 7, 14
and 21 and were significantly increased in the FB1 group from day 7 until end of the study. No changes
were observed in the other groups. Significantly elevated Sa/So levels were seen in kidneys in the FB1
group (not seen in the other groups). In none of the groups was body weight affected and only minimal
histopathological effects were observed in liver (not specified further). Effects in kidney were mild with
HFB1 and pHFB1 while these were significantly elevated with FB1 (nature of effects were not described).
Urine and faeces were collected on days 0, 7, 14 and 21. In urine, only FB1 and NDF-FB1 were recovered
and in similar amounts at days 7–21 while no other modified forms were recovered. In faeces of the FB1
group, considerable amounts of FB1, pHFB1 and traces of HFB1 were recovered on days 7–21. In the
NDF-FB1 group, significant amounts of FB1 were recovered on days 7–21. Based on their results, the
authors concluded that NDF-B1 is partly cleaved in the intestine to FB1 but as it is excreted via faeces it is
not of toxicological relevance which was confirmed by the unaltered Sa/So ratio in urine seen with this
compound. They also concluded that, overall, the modified forms of FB1 investigated in this study are of
much lower toxicological relevance than FB1.

Pigs

In order to compare toxicity of FB1 and HFB1, Grenier et al. (2012) gavaged groups of six piglets
with 0 and 2.8 lM/kg bw per day of FB1 and HFB1 for 14 days. FB1 induced increases in serum
albumin, total protein, cholesterol, triglycerides, fibrinogen and GGT, changes in cytokine expression in
liver, nuclear vacuolization of hepatocytes and megalocytosis, cytokines expression in the
gastrointestinal tract and lesions in the intestine. No differences compared to the control were seen
with HFB1 except for slightly altered cytokine expression in the intestine (mesenteric lymph nodes).
The Sa/So ratios in animals treated with FB1 were 8- to 10-fold and 28-fold higher in plasma and liver,
respectively, compared to the control group while in the HFB1 animals Sa/So ratios were not affected
in plasma and were twofold higher in liver as compared to controls. The authors concluded that their

9 Processed in the same way as the nixtamalised material with the exception that the alkali was omitted from the cooking/
steeping step.
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results further corroborate that HFB1 is much less toxic compared to FB1. They noted that the toxicity
attributed to HFB1 in studies using nixtamalised material could be in fact mediated instead by residual
pHFB1 or by matrix bound FB1.

10.3.2. Developmental studies

Mice

In order to compare the potential of HFB1 and FB1 to induce NTD and to alter sphingolipid
biosynthesis Voss et al. (2009) applied purified FB1 and HFB1 i.p. 0, 2.5, 5.0, 10 and 20 mg HFB1/kg
bw per day and 10 mg FB1/kg bw per day to groups of LM/Bc mice dams (n = 8 to 10 per group) on
embryonic day (E)7 and 8. Half of the animals were killed on E9 the rest on E16. Implantation sites
were counted on E9 and weighed on E16. Uteri and fetuses of dams killed on E16 were examined.
Treatment had no effect on body weight or body weight gain of the dams. Except for increased
relative liver weights in the FB1 group treatments had no effect on organ weights. While FB1 caused
liver toxicity this was not the case in HFB1 dams. HFB1 had no effect on fetal and placental weights
while these were decreased in the FB1 group. NTDs were not found in either the litters of control or
the high-dose (20 mg/kg bw per day) HFB1-treated dams (8–10 litters per group), whereas, in the
10 mg/kg bw per day FB1-treated dams, all 10 litters examined had at least one NTD affected fetus.
While the highest dose of 20 mg/kg bw per day of HFB1 had only slight effects on sphingolipid
metabolism these effects were marked in the FB1 dams. It is notable that on E9 Sa levels were about
55-fold higher than those of the control while at E 16 these were about twofold the control. Based on
their results, the authors concluded that hydrolysed fumonisins are less toxic than their parent
compounds and not a significant risk factor for NTD.

Rats

Collins et al. (2006) orally gavaged groups of 30–31 pregnant rats from GD 3 to 16 with doses of 0,
15, 30, 60 or 120 mg/kg bw of purified HFB1 (designated as AP1 in the publication). HFB1 decreased
feed consumption and weight gain of dams but did not affect reproductive indices or fetuses. HFB1 did
not affect Sa/So ratios in maternal liver, kidney or brain. Based on the results, a maternal NOAEL of
15 mg/kg bw per day and a fetal NOAEL of 120 mg/kg per day were established. The authors note
that in a previous investigation with FB1 in pregnant rats significant increases in Sa/So ratios in liver,
serum and kidney have been observed at doses of 50 mg/kg bw per day.

10.3.3. Other studies

In order to test the hypothesis that FB1 and its modified form could be initiators of carcinogenesis,
Gelderblom et al. (1993) fed groups of 3–5 male Fisher rats with diets containing 500 mg/kg of
purified FB1, FB2, FB3, HFB2 (designated as AP2 in the paper), TCA and MME10 or 1,000 mg/kg of
purified FA1 and HFB1 (designated as AP1 in the paper) for 21 days. These concentrations are
equivalent to 60 mg/kg bw per day of FB1, FB2, FB3, HFB2 and TCA or 120 mg/kg bw per day of FA1
and HFB1 (a group of eight animals receiving none of the test compounds was used as a negative
control). After 21 days consuming, the diets all animals received a control diet for 2 weeks, then were
given 20 mg/kg bw of 2-AAF for 3 days and then were partially hepatectomised the day after the last
treatment with 2-AAF. Animals were either sacrificed 21 days after the start of the study or 14 days
after the first 2-AAF treatment. After 21 days of diet, body weight loss was observed in FB1-, FB2-,
FB3- and MME-treated animals while no effects were seen in animals treated with HFB1, HFB2 and TCA.
In the FA1 treatment group, body weight gains were positive but slightly and significantly lower than
the control group. Fourteen days after the first 2-AAF treatment, hepatocyte nodules were observed in
all remaining FB1-, FB2- FB3- or MME-treated animals but in none of the animals receiving FA1, HFB1,
HFB2 or TCA. The authors concluded from their results that while FB1, FB2, FB3 and MME exhibited
cancer initiating potential in the liver following 2-AAF treatment. FA1, HFB1, HFB2 and TCA did not
exert such a potential under the conditions of their experiment.

In order to investigate influence of nixtamalisation and nutrients on FB1 toxicity, more specifically
on its cancer promotor potential Hendrich et al. (1993) injected 8 groups of six 10-day-old male
F344/N rats with 15 mg DEN/kg bw. The rats where then exposed for 4 weeks to 45 and 48 mg
FB1/kg diet (equivalent to 5.4 and 5.8 mg FB1/kg bw per day) or to 7.6 and 10.7 mg HFB1 (equivalent

10 Mono methylester is an artefact formed during the isolation procedure of fumonisins when methanol is used as a solvent.
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to 0.9 and 1.3 mg HFB1/kg bw per day). Animals exposed to 1.3 mg HFB1/kg or 0.9 mg HFB1/kg bw
per day presented similar effects on body weight, relative liver weight and plasma glutamate-pyruvate
transaminase (GPT) as animals exposed to 5.4 and 5.8 mg FB1/kg bw per day. While in animals given
diets devoid of FB1 or HFB1 neither liver adenomas or cholangiomas were found, incidences were 83%
and 33% and 100% and 50% in the 5.8 mg and 5.4 mg FB1/kg bw per day group and 15% and 33%
and 67% and 17% and in the 1.3 mg and 0.9 mg HFB1/kg bw per day groups. The authors concluded
that the major toxic product of FB1 upon nixtamalisation is HFB1 but that it cannot be excluded that
other breakdown products/metabolites not analysed/detected play a role in the effects seen. The
CONTAM Panel noted that in the experiment Fusarium maize cultures were used and that therefore it
cannot be excluded that other fumonisins (not analysed) were present in the diet. The CONTAM
Panel also notes that the diets given in this study varied in their nutrient composition which might
hamper comparative toxicity evaluation and notes further that that severity of effects seen with
different doses of FB1 and HFB1 are not clearly dose related suggesting a possible impact of
differences in diet and, more likely, the presence of other toxic compounds. Notably, the diet with the
second highest concentration of HFB1 contained also significant amounts of FB1.

In order to study the cancer promotor potential of FB1 and its modified forms, Liu et al. (2001)
injected 80 ten-day-old female F344/N rats i.p. with 15 mg/kg bw of DEN. At 4 weeks of age, the
animals were divided into groups of 20 animals, receiving diets without addition of fumonisins, a diet
containing 25 mg/kg of a ‘FB1-glucose adduct’ (equivalent to approximately 3 mg/kg bw per day), and
diets containing 8 and 25 mg/kg purified FB1 (equivalent to approximately 1 and 3 mg/kg bw per
day). At 9 weeks of age 4, at 12 weeks another 5 and at 20 weeks of age all of the remaining rats of
each group were killed. Treatment did not have any effect on body weight and relative liver weight in
any group at any time point. In comparison with the control or FB1-glucose adduct-treated animals,
rats given FB1 had increased ALT activity at 9 and 20 weeks, increased endogenous hepatic
prostaglandin E2 and lower plasma cholesterol at 20 weeks placental glutathione S-transferase
(PGST)-positive and (GGT)-positive altered hepatic foci (AHF) occurred in rats given the high dose of
FB1 at 20 weeks. Sa/So ratios in the liver were increased only in the high-dose FB1 group at weeks 12
and 20 (3.5 and 0.8 vs 0.9 and 0.15 in the control group). Based on their results, the authors
concluded that modification of FB1 with glucose prevents hepatotoxicity and they note that alteration
of the Sa/So ratio was not the most sensitive biomarker of FB1. The CONTAM Panel notes that this
study suffers from a lack of analytical characterisation of the ‘glucose adduct’. Normally, reaction of FB1
with glucose would result in formation of NDF-FB1 or NCM-FB1. Since the material tested in this study
is poorly defined in the publication, the relevance of the results is unclear.

Hartl and Humpf (2000) exposed brine shrimp to different concentrations of purified FB1, FB2,
HFB1, HFB2, N-palmitoyl-HFB1 (C16:0-HFB1) and NCM-FB1. The purified compounds were dissolved in
seawater and then diluted into brine shrimp solution or in the case of N-palmitoyl-HFB1, dissolved into
ethanol–dodecane (98:2) and then dissolved in seawater and finally diluted into brine shrimp solution.
Mean LC50 values calculated by Probit analysis (in lM) were 2.74 (FB1), 4.78 (FB2), 17.92 (HFB1),
11.83 (HFB2), 3.55 N-palmitoyl-HFB1 and 285.34 (NCM-FB1). The authors noted that the toxicity of N-
palmitoyl-HFB1 is in the range of parent FBs which is in accordance with previous findings in cultured
cells as is the comparatively low toxicity of NCM-FB1 found in their study.

10.3.4. Summary remarks on in vivo toxicity of modified FBs

In Table 3, an overview about the comparative toxicity studies with FBs and their modified forms
where pure compounds have been used is presented.
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In Table 4, the doses of modified FBs producing effects, or the highest doses used in the different
experiments are presented for each of the modified forms tested in studies where pure compounds
have been used.

Table 3: Summary of in vivo toxicity studies on modified fumonisin Bs or comparative in vivo
studies with fumonisin Bs and their modified forms in which pure compounds were applied

Study design Results Reference

Groups of 3–5 male Fischer rats given diets of
60 mg/kg bw of FB1, FB2, FB3, HFB2, TCA,
MME or 120 mg/kg bw of FA1, HFB1 for
21 days (then sacrifice of part of the animals);
then 2 weeks control diet; then 20 mg/kg bw
per day 2-AAF for 3 days; then 14 days
control diet followed by sacrifice of remaining
animals

After 21 days (before 2-AAF treatment):
FB1, FB2, FB3, MME: bw loss
FA1, HFB1, HFB2, TCA: no effect

14 days after AAF injection:
FB1, FB2, FB3, MME: ↑hepatocyte
nodules
FA1, HFB1, HFB2, TCA: no effect

Gelderblom et al.
(1993)

Brine shrimp exposed for 48 h to
different concentrations of FB1, FB2, HFB1,
HFB2, N-palmitoyl-HFB1 (C16:0-HFB1), NCM-
FB1

Mean LC50 (in lM):
FB1: 2.74; FB2: 4.78; HFB1: 17.92; HFB2:
11.83, N-palmitoyl-HFB1: 3.55; NCM-FB1:
285.34

Hartl and Humpf
(2000)

Groups of 8 female B6C3F1 mice given diets
containing 0, 2.8, 14 and 28 lmoles of each
FB1, FB2, FB3, FP1, HFB1, NCM-FB1 and FA1/kg
bw for 28 days

FB1: ↑serum cholesterol, ↑ALP bile acids
Sa/So ratios and liver histopathology at
the two higher doses.
All other compounds: no effect

Howard et al. (2002)

Groups of 30–31 pregnant rats (strain not
reported) given diets of 0, 15, 30, 60,
120 mg/kg bw HFB1 from GD 3 to 16

Maternal NOAEL set at 15 mg/kg bw per
day based on ↓ in food consumption/bw
gain at higher doses. No effect on
maternal Sa/So ratios in liver, kidney
brain and on reproduction/development
at any dose. Fetal NOAELs set at highest
dose.

Collins et al. (2006)

Inbred LM/Bc mice injected (i.p.) with 0, 2.5,
5.0, 10, 20 mg HFB1 or 10 mg FB1/kg bw on
E7 and E8; Dams sacrificed on either E9 or
E16

No effect on bw of dams with any
compound.
FB1: ↑ liver weights. ↓ fetal and placental
weight. All litters affected by NTD.
Marked changes in sphingolipid
metabolism

HFB1: No changes in dams no litters
affected and only slight effects on
sphingolipid metabolism at highest dose

Voss et al. (2009)

Groups of six piglets (Pietrain/Duroc/Large-
white) gavaged with 0 or 2.8 lM FB1 or
HFB1/kg bw for 14 days

FB1: Increases in series of serum
parameters and histopathology in liver
and GI tract. Sa/So ratios 8–10- and
28-fold above control in plasma/liver.

HFB1: No effects besides slightly altered
cytokine expression in GI tract. HFB1:
Sa/So ratios unchanged in plasma, 2-fold
higher in liver

Grenier et al. (2012)

Groups of 4 male Sprague–Dawley rats were
fed diets of 1.2 mg FB1, 0.94 mg pHFB1,
0.7 mg HFB1 and 1.5 mg NDF-FB1/kg bw per
day for 21 days

FB1: ↑ urinary Sa/So levels increased.
Marked histopathological effects in
kidney. No changes in liver.
Besides mild effects in kidney with
pHFB1 and HFB1 no changes with other
compounds

Hahn et al. (2015)

FB1: fumonisin B1; FB2: fumonisin B2; FB1: fumonisin B3; HFB1: hydrolysed FB1; HFB2: hydrolysed FB2; TCA: tricarballylic acid; MME:
mono methylester of fumonisin B1 (artefact during isolation and storage of fumonisins in methanol); FA1: N-acetylated FB1; 2-AAF:
2-acetylaminofluorene; ↑: increase(d); ↓: decrease(d); GD: gestation day; NCM-FB1: N-(carboxymethyl) FB1; LC50: median lethal
concentration; i.p.: intraperitoneal; E: embryonic day; ALP: alkaline phosphatase; NOAEL: no observed adverse effect level; NTD:
Neurotubule defects; Sa/So: sphinganine/sphingosine; GI: gastrointestinal; NDF-FB1: N-(1-deoxy-D-fructos-1-yl)-FB1.
Note: See Figures 1–3 for structures and Table 1 for abbreviations of modified forms.
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In summary, several repeated dose studies are available where the toxicity of FBs and their
modified forms have been investigated. While in principle these studies should facilitate comparison of
their relative toxicity, this comparison is hampered in practice because of the design of these studies.
Some of the limiting factors are the use of fermented culture material instead of purified compounds,
use of different doses among studies, use of a single dose levels for parent compound and modified
form, choice of dose levels at which either no effects are seen or the response saturated in treated
animals and insufficient documentation of the effects.

The modified form most studied for comparison to FB1 was HFB1. For the most part, either very
marginal or no effects were observed for HFB1 at doses that caused clear effects with FB1. These
findings suggest that HFB1 is devoid of or exerts only marginal toxic potency, albeit having similar toxic
effects. Upon reviewing the available evidence, the CONTAM Panel concludes that HFB1 has a similar
toxic profile but is of lesser toxic potency than FB1, albeit that based on the data available the actual
potency cannot be accurately quantified. The information on other modified forms (NCM-FB1, pHFB1,
NDFB1) obtained in the in vivo studies presented above also suggest a similar toxic profile and likewise
lesser toxic potency but as it is even much more limited than the data on HFB1 it is not possible to
accurately estimate the relative toxicity of these modified forms as compared to the parent compound.

Table 4: In vivo toxicity data of modified fumonisin Bs and their modified forms in which pure
compounds were applied, listed compound wise

Compound Study design
Dose producing effect or
highest dose used in
experiment

Reference

HFB1 Male rats, 120 mg/kg bw for
21 days, then 2 weeks control
then 20 mg/kg bw per day 2-AAF
for 3 days; then 14 days control
diet

> 120 mg/kg bw per day
(no effect observed)

Gelderblom et al. (1993)

Brine shrimp, exposed for 48 h 17.92 lM (LC50) Hartl and Humpf (2000)
Female B6C3F1 mice, 0, 2.8, 14
and 28 lmoles per day for
28 days

> 28 lM kg/bw per day
(no effect on serum
parameters Sa/So ratio,
pathology)

Howard et al. (2002)

Pregnant rats, 0, 15, 30, 60,
120 mg/kg bw per day from GD
3 to 16

30 mg/kg bw per day
(↓ in food consumption in
dams
> 120 mg/kg bw per day for
offspring (no effect)

Collins et al. (2006)

Mice, 0, 2.5, 5.0, 10, 20 mg/kg
bw per day

20 mg/kg bw per day
(slight effect on sphingolipid
metabolism)

Voss et al. (2009)

Piglets, 2.8 lM /kg bw for
14 days

2.8 lM/kg per day
(slightly altered cytokine
expression Sa/So ratios
unchanged in plasma, 2 fold
higher in liver)

Grenier et al. (2012)

Male rats, 0.7 mg/kg bw per day
for 21 days

0.7 mg /kg bw per day
(mild effects in kidney)

Hahn et al. (2015)

HFB2 Male rats, 60 mg/kg bw for
21 days, then 2 weeks control
diet, then 20 mg/kg bw per day
of 2-AAF for 3 days; then
14 days control diet

> 60 mg/kg bw per day
(no effect observed)

Gelderblom et al. (1993)

Brine shrimp, exposed for 48 h 11.83 lM (LC50) Hartl and Humpf (2000)

N-palmitoyl-HFB1

(C16:0-HFB1)
Brine shrimp, exposed for 48 h 3.55 lM (LC50) Hartl and Humpf (2000)

NCM-FB1 Brine shrimp, exposed for 48 h 285.34 lM (LC50) Hartl and Humpf (2000)

FB1: fumonisin B1; HFB1: hydrolysed FB1; 2-AAF: 2-acetylaminofluorene; ↑: increase(d); ↓: decrease(d); GD: gestation day;
NCM-FB1: N-(carboxymethyl) FB1; LC50: median lethal concentration.
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10.4. In vitro toxicity of fumonisin Bs

Earlier evaluations dealt only with the toxicity of FB1 (SCF, 2000) and FB1, FB2 and FB3 (SCF, 2003;
FAO/WHO, 2012). Based on in vitro evidence the overall conclusion for FB1 was that there is
‘no adequate evidence that FB1 is genotoxic’ (SCF, 2000) and that it is ‘probably not genotoxic’
(FAO/WHO, 2012).

The SCF also considered the results of a comparative study of the fumonisins B1, B2 and B3 with
respect to their relative cytotoxicity to primary rat hepatocytes (Gelderblom et al., 1993).

Furthermore, almost equal cytotoxicity was found for the FB1 and FB2 when tested in seven
different rat hepatoma cell lines and in one dog kidney cell line (Shier et al., 1991).The SCF also noted
that in primary rat hepatocytes, FB2 was as effective as FB1 in inhibiting the de novo biosynthesis of
sphingolipids (Wang et al., 1991; Norred et al., 1992).

FB1, FB2, FB3 and FB4, tested at 0.05, 0.5 and 5 lM, exhibited approximately equipotent inhibition
of CerS (Norred et al., 1997). Almost equal cytotoxicity was found for FB1 and FB2 when tested in a
total of seven different rat hepatoma cell lines and in one dog kidney cell line (Shier et al., 1991).
Overall, FB1 is moderately cytotoxic when tested in rat hepatocytes, rat hepatoma cells, pig and dog
kidney cells and chicken macrophages (Eriksen and Alexander, 1998; Ribeiro et al., 2010).

FB1 has been considered as immunotoxic at concentrations of 10 lM as it reduced cell proliferation
in mononuclear cells of pigs (Marin et al., 2007) and decreased IL-4 and increased IFN-c synthesis in
mononuclear cells of pigs and humans (Taranu et al., 2010).

Furthermore, the SCF considered it unlikely that FB1 causes developmental effects in humans even
when considering embryotoxic effects observed in vitro and considering the worst–case scenario of
complete transfer of FB1 through the human placenta (SCF, 2000). However, JECFA concluded that
based on dose–response studies using mouse embryos (3–5 somite stage) that the no effect level for
NTDs, was 1 lM FB1 (FAO/WHO, 2012).

10.4.1. In vitro toxicity of modified fumonisin Bs

For the present chapter, no time limit was applied for in vitro studies to be evaluated and presented
in detail since in the recent JECFA evaluation on fumonisins in 2011 in vitro studies with modified FBs
were not discussed (FAO/WHO, 2012). From the few in vitro studies available, toxic potencies (on a
molar basis) of modified FBs relative to FB1 are summarised in Table 5. For the structures of the
different modified FBs, see Figure 3 and for the abbreviations Table 1 of Section 4.

Hydrolysed fumonisin Bs

HFB1, HFB2 and HFB3 (tested at 0.05, 0.5 and 5 lM) were only 30–40% as potent as the parent
compounds to inhibit CerS, measured as Sa concentration and as Sa/So ratio in precision cut liver
slices in vitro (Norred et al., 1997). The potency relative to FB1 was not dose dependent but rather
varied at the different concentrations tested (see Table 5).

HFB1 did not affect cell viability in differentiated Caco-2 cells at the highest tested concentration of
25 lM suggesting a low toxicity of HFB1 for intestinal cells. No HFB1 was detected in the cells at a
concentration of 2.5 lM while it could be detected intracellular when exposure concentrations were
exceeding 12.5 lM (Caloni et al., 2002).

HFB1 was five times less potent (50 lM) than FB1 (10 lM) to reduce cell number of HT-29 (human
colorectal adenocarcinoma cell line) cells by 30% (Schmelz et al., 1998).

HFB1 was 10 times less potent than FB1 based on the IC50 values of 1 lM versus 10 lM to
decrease cell proliferation in turkey peripheral blood lymphocytes (Dombrink-Kurtzman, 2003).

HFB1 (100 lM) was 100 times less potent than FB1 to induce NTDs and inhibition of overall
embryonic growth and development in cultured rat embryos (Flynn et al., 1997).

At high concentrations of 125 lM HFB1 and HFB2 were less toxic than FB1 and FB2 to primary rat
hepatocytes with lactate dehydrogenase (LDH) leakage as the endpoint (Gelderblom et al., 1993).

Overall, based on the above reported studies, the potency relative to FB1 of HFB1, HFB2 and HFB3
ranged from 0.01 to 0.9 (see Table 5).

Notably, it has been shown that also HFB1 is taken up by cells more rapidly and completely than
FB1 although not to the same extent as N-fatty acyl conjugates (Harrer et al., 2013).
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Partially hydrolysed fumonisin Bs

The partially hydrolysed metabolites pHFB1 and pHFB2 (a and b isomers not specified) did not
induce any significantly decrease of cell viability in differentiated Caco-2 cells at concentration of up to
32.5 lM. However, pHFB1 and pHFB2 were not detected within the cells at any concentration tested
(< 32.5 lM) (Caloni et al., 2002). Therefore, no relative potency can be derived from this study (see
Table 5).

N-(carboxy methyl)-fumonisin Bs and N-(1-deoxy-D-fructos-1-yl)-fumonisin Bs

NCM-FB1 (tested in the range 1–100 lM) was approximately 50 times less cytotoxic for Vero cells
(monkey kidney cells) than FB1 (Meca et al., 2010). No studies with NDF-FBs were identified.

O-fatty acyl fumonisins

No in vitro investigations with O-fatty acyl fumonisins were identified.

N-fatty acyl fumonisins

N-fatty acyl fumonisins with various fatty acid chain length (C16:0-FB1, C18:0-FB1, C24:1-FB1)
(20 lM) were cytotoxic to human embryonic kidney (Hek) and human hepatoma (Hep3B) cells, and
human fibroblasts showing ca. 10 times higher relative potency than FB1 (Table 5). The N-fatty acyl
conjugates are much more rapidly accumulated and taken up in Hek cells than FB1 (Harrer et al.,
2013).

The N-acyl hydrolysed fumonisins acylation products C16:0-HFB1, C24:1-HFB1, C16:0-HFB2 and
C24:1-HFB2 were cytotoxic to HT29 (human colonic cell line) cells at concentrations of 25 lM. C16-
HFB1 and C24:1-HFB1 caused a 50% reduction in the number of viable cells following 24-hour
exposure while C16-HFB2 and C24:1-HFB2 caused only a 30% reduction of cell viability indicating lower
toxicity. These results indicate that the N-fatty acylated metabolites may be slightly more potent
compared to FB1 and HFB1 (Seiferlein et al., 2007). N-palmitoyl-HFB1 (C16:0-HFB1) significantly
reduced the cell number of HT29, at concentrations of 1 lM and higher and was at least 10 times
more potent than FB1 or HFB1 (Humpf et al., 1998).

N-fatty acyl fumonisins (chain lengths from C2 to C16) of HFB1 showed higher cytotoxicity for the
longer chain acylation products in two different mouse fibroblast cell lines (3T3 and KA31T), canine
kidney epithelial (MDCK) cells and rat hepatoma (H4TG) cells when compared with HFB1 with IC50s
ranging from 80 lM to 6.25 lM (Abou-Karam et al., 2004).

N-palmitoyl-HFB1 (C16:0-HFB1) did not induce apoptosis in human proximal tubule-derived (IHKE)
cells at concentrations of up to 25 lM (Seefelder et al., 2003).

Table 5: In vitro potencies of modified fumonisin Bs relative to fumonisin B1

Compound Test system Endpoint
Concentrations
tested
(incubation time)

Relative
potency

Reference

HFBs and pHFBs

HFB1 Caco-2 cells Cell viability 1.25, 2.5,
12.5, 25 lM
(48 h)

n.a. Caloni et al.(2002)

HFB1 HT29 cells Cell viability 1, 10, 50 lM
(24 h)

0.2 Schmelz et al. (1998)

HFB1 Turkey
lymphocytes

Cell viability 0.02–50 lM(a)

(72 h)
0.1 Dombrink-Kurtzman (2003)

HFB1 Rat embryos Neural tube
development

3, 10, 30, 100,
300 lM
(45 h)

0.01 Flynn et al. (1997)

HFB1 Precision-cut
rat liver slices

Sa
concentrations,
Sa/So ratio

0.05, 0.5, 5 lM
(2 h)

0.2–0.7(b) Norred et al. (1997)

HFB1 Primary rat
hepatocytes

LDH release 125, 250, 500,
1,000 lM
(48 h)

0.2 Gelderblom et al. (1993)
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Compound Test system Endpoint
Concentrations
tested
(incubation time)

Relative
potency

Reference

HFB2 Primary rat
hepatocytes

LDH release 125, 250, 500,
1000 lM
(48 h)

0.2 Gelderblom et al. (1993)

HFB2 Precision-cut
rat liver slices

Sa
concentrations,
Sa/So ratio

0.05, 0.5, 5 lM
(48 h)

0.2–0.9(b) Norred et al. (1997)

HFB3 Precision-cut
rat liver slices

Sa
concentrations,
Sa/So ratio

0.05, 0.5, 5 lM
(2 h)

0.1–0.7(b) Norred et al. (1997)

pHFB1 Caco-2 cells Cell viability 1.25, 2.5, 12.5,
25 lM
(48 h)

n.e. Caloni et al. (2002)

pHFB2 Caco-2 cells Cell viability 1.25, 2.5, 12.5,
25 lM
(48 h)

n.e. Caloni et al. (2002)

NCM-FBs and NDF-FBs

NCM-FB1 Vero cells Cell viability 1.25, 2.5, 5, 25,
50, 100 lM
(24 h)

0.02 Meca et al. (2010)

N-fatty acyl-FBs and N-fatty acyl-HFBs

C16:0-HFB1 and
C24:1-HFB1

HT29 cells Cell viability 25 lM
(24 h)

n.a. Seiferlein et al. (2007)

C16:0-HFB2 and
C24:1-HFB2

HT29 cells Cell viability 25 lM
(24 h)

n.a. Seiferlein et al. (2007)

C16:0-FB1,
C18:0-FB1 and
C24:1-FB1

Hek, Hep3B,
fibroblasts

Membrane
integrity assay

20 lM
(8 h)

10 Harrer et al. (2013)

C16:0-HFB1 HT29 cells Cell death 1, 5, 50 lM
(24 h)

10 Humpf et al. (1998)

C16:0-HFB1 3T3 cells Cell
proliferation

Concentrations
tested not provided
(72–120 h)(d)

15(c) Abou-Karam et al. (2004)

C16:0-HFB1 KA31T cells Cell
proliferation

Concentrations
tested not provided
(72–120 h)(d)

8(c) Abou-Karam et al. (2004)

C16:0-HFB1 MDCK cells Cell
proliferation

Concentrations
tested not provided
(72–120 h)(d)

10(c) Abou-Karam et al. (2004)

C16:0-HFB1 H4TG cells Cell
proliferation

Concentrations
tested not provided
(72–120 h)(d)

5(c) Abou-Karam et al. (2004)

n.a.: data not adequate for derivation of relative potency; n.e.: no effects on cell viability observed; HFB1: hydrolysed FB1;
HFB2: hydrolysed FB2; HFB3: hydrolysed FB3; pHFB1: partially hydrolysed FB1; pHFB2: partially hydrolysed FB2; NCM-FB1: N-
(carboxymethyl) FB1; NDF-FB1: N-(1-deoxy-D-fructos-1-yl)-FB1; Sa/So: sphinganine/sphingosine; Caco-2: human epithelial
colorectal adenocarcinoma cell line; HT29: human colonic cell line; Hek: human embryonic kidney cell line; Hep3B: human
hepatoma cell line; 3T3: mouse fibroblast cell line; KA31T: mouse fibroblast cell line; MDCK: canine kidney epithelial cells; H4TG:
rat hepatoma cells; LDH: lactate dehydrogenase.
(a): Concentrations tested cannot be deduced from the provided figure;
(b): Effects not concentration dependent;
(c): Calculated from IC50 values;
(d): Precise time not specified.
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10.4.2. Summary remarks on in vitro toxicity of modified forms

The various modified forms exhibit different toxicities in vitro compared with FB1.
N-fatty acyl FB1, N-fatty acyl HFB1 and N-fatty acyl HFB2 show an in vitro toxicity of up to 10 times

higher as compared with FB1. Notably, it has been shown that some N-fatty acyl conjugates
accumulated more rapidly and to a greater extent than FB1 in cells. The relevance of the increased
cytotoxicity found with these compounds for the in vivo situation in humans is unclear.

For pHFB1 and pHFB2, relative in vitro potencies as compared with FB1 could not be established as
no effects were observed.

For HFB1, relative in vitro potencies vary between 0.01 and 0.7 in the different studies. For HFB2,
relative potencies vary between 0.1 and 0.9 and the respective factors for HFB3 range from 0.1 to 0.7
depending on which doses are compared. Notably, it has been shown that also HFB1 is taken up more
rapidly and completely than FB1 although not to the same extent as N-fatty acyl conjugates.

NCM-FB1 has a relatively low relative potency of only 0.02 as compared to FB1.
The in vitro results are inconsistent, highly dependent on which doses are compared and their

relevance for human hazard characterisation is unclear taking into account also the importance of
toxicokinetics.

Hence, the available in vitro data on modified FBs do not allow extrapolations to the human in vivo
situation and therefore no final conclusions can be drawn from these data.

11. Observations in humans

In the following text on human observations, information published prior to 2011 has been taken
from previous evaluations by the SCF (SCF, 2000) and JECFA (FAO/WHO, 2001, 2012).

11.1. Cancer

11.1.1. Oesophageal cancer

In its opinion on FB1, the SCF (2000) noted that there were early epidemiological studies from
South Africa and China that indicated that there might be an association between the intake of FB1
and increased incidence of oesophageal cancer (Rheeder et al., 1992; Chu and Li, 1994; IARC, 1993;
van Jaskiewicz et al., 1987a; Scott et al., 1995; Marasas et al., 1979, 1981, 1988; Sydenham et al.,
1990a,b; Zhen et al., 1984; Yoshizawa et al., 1994), whereas in other studies carried out in Italy such
a correlation was not found (Logrieco et al., 1995; Pascale et al., 1995; EHC, 2000). The SCF
concluded that the available studies, mostly of ecological design, were inconclusive. JECFA, in its 2000
evaluation of fumonisins, including a few additional studies, reached a similar conclusion (FAO/WHO,
2001). In 2011, JECFA (FAO/WHO, 2012) evaluated further ecological studies in which positive
associations were found between fumonisin exposure and incidence of squamous epithelial
oesophagus cancer in two studies in China, one in South Africa and one in Iran. A nested case–control
study from China using changes in sphingolipids as exposure biomarkers did not find an association
with the incidence of cancer in the oesophagus. Since 2011, one epidemiological study with ecological
design in Iran investigated FB1 contamination in food and its relationship with oesophageal cancer in
different geographical areas with either high or low oesophageal cancer-risk. Exposure levels of FB1
were determined as frequencies of occurrences and contents in rice and maize. Frequencies of FB1
occurrence in rice samples obtained from the high and low-risk areas were 75% and 21%, with a
mean FB1 content of 43.8 lg/g and 8.9 lg/g, respectively. For maize samples, neither frequencies of
FB1 contamination (57% and 47%) nor contents of FB1 (167 and 150 lg/g) were different between
areas with high and low oesophageal cancer risk (Alizadeh et al., 2012).

In these studies, no dose–response relationship has been established. Except for the study using
sphingolipid biomarkers as a proxy for fumonisin exposure that did not find an association with cancer,
all the epidemiological studies conducted so far are ecological studies. In studies with such design,
study unit is a population group rather than individuals, precluding taking into account individual
factors, such as alcohol use, tobacco smoking, drinking of hot tea, opium use and poor hygiene, which
may have an impact on disease outcome. Hence, studies determining exposure and outcome including
covariates on an individual level are needed to determine whether or not dietary fumonisin exposure is
causally related to oesophageal cancer.
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11.1.2. Liver cancer

In 2000, JECFA (FAO/WHO, 2001) also evaluated studies investigating associations between
exposure to fumonisins and liver cancer. In a study from China, FB in maize was investigated in
regions with high and low rate of liver cancer, but there were no differences between the regions and
most of the samples also contained aflatoxin B1 (Ueno et al., 1997). In studies from South Africa, no
apparent association between the content of fumonisins in maize and liver cancer were found,
whereas the rate correlated with aflatoxin B1 (Jaskiewicz et al., 1987b; Makaula et al., 1996). No
additional studies were reported by JECFA in their 2011 evaluation (FAO/WHO, 2012).

In 2012, Persson et al. (2012) investigated the risk of hepatocellular carcinoma (HCC) from
fumonisin exposure. The studies had a nested case-control design and study subjects were included
from two prospective cohorts in China, the Haimen City (a high-risk area of liver cancer) cohort with
271 HCC cases and 280 controls, and the Linxian (a high-risk area of gastric and oesophageal cancer)
cohort with 72 HCC cases and 147 controls. FB1 in toenail samples was used as measure of exposure.
In the Haimen City cohort, toenail FB1 levels in the cases (mean = 0.375 ng/mg) were not significantly
different from that of the controls (mean = 0.143 ng/mg).Toenail concentrations were higher in the
Linxian cohort, but no differences between the cases (mean = 1.96 ng/mg) and the controls
(mean = 2.27 ng/mg) were observed. Neither the Haimen City nor the Linxian cohort showed any
association between nail FB1 and HCC (odds ratio (OR): 1.10 confidence interval (CI): 0.64–1.89 and
OR: 1.47, CI: 0.70–3.07, respectively). The analyses were adjusted for sex, age, residence area,
alcohol drinking, and hepatitis B surface antigen. A meta-analysis of both cohorts, in which study
subjects were pooled, did not show any significant association between FB1 exposure and HCC (OR:
1.22, CI: 0.79–1.89) (Persson et al., 2012). The CONTAM Panel noted that toenails showed a low
frequency of detectable FB1 in the study, that the validity of nail FB1 as a marker of exposure is not
known and that dietary fumonisin exposure was not determined in this study.

11.1.3. Neural tube defects

In 2000, JECFA (FAO/WHO, 2001) also evaluated a possible role of fumonisins in NTD (FAO/WHO,
2001). Ecological studies in South Africa and China noted high incidences of NTD in areas with high
exposures to fumonisins (Cornell et al., 1983; Ncayiyana, 1986; Sydenham et al., 1990a,b; Chu and Li,
1994; Venter et al., 1995; Moore et al., 1997). A high rate of NTD was also recorded in the lower Rio
Grande valley in southern Texas, among the offspring of women who had conceived during 1990–1991
(Hendricks, 1999) and maize-based foods obtained in that period also had a relatively high
concentration of FBs (Sydenham et al., 1991). In 2011, JECFA (FAO/WHO, 2012) included an
epidemiological study in Mexican American women living near the Texas–Mexico border (Missmer et al.,
2006). This case–control study showed an association between the estimated fumonisin exposure
during the first trimester of pregnancy and the incidence of NTDs in their babies. Fumonisin exposure
was estimated using dietary intakes based on tortilla consumption and serum measurements of the
Sa/So ratio. FB1 levels were detected in the study, whereas FB2 and FB3 levels were essentially non-
detect samples. The Sa/So ratio in serum as well as the estimated fumonisin exposure increased with
the adjusted ORs for NTDs in the population in seven dose groups, except at the highest dose. The
authors suggested that at the highest estimated fumonisin exposure, miscarriages might have
occurred resulting OR for NTD. JECFA concluded that this study, combined with toxicological evidence
(disturbance of sphingolipid metabolism and folate including induction of NTD in mice (Marasas et al.,
2004; Gelineau-van Waes et al., 2005) and earlier epidemiological studies, indicates that fumonisin
exposure in pregnant women may be a contributing factor to increased NTD risk in their babies. No
new studies after 2011 have been identified.

11.1.4. Childhood growth impairment (stunting)

Possible impairment of childhood growth by fumonisin exposure was reviewed by JECFA in 2011
(FAO/WHO, 2012). A study of 215 infants of half a year and older was conducted in Tanzania (Kimanya
et al., 2010). Intakes of FB1 + FB2 + FB3 in maize flour ranged from 0.003 to 28.8 lg/kg bw per day.
Height and weight were measured at 1 year of age. Infants (n = 26) with an estimated daily total
fumonisin exposure exceeding 2 lg/kg bw (i.e. the JECFA PMTDI) were shorter (1.3 cm) and lighter
(328 g) on average than the infants (n = 105) exposed to less than 2 lg/kg bw. Since 2011, two
epidemiological studies conducted in Tanzania investigated the association between fumonisin-aflatoxin
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co-exposure and childhood growth, but no new studies on the impact of fumonisin exposure alone on
childhood growth and have been published.

One study was conducted in 166 infants from Tanzania aged 6–14 months of age at inclusion
(Shirima et al., 2015). At 6 and 12 months following recruitment length and weight were recorded and
plasma aflatoxin-albumin adducts and urinary FB1 were used as measures of exposure. Growth
impairment, (stunting) was observed as the mean length for age z-score (LAZ) and weight for age z-
score (WAZ) declined during this time period. There was a high prevalence of stunted children
increasing from 44% to 56%, during the follow-up. Urinary FB1 concentrations were 314 pg/mL at
inclusion and at follow-up they were 167 pg/mL (6 months) and 569 pg/mL (12 months), respectively.
The association between urinary FB1 and childhood growth was analysed using multiple regression. In
the analyses, the authors took account of and adjusted for breastfeeding and protein/energy intakes
as well as maternal education, socioeconomic status and geographic location. LAZ and length velocity
at 12 months from recruitment were negatively associated with the mean urinary FB1 at inclusion and
follow-up times. Urinary FB1 concentrations measured at inclusion were negatively associated with LAZ
at both follow-up time points suggesting that FB exposure could be a risk factor for growth
impairment. Urinary FB1 levels were neither negatively associated with WAZ nor with weight-for-length
z-score (WLZ). AF-alb was negatively associated with child growth, but this association was not
statistical significance. Addressing the joint fumonisin-aflatoxin effect in the statistical analyses gave
results that could not be interpreted.

In another study from Tanzania (Magoha et al., 2016), 143 infants were followed up from birth at
1, 3 and 5 months of age when weight and length were recorded. Using the WHO Growth Standards,
age related z-scores were computed. As exclusive breastfeeding is rarely practiced in Tanzania a large
fraction (80% and 97% at 3 and 5 months of age) receiving complementary food consisting mainly of
maize flour. The intake of maize flour was estimated based on a 24-h dietary recall and mycotoxins
were determined in flour samples from the families. Of the flour samples (n = 67), 58% had
detectable aflatoxins, 31% fumonisin and 22% both mycotoxins. The medians and ranges were 6
(0.33–69.47) lg /kg aflatoxin and 124 (48–1,224) lg/kg fumonisin. Independent of the mycotoxin
contamination, a slightly higher weight and length gain from 3 to 5 months was found in exclusively
breastfed infants (n = 23) in comparison with those also given complementary foods. The prevalence
of underweight and stunting were 6% and 18% among those infants receiving maize-containing
complementary food. Among these infants those exposed to aflatoxin 3% were underweight and 15%
stunted, and among those exposed to fumonisin alone, none were underweight and 5% stunted, and
among those who were exposed both mycotoxins none were underweight and 7% stunted. No
statistically significant associations between exposure to fumonisins or aflatoxins or both and
underweight or stunting were found when these were examined using logistic regression (Magoha
et al., 2016). The CONTAM Panel noted that in the statistical analyses it was apparently not controlled
for multiple factors such as nutrient intake, frequent bacterial infections, socioeconomic status and
mother’s education and health that might have influenced the outcome. The authors also noted that in
this study they did not take account of their previous findings, namely that breast milk samples from
the same region were contaminated with aflatoxin M1 (100%) and FB1 (44%) and could serve as an
additional source of exposure for children (Magoha et al., 2014a,b).

In a cross-sectional study conducted in six villages in Cameroon with 220 children (Ediage et al.,
2013), mycotoxins and their metabolites were detected in 160 of 220 (73%) urine samples. These
included ochratoxin A, b-zearalenol, aflatoxin M1, deoxynivalenol and FB1 (mean values: males
0.59 ng/mL, females, 0.01 ng/mL). No association was observed between the different malnutrition
categories (stunted, wasting and underweight) and the mycotoxin concentrations detected in the urine
of these children.

11.1.5. Human immunodeficiency virus (HIV)-related mortality

In 2011, JECFA (FAO/WHO, 2012) assessed an epidemiological study on potential associations
between fumonisin exposure and HIV-related mortality, but as the HIV study did not include
measurements of fumonisin levels in food or fumonisin exposure in humans, it was found insufficient
to support an association between fumonisin exposure and HIV-related mortality. No new studies after
2011 have been identified by the CONTAM Panel.
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11.1.6. Acute mycotoxicosis

In 2000, JECFA (FAO/WHO, 2001) reported that in 1995 consumption of rain-damaged, mouldy
sorghum and maize by the inhabitants of 27 villages in the Deccan Plateau in southern India resulted in
an episode of human mycotoxicosis characterised by gastrointestinal disease. The disease was
characterised by abdominal pain, borborygmi11 and diarrhoea. Diarrhoea was reproduced in 1-day-old
cockerels fed contaminated grain from the affected households. The dominant mycoflora in the sorghum
were Aspergillus, Fusarium, and Alternaria spp. FB1 was the most common mycotoxin in both sorghum
and maize samples, and a relatively high concentration of aflatoxin B1 was also detected in the maize.

11.1.7. Inhibition of ceramide synthases

Three surveys of fumonisin contamination in maize were conducted across Guatemala in order to
select locations for two human studies to test the hypothesis that fumonisin intake will result in effects
indicative of fumonisin inhibition of CerS (elevated Sa 1-P and the Sa 1-P/So 1-P ratio) as seen in
animal studies (Riley et al., 2015b). Communities were selected based on the surveys so as to
maximise the likelihood of having populations enriched in either high or low fumonisin exposure
individuals. One other goal of the studies was to estimate the FB1 intake in maize consumers in
Guatemala using the urinary FB1 and to predict when individuals are at increased risk for exceeding
the JECFA PMTDI of 2 lg/kg bw day (FAO/WHO, 2012).

FB1 intake was estimated using the urinary FB1 exposure biomarker and Sa 1-P, So 1-P and the Sa
1-P/So 1-P ratio (biomarkers of effect) were determined in blood spots collected on absorbent paper at
the same time as urine collection. Maize samples were also collected from local markets in each
community at the same time as urine and blood collection.

In the first study (Torres et al., 2014), blood spots and urine were collected every 3 months (March
2011–February 2012) from women living in low and high FB exposure communities (1,240 total
recruits). The urinary FB1, Sa 1-P/So 1-P ratio, and Sa 1-P/mL in blood spots were significantly higher
in the high FB1 exposure community compared to the low FB1 exposure communities (Riley et al.,
2015a). The results were confirmed in a follow-up study (February to March 2013) involving 299
women living in three different low and high FB exposure communities (Riley et al., 2015a). In
summary, high levels of FB1 intake are correlated with changes in Sa 1-P and the Sa 1-P/So 1-P ratio
in human blood in a manner consistent with FB1 inhibition of CerS (Riley et al., 2015a).

The results show that there was an apparent threshold below which the increase in the Sa 1-P/So
1-P ratio was not associated with a statistically significant increase in the urinary FB1 concentration
relative to the group with the lowest Sa 1-P/So 1-P ratio. The urinary FB1 concentration at the
breakpoint, in both studies, was estimated at 0.5–1.0 ng FB1/mL. For the Sa 1-P/So 1-P blood ratio,
the first statistically significant increase occurred at the urinary FB1 window that was > 0.5 < 1.0 ng
FB1/mL and for the Sa 1-P concentration the window was > 1.0 < 5.0 ng FB1/mL.

In order to calculate an intake corresponding to 0.5 ng FB1/mL in urine, it was assumed that
excretion is 0.5% of FB intake, that total urine output in the Guatemalan women is 1,000 mL, and the
average weight was 60 kg. Based on these assumptions, 0.5 ng/mL urinary FB1 represents a total
intake of 1.67 lg/kg bw per day (i.e. if 0.5 lg/L is 0.5% FBs daily intake, 100% is 100.2 lg/day,
assuming 60 kg bw these are 1.67 lg/kg bw) (Riley et al., 2012, 2015a,b; Torres et al.,2014).

12. Dose–response analysis for fumonisin B1

12.1. Acute effects of fumonisin B1

Humans consuming mouldy sorghum and maize containing fumonisins have shown acute adverse
effects such as gastrointestinal symptoms but there was no information on the dose or type of
fumonisin and presence of other mycotoxins in the food consumed. Therefore, any effects cannot be
clearly attributed to fumonisin alone and hence it is not possible based on these studies to decide on
acute effects of FBs in humans.

There are few acute studies available using FB1 in experimental animals and in none of these was
lethality observed. In acute studies in rats, oral gavage doses up to 46.4 mg/kg bw have been tested.
Other acute studies in rats showed that effects were similar to those occurring after repeated doses in
longer term studies, i.e. kidney and liver toxicity. In pigs, early signs of pulmonary oedema occurred

11 Rumbling sounds caused by gas moving through the intestines, commonly referred to as stomach “growling”.
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following a single oral dose of 5 mg/kg bw. Also, ELEM in horses is considered a vascular effect.
Although vascular toxicity of FBs in humans cannot be excluded, the only in vivo vascular effects
reported in the literature are a chronic atherogenic effect associated with consumption by non-human
primates of diets containing fumonisins for extended periods of time (Fincham et al., 1992). Overall,
FB1 is therefore considered not to be acutely toxic in humans.

12.2. Chronic effects of fumonisin B1

Reviewing the toxicological studies the CONTAM Panel came to the conclusion that study by Bondy
and co-workers (Bondy et al., 2012; for details on the study see Section 10.2.3) was the most
appropriate for use in the dose–response evaluation. In this study, groups of 9–10 mice, were given
daily doses of 0, 0.39, 3.87 and 12.2 mg FB1/kg bw (wild type p53+/+ mice (WT)) or 0, 0.37, 3.88 and
12.6 mg FB1/kg bw, (p53+/� transgenic mice (TG)) for 26 weeks. The endpoints considered of
potential relevance for calculation of a BMD for FB1 were incidences and severity of various hepatic
lesions which were adenoma, focal hepatic inflammation, multinucleated hepatocytes, hepatic single
cell necrosis and megalocytic (also known as karyocytomegalic) hepatocytes and in addition liver Sa
concentration, as seen in the chronic study of Bondy et al. (2012). The CONTAM Panel decided that
induction of apoptosis and megalocytic hepatocytes and increases of Sa levels should be used for
modelling and calculation of a BMD based on their relevance and sensitivity shown in the study.
Although increased Sa levels were found in the study, the results did not allow calculation of a valid
BMD when applying EFSA guidance (EFSA Scientific Committee, 2017).

The BMDs for induction of apoptosis and megalocytic hepatocytes in the present opinion were
calculated considering both incidence and severity of the lesions observed in the study, following the
procedure applied by Bondy et al. (2012) using the raw data for incidences and severity of the lesions
provided by the author to EFSA. Briefly, severity of lesions was designated into six classes: 0 – not
present; 1 – minimal; 2 – mild; 3 – moderate; 4 – marked; and 5 – severe. The cut-off to consider a
lesion as an incident was set to 1 for megalocytic hepatocytes and to 2 for apoptosis, i.e. lesions with
a score of 1 or higher for megalocytic hepatocytes and with a score of 2 or higher for apoptosis,
respectively, were considered as an incident in the calculations for a BMD (see Table Appendix A for
details on incidences and severity scores).

The CONTAM Panel used a default benchmark response (BMR) of 10% (BMD10) for quantal data,
combined the dose response results from both strains and used exact doses (as given by the authors),
thus increasing the number of dose groups for the analysis. Consequently, covariates were not applied.
This approach is justified as the responses did not differ between the WT strain and the TG strain which is
more susceptible to genotoxic carcinogens. Using model averaging following EFSA guidance (EFSA
Scientific Committee, 2017) the CONTAM Panel calculated the BMDL10–BMDU10 confidence interval as of
0.1–1.9 mg FB1/kg bw per day for incidence of megalocytic hepatocytes and as of 1.2–3.72 mg FB1/kg
bw per day for incidence of apoptosis, respectively (for details on the BMD calculations, see Appendix B).

13. Establishment of health-based guidance values

13.1. Acute reference dose (ARfD)/group ARfD

The CONTAM Panel noted that FBs have shown acute effects in certain species (e.g. horses) but
concluded that the data available did not indicated a need for setting an acute HBGV for FBs or their
modified forms.

13.2. Tolerable daily intake/group TDI

Following the guidance of EFSA (EFSA Scientific Committee, 2017) that recommends use of the lowest
BMDL derived for a compound to set a HBGV, the CONTAM Panel decided to use the BMDL10 of 0.1 mg/kg
bw per day derived for induction of megalocytic hepatocytes in mice for establishing a TDI for FB1. A UF
of 100 for intra and interspecies variability was applied resulting in a TDI of 1.0 lg FB1/kg bw per day.

It is noted that data from humans indicate that biochemical effects, i.e. inhibition of CerS (changes in
Sa 1-P/So 1-P ratio as measure in blood) may occur above a total FBs exposure resulting in 0.5–1.0 ng
FB1/mL in urine, corresponding to an estimated total intake of FBs of about 1.7 lg FBs/kg bw per day
(see also Section 11), which is in the region of the TDI established on the basis of the mouse study as
explained above. This effect is a biochemical change and it is linked to adverse effects. However, in itself,
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it is not adverse and a quantitative relationship with adverse outcomes is not established. Therefore, the
CONTAM Panel did not consider it appropriate to use this effect as basis for setting a TDI.

13.2.1. Inclusion of fumonisin Bs in a group tolerable daily intake (group TDI)
with fumonisin B1

FB2–6 are structurally similar to FB1 and in precision-cut rat liver slices in vitro FB2–4 exhibited
inhibition of CerS approximately equipotent with that of FB1 (Norred et al., 1997). In primary
hepatocytes, FB1, FB2 and FB3 showed approximately similar cytotoxicity in primary rat hepatocytes
(Gelderblom et al., 1993). Moreover, almost equal cytotoxicity was found for FB1 and FB2 when tested
in seven different rat hepatoma cell lines and in one dog kidney cell line (Shier et al., 1991). In
primary rat hepatocytes, FB2 inhibited de novo biosynthesis of sphingolipids as effectively as FB1
(Wang et al., 1991; Norred et al., 1992).

In vivo, FB2–3, similar to FB1, were able to induce hepatic nodules when fed to rats (Gelderblom
et al., 1993). Quite high doses were given, however, and all animals had nodules, which preclude
comparison of potency between FB1 and FB2–3. In mice, receiving FB1–3, FB1, caused clear signs of
liver toxicity and significantly increased liver Sa/So ratio and depressed liver ceramide, whereas FB2–3
did not (Howard et al., 2002).

When ponies were given maize material containing 75 mg/kg FB2 (containing also 3 mg/kg FB1 and
less than 1 mg/kg FB3) or 75 mg FB3 (containing less than 1 mg/kg FB1 or FB2) the free Sa increased
significantly in liver and in kidney although the increase was greater in the FB2 exposed ponies and
there was no FB1-treated ponies for concurrent comparison (Riley, 1997).

Based on the above data, the CONTAM Panel assuming dose addition of FBs, decided that FB2, FB3
and FB4 should be included in a group TDI with FB1.

Both FB5 and FB6 are of similar structure as FB1 and hence, based on structural similarity, both are
likely to inhibit CerS and exhibit toxicity similar to that of the other FBs included in the group TDI. Due
to a lack both of in vitro and in vivo data, the CONTAM Panel decided that FB5 and FB6 should not be
included in the group TDI with FB1.

13.2.2. Inclusion of modified fumonisin Bs in a group tolerable daily intake
(group TDI)

Because of the insufficient data modified forms of FB1–4 cannot be included in this group TDI. In
the few in vivo studies available where pure compounds have been tested, HFB1 showed either very
marginal or no effects in comparison to FB1.

Regarding HFB1, HFB2 and HFB3 the in vitro studies showed large variability in toxicity when
compared with FB1, and relative potencies of hydrolysed forms ranged from 0.01 and 0.9 in the
different studies, depending, among other factors, on which doses were compared (see Section 10.4).
Although the CONTAM Panel recognised that some in vitro studies showed close to even enhanced
toxicity, based on the overall in vivo evidence, the CONTAM Panel concluded that HFB1 acts via a
similar MoA for toxicity (inhibition of CerS) but is of lower toxic potency than FB1. However, based on
the data available the potencies cannot be quantified and therefore these modified forms should not
be included in a group TDI with FB1–4.

For pHFB1, there is only one repeated-single-dose in vivo study showing only mild kidney effects
while with FB1 at a similar dose level marked changes were seen. No relevant in vitro data on pHFBs
are available. The CONTAM Panel concluded that these modified forms should not be included in a
group TDI with FB1–4.

In vitro data with N-fatty acyl FB1, N-fatty acyl HFB1 and N-fatty acyl HFB2 show a toxicity of up to
10 times higher as compared with FB1. Notably, it has been shown that some N-fatty acyl conjugates
are much more rapidly accumulated and to a greater extent taken up in cells in vitro in comparison to
FB1. In an assay with brine shrimp, N-palmitoyl-HFB1 was equally toxic compared with FB1; however,
the route of exposure was via the culture media and not via the food. The CONTAM Panel concluded
that the database was insufficient for including N-fatty acyl FBs in a group with FB1–4.

The information on in vivo and in vitro effects of other modified forms (NCM-FB1, NDFB1) indicate a
lower toxicity in comparison with FB1, but there are insufficient data to make conclusions on their
toxicity and in consequence the CONTAM Panel concluded that NCM-FB1 and NDFB1 should not be
included in a group TDI with FB1–4.
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14. Uncertainties

The CONTAM Panel identified several uncertainties in their evaluation of the appropriateness to set
the group HBGVs for fumonisins and their modified forms.

The group TDI of 1.0 lg/kg bw day is based on a BMDL calculated for adverse effects of FB1. The
database for setting a TDI for FB1 is relatively extensive. The inclusion of FB2, FB3 and FB4, however, is
based on structural similarity, mechanistic considerations and limited toxicity data on these fumonisins,
although there are indications that FB1 is the most active form. This constitutes a major uncertainty.

Due to a lack of appropriate toxicity data, the relative potency for any of the modified forms of FBs
could not be quantified and therefore none of the modified forms where included in the group TDI.
Despite the fact that relative potencies could not be numerically quantified based on the limited
toxicity data available, HFBs, pHFBs, NCM-FBs and NDF-FBs are likely to be less toxic than their parent
compounds. For N-fatty acyl FB1, there are in vitro data suggesting a higher toxic potency than the
parent compound, however, the reason for this and significance in vivo is unknown. Non-inclusion of
any modified forms in the group TDI is therefore associated with additional uncertainty.

14.1. Summary of uncertainties

In Table 6, a summary of the uncertainty evaluation is presented, highlighting the main sources of
uncertainty and indicating an estimate of whether the source of uncertainty leads to over/
underestimation of the resulting risk.

The overall uncertainty associated with the inclusion of FB2–4 into a group TDI with FB1 is
considered as high and it would rather overestimate than underestimate the risk. The non-inclusion of
modified forms in the group TDI introduces additional uncertainty.

15. Conclusions

15.1. Introduction

Fumonisins are mycotoxins produced predominantly by F. verticillioides and F. proliferatum.
Chemically, fumonisins are long-chain aminopolyols with two tricarballylic acid side chains. The most
relevant compounds are the B-type fumonisins FB1-FB4 which differ in the number and position of
hydroxy-groups at the backbone. Besides the B-type fumonisins, other fumonisins such as the A-, C- and
P-type have been described. However, these compounds are produced in much lower levels and are for
this reason not of significance. Of relevance are several modified forms of fumonisins, predominantly the
HFBs and pHFBs which are formed upon alkaline hydrolysis as well as NCM-FBs and NDF-FBs which have
been detected in food samples. Plant and fungal metabolites such as N- and O-fatty acyl fumonisins are
also described, however, only traces have been detected in food samples so far. Besides HFBs, N-fatty
acyl fumonisins with acyl-chain length ranging from C16:0 to C24:1 are the only known FB in vivo
metabolites. Their formation is catalysed by CerS, key enzymes in the biosynthesis of sphingolipids which
is inhibited by FBs. In vitro, N-fatty acyl fumonisins are more cytotoxic compared to FBs.

Analytical methods for FB1–4 are well established and are mainly based on MS. Modified forms of
FB1 are commonly analysed under the same conditions as their parent compound. However, the strong
physical interaction of FBs with the food matrix, that is well documented in the literature, may
significantly affect the analytical performance in a matrix-related way. In order to mitigate this
obstacle, several indirect methods, usually based on alkaline hydrolysis of the matrix, have been
proposed. Only FB1–3 are available on the market as calibrant solutions, while FB4 can be purchased as
purified powder. Except for HFB1, analytical standards for modified forms are not commercially
available.

Table 6: Summary of the qualitative evaluation of the impact of uncertainties on the assessment

Sources of uncertainty Direction(a)

Inclusion of FB2, FB3 and FB4 in a group TDI with FB1 based on limited toxicity data +

Non inclusion of modified FBs in group TDI �
FB: fumonisin B; TDI: tolerable daily intake.
(a): + = uncertainty with potential to cause overestimation of exposure/risk; � = uncertainty with potential to cause under-

estimation of exposure/risk, +/� = extent of potential over/underestimation might differ in direction.
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15.2. Occurrence of fumonisins B1–4 and their modified forms

• The occurrence of FB1–3 is well documented in maize and products thereof, whereas little
information is available for occurrence of FB4 and even less for occurrence of FB5–6.

• Hydrolysed forms of FB1–3 (HFB1–3) have been reported following food processing (e.g.
nixtamalisation).

• Very few data are available on other modified FBs such as O-fatty acyl and N-fatty acyl FBs
and it can be assumed that these modified FBs occur at low concentrations compared to
occurrence levels of their parent compounds.

• No information was identified on the transfer of modified forms of fumonisins to food and feed
of animal origin.

15.3. Toxicokinetics of fumonisins B1–4 and their modified forms

• FBs are poorly absorbed (< 4% of an oral dose) from the gastrointestinal tract. The absorbed
FBs and their metabolites are rapidly excreted mainly in the bile of experimental animals
resulting in low plasma, tissue and urinary concentrations.

• Metabolism comprises the stepwise hydrolysis of the ester groups of the parent FBs and the
formation of N-fatty acyl FBs. Metabolic activity is low in mammalian tissues and hydrolytic
metabolism involves the colonic microbiome.

• Few studies have been identified on the toxicokinetics of modified FBs. There is preliminary
evidence for the partial release of FB1 from NDF-FB1 in rats after oral ingestion.

15.4. Mode of action for toxicity of fumonisins B1–4

• The key event in the toxic MoA of FBs is inhibition of CerS. FBs and in particular HFBs are
structural analogues of sphingoid bases and they inhibit CerS, causing disruption of
sphingolipid metabolism and pathological changes seen after FBs exposure. Several modified
FBs may cause inhibition of CerS, but apparently with variable potencies not well described.

15.5. Biomarkers

• Although FBs are poorly absorbed in the body, unchanged FBs excreted into urine have been
used as a biomarker of exposure in humans. Changes in Sa and So or their ratio can be
determined in urine (due to presence of sloughed cells) following FB exposure. A significant
FB1 dose-related increase in the Sa 1-P/So 1-P ratios in matched blood spots has been
reported in human studies.

15.6. Toxicity of fumonisins B1–4

• Toxicity assessments are mainly based on results with FB1, but FB2–4 are considered as having
similar toxicological profile and potency as FB1.

• FB1 is considered not to be acutely toxic in humans.
• In repeated dose studies with rodents FB1 causes liver and kidney toxicity. Apoptosis, necrosis,

proliferation, regeneration and hyperplasia of the bile duct are early signs of liver toxicity. Early
signs of kidney toxicity were increases in free sphingoid bases, apoptosis and cell regeneration
in the renal tubules of the outer medulla. Upon chronic exposure, liver and kidney tumours are
observed.

• FB1 caused embryotoxicity in mice, rats and rabbits, but only at doses where maternal toxicity
is observed. In Syrian hamsters, such effects were observed in the absence of maternal
toxicity. There are indications that FB1 causes neural tube defects in sensitive mice strains but,
overall, the evidence is inconclusive.

• FB1–4 were approximately equipotent inhibitors of CerS and cause cytotoxicity in several
mammalian cell types in vitro.

• FB1 is not mutagenic in bacteria and does not cause unscheduled DNA synthesis in mammalian
cells, but is clastogenic via an indirect mechanism, possibly by induction of oxidative stress.
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15.7. Toxicity of modified fumonisins B1–4

15.7.1. In vivo toxicity

• HFB1 shows a similar toxicological profile similar to FB1, but is less potent.
• pHFB1, NCM-FB1, NDF-FB1 show a similar toxicological profile but are less potent than FB1,

however, the data base is even more limited than that for HFB1.
• No in vivo data were available for N-fatty acyl FBs and O-fatty acyl FBs.
• In brine shrimp, N-palmitoyl-HFB1 is more toxic than HFB1 and has about the same toxicity as FB1
• Overall, the available data on modified forms suggest a similar toxicological profile as their

parent compounds but the data are too limited and inconsistent to assess their relative
potencies in quantitative terms.

15.7.2. In vitro toxicity of modified fumonisins B

• For HFB1–3, in vitro toxic potencies relative to FB1 vary between 0.01 and 0.9 Notably, HFB1 is
taken up by cells more rapidly and completely than FB1.

• For pHFB1–2, there were no data available for assessing toxicity relative to their parent
compounds.

• In a single study, NCM-FB1 had a relative potency of 0.02 as compared with FB1.
• There is no information available on in vitro toxicity of O-fatty acyl FBs
• N-fatty acyl FB1 and N-fatty acyl HFB1–2 are up to 10 times more toxic in vitro than FB1.

Notably, these compounds are taken up more rapidly and to a greater extent by cells than FB1
and HFB1.

• The available in vitro data on modified FBs do not allow extrapolations to the human in vivo
situation.

15.8. Observations in humans

• Several clinical effects have been discussed in humans (such as oesophageal cancer, liver
cancer, neural tube defects, growth impairment), but so far none of these have been causally
related to fumonisin exposure.

• Data from humans indicate that inhibition of CerS leads to changes in Sa 1-P/So 1-P ratio as
measured in blood and may occur above a total FB1–3 exposure resulting in 0.5–1 ng FB1/mL
in urine, corresponding to a total estimated intake of FBs of about 1.7 lg FBs/kg bw per day.

15.9. Chronic dose–response analysis

• The dose–response analysis was based on a chronic study in mice with FB1 resulting in a series
of liver lesions including hepatic adenoma. The CONTAM Panel considered it appropriate to
conduct dose response analyses of liver effects and establish a TDI. Increased incidence of
megalocytic hepatocytes in the liver was considered as the critical effect and a BMDL10 of
0.1 mg/kg of FB1 per day was derived.

15.10. Establishment of group health-based guidance values

15.10.1. Health-based guidance values for fumonisins B1–4

• The CONTAM Panel used the BMDL10 of 0.1 mg/kg bw per day and a UF of 100 for intra and
interspecies variability resulting in a TDI of 1.0 lg FB1/kg bw per day.

• Based on structural similarity and the limited data available indicating similar MoA and similar
toxic potencies, the CONTAM Panel decided that FB2, FB3 and FB4 should be included in a
group TDI with FB1.

15.10.2. Health-based guidance values for modified fumonisins B1–4

• Because of the insufficient data, modified forms of FB1–4 cannot be included in this group TDI.
The CONTAM Panel noted that based on the available evidence it can be assumed that
modified forms of FB1–4 excrete lower toxicity than their parent compounds; however, their
relative toxicity could not be quantified.
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16. Recommendations

• Standards and calibrants for FB2–6 and for modified forms of FBs are needed for analytical and
toxicological purposes.

• More information on occurrence of FB2–6 and of modified FBs are needed in order to prioritise
toxicity testing.

• More information on the toxicokinetics for modified forms of FBs and also for FB2–4 are needed.
• More information is needed on toxicity of FB2–6 and of any modified FBs using pure

compounds and in particular on the toxicity of hydrolysed FBs using pure compounds.
• The effectiveness of mitigation methods to reduce FB1 toxicity needs to be examined further.

Documentation provided to EFSA

Data on liver pathology (incidences of lesions and severity scoring) used for Bondy et al. (2012)
were kindly provided to EFSA by Genevieve Bondy (Bureau of Chemical Safety, Food Directorate,
Health Products and Food Branch, Health Canada, Ottawa) on 18 December 2017.
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AST aspartate amino transferase
BMD benchmark dose
BMDL05 the 95th percentile benchmark dose lower confidence limit
BMDL10 the 90th percentile benchmark dose lower confidence limit
BMDU05 the 95th percentile benchmark dose upper confidence limit
BMDU10 the 90th percentile benchmark dose upper confidence limit
BMR benchmark response
bw body weight
Caco human intestinal cell line
CAS Chemical Abstracts Service
CerS ceramide synthases
CI confidence interval
CM contaminated
CONTAM Panel EFSA Panel on Contaminants in the Food Chain
DART-MS direct-analysis-in-real-time mass spectrometry
deoxySa deoxysphinganine
DEN diethylnitrosamine
DON deoxynivalenol
E embryonic day
EHC Environmental Health Criteria
ELEM equine leukoencephalomalacia
ELISA enzyme-linked immunosorbent assay
FAO Food and Agriculture Organization of the United Nations
FA fumonisin A
FB fumonisin B
FC fumonisin C
FP fumonisin P
FEEDAP Panel EFSA Panel on Additives and Products or Substances used in Animal Feed
GC gas chromatography
GD gestation day
GGT gamma-glutamyl transferase
GPT glutamate-pyruvate transaminase
GSH glutathione
GST glutathione-S-transferase
GSTP+ glutathione S-transferase P+
H4TG rat hepatoma cell line
HBGV health-based guidance value
HCC hepatocellular carcinoma
Hek human embryonic kidney
HepG2 human hepatoma cell line
Hep3B human hepatoma cell line
HFB hydrolysed fumonisin B
HIV human immunodeficiency virus
HT29 human colonic cell line
IARC International Agency for Research on Cancer
IC50 half maximal inhibitory concentration
IF interferon
IgA immunoglobulin A
IgM immunoglobulin M
IHKE human proximal tubule-derived (cells)
KA31T mouse fibroblast cell line
IL interleukin
i.p. intraperitoneal
IPCS International Programme on Chemical Safety
i.v. intravenous
JECFA Joint FAO/WHO Expert Committee on Food Additives
LC liquid chromatography/left-censored
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LC-ESI-MS/MS liquid chromatography-electrospray ionisation-tandem mass spectrometry
LC-FLD liquid chromatography–fluorescence detection
LC–MS/MS liquid chromatography–tandem mass spectrometry
LC50 median lethal concentration
LDH lactate dehydrogenase
LAZ length for age z-score
LLC-PK1 cultured pig kidney renal epithelial cells
LOAEL lowest observed adverse effect level
LOD limit of detection
LOQ limit of quantification
M molar
MDCK canine kidney epithelial cells
MDD methyl-deficient diet
MEF mouse embryonic fibroblast
ML maximum level
MME mono methylester of fumonisin FB1
MoA mode of action
mRNA messenger RNA
MS mass spectrometry, mass spectrum
MS/MS tandem mass spectrometry
MW molecular weight
NCM nixtamalised contaminated
NCMC nixtamalised mixture of CM and ground corn
NCM-FB N-(carboxymethyl) fumonisins B
NDF-FB N-(1-deoxy-D-fructos-1-yl) fumonisins B
NFI-DTU National Food Institute-Danish Technical University
NMR nuclear magnetic resonance
NOAEL no observed adverse effect level
NOEL no observed effect level
NTD neural tube defects
NTP National Toxicology Program
OPA o-phthaldialdehyde
OR odds ratio
PGST placental glutathione S-transferase
pHFB partially hydrolysed fumonisin B
PKS polyketide synthetase
PMTDI provisional monthly tolerable daily intake
RNA ribonucleic acid
ROS reactive oxygen species
RP Reference point
Sa D-erythro-sphinganine (or short: sphinganine)
Sa 1-P sphinganine 1-phosphate
SAX strong anion-exchange
SCF Scientific Committee on Food
SCM sham nixtamalised CM
SCMC sham nixtamalised mixture of CM and ground corn
So D-erythro-sphingosine (or short: sphingosine)
So 1-P sphingosine 1-phosphate
SOD superoxide dismutase
SPE solid-phase extraction
SPF specific pathogen-free
TAC total antioxidant capacity
TCA tricarballylic acid
TDI tolerable daily intake
TG transgenic
TLC thin-layer chromatography, total leukocyte
TOF time of flight
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TOF-MS time of flight-Mass spectrometry
ToR Terms of Reference
TNF tumour necrosis factor
t-RNA transfer RNA
UC uncontaminated
UDP uridine 5’-diphosphate
UF uncertainty factor
UPLC (RP-C18) ultra pressure liquid chromatography–reverse phase C18 column
UV ultraviolet
WAZ weight for age z-score
WBC white blood cell
WHO World Health Organization
WLZ weight-for-length z-score
WT wild type
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Appendix A – Raw data used for derivation of a benchmark dose for
incidence of megalocytic hepatocytes and apoptosis upon oral exposure to
fumonisin B1 in mice

Table A.1 shows the data used for derivation of BMDs for megalocytic hepatocytes and hepatic
apoptosis.

Table A.1: Summary of data used for derivation of benchmark doses for megalocytic hepatocytes
and hepatic apoptosis (Bondy et al., 2012)

Doses in
mg/kg bw
per day

Individual scores
megalocytic
hepatocytes
(cut off = 1)

Combined
incidence

megalocytic
hepatocytes
(WT and TG)

Individual scores
Apoptosis (cut off = 2)

Combined incidence
apoptosis (WT and TG)

0 (WT)
0 (TG)

0 0 0 0 0 0 0 0 0 (WT)
0 0 0 0 0 0 0 0 0 0 (TG)

0/19 1 1 1 1 1 1 1 1 1 (WT)
1 1 1 1 1 1 1 1 1 1 (TG)

0/19

0.39 (WT)
0.37 (TG)

0 0 0 0 0 0 1 0 2 0 (WT)
0 0 1 0 0 0 0 0 1 0 (TG)

4/20 1 1 1 1 1 1 1 1 1 1 (WT)
1 1 1 1 1 1 1 1 1 1 (TG)

0/20

3.87 (WT)
3.88 (TG)

1 0 2 1 0 0 1 0 1 (WT)
2 2 2 0 0 0 0 1 0 0 (TG)

9/19 4 3 4 4 2 2 2 1 3 (WT)
4 3 4 3 3 5 1 2 4 3 (TG)

17/19

12.2 (WT)
12.6 (TG)

5 5 5 5 4 3 3 5 5 5 (WT)
5 5 5 5 5 5 5 0 5 5 (TG)

19/20 4 4 4 5 5 5 3 4 5 5 (WT)
4 3 3 4 4 4 4 3 5 5 (TG)

20/20

WT: WG strain; TG: TG strain.
Note: for explanation of pathology scoring see Section 10.2.7.
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Appendix B – Benchmark dose analysis

B.1. Introduction

Benchmark dose (BMD) analyses of the incidences of liver apoptosis and megalocytic hepatocytes in
male mice (Bondy et al., 2012) were carried out according to the EFSA guidance (EFSA Scientific
Committee, 2017). The benchmark response (BMR) is the estimated risk corresponding with the BMD of
interest. A default BMR of 10% for quantal data was applied. A 90% confidence interval around the BMD
was estimated, the lower bound is reported by BMDL and the upper bound by BMDU. Results were
obtained using the R-package bmdModeling. Fitting benchmark dose models is based on the R-package
proast61.3. Averaging results from multiple fitted benchmark dose models is based on the methodology
described by Wheeler and Bailer (2008). Model averaging was used for all tested endpoints. There were
no deviations from the recommended defaults (EFSA Scientific Committee, 2017). The BMD is defined as
the dose that corresponds with an extra risk of 10% compared with the background risk. Fitted models
applied for the calculations were the default models given in the EFSA guidance and selection of the
BMDL was carried out following the flow chart in the guidance (EFSA Scientific Committee, 2017).

B.2. Incidence of megalocytic hepatocytes

The combined incidence and severity of megalocytic hepatocytes in two strains (WT and TG) of male
mice treated orally with FB1 for 26 weeks (Bondy et al., 2012) were used for derivation of a BMD.
Severity of lesions was designated into six classes and were: 0 – not present, 1 – minimal; 2 –mild;
3 – moderate; 4 – marked; 5 – severe. The cut-off to consider a lesion was set to 1 for the megalocytic
hepatocytes, i.e. lesion severity with score of 1 or higher were considered as an incident (see Table A.1,
Appendix A)

Table B.1: Observations of incidences with a severity of 1 or more of megalocytic hepatocytes in
male mice treated with fumonisin B1

Substance Dose (mg/kg bw per day) Incidence N Cov

FB1 0.00 0 10 TG

0.37 2 10 TG
3.88 4 10 TG

12.60 9 10 TG
0.00 0 9 WT

0.39 2 10 WT
3.87 5 9 WT

12.20 10 10 WT

bw: body weight; N: number of animals; Cov: Covariant (mice of WT or TG strain).

Table B.2: Results for incidences of megalocytic hepatocytes

Model
Number of
parameters

Log-
likelihood

AIC
Accepted
AIC

BMDL BMDU BMD Converged

null 1 �52.80 107.60 NA NA NA NA

full 7 �26.17 66.34 NA NA NA NA
two.stage 3 �28.95 63.90 yes 0.337 1.840 0.51 yes

log.logist 3 �29.43 64.86 no NA NA NA yes
Weibull 3 �28.42 62.84 yes 0.038 0.656 0.24 yes

log.prob 3 �29.35 64.70 no NA NA NA yes
gamma 3 �28.22 62.44 yes 0.018 0.607 0.19 yes

logistic 2 �30.09 64.18 yes 1.090 2.200 1.50 yes
probit 2 �30.18 64.36 yes 1.120 2.100 1.50 yes

LVM: Expon. m3- 3 �28.39 62.78 yes 0.047 1.290 0.26 yes

LVM: Hill m3- 3 �28.69 63.38 yes 0.0423 1.610 0.27 yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit; NA: not applicable.
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Given the 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap
BMD values and the BMDU is the 95th percentile. Estimated BMD is based on the averaged response
model which is a weighted average of the accepted models’ response values.

Table B.4 shows final BMD, BMDL and BMDU values resulting from the calculations.

Figure B.1 shows the different bootstrap curves based on model averaging.

Table B.3: Model weights in using model averaging

Estimated
model
weights

two.stage log.logistic Weibull log.prob Gamma Logistic Probit EXP HILL

0.09 0.06 0.16 0.06 0.19 0.08 0.07 0.16 0.12

Table B.4: Calculated BMD, BMDL and BMDU values (mg/kg bw per day) for combined incidences
of megalocytic hepatocytes in male WT and TG mice after 26 weeks of oral application
of fumonisin B1 using model averaging

BMD BMDL BMDU

0.3 0.1 1.9

Figure B.1: Averaged dose–response model for the incidence of megalocytic hepatocytes

B.3. Incidence of hepatic apoptosis

The combined incidence and severity of hepatic apoptosis in two strains of male mice (covariates
WT and TG) treated orally with FB1 for 26 weeks (Bondy et al., 2012) were used for derivation of a
BMD. Severity of lesions was designated into six classes: 0: not present, 1: minimal; 2: mild; 3:
moderate; 4: marked; 5: severe. The cut-off to consider a lesion was set to 2 for apoptotic lesions, i.e.
lesions with score of 2 or higher were considered as an incident (see Table A.1, Appendix A)
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Given 1000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile. Estimated the BMD based on the averaged response
model which is a weighted average of the accepted models’ response values.

Table B.5: Observations of apoptotic lesions with a severity of 2 or more of apoptotic lesions in
male mice treated with fumonisin B1

Dose (mg/kg bw per day) Incidence N Cov

0.00 0 10 TG

0.37 0 10 TG
3.88 9 10 TG

12.60 10 10 TG
0.00 0 9 WT

0.39 0 10 WT
3.87 8 9 WT

12.20 10 10 WT

bw: body weight; N: number of animals; Cov: Covariant (mice of WT or TG strain).

Table B.7: Results for incidences of apoptotic hepatocytes

Model
Number of
parameters

Log-
likelihood

AIC
Accepted

AIC
BMDL BMDU BMD Converged

null 1 �53.96 109.92 NA NA NA NA

full 7 �6.39 26.78 NA NA NA NA
two.stage 3 �6.82 19.64 no NA NA NA yes

log.logist 3 �6.39 18.78 yes 0.501 3.92 3.5 yes
Weibull 3 �6.39 18.78 yes 0.511 3.92 3.3 yes

log.prob 3 �6.39 18.78 yes 0.470 4.14 3.5 yes
gamma 3 �6.39 18.78 yes 0.496 3.18 3.0 yes

logistic 2 �6.39 16.78 yes 1.110 4.17 3.5 yes
probit 2 �6.39 16.78 yes 0.972 4.12 3.5 yes

LVM: Expon. m3- 3 �6.39 18.78 yes 0.491 3.68 3.4 yes

LVM: Hill m3- 3 �6.39 18.78 yes 0.477 3.30 3.2 yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit; NA: Not applicable.

Table B.8: Model weights in using model averaging

Estimated
model
weights

two.
stage

log.
logistic

Weibull log.
prob

gamma Log
istic

probit EXP HILL

0.05 0.08 0.08 0.08 0.08 0.22 0.22 0.08 0.08

Table B.9: Calculated BMD, BMDL and BMDU values (mg/kg bw per day) for combined incidences
of apoptotic hepatocytes in male WT and TG mice after 26 weeks of oral application of
fumonisin B1 using model averaging

BMD BMDL BMDU

3.26 1.2 3.72

BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark dose upper confidence limit.
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Figure B.2: Averaged dose–response model for the incidence of apoptosis
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