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The effect of generic market entry on antibiotic
prescriptions in the United States
Cecilia Kållberg 1,2✉, Jemma Hudson3, Hege Salvesen Blix2,4, Christine Årdal 2, Eili Klein5,6,7,

Morten Lindbæk1, Kevin Outterson 8,9, John-Arne Røttingen1,2,11 & Ramanan Laxminarayan 5,10

When patented, brand-name antibiotics lose market exclusivity, generics typically enter the

market at lower prices, which may increase consumption of the drug. To examine the effect

of generic market entry on antibiotic consumption in the United States, we conducted an

interrupted time series analysis of the change in the number of prescriptions per month for

antibiotics for which at least one generic entered the US market between 2000 and 2012.

Data were acquired from the IQVIA Xponent database. Thirteen antibiotics were analyzed.

Here, we show that one year after generic entry, the number of prescriptions increased for

five antibiotics (5 to 406%)—aztreonam, cefpodoxime, ciprofloxacin, levofloxacin, ofloxacin

—and decreased for one drug: cefdinir. These changes were sustained two years after.

Cefprozil, cefuroxime axetil and clarithromycin had significant increases in trend, but no

significant level changes. No consistent pattern for antibiotic use following generic entry in

the United States was observed.
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Antimicrobial resistance (AMR) is a global challenge that
raises mortality from infectious diseases and increases
healthcare costs1,2. Antibiotic use is a primary driver of

AMR3 and remains at a high level in the United States, despite
efforts to improve prescribing practices and discourage inap-
propriate use4,5. As much as 30% of oral antibiotic use in the
United States may be unnecessary6. Apart from factors such as
patients’ and physicians’ expectations, physicians’ training, and
patient characteristics7,8, the price and introduction of generics are
potential drivers for overconsumption9–14. Generic drugs enter
the market shortly after exclusivity rights (e.g., patent protection
and data exclusivity) for the original patented drug end14. This
was made possible by the Hatch-Waxman act, allowing companies
to obtain approval for generic drugs without conducting addi-
tional clinical trials14. As a result, availability and access increase,
while individual and national health expenditures fall, benefiting
healthcare systems15,16. In the case of antibiotics, generics could
potentially increase inappropriate antibiotic consumption and
hasten the development of antibiotic resistance9–14,17.

After generic entry, amoxicillin-clavulanate use in the United
States and ciprofloxacin use in Denmark increased9,14. In Den-
mark, study findings showed a correlation between generic entry
of ciprofloxacin and increased cases of ciprofloxacin-resistant
Escherichia coli from urine isolates9. In Germany, generic entry
of cephalosporins and fluoroquinolones increased the use of
these antibiotic classes13. A more recent study examining the
effect of generic entry of levofloxacin on fluoroquinolone use and
meropenem on carbapenem use in five European Union coun-
tries and in the United States18 showed significant increases in
some cases and significant decreases in others, with no dis-
cernible patterns between different antibiotics or different
countries. These previous studies have focused only on a few
antibiotics, not addressed alternative explanations to their find-
ings (co-interventions)9,14,18 or not accounted for secular
trends14.

In this study, we analyze the effect of loss of exclusivity on the
use of antibiotics for systemic use that had at least one generic
enter the US market between 2000 and 2012, using an interrupted
time series (ITS) design. We hypothesized that a level increase in
antibiotic prescriptions would be visible by 6–12 months after the
entry of the first generic and by 24 months at the latest. This was
the case for five antibiotics (aztreonam, cefpodoxime, cipro-
floxacin, levofloxacin, and ofloxacin), whereas one (cefdinir)
showed a decrease, one year after generic entry. These changes
were sustained two years after. Our second hypothesis was an
increase in trend, which was the case for three antibiotics (cef-
prozil, cefuroxime axetil, and clarithromycin). These changes
represented use leveling out. Together, these findings indicate no
consistent pattern for antibiotic use following generic entry in the
United States.

Results
Descriptive analysis. We identified 13 antibiotics that met the
inclusion criteria (Figs. 1 and 2). Cefuroxime axetil was included
despite generic availability of cefuroxime sodium, which comes
only as an intravenous (IV) drug, whereas cefuroxime axetil is an
oral treatment available for outpatient care. Azithromycin had the
highest number of prescriptions—approximately three times
greater than any other antibiotic—at the time of generic entry,
followed by ciprofloxacin, cefdinir, levofloxacin, clarithromycin,
and cefuroxime axetil. For all but two antibiotics (aztreonam and
piperacillin/tazobactam), prescriptions almost completely con-
sisted of generic products after generic entry. Aztreonam and
piperacillin/tazobactam were, together with cefpodoxime, deme-
clocyline, and meropenem, the antibiotics with only one or two

manufacturers of generic products one year after generic entry
(Supplementary Table 1 and Supplementary Fig. 1).

Overview of results. Prescriptions for five antibiotics—aztreo-
nam, cefpodoxime, ciprofloxacin, levofloxacin, and ofloxacin—
had a statistically significant increase 6–12 months after generic
entry, which was sustained two years after generic entry. Cefdinir
was the only antibiotic showing a significant decrease in pre-
scriptions against the historical trend, sustained over time
(Tables 1 and 2). Cefprozil, cefuroxime axetil, and clarithromycin
experienced immediate significant increases in trend, but with no
significant changes in the level detected within two years of
generic entry. Eight of the 13 antibiotics had a declining trend
prior to generic entry (Table 1) (9 including levofloxacin based on
visual inspection), including four of the antibiotics with the
highest number of prescriptions (cefuroxime axetil, ciprofloxacin,
clarithromycin, and levofloxacin). In two of the cases showing
significant level changes—ciprofloxacin and levofloxacin—pre-
scriptions initially declined, then rose. In four cases—aztreonam,
cefdinir, cefpodoxime, and ofloxacin—the changes represented
trends leveling out. This was also the case for cefprozil, cefur-
oxime axetil, and clarithromycin. For the remaining antibiotics,
no significant changes were detected (Figs. 1 and 2).

Changes in number of prescriptions 6–12 months after generic
entry. Six months after generic entry, ciprofloxacin prescriptions
had increased by 427.82 per one million population (95% con-
fidence interval [CI] 247.18 to 608.45, p-value < 0.001, relative
change 12%), ofloxacin prescriptions had increased significantly
by 0.17 per one million population (95% CI 0.10 to 0.24, p-value
< 0.001; note logged data, relative change 4%), whereas cefdinir
prescriptions had decreased by −0.27 per one million population
(95% CI −0.45 to −0.10, p-value 0.003; note logged data, relative
change 3%). Twelve months after generic entry, aztreonam pre-
scriptions had increased significantly by 0.04 per one million
population (95% CI 0.01 to 0.08, p-value= 0.018, relative change
406%), cefpodoxime prescriptions increased by 0.22 per one
million population (95% CI 0.03 to 0.41, p-value= 0.026; note
logged data, relative change 5%), and levofloxacin prescriptions
increased by 672.41 per one million population (95% CI 495.93 to
848.89, p-value < 0.001, relative chage 29%) (Table 2 and Sup-
plementary Table 2).

Changes in number of prescriptions 24 months after generic
entry. For the six antibiotics that showed significant increases/
decreases 6–12 months after generic entry, changes were sustained
over the subsequent year. Twenty-four months after generic entry,
prescriptions had increased significantly for ciprofloxacin by
1104.26 per one million population (95% CI 887.76 to 1320.76, p-
value < 0.001, relative change 33%), ofloxacin prescriptions by 0.38
per one million population (95% CI 0.29 to 0.48, p-value < 0.001,
note logged data, relative change 12%), whereas cefdinir pre-
scriptions had decreased significantly by −0.85 per one million
population (95% CI −1.12 to −0.58, p-value < 0.001, note logged
data, relative change 10%). Aztreonam prescriptions had sig-
nificantly increased by 0.05 per one million population (95% CI
0.01 to 0.09, p-value= 0.008, relative change not availbale due to
negative values), cefpodoxime prescriptions by 0.45 per one mil-
lion population (95% CI 0.20 to 0.70, p-value= 0.001; note logged
data, relative change 12%), and levofloxacin prescriptions by
1989.14 per one million population (95% CI 1668.09 to 2310.19,
p-value < 0.001, relative change 125%) (Table 2 and Supplemen-
tary Table 2).
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Fig. 1 Antibiotics showing a significant level increase/decrease within two years after generic entry. Change in number of antibiotic prescriptions per
one million population before and after generic entry (vertical line), with projected level of prescriptions if generic entry had not taken place (dashed line). a
Aztreonam. b Cefdinir; note logged data. c Cefpodoxime; note logged data. d Ciprofloxacin. e Levofloxacin. f Ofloxacin; note logged data.
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Fig. 2 Antibiotics showing no significant level change within two years after generic entry. Change in number of antibiotic prescriptions per one
million population before and after generic entry (vertical line), with projected level of prescriptions if generic entry had not taken place (dashed line).
a Azithromycin. b Cefprozil; note logged data. c Cefuroxime axetil. d Clarithromycin. e Demeclocycline. f Meropenem. g Piperacillin/tazobactam.
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Sensitivity analysis and co-interventions. In 2001, the United
States experienced the anthrax attacks. As a result, the United States
stockpiled ciprofloxacin, leading to price negotiations with the
innovator, Bayer19,20. After the US government threatened a
compulsory license, Bayer agreed to lower prices in October 2001.
Given the unique media attention and direct price intervention for
ciprofloxacin, we conducted an ITS analysis excluding the anthrax
attacks. This analysis showed that generic introduction had a sig-
nificant increase in prescriptions of 408.60 per one million popu-
lation (95% CI 59.54 to 757.66, p-value= 0.022, relative change
11%) after 12 months and 803.76 per one million population (95%
CI 314.13 to 1293.39, p-value= 0.002, relative change 22%) by
24 months (Supplementary Tables 2–4). Meropenem and piper-
acillin/tazobactam showed greater variation in the beginning of the
time series, whereas ciprofloxacin had one outlier in the pre-
intervention data. In addition, we identified a total shortage of
aztreonam between June 2009 and June 2010 reported by the Food
and Drug Administration (FDA). Removing data for the months
affected by the aztreonam shortage, removing the ciprofloxacin
outlier, and restricting the dataset to only include data from 2005 in
the case of meropenem and from 2007 in the case of piperacillin/
tazobactam did not alter the results, apart from postponing the
significant increase seen in aztreonam by 6 months (Supplementary
Tables 3 and 4).

Discussion
In this study, we used ITS analyses to measure the effect of
generic entry on antibiotic prescriptions in the United States.
Significant increases in prescriptions were observed one year after
generics were introduced in the case of five antibiotics: aztreo-
nam, cefpodoxime, ciprofloxacin, levofloxacin, and ofloxacin.
One antibiotic—cefdinir—had a significant decrease in prescrip-
tions one year after generic entry. For all six, the changes were
sustained two years after. In the case of aztreonam, cefpodoxime,
and ofloxacin, the changes represented negative trends leveling
out. In two instances—ciprofloxacin and levofloxacin—generic
entry led to negative prescription trends turning positive.
Although cefprozil, cefuroxime axetil, and clarithromycin
experienced immediate significant increases in trend, there were
no significant changes in the level detected within two years of
generic entry. Use of these three antibiotics represented a leveling

out over time. In the remaining cases, results were insignificant.
All three fluoroquinolones included in the study were among the
five antibiotics showing significant increases sustained two years
after generic entry. However, the results suggest that the increase
in ciprofloxacin was partly the result of the anthrax attacks and
the subsequent price negotiation and stockpiling in October 2001.

Research on the effect of market exclusivity on drug use is
relevant for the discussion about affordability and access to
medicines, as well as responsible use. Multiple reports show how
drug prices are increasing in the United States, reducing access
and compromising health21,22. At the same time antibiotic
resistance is increasing globally because of overuse of antibiotics4.
For most antibiotics included in this study, use was declining even
before generic entry took place and no dramatic change occurred
when generics entered the market. This is not surprising, given
that antibiotics are relatively inexpensive products, available only
by prescription, and face competition from other antibiotics even
when under patent protection. Many antibiotics also show strong
seasonal trends, implying that the use depends on infectious
disease prevalence—something that makes antibiotics different
from, e.g., opioids.

Other factors coincident with generic entry, so-called co-
interventions, could alter the trajectory of prescriptions23,24. We
found that generic entry for aztreonam coincided with the market
entry of Cayston (an inhalation treatment often used for patients
with cystic fibrosis). This could have promoted the IV formula-
tion of aztreonam as a treatment option for patients with cystic
fibrosis and increased its use, as the IV formulation of aztreonam
has clinical benefits for cystic fibrosis patients as well25, and as IV
antibiotics are sometimes used for preparing inhalations. Another
plausible explanation for the observed changes in prescriptions
for aztreonam, cefpodoxime, and ofloxacin is that consumption
leveled out when approaching zero, as “negative consumption” is
not possible. In the case of ciprofloxacin, the anthrax attacks and
resulting stockpiling seem to have affected prescriptions. We did
not find alternative explanations for the significant changes seen
in the other antibiotics. FDA reported safety issues for fluor-
oquinolones in October and December 2008 due to an increased
risk for tendinitis and tendon rupture, and azithromyzin in May
2012 and December 2013 due to an increased risk for fatal irre-
gular heart rythms26. None of these events coincided with time of

Table 1 Trends before and after generic entry.

Baseline trend Immediate change in trend

Antibiotic Estimate 95% CI p-Value Estimate 95% CI p-Value

Azithromycin 37.991 (22.219, 53.763) <0.001 −3.677 (−25.545, 18.190) 0.740
Aztreonam −0.001 (−0.002, −0.001) <0.001 0.001 (−0.001, 0.004) 0.328
Cefdinira 0.028 (0.023, 0.032) <0.001 −0.032 (−0.042, −0.023) <0.001
Cefpodoximea −0.023 (−0.029, −0.018) <0.001 0.019 (0.012, 0.027) <0.001
Cefprozila −0.014 (−0.015, −0.013) <0.001 0.008 (0.006, 0.010) <0.001
Cefuroxime axetil −18.691 (−26.250, −11.132) <0.001 17.513 (9.466, 25.560) <0.001
Ciprofloxacin −8.066 (−11.648, −4.485) <0.001 37.580 (32.815, 42.346) <0.001
Clarithromycin −28.233 (−36.437, −20.028) <0.001 17.987 (6.922, 29.052) 0.002
Demeclocycline 0.018 (0.000, 0.035) 0.044 −0.012 (−0.033, 0.009) 0.251
Levofloxacin 57.064 (2.188, 111.940) 0.042
Meropenem 0.001 (0.000, 0.001) 0.007 0.002 (−0.002, 0.007) 0.281
Ofloxacina −0.035 (−0.037, −0.033) <0.001 0.012 (0.010, 0.014) <0.001
Piperacillin/Tazobactam −0.001 (−0.002, 0.001) 0.199 0.001 (−0.008, 0.009) 0.880

Results of the interrupted time series analysis, measuring the changes in number of antibiotic prescriptions per one million population per month. “Baseline trend” corresponds to the trend in
prescriptions before generic entry. “Immediate change in trend” corresponds to the change in trend after generic entry. Graphs used to assess linearity and seasonality, as well as Akaike information
criterion and the Bayesian information criterion for each antibiotic is available in the Supplementary Figs. 4–16. Either segmented regression was used with Prais–Winsten regression when autocorrelation
was present. Two-sided test was used with no adjustment for multiple comparisons.
aData were logged.
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generic entry for these drugs. Unrelated to generic entry, it is
possible that the decrease in levofloxacin, beginning in 2008, was
partly due to safety issues, as that was the year FDA issued a
safety warning. One of the effects of vaccines is a decrease in the
use of antibiotics27. Five vaccines were added to the vaccination
program in the United States between 2000 and 2012; pneumo-
coccal vaccines in 2000 (7-valent) and 2010 (13-valent), influenza
vaccine in 2004, quadrivalent meningococcal vaccine in 2005, and
rotavirus vaccine in 200628. The 7-valent pneumococcal vaccine
had a major impact on infections caused by the bacteria strains
covered by the vaccine, with the main effect seen between 2000
and 200229. This coincided with the generic introduction of
cefuroxime axetil and could have masked a significant increase in
use, which, according to our results, had an insignificant increase.
Based on the same logic, the increase in the use of levofloxacin
could have been reduced by the introduction of the 13-valent
pneumococcal vaccine causing a decrease in upper respiratory
tract infections. However, decreases should then be visible in
other respiratory tract antibiotics as well at this point in time,
which was not the case. In contrast to the other vaccines, which
target mainly the younger population, the influenza vaccine tar-
gets all age groups. Although this makes it relevant to this study,
the impact of the influenza vaccine is more difficult to assess
given that both effectiveness and coverage differs each season.
Therefore, we cannot rule out that the effect of generic entry of an
antibiotic used for respiratory tract infections was masked by the
influenza vaccine. In 1995, the Centers for Disease Control and
Prevention (CDC) launched the National Campaign for Appro-
priate Antibiotic Use in the Community, which was renamed Get
Smart: Know when antibiotics work campaign in 200330,31. Get
Smart promotes responsible use of antibiotics and supports states
and communities to develop and implement stewardship
programs32. We did not find any programs that were imple-
mented simultaneously in all states, and which could be linked in
time with the dates for generic entry of the antibiotics included in
this study. Although statewide and community-based programs
have contributed to improvement in antibiotic use, it is unlikely
that they would be able to cause a significant change in national
use of one specific antibiotic at a specific point in time. Between
2000 and 2012, CDC reported increases of macrolide-resistant
bacteria, including Streptococcus pneumoniae, Carbapenem-
resistant Enterobacteriaceae, extended spectrum Betalactamase,
and fluoroquinolone-resistant bacteria2,33. Although resistance
develops gradually, an immediate impact on use could happen if
the resistance levels led to nationwide guideline changes. We were
not able to detect a guideline change that coincided with our dates
for generic entry. On the contrary, all three fluoroquinolones
included in the study were among the antibiotics with significant
increases in prescriptions and in 2012 azithromycin was the most
prescribed antibiotic in outpatient care in the United States,
despite growing levels of resistance towards these antibiotics34.

It is possible that the antibiotics included in this reseach
impacted each other by competing for the same market shares.
This would be relevant primarily for antibiotics with similar
indications, formulation, and generic entry at close proximity in
time. The three fluoroquinolones included in the study all showed
an increase in use, so regardless of whether or not they had an
impact on each other it should not have affected the outcome.
However, a number of the oral antibiotics, where generic entry
had a mixed effect, have respiratory tract infections as indications
—azithromycin, cefdinir, cefpodoxime, cefprozil, cefurox-
ime axetil, clarithromycin, as well as ciprofloxacin, levofloxacin,
and ofloxacin (Supplementary Table 5). It is possible that the
generic entry of azithromycin, preceeding the generic entry of
cefdinir and cefprozil, could have contributed to the lack of
increase in cefprozil and the decrease of cefdinir. Then again, asT
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azithromycin use far exceeds the use of any of the other anti-
biotics, one would expect a similar effect on some of the other
antibiotics, or that there would be no significant increases at all
for any of the antibiotics with lower levels of use. Given the
number of indications for each antibiotic, it is difficult to know
exactly which antibiotic would substitute another in practice and
we acknowledge that there is likely some level of impact between
the different antibiotics. However, we were not able to detect any
patterns that would support the idea that our findings were the
result of generic entry of the other antibiotics.

The significant decrease in cefdinir was surprising. It may have
been related to the decrease in the prevalence of acute otitis
media, which has been attributed partly to a change in treatment
recommendations and introduction of pneumococcal
vaccines35,36. However, the decrease took place in between the
introduction of the two vaccines, so it is unlikely that the 7-valent
pneumococcal vaccine would have caused a sharp decrease in use
seven years after introduction. Clinical treatment guidelines from
2004 lists amoxicillin as the first-line treatment for acute otitis
media. In the case of allergy, cefdinir, cefpodoxime, and cefur-
oxime axetil are listed as alternatives37. It is possible that the
generic introduction of cefuroxime axetil in 2002 and cefpodox-
ime in 2004 contributed to the decreased use of cefdinir. In
addition, azithromycin, one of the most commonly used anti-
biotics for respiratory tract infections, became available as a
generic little more than a year before cefdinir became available as
a generic. This could have contributed to the decrease in cefdinir
since the two antibiotics have similar indications.

Our findings suggest that, consistent with evidence from other
countries18, generic entry has limited and inconsistent effects on
antibiotic use in the United States, with no significant, sustained
increase in more than half of cases. However, we note that there was
a positive significant change in trend without an accompanying
change in level for three of the 13 antibiotics and, although trends
leveling out as sales approach zero might partly explain this, we
cannot rule out the possibility that introduction of generics may
lead to a change in trend that leads to increased prescribing over
longer time horizons. Overall, prescriptions were surprisingly stable
over time. The reason for increasing levels of antibiotic prescrip-
tions (and thereby use) and resistance is multifactorial and complex,
and models should not assume that generic entry will automatically
increase antibiotic prescriptions in settings like the United States.
Nevertheless, some antibiotic classes, namely fluoroquinolones,
could be more sensitive. Interestingly, a significant increase in
fluoroquinolone use was also observed by Stephens18, by Jensen
et al.9, and by Kaier13. However, it is difficult to know whether this
is coincidental, as the three studies did not include more than one
other antibiotic or class and did not discuss alternative explanations
for their findings. Also, the increase in fluoroquinolones was
notable, given the well-known problems related to both resistance
and side effects38. Arguably, this increase could be considered
inappropriate (even if the anthrax attacks were a likely contributing
factor), but without looking at overall antibiotic use and use by
antibiotic class, this is difficult to judge.

Our study included all antibiotics for which generics were
introduced between 2000 and 2012, which allows for analyzing
differences among classes, formulations, and target indications.
Nevertheless, several limitations should be considered when
interpreting our findings. Research shows that price reductions
depend on the number of generics introduced to market17, with a
small effect on price after the first generic entry39; the biggest
price reduction occurs after the second generic entry40. We did
not have access to dates of subsequent generic entry. However, for
eight of the 13 antibiotics in our study, three or more generic
products were approved one year after the first generic entry
(Supplementary Table 1)38, making multiple generic entries a

possibility for most of the antibiotics. In addition, for most
antibiotics, generics accounted for the majority of prescriptions
within one year of their introduction (Supplementary Fig. 1).
According to the Hatch-Waxman Act, the first generic product is
allowed 180 days of exclusivity against subsequent generic
entrants14. Although the rule does not cover authorized generic
products (generics produced by the brand owner), it could have
delayed a potential price reduction by limiting competition. To
account for a delay in the effect of generic entry, we included
analysis of the effect 24 months after the event. Information
regarding the number of manufacturers includes only approvals
to market and depends on companies actively notifying the FDA
if products are taken off market. This means that the number of
manufacturers could have been overestimated. We did not
examine class-based substitution effects, which could explain
some of the trends observed—e.g., if increases in the use of a
particular antibiotic were due to declines in sales in a sub-
stitutable product. Finally, we addressed the issue of co-
interventions by searching for events that could have affected
use. However, given the multitude of factors that influence anti-
biotic use, there could be co-interventions that we have over-
looked. Additional research is needed to explore the effect of
generic entry on antibiotic prices and to consider differences
among antibiotic classes. Research is also needed to determine the
effects, including access and antibiotic resistance, when generics
enter the market in low- and middle-income countries.

Methods
Study design. We used an ITS design, a quasi-experimental approach to evalu-
ating public health interventions23,24, to assess the effect of loss of market exclu-
sivity on antibiotic use. The intervention being studied was generic entry, defined
as the month when prescriptions of the first generic were first recorded. We chose
generic entry to mark the end of exclusivity because alternatives, such as patent
expiration date or approval date of the first generic product, do not guarantee that a
generic has entered the market. Moreover, companies manufacturing brand-name
antibiotics may contract with generic manufacturers to distribute a generic version
of the product prior to the end of exclusivity. We therefore compared the date of
the first recorded generic prescription with FDA approval dates to ensure that
approval preceded distribution of generics. This was the case for all but one
antibiotic (ciprofloxacin), for which the intervention date was set to the month
when both generic prescription and approval had occurred (Supplementary
table 1). The outcome measure was total number of prescriptions per capita per
month (including oral and parenteral formulations of both brand and generic
products).

The effect estimates used in ITS analysis is level and trend23. With respect to
antibiotics, a level change represents the difference in antibiotic use between the
specified post-intervention time point and the pre-intervention regression line that
is extrapolated to that same time point (counterfactual). A change in trend
represent an increase or decrease in the slope of a time series segment after the
intervention compared with the time series segment preceding the intervention23

(Supplementary Fig. 2). There is no consensus on which effect estimate to report,
and they are inconsistently used when reporting the results of ITS analysis41. The
selection of which effect estimates to give weight ultimately depend on the specifics
of each individual study, including the intervention and its expected impact on the
outcome measure. Research show that the number of generic products entering the
market and generic price decline is biggest during the first 12–24 months after
generic entry, and stabilizing after that42. Therefore, it is reasonable to assume that
an impact on antibiotic prescriptions should be visible by 6–12 months after the
entry of the first generic. Thus, our pre-specified hypothesis was a change in level at
6 and 12 months as the primary time points to model the effect. To assess whether
the effect was consistent over a longer period or delayed, we also modeled the
effects after 18 and 24 months. These are the same or similar time points that have
been used in other research measuring the impact of generic entry on antibiotic
use9,14,18. In addition, we examined the trend after first generic entry to assess
changes in the rate of antibiotic prescriptions. Our second hypothesis was an
immediate change in trend.

Data sources. Data on antibiotic prescriptions in the United States were obtained
from the IQVIA Xponent database, which contains the monthly number of anti-
biotic prescriptions filled in a pharmacy based on product sales data from retail
pharmacies. IQVIA Xponent data have been extensively used in other studies of
antibiotic prescribing43–47. As all prescriptions that are filled are not necessarily
consumed, the number of filled prescriptions may overstate consumption. We
accounted for population growth using data from the US Census Bureau48.
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Identifying antibiotics for analysis. We identified antibiotics of interest by
reviewing monthly product prescription data. The inclusion criteria were anti-
biotics for systemic use for which a generic product entered the market between
2000 and 2012 of the same formulation and strength based on New Drug Appli-
cation (NDA)/Abbreviated New Drug Application (ANDA) status, obtained from
the FDA website38. The following antibiotics were included: azithromycin,
aztreonam, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, ciprofloxacin, clar-
ithromycin, demeclocycline, levofloxacin, meropenem, ofloxacin, and piperacillin/
tazobactam (Figs. 1 and 2). All antibiotics included in our analysis had sales data
for at least 24 months before and 24 months after the date of generic entry,
timelines started in January 1999 for all antibiotics. Additional information about
each antibiotic, obtained from the FDA website38, included the following: active
substance, brand name, generic name, company responsible for approval of the
brand drug, date of NDA/ANDA approval, formulation, class, approved indication,
and number of companies with approved generics 12 and 24 months after generic
entry (Supplementary Tables 1 and 5).

Statistical analysis. Segmented regression analysis, a statistical method commonly
used in ITS design, was conducted and uses time-series data to measure change in
level and change in trend, allowing for underlying trends before and after the event
of interest (intervention)23,24,49. The statistical model used for this model is

Yt ¼ β0 þ β1*Timet þ β2*Interventiont þ β3*Time after interventiont þ et ð1Þ

where Yt is the total number of prescriptions per capita per month at time t, β0
estimates the baseline level, β1 estimates the pre-intervention trend, β2 estimates
the change in level, and β3 is the change in trend. “Time” is a continuous variable
and is time since the start of the series. “Intervention” is an indicator for when the
intervention occurred at time t and is coded 0 pre-intervention and 1 post-
intervention. “Time after intervention” is a continuous variable, time t is coded 0
pre-intervention and is time− time point when the intervention occurred. et is the
error term. Supplementary Fig. 2 shows a description of the effect estimates.
Autocorrelation and seasonality were assessed using autocorrelation function and
partial autocorrelation function. Visual inspection, as well as looking at the pre-
dicted values, were also used to determine whether seasonality needed to be
adjusted for, as well as whether to fit a linear or a quadratic regression, or if the data
needed to be log-transformed (Supplementary Table 6). If autocorrelation was
present, a Prais–Winsten regression was used, which assumes first-order auto-
correlation process. If seasonality was present, then a seasonal covariate was
included. To assess the model fits, the Akaike information criterion and the
Bayesian information criterion were used. The level of significance was set to 5%.
Outliers were addressed through sensitivity analysis by assessing whether results
were robust to their exclusion. Time series were complete for all but one antibiotic
(aztreonam), which lacked two months of data. This is possibly because of failure
in the reporting system or low sales. Because of deviant data points (not related to
the generic entry, as they occurred more than six years after), the timelines for
ciprofloxacin and ofloxacin were shortened (Supplementary Fig. 3). In one case
(levofloxacin), quadratic regression was fitted, resulting in no baseline estimation
(Supplementary Table 6). In addition to absolute change, relative change was
calculated using the following equation:

Rt ¼ 100*
Level effectt

Predicted valuet
� �� Level effectt

� � ð2Þ

where Rt is the relative change at time t, “Level effectt” is the change in level at time
t, and “Predicted valuet” is the counterfactual at time t50. Analysis was done using
Stata1551. To identify potential co-interventions (events that coincide with the
intervention and affect the outcome measure thereby impacting the result), we
conducted a systematic search using open-access internet resources and published
articles23,24. Factors considered possible co-interventions included safety issues,
infectious disease outbreaks, changes in treatment guidelines, vaccination pro-
grams, stockpiling, drug shortages, price negotiations, stewardship programs, and
antibiotic resistance. Safety issues for each of the 13 antibiotics were identified
using the FDA drug safety communications26. Infectious disease outbreaks and
development of antibiotic resistance were identified searching reports by the
CDC2,33. We searched for changes in treatment guidelines developed by the
Infectious Diseases Society of America and in treatment guidelines posted on the
CDC webpage52,53. Changes in the US vaccination program were identified using
the CDC “Immunization schedules”28. In addition, we searched PubMed Google
and Google Scholar using the following combinations of search terms: [pathogen]
AND vaccine; outbreak bacteria USA; antibiotic prescriptions USA; antibiotic
stewardship program AND [antibiotic]; antibiotic shortage; antibacterial drug
shortages; antibiotic stockpiling; antibacterial stockpiling; price negotiations AND
[antibiotic].

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from IQVIA
(www.iqvia.com), but restrictions apply to the availability of these data, which were used
under license for the current study, and so are not publically available. The terms of
IQVIA’s licensing agreement preclude sharing of the data. Other researchers may
purchase the data from IQVIA directly.

Code availability
STATA code is available from Github under https://github.com/ceka2000/Antibiotic-
codes/tree/v1.0.0

Received: 3 May 2020; Accepted: 7 April 2021;

References
1. Cosgrove, S. E. The relationship between antimicrobial resistance and patient

outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect.
Dis. 42, S82–S89 (2006). Suppl 2.

2. Centres for Disease Control and Prevention. Antibiotic Resistance Threats in
the United States, 2013 (Centres for Disease Control and Prevention, US
Department of Health and Human Services, accessed 28 December 2020);
https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (2013).

3. Chatterjee, A. et al. Quantifying drivers of antibiotic resistance in humans: a
systematic review. Lancet Infect. Dis. 18, e368–e378 (2018).

4. Klein, E. Y. et al. Global increase and geographic convergence in antibiotic
consumption between 2000 and 2015. Proc. Natl Acad. Sci. USA 115,
E3463–E3470 (2018).

5. Sorensen, H. Trends in US Antibiotic Use, 2018: Antibiotics & Health Care
(Pew Charitable Trusts, accessed 28 December 2020); https://www.pewtrusts.
org/-/media/assets/2018/08/2018-trends-in-us-antibiotic-use.pdf (2018).

6. Fleming-Dutra, K. E. et al. Prevalence of inappropriate antibiotic prescriptions
among US ambulatory care visits, 2010-2011. JAMA 315, 1864–1873 (2016).

7. Fletcher-Lartey, S., Yee, M., Gaarslev, C. & Khan, R. Why do general
practitioners prescribe antibiotics for upper respiratory tract infections to
meet patient expectations: a mixed methods study. BMJ Open. 6, e012244
(2016).

8. Wood, F., Simpson, S. & Butler, C. C. Socially responsible antibiotic choices in
primary care: a qualitative study of GPs’ decisions to prescribe broad-
spectrum and fluroquinolone antibiotics. Fam. Pract. 24, 427–434 (2007).

9. Jensen, U. S. et al. Effect of generics on price and consumption of ciprofloxacin
in primary healthcare: the relationship to increasing resistance. J. Antimicrob.
Chemother. 65, 1286–1291 (2010).

10. Toutain, P. L. & Bousquet‐Melou, A. The consequences of generic marketing
on antibiotic consumption and the spread of microbial resistance: the need for
new antibiotics. J. Vet. Pharmacol. Ther. 36, 420–424 (2013).

11. Horowitz, J. B. & Moehring, H. B. How property rights and patents affect
antibiotic resistance. Health Econ. 13, 575–583 (2004).

12. Outterson, K. The vanishing public domain: antibiotic resistance,
pharmaceutical innovation and intellectual property law. Univ. Pittsburgh Law
Rev. 67, 67 (2005).

13. Kaier, K. The impact of pricing and patent expiration on demand for
pharmaceuticals: an examination of the use of broad-spectrum antimicrobials.
Health Econ. Policy Law 8, 7 (2013).

14. Aitken, M. L. et al. in Measuring and Modeling Health Care Costs 243–227
(Univ. Chicago Press, 2013).

15. Cameron, A., Ewen, M., Ross-Degnan, D., Ball, D. & Laing, R. Medicine
prices, availability, and affordability in 36 developing and middle-income
countries: a secondary analysis. Lancet 373, 240–249 (2009).

16. Wouters, O. J., Kanavos, P. G. & McKee, M. Comparing generic drug markets
in Europe and the United States: prices, volumes, and spending. Milbank Q.
95, 554–601 (2017).

17. Monnet, D. L., Ferech, M., Frimodt-Møller, N. & Goossens, H. The more
antibacterial trade names, the more consumption of antibacterials: a European
study. Clin. Infect. Dis. 41, 114–117 (2005).

18. Stephens, P. Stimulating Antibiotic R&D. An Analysis of Key Factors – R&D
Success, R&D Duration and the Impact of Generic Launch (IMS Health, 2015).

19. Wechsler, J. Bioterrorism threat shines spotlight on drug manufacturing.
Pharm. Technol. 13, 14–22 (2001).

20. Carroll, J. & Winslow, R. Bayer agrees to slash prices for Cipro drug. Wall
Street Journal 25 (2001).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23049-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2937 | https://doi.org/10.1038/s41467-021-23049-4 | www.nature.com/naturecommunications 7

http://www.iqvia.com
https://github.com/ceka2000/Antibiotic-codes/tree/v1.0.0
https://github.com/ceka2000/Antibiotic-codes/tree/v1.0.0
https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
https://www.pewtrusts.org/-/media/assets/2018/08/2018-trends-in-us-antibiotic-use.pdf
https://www.pewtrusts.org/-/media/assets/2018/08/2018-trends-in-us-antibiotic-use.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


21. Alpern, J. D., Zhang, L., Stauffer, W. M. & Kesselheim, A. S. Trends in pricing
and generic competition within the oral antibiotic drug market in the United
States. Clin. Infect. Dis. 65, 1848–52. (2017).

22. Kesselheim, A. S., Avorn, J. & Sarpatwari, A. The high cost of prescription
drugs in the United States: origins and prospects for reform. JAMA 316,
858–871 (2016).

23. Wagner, A. K., Soumerai, S. B., Zhang, F. & Ross‐Degnan, D. Segmented
regression analysis of interrupted time series studies in medication use
research. J. Clin. Pharm. Ther. 27, 299–309 (2002).

24. Bernal, J. L., Soumerai, S. & Gasparrini, A. A methodological framework for
model selection in interrupted time series studies. J. Clin. Epidemiol. 103,
82–91 (2018).

25. Kirkby, S., Novak, K. & McCoy, K. Aztreonam (for inhalation solution) for the
treatment of chronic lung infections in patients with cystic fibrosis: an
evidence-based review. Core Evid. 6, 59 (2011).

26. U.S. Food and Drug Administration. Index to Drug-Specific Information
(accessed 28 December 2020); https://www.fda.gov/drugs/postmarket-drug-
safety-information-patients-and-providers/index-drug-specific-information.

27. Klugman, K. P. & Black, S. Impact of existing vaccines in reducing antibiotic
resistance: Primary and secondary effects. Proc. Natl Acad. Sci. USA 115,
12896–12901 (2018).

28. Centers for Disease Control and Prevention. Table 1. Recommended Child and
Adolescent Immunization Schedule for ages 18 years or younger, United States,
2020 (Centres for Disease Control and Prevention, US Department of Health
and Human Services, accessed 28 December 2020); https://www.cdc.gov/
vaccines/schedules/hcp/imz/child-adolescent.html.

29. Schroeder, M. R. et al. A population-based assessment of the impact of 7-and
13-valent pneumococcal conjugate vaccines on macrolide-resistant invasive
pneumococcal disease: emergence and decline of Streptococcus pneumoniae
serotype 19A (CC320) with dual macrolide resistance mechanisms. Clin.
Infect. Dis. 65, 990–998 (2017).

30. Centers for Disease Control and Prevention. Antibiotic Prescribing and Use
(Centres for Disease Control and Prevention, US Department of Health and
Human Services, accessed 28 December 2020); https://www.cdc.gov/
antibiotic-use/index.html.

31. Centers for Disease Control and Prevention. Morbidity and Mortality Weekly
Report (MMWR); Office-Related Antibiotic Prescribing for Persons Aged ≤14
Years–United States, 1993–1994 to 2007–2008 (Centres for Disease Control
and Prevention, US Department of Health and Human Services, accessed 28
December 2020); https://www.cdc.gov/mmwr/preview/mmwrhtml/
mm6034a1.htm.

32. Burstein, V. R. et al. Communication interventions to promote the public’s
awareness of antibiotics: a systematic review. BMC Public Health 19, 899 (2019).

33. Centers for Disease Control and Prevention. MMWR: Summary of Notifiable
Infectious Diseases (MMWR: Summary of Notifiable Infectious DiseasesCentres
for Disease Control and Prevention, US Department of Health and Human
Services, accessed 28 December 2020); https://www.cdc.gov/mmwr/
mmwr_nd/index.html.

34. Centers for Disease Control and Prevention. Outpatient antibiotic
prescriptions — United States, 2012 (Centres for Disease Control and
Prevention, US Department of Health and Human Services, accessed 28
December 2020); http://www.cdc.gov/getsmart/community/pdfs/annual-
reportsummary_2012.pdf.

35. Lieberthal, A. S. et al. The diagnosis and management of acute otitis media.
Pediatrics 131, e964–e999 (2013).

36. Taylor, S. et al. Impact of pneumococcal conjugate vaccination on otitis media:
a systematic review. Clin. Infect. Dis. 54, 1765–1773 (2012).

37. Neff, M. J. AAP, AAFP release guideline on diagnosis and management of
acute otitis media. Am. Fam. physician 69, 2713 (2004).

38. U.S. Food and Drug Administration. Drugs@FDA: FDA Approved Drug
Products (U.S. Food and Drug Administration, accessed 28 December 2020);
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.

39. Aalto-Setälä, V. The impact of generic substitution on price competition in
Finland. Eur. J. Health Econ. 9, 185–191 (2008).

40. U.S. Food and Drug Administration. Generic Competition and Drug Prices (U.
S. Food and Drug Administration, accessed 28 December 2020); https://www.
fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cder/
ucm129385.htm.

41. Hudson, J., Fielding, S. & Ramsay, C. R. Methodology and reporting
characteristics of studies using interrupted time series design in healthcare.
BMC Med. Res. Methodol. 19, 137 (2019).

42. Berndt, E. R. & Aitken, M. L. Brand loyalty, generic entry and price
competition in pharmaceuticals in the quarter century after the 1984
Waxman-Hatch legislation. Int. J. Econ. Bus. 18, 177–201 (2011).

43. Klein, E. Y. et al. Influence of provider and urgent care density across different
socioeconomic strata on outpatient antibiotic prescribing in the USA. J.
Antimicrob. Chemother. 70, 1580–1587 (2015).

44. Li, S. & Laxminarayan, R. Are physicians’ prescribing decisions densitive to
drug prices? Evidence from a free‐antibiotics program. Health Econ. 24,
158–174 (2015).

45. Polgreen, P. M., Yang, M., Kuntz, J. L., Laxminarayan, R. & Cavanaugh, J. E.
Using oral vancomycin prescriptions as a proxy measure for Clostridium
difficile infections: a spatial and time series analysis. Infect. Control Hospital
Epidemiol. 32, 723–726 (2011).

46. Polgreen, P. M., Yang, M., Laxminarayan, R. & Cavanaugh, J. E. Respiratory
fluoroquinolone use and influenza. Infect. Control Hospital Epidemiol. 32,
706–709 (2011).

47. Sun, L., Klein, E. Y. & Laxminarayan, R. Seasonality and temporal correlation
between community antibiotic use and resistance in the United States. Clin.
Infect. Dis. 55, 687–694 (2012).

48. United States Census Bureau. Population (United States Census Bureau,
accessed 28 December 2020); https://www.census.gov/topics/population.html.

49. Taljaard, M., McKenzie, J. E., Ramsay, C. R. & Grimshaw, J. M. The use of
segmented regression in analysing interrupted time series studies: an example
in pre-hospital ambulance care. Implement. Sci. 9, 77 (2014).

50. Cochrane Effective Practice and Organisation of Care (EPOC). Interrupted Time
Series (ITS) Analyses. EPOC Resources for Review Authors (Cochrane Effective
Practice and Organisation of Care, accessed 28 December 2020); https://epoc.
cochrane.org/resources/epoc-resources-review-authors (2017).

51. StataCorp. Stata Statistical Software: Release 15 (StataCorp, 2017).
52. Infectious Diseases Society of America. IDSA Practice Guidelines

(Infectious Diseases Society of America, accessed 28 December 2020);
https://www.idsociety.org/practice-guideline/practice-guidelines/
#/date_na_dt/DESC/0/+/.

53. Centers for Disease Control and Prevention. Outpatient Healthcare
Professionals (Centres for Disease Control and Prevention, US Department of
Health and Human Services, accessed 28 December 2020); https://www.cdc.
gov/antibiotic-use/community/for-hcp/outpatient-hcp/index.html.

Acknowledgements
C.K. and C.Å. were funded by the DRIVE-AB Consortium. DRIVE-AB is supported by
the IMI Joint Undertaking under the DRIVE-AB grant agreement number 115618, the
resources of which are composed of financial contributions from the European Union’s
Seventh Framework Programme and the European Federation of Pharmaceutical
Industries and Associations companies’ in-kind contribution. C.K. and C.Å. were partly
supported by the Research Council of Norway through the Global Health and Vacci-
nation Programme (GLOBVAC), project number 234608. K.O. is supported by NOA 06-
IDSET160030 from the Biomedical Advanced Research and Development Authority
(BARDA) under the Assistant Secretary for Preparedness and Response (ASPR) in the
US Department of Health and Human Services, and the CARB-X award from the
Wellcome Trust, but the views expressed herein are not necessarily those of CARB-X or
any CARB-X funder. J.H. works for Health Services Research Unit, University of
Aberdeen, and is core funded by the Chief Scientist Office of the Scottish Government
Health and Social Care Directorates. R.L. was supported by 16IPA16092427 from the US
Centers for Disease Control and Prevention. The funder provided support in the form of
salaries for authors, according to the statement above, but did not have any additional
role in the study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Author contributions
C.K., C.Å., and J.-A.R. designed the study. R.L. and E.K. provided the data. J.H. and C.K.
conducted the analysis and drafted the article. H.S.B., C.Å., E.K., M.L., K.O., J.-A.R., and R.L.
reviewed and contributed to multiple revisions and approved the final version of the article.

Competing interests
The authors declare no competing interest.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23049-4.

Correspondence and requests for materials should be addressed to C.K.

Peer review information Nature Communications thanks Laurence Roope and the other,
anonymous reviewer(s) for their contribution to the peer review of this work. Peer review
reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23049-4

8 NATURE COMMUNICATIONS |         (2021) 12:2937 | https://doi.org/10.1038/s41467-021-23049-4 | www.nature.com/naturecommunications

https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/index-drug-specific-information
https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/index-drug-specific-information
https://www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html
https://www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html
https://www.cdc.gov/antibiotic-use/index.html
https://www.cdc.gov/antibiotic-use/index.html
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6034a1.htm
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6034a1.htm
https://www.cdc.gov/mmwr/mmwr_nd/index.html
https://www.cdc.gov/mmwr/mmwr_nd/index.html
http://www.cdc.gov/getsmart/community/pdfs/annual-reportsummary_2012.pdf
http://www.cdc.gov/getsmart/community/pdfs/annual-reportsummary_2012.pdf
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cder/ucm129385.htm
https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cder/ucm129385.htm
https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cder/ucm129385.htm
https://www.census.gov/topics/population.html
https://epoc.cochrane.org/resources/epoc-resources-review-authors
https://epoc.cochrane.org/resources/epoc-resources-review-authors
https://www.idsociety.org/practice-guideline/practice-guidelines/#/date_na_dt/DESC/0/+/
https://www.idsociety.org/practice-guideline/practice-guidelines/#/date_na_dt/DESC/0/+/
https://www.cdc.gov/antibiotic-use/community/for-hcp/outpatient-hcp/index.html
https://www.cdc.gov/antibiotic-use/community/for-hcp/outpatient-hcp/index.html
https://doi.org/10.1038/s41467-021-23049-4
http://www.nature.com/reprints
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23049-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2937 | https://doi.org/10.1038/s41467-021-23049-4 | www.nature.com/naturecommunications 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	The effect of generic market entry on antibiotic prescriptions in the United States
	Results
	Descriptive analysis
	Overview of results
	Changes in number of prescriptions 6–nobreak12�months after generic entry
	Changes in number of prescriptions 24�months after generic entry
	Sensitivity analysis and co-interventions

	Discussion
	Methods
	Study design
	Data sources
	Identifying antibiotics for analysis
	Statistical analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




