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A B S T R A C T   

Developing children are particularly vulnerable to the effects of exposure to per- and polyfluoroalkyl substances 
(PFAS), a group of endocrine disrupting chemicals. We hypothesized that early life exposure to PFASs is asso
ciated with poor metabolic health in children. 

We studied the association between prenatal and postnatal PFASs mixture exposure and cardiometabolic 
health in children, and the role of inflammatory proteins. 

In 1,101 mothers-child pairs from the Human Early Life Exposome project, we measured the concentrations of 
PFAS in blood collected in pregnancy and at 8 years (range = 6–12 years). We applied Bayesian Kernel Machine 
regression (BKMR) to estimate the associations between exposure to PFAS mixture and the cardiometabolic 
factors as age and sex- specific z-scores of waist circumference (WC), systolic and diastolic blood pressures (BP), 
and concentrations of triglycerides (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) 
cholesterol. We measured thirty six inflammatory biomarkers in child plasma and examined the underlying role 
of inflammatory status for the exposure-outcome association by integrating the three panels into a network. 

Exposure to the PFAS mixture was positively associated with HDL-C and systolic BP, and negatively associated 
with WC, LDL-C and TG. When we examined the independent effects of the individual chemicals in the mixture, 
prenatal PFHxS was negatively associated with HDL-C and prenatal PFNA was positively associated with WC and 
these were opposing directions from the overall mixture. Further, the network consisted of five distinct com
munities connected with positive and negative correlations. The selected inflammatory biomarkers were posi
tively, while the postnatal PFAS were negatively related with the included cardiometabolic factors, and only 
prenatal PFOA was positively related with the pro-inflammatory cytokine IL-1beta and WC. 
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Our study supports that prenatal, rather than postnatal, PFAS exposure might contribute to an unfavorable 
lipidemic profile and adiposity in childhood.   

1. Introduction 

Cardiovascular disease (CVD) is the most common cause of death in 
adults worldwide (GBD 2017 Causes of Death Collaborators, 2018a). At 
the same time, the main risk factors for CVD, abdominal adiposity, in
sulin resistance, hypertension and dyslipidemia are manifested at pro
gressively younger ages (GBD 2017 Risk Factor Collaborators, 2018b). 
In Europe, 6% out of 19,000 2–11 year-olds had metabolic syndrome, a 
cluster of the CVD risk factors, and more than 30% of 3,500 13–18 year- 
olds had elevated blood cholesterol, blood glucose or blood pressure 
(Ahrens et al., 2014; Henriksson et al., 2017). Such unfavorable cardio- 
metabolic status in early life can track through adolescents and adult
hood, posing as high as five times increased risk for hypertension, dys
lipidemia, diabetes and CVD (Franks et al., 2010; Juonala et al., 2011). 
As a lifestyle characterized by unhealthy diet, inactivity and a sedentary 
behavior cannot completely explain the rising prevalence of CVD and its 
risk factors, emerging experimental and human evidence shows that 
endocrine disrupting chemicals may play a key role for this epidemic 
(Barouki et al., 2012; Bhatnagar, 2017; Tang-Péronard et al., 2011). 

Per- and polyfluoroalkyl substances (PFAS) are environmentally 
persistent chemicals, with toxicological properties and potential health 
concerns, as recently summarized (EFSA et al., 2020). Widespread 
human exposure through diet along with the persistence and mobility of 
PFAS led to measurable concentrations in blood and other tissues among 
general populations worldwide (EFSA et al., 2018; EFSA et al., 2020). 
Disturbances in lipid metabolism and increased total serum cholesterol 
levels was identified as the most critical PFAS-induced health effect in 
humans, while the evidence of effects on other cardiometabolic factors 
was neither sufficient nor consistent (EFSA et al., 2020). More specif
ically for early life exposures, prenatal low-dose PFAS exposure have not 
been consistently linked with obesogenic effects, with positive (Braun 
et al., 2016; Halldorsson et al., 2012; Høyer et al., 2015; Mora et al., 
2017) and null associations (Andersen et al., 2013; Barry et al., 2014). 
There are few studies exploring child insulin resistance (Fleisch et al., 
2017), dyslipidemia (Manzano-Salgado et al., 2017), and the composite 
metabolic syndrome (Manzano-Salgado et al., 2017), and two studies 
considered postnatal PFAS exposures, in addition to prenatal (Fleisch 
et al., 2017; Li et al., 2021). After birth, postnatal PFAS exposure can 
substantially deviate from the prenatal exposure, with variations in 
PFAS concentrations between different congeners (Fromme et al., 2010; 
Kingsley et al., 2018; Papadopoulou et al., 2015; Papadopoulou et al., 
2016), and postnatal PFAS exposure might substantially induce toxicity 
effects revealed later. The epidemiologic evidence of combined prenatal 
and postnatal PFAS exposure at environmentally relevant concentra
tions remains inconsistent and with large knowledge gaps (Rappazzo 
et al., 2017). 

Chronic inflammation has been suggested as the underlying mech
anism through which PFAS exposure can contribute to the disease 
exacerbation, especially due to their affinity to the peroxisome 
proliferator-activated receptors (PPARs), which are responsible for 
adipocyte differentiation and regulators of lipid and glucose metabolism 
and inflammation (Behr et al., 2020; Cheng et al., 2019; Mirza et al., 
2019). Animal and human evidence supports this biological pathway, 
for asthma, impaired immune function and liver injury (Deng et al., 
2020; Pennings et al., 2016; Tan et al., 2013; Yang et al., 2021). Chronic 
inflammation has a crucial role to play in the development of metabolic 
disease, but the extent to which PFAS exposure can contribute to such a 
process is unknown (Bussler et al., 2017; Rubin et al., 2011). 

Our aim was to examine the association between prenatal and 
postnatal PFAS mixture exposure with cardiometabolic health by 

Bayesian Kernel Machine Regression, and explore the role of inflam
matory biomarkers by constructing an integrated network, in a well- 
characterized study of 1,101 mother–child pairs. 

2. Methods 

2.1. Study population 

This study is part of the HELIX project (Maitre et al., 2018), a 
collaboration across six ongoing longitudinal population-based birth 
cohort studies in Europe: the Born in Bradford (BiB) study in the UK 
(Wright et al., 2013), the Étude des Déterminants pré et postnatals du 
développement et de la santé de l’Enfant (EDEN) study in France (Heude 
et al., 2016), the INfancia y Medio Ambiente (INMA) cohort in Spain 
(Guxens et al., 2012), the Kaunas cohort (KANC) in Lithuania (Grazu
leviciene et al., 2009), the Norwegian Mother, Father and Child Cohort 
Study (MoBa) (Magnus et al., 2016) and the RHEA Mother Child Cohort 
study in Crete, Greece (Chatzi et al., 2017). Within the larger HELIX (n 
= 31,472 mother–child pairs), a subcohort of 1,301 children (approxi
mately 200 children in each participating cohort) was selected for 
detailed characterization of a broad suite of environmental exposures, 
including several environmental chemicals (Maitre et al., 2018). During 
2013–2015, a follow-up of the children was conducted with clinical 
examinations, computer assisted interviews and biological sample 
collection by trained personnel. Eligibility criteria for inclusion in the 
subcohort were: (a) age 6–11 years at the time of the visit, with a 
preference for ages 7–9 years if possible; (b) sufficient stored pregnancy 
blood and urine samples available for analysis of prenatal exposure 
biomarkers; (c) complete address history available from first to last 
follow-up point; (d) no serious health problems that may affect the 
performance of the clinical testing or impact the volunteer’s safety (e.g., 
acute respiratory infection). Each cohort selected participants at random 
from the eligible pool within the entire cohort and invited them to 
participate in this subcohort until the required number of participants 
was reached. Our study population consists of 1101 mother–child pairs 
from the HELIX subcohort, based on availability of information on pre- 
and postnatal PFAS exposure and complete data on childhood car
diometabolic factors and protein concentrations at follow-up (mean age 
8 years; range = 6.0 to 12 years). 

All participating families provided written informed consent. 
Approval for the HELIX project was obtained from the local ethical 
committees at each site. 

2.2. PFAS concentrations in pregnancy and childhood 

PFAS concentrations were measured in maternal biological samples 
collected prenatally or at birth and in children’s biological samples 
collected during the HELIX follow-up (Tamayo-Uria et al., 2019). 
Maternal samples were collected at mean week of gestation (SD) 27 (1) 
in BiB, 26 (1) in EDEN, 14 (2) in INMA, 39 (1) in KANC, 19 (1) in MoBa 
and 14 (4) in Rhea. Child blood samples were collected at mean age (SD) 
7 (0.2) years old in BiB, 11 (0.6) in EDEN, 9 (0.6) in INMA, 7 (0.5) in 
KANC, 9 (0.5) in MoBa and 7 (0.3) in RHEA. Four PFASs were analysed 
in maternal plasma for the BiB, INMA, MoBa and RHEA cohorts, in 
maternal serum for the BiB and EDEN cohorts and in maternal whole 
blood in the KANC cohort and in child plasma for all cohorts: per
fluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), 
perfluorooctanoate (PFOA), perfluorononanoate (PFNA). Per
fluoroundecanoate (PFUnDA) was measured in all child samples. From 
the INMA cohort, only 15 (7%) women had available PFUnDA 
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concentrations and maternal PFUnDA was not included in our analyses 
as it would result in the exclusion of a cohort. 

All the chemical analyses were performed at the Section for Food 
Safety at the Norwegian Institute of Public Health (NIPH), Oslo, Norway, 
except for 208 maternal samples from the INMA cohort which were 
analyzed at the Institute for Occupational Medicine, RWTH Aachen 
University, Germany (Manzano-Salgado et al., 2015). PFUnDA concen
trations were not available for these samples. Concentrations were 
determined using column switching liquid chromatography (LC) 
coupled to a triple quadrupole mass spectrometer in serum or plasma 
samples and online solid phase extraction with ultra-high performance 
LC coupled with tandem mass spectrometry in whole blood samples 
(Haug et al., 2009; Poothong et al., 2017). Maternal PFAS concentra
tions were measured in serum or plasma in 5 of the 6 participating co
horts and these results were assumed comparable, while for the one 
cohort with available PFAS concentrations in maternal whole blood, 1:2 
ratios were assumed for whole blood:serum/plasma and whole blood 
concentrations were multiplied by a factor of two to be comparable with 
the other cohorts. 

The limit of detection (LOD) was 0.02 μg/L and the limit of quanti
fication (LOQ) was 0.05 μg/L for samples assessed at NIPH, while for 
samples assessed at RWTH Aachen University, LODs ranged from 0.05 to 
0.1 μg/L. Values below LOQ were replaced with the observed values, 
whenever available. For non-observed concentrations, singly imputed 
values were obtained using a quantile regression approach (Haug et al., 
2018). A detailed description of the analytical methods, the quality 
assurance and quality control has been published elsewhere (Haug et al., 
2018). 

2.3. Child cardiometabolic factors 

During the HELIX follow-up, specific training workshops were 
organized to standardize the clinical assessment between the cohorts 
(Maitre et al., 2018). In these workshops, all field workers participated 
and were trained to obtain measurements that were comparable to those 
measured by an experienced anthropometrist. Waist circumference 
(WC) was measured to the nearest 0.1 cm, midway between the lowest 
rib margin and the iliac crest, using a flexible tape and recorded in 
duplicate. The mean of the measurements was used. Height was 
measured to the nearest 0.1 cm with a stadiometer (Seca 213, California, 
USA) and weight to the nearest 0.1 kg with a digital scale, without shoes 
and with light clothing. Blood pressure was taken in sitting position after 
5 min of rest using the OMRON 705-CPII automated oscillometric de
vice. The mean of three consecutive measurements that were taken with 
1 min intervals was used. Blood pressure was measured towards the end 
of the visit to ensure that children had not consumed anything that may 
affect the results (chocolate, cola drinks) in the previous hour. Systolic 
and diastolic blood pressures and pulse rate from each measurement 
were recorded. The concentrations (mg/dL) of HDL and LDL cholesterol 
(HDL-C and LDL-C) and triglycerides (TG) were measured in child non- 
fasting serum using homogenous enzymatic colorimetric methods on a 
Modular Analytics System from Roche Diagnostics GmbH Mannheim 
and according to the manufacturer’s instructions. We constructed age 
and sex- specific z-scores for child WC, TG, HDL-C, LDL-C. BP z-scores 
were additionally standardized for child height and TG were log- 
transformed before standardization, following previous methodology 
(Ahrens et al., 2014). 

2.4. Inflammatory status in children 

Child blood samples were collected using standardized protocols 
during the HELIX follow-up. A set of 43 proteins were a priori selected 
based on the literature and on the commercially available kits from 
Luminex xMAP multiplex platform (Luminex Corp). We selected three 
kits for the subsequent analyses, to assess 50 measurements that repre
sented 43 unique proteins: the human cytokines 30plex magnetic panel 

(Cat #. LHC6003M), the human apoliprotein 5-plex magnetic panel 
(LHP0001M) and the humam adipokine 15-plex magnetic panel 
(LHC0017M) (Supplementary Table S1). All the analyses were con
ducted at the University Pompeu Fabra Centre for Genomic Regulation 
Proteomics Unit in Barcelona, Spain. 

All samples were randomized to ensure a representation of each 
cohort in each measurement plate (batch) and we made no distinctions 
by cohort or gender. For protein quantification, an 8-point calibration 
curve per plate was performed with protein standards provided in the 
Luminex kit and following the procedures described by the vendor. 
Commercial heat inactivated, sterile-filtered plasma from human male 
AB plasma (Sigma Cat #. H3667) was used as constant controls to 
control for intra- and inter-plate variability. Four control samples were 
added per plate. No duplicate measurements were done for the HELIX 
samples. All samples were diluted ½ for the 30-plex kit, ¼ for the 15-plex 
kit and 1/2500 for the 5-plex kit. The coefficients of variation for each 
protein estimated by plate and then averaged ranged from 3.42% to 
36%. The derived raw intensities were converted to ng/ml (5-plex kit: 
adiponectine, CRP, APO-A1, APO-B, APO-E) and to pg/ml (15 and 30- 
plex kits) using the calculated standard curves of each plate and ac
counting for the dilutions that were made prior to measurement. 

Further, we obtained the limit of detection (LOD) as well as the lower 
and upper quantification limits (LOQ1 and LOQ2, respectively) from the 
calibration curves for each protein. Seven proteins were excluded from 
further analysis due to low detection rates (detection frequency < 30%), 
namely IL7, VEGF, GMCSF, Lipocalin2, RANTES, Resistin and SAA. In 
addition, seven proteins were measured in two different plex (IL1beta, 
IL6, IL8, IL10, MCP1, HGF, TNFalfa) and the measure with lower quality 
was excluded from the analysis. For the included proteins (n = 36), data 
was log transformed to reach normal distribution. Then, we subtracted 
the difference between the overall protein average minus the plate 
specific protein average to account for the plate batch effect. All values 
between LOQ2 and LOQ1 were imputed using a truncated normal dis
tribution implemented in the truncdist R package (Nadarajah and Kotz, 
2006). Thirty five proteins were included to describe the inflammatory 
status of the HELIX children: two adipokines (adiponectin and leptin), 
three apolipoproteins (apoA1, apoB, apoE), four CC chemokines 
(monocyte chemoattractant protein 1[MCP-1], Eotaxin, macrophage 
inflammatory protein 1-alpha [MIP-1α], macrophage inflammatory 
protein-1β [MIP-1β], three CXC chemokines (Interleukin 8 [IL-8], 
monokine induced by gamma interferon [MIG], interferon gamma- 
induced protein 10 [IP10]), two interferons (IFN-α and IFN-γ), ten in
terleukins (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-15, IL-17), 
the interleukin-1 receptor antagonist (IL-1RA), the interleukin 2 recep
tor (IL-2R), epidermal growth factor (EGF), basic fibroblast growth 
factor (FGF-2), granulocyte colony-stimulating factor (G-CSF), hepato
cyte growth factor (HGF), plasminogen activator inhibitor-1 (PAI-1), 
connecting peptide (C-peptide), C-reactive protein (CRP), tumor ne
crosis factor-α (TNF-α) and the TNF cytokine B cell-activating factor 
(BAFF). 

2.5. Statistical analysis 

We examined the association of prenatal and postnatal exposure to 
the PFAS with the cardiometabolic factors by fitting Bayesian Kernel 
Machine Regression (BKMR) models. All our models were adjusted for 
the same set of confounders, identified based on previous knowledge 
and a directed acyclic graph (DAG) approach (Supplementary 
Figure S1): cohort, maternal age (in years), parity (nulliparous/ 
multiparous), maternal education level (low, middle, high), maternal 
pre-pregnancy BMI (in kg/m2), child ethnicity (White European, Other), 
age at examination (in years) and sex (male/female). 

BKMR is a non-parametric flexible modeling approach that can 
accommodate for correlation, non-linearity and interaction effects when 
estimating the exposure (PFAS mixture)-response associations (Bobb 
et al., 2015). As the correlations of PFASs within maternal or child 
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samples are higher than between mother–child pairs (Papadopoulou 
et al., 2016; Tamayo-Uria et al., 2019; Verner et al., 2016), we con
ducted a hierarchical variable selection. In the first level, variable se
lection is done at the group level (i.e. choosing whether the group of all 
prenatal exposures and the group of all postnatal exposures are useful in 
predicting the outcome); and at the second level, variable selection is 
done on the exposures within each group. 

The main models are described as:  

Yi = h[Group1=(maternal PFOA, PFNA, PFHxS, PFOS), Group2=(child 
PFOA, PFNA, PFUnDA, PFHxS, PFOS)] + βzi + ei                                   

where Yi is each of the cardiometabolic factors for each participant i, h[] 
is the high-dimensional exposure–response function which can incor
porate both non-linear relationships and interactions among exposures 
and is estimated using a Gaussian kernel machine representation. 
Further, zi is a vector of covariates and β their associated regression 
coefficients and ei ~ N(0,σ2). PFAS were log-transformed for the BKMR 
analyses and BKMR was fitted using the Markov chain Monte Carlo al
gorithm with 10,000 iterations. Once fitted, BKMR provides a posterior 
inclusion probability (PIP) for each of the exposures, which constitutes a 
measure of the relative importance of each exposure within the h 
function to the overall mixture effects. Since we used a hierarchical 
variable selection method two sets of PIPs were obtained, the groupPIP 
representing the probability of inclusion for each of two groups (pre and 
postnatal PFASs) and the conditional PIPs (condPIP) which represented 
the probability that a particular chemical within the group was included 
in the model. Note that group-level or individual PFASs-level PIPs are 
not constrained to sum to 1. Credible intervals obtained from the BKMR 
model incorporated the additional uncertainty due to estimation of a 
high-dimension set of exposures and accounting for multiple-testing 
penalty. We further estimated the overall joint effect of exposure to 
the PFAS mixture by providing an estimate of the change in the outcome 
when the PFAS mixture exposure is increasing up to 95th percentile, 
compared to holding all PFAS at their 25th percentile (reference level). 
We also explored the gender differences by stratification in the BKMR 
analyses, as metabolic effects in children of prenatal PFAS exposure have 
been previously suggested to differ by sex (Fleisch et al., 2017). The time 
of collection of the maternal samples varied by cohort, and the PFAS 
concentrations are expected to be lower by increasing trimester for 
reasons described by Fisher et al (Fisher et al., 2016), including the 
increased mother: fetus transfer ratio and maternal blood dilution due to 
increased weight gain as the gestation progresses (Supplementary 
Table S3). Therefore, we conducted stratified BKMR analysis, by 
trimester of maternal sample collection. As secondary analyses, we 
examined the association of prenatal and postnatal exposure to the PFAS 
with the cardiometabolic factors by linear regression models by mutu
ally adjusting for all PFASs, among other confounders. 

As a second step and in order to examine the role of child inflam
matory status in the association between PFAS exposure and car
diometabolic health, we constructed and integrated network by 
applying the xMWAS method (Uppal et al., 2018). The input data were 
all the prenatal and postnatal PFAS concentrations (n = 9), the measured 
concentrations of the proteins (n = 36) and the z-scores of the car
diometabolic factors that had an association with the PFAS mixture as 
estimated by the previous step. Therefore, z-score of diastolic BP was 
excluded from the network analysis. The xMWAS provides an automated 
framework for integrative and differential network analysis through 
three steps: 1) pairwise data integration; 2) visualization of a multi-data 
integrative network; and 3) multilevel community detection. For step 1, 
we applied sparse Partial Least Squares regression (sPLS), a dimension 
reduction technique, for pairwise data integration and for generating the 
correlation matrices. sPLS performs simultaneous data integration and 
variable selection using a LASSO penalty for the loading vectors. For step 
3, we used the betweenness centrality measure (BCM) to evaluate the 
importance of nodes and variables with BCM ≥ 0.20 were considered 

important components of the identified network. Only associations that 
were significant at p < 0.05 were included in network analysis and the 
correlation threshold was set to 0.6. 

All significance levels were set to 0.05 in this study. We used STATA 
to calculate summary statistics and used R (version R 3.6.2, R Devel
opment Core Team) for all other analyses including the BKMR and the 
xMWAS. 

3. Results 

Regarding PFAS concentrations in maternal and child blood, PFOS, 
PFOA, PFNA and PFHxS were detected in more than 97% of the samples, 
with PFOS and PFOA being the most abundant substances (Table 1). We 
observed strong positive correlations within mothers and children, with 
the highest between PFOS and PFHxS in mothers (rho = 0.71) and be
tween PFOS and PFNA in children (rho = 0.64). Moderate positive 
correlations were found between mother–child pairs, with the strongest 
between mother–child PFHxS and mother–child PFOS (rho = 0.50 and 
0.49, respectively). 

3.1. Prenatal and postnatal PFAS exposure and cardiometabolic factors 
in childhood 

By applying BKMR analyses, we observed that pre- and post-natal 
PFAS mixture exposure was positively associated with HDL-C and Sys
tolic BP, and negatively associated with WC, LDL-C, TG (Fig. 1). Among 
those, the strongest dose–response associations were found for HDL-C 
(positive) and WC (negative), while the positive association with Sys
tolic BP was seen in high PFAS mixture exposure levels (>50th 
percentile). More specifically, when exposure of the PFAS mixture was 
in the 95th percentile vs 25th percentile, the increase in HDL-C z-score 
was 0.19 (95% CI = 0.19,0.20) and the decrease in WC z-score was 
− 0.21 (95% CI = -0.21,-0.20) (Supplementary Table 2). For all car
diometabolic factors, postnatal PFASs were contributing more to the 
mixture than prenatal, according to the group posterior inclusion 
probabilities (PIPs), besides Systolic BP where PIPs were similar (Sup
plementary Table 2). Regarding the contribution of individual PFAS in 
the identified mixture, prenatal PFHxS and postnatal PFUnDA were the 
main contributors for HDL-C and TG, and pre- and post-natal PFOA for 
LDL-C. For both blood pressures, prenatal PFOS and postnatal PFNA, 
and for WC, prenatal PFNA and postnatal PFOA were identified as the 
main contributors to the BKMR mixture (Supplementary Table 2). As 
expected, the univariate exposure–response association for the PFAS 
that was contributing the most to the derived mixture, was in agreement 
with the observed association of the overall mixture. More specifically, 
postnatal PFOA was negatively associated with WC and LDL-C, and 
postnatal PFUnDA with TG and postnatal PFUnDA was positively asso
ciated with HDL-C. For systolic BP, this comparison was less straight- 
forward (Supplementary Figure S2). However, when all the PFAS in 
the mixture were held on the 50th percentile, prenatal PFHxS was 
negatively associated with HDL-C, prenatal PFNA was positively asso
ciated with WC, and postnatal PFOS was positively associated with LDL- 
C, and these were opposing directions from the overall mixture (Sup
plementary Figure S2). 

In stratified analyses, the positive association with HDL-C and the 
negative association with WC and the specific BKMR derived PFAS 
mixtures, persisted independently of gender, while for the other car
diometabolic factors associations were attenuated (Supplementary 
Table S2 & Supplementary Figure S3). After stratifying by the 
trimester of maternal blood sample collection, we obtained similar 
positive associations with the derived PFAS mixture and HDL-C for all 
subsamples as for the overall sample, while for the subsample with 2nd 
trimester measurements the associations were stronger (Supplementary 
Table S4 and Figure S4). Similarly for LDL-C, TG and Systolic BP, in the 
2nd trimester sub-sample the effect estimates were similar to the overall 
sample, though with wider confidence intervals, while for WC the all 
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subsamples were in line with the overall negative association with the 
derived PFAS mixture, but this association was significant only among 
the 3rd trimester sub-sample. 

In addition, our findings from the multi-pollutant linear regression 
models are in agreement with the results from the BKMR analysis 
(Supplementary Table S3). More specifically, postnatal PFUnDA and 
PFOS was driving the positive association with HDL-C, while a negative, 
though weak association was found with prenatal PFHxS. A weak pos
itive association was also found between postnatal PFOS and LDL-C. 
Postnatal PFOA and postnatal PFUnDA was driving the negative asso
ciation with WC and TG, respectively, as observed also in the BKMR 
analyses. 

3.2. Integrated network analysis 

By applying the xMWAS network analysis we were able to identify 
and visualize the complex network between prenatal and postnatal PFAS 
concentrations, inflammatory proteins in child’s blood and car
diometabolic factors in childhood. Eight PFAS, 17 proteins and the five 
cardiometabolic factors were selected and arranged in five communities, 
one per child outcome, connected through positive and negative corre
lations (Fig. 2). The derived correlation matrix is presented in Supple
mentary Table S4 and all the possible connections between the triad, 
PFAS, inflammatory biomarkers and health outcomes are presented in 
Supplementary Table S5. 

Table 1 
PFAS concentration (in µg/L) in maternal samples collected in pregnancy and in child samples in the HELIX subcohort (n = 1,101 mothers-child pairs).   

PFAS concentrations (in µg/L)  

Maternal samples a Child samples b  

PFOA PFNA PFHxS PFOS PFOA PFNA PFUnDA PFHxS PFOS 

Samples > LOD (%)  99.6%  97.8%  97.1% 100% 100%  99.5%  66.2%  99.7%  99.7% 
10th  0.80  0.23  0.19 2.36 0.95  0.18  0.02  0.10  0.73 
25th  1.34  0.42  0.30 3.99 1.17  0.29  0.03  0.18  1.22 
50th  2.22  0.69  0.53 6.15 1.53  0.47  0.06  0.34  1.93 
75th  3.29  1.10  0.88 9.16 1.96  0.73  0.10  0.56  3.11 
90th  4.37  1.58  1.39 14.41 2.43  1.14  0.17  0.82  4.63  

Spearman correlation coefficients   

Maternal samples         
PFNA  0.61         
PFHxS  0.65  0.29        
PFOS  0.64  0.46  0.71       
Child samples         
PFOA  0.20  − 0.01  0.15 0.14      
PFNA  0.16  0.21  0.20 0.39 0.44     
PFUnDA  0.21  0.14  0.19 0.28 0.25  0.51    
PFHxS  0.26  − 0.11  0.50 0.47 0.40  0.39  0.33   
PFOS  0.25  0.20  0.26 0.49 0.43  0.64  0.50  0.58  

a PFASs analyzed plasma samples for the BIB, INMA, MoBa and RHEA cohorts, in serum samples for the BIB and EDEN cohorts and in whole blood in the KANC cohort. 
b PFASs were analyzed in plasma samples collected at 6–12 years. 

Fig. 1. Joint effect (h(z) , 95 %CIs) of the pre- and post-natal PFASs mixture on the cardiometabolic factors by increasing PFAS mixture levels (from 25th to 95th 
percentile), compared to low PFASs mixture (reference: 25th percentile), using Bayesian kernel machine regression (BKMR) model, adjusted for maternal age and 
education, pre-pregnancy BMI, parity, cohort, child ethnicity, age and sex. 
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The smallest community (dark blue color) comprised of postnatal 
PFUnDA and HDL-C connected by a positive correlation. This is in line 
with our findings from the BKMR analysis, where postnatal PFUnDA was 
the main contributor of the derived PFAS mixture that was positively 
associated with HDL-C. No protein was linked with postnatal PFUnDA 
and HDL-C. Postnatal PFOA was linked to LDL-C, IL-8 and HGF and they 
were all assigned in one community, connected by negative correlations 
(orange color). Postnatal PFOA was an important contributor to the 
derived BKMR PFAS mixture and was negatively associated with LDL-C. 
TG was assigned together with prenatal PFOA, PFNA and PFOS and 
MIP1-β in one community, connected by negative correlations only 
(green color). The BKMR derived mixture was also negatively associated 
with TG. After examining all possible connections linking PFAS, and 
inflammatory biomarkers with TG, between and within communities, an 
increase in prenatal PFOA, PFOA, PFNA and postnatal PFOA, was linked 
with lower TG, IL-8, MIG and MIP1-β and higher IL-1β (Supplementary 
Table S5). 

Further, the largest community in the network comprised of Systolic 
BP, postnatal PFNA and ten inflammatory proteins (yellow color). 
Postnatal PFNA was also a major contributor to the derived PFAS 
mixture and was positively associated with Systolic BP in the BKMR 
analysis. We identified six inflammatory proteins that were linking 
postnatal PFNA and systolic BP, namely, IL-4, IL-13, MIP1-α, MIP1-β, 
MIG and IFN-α. Of those biomarkers, MIG and MIP1-β were also nega
tively correlated with prenatal PFOS. 

WC was assigned in one community with postnatal PFHxS and PFOS, 
together with IL-1β, IL-6, leptin and MCP1 (light blue color). After 

examining all possible connections linking PFAS and inflammatory 
biomarkers with WC, between and within communities, we observed 
that an increase in postnatal PFHxS, PFNA, PFOA and PFOS, was linked 
with lower WC, leptin, IL-6 and IL-1β, HGF, IL-8, MCP-1, IL-4, IL-13, 
MIP1-α, MIP1-β, MIG and IFN-α. Interestingly, we identified a positive 
correlation between prenatal PFOA and WC, through IL-1β. 

4. Discussion 

In a well-characterized mother–child study, we found that exposure 
to a mixture of prenatal and postnatal PFAS was associated with an in
crease in HDL-C and decrease WC in childhood, even in low exposure 
levels. We also found a positive association between the PFAS mixture 
and Systolic BP, but for higher exposure levels (>50th percentile). 
Through the integrative network analysis we identified several inflam
matory biomarkers positively and negatively correlated with the PFAS 
and all the studied cardiometabolic factors, except for HDL-C. 

There is limited evidence of the association between early life PFAS 
exposure and child cardiometabolic health, with examination of both 
prenatal and postnatal windows of exposure. We found that exposure to 
a PFAS mixture, mostly reflecting childhood exposures, was associated 
with higher HDL-C at 8 years. This is in line with a study among US 
mother–child pairs that reported a positive cross-sectional association 
between PFAS exposure and HDL-C at 8 years (Mora et al., 2018). In the 
same study, mutually adjusted models for pre- and post-natal exposures 
were not presented and null associations were found for prenatal ex
posures (Mora et al., 2018). Null associations between prenatal PFAS 

Fig. 2. Graph of the integrative network analysis of prenatal and postnatal PFAS, inflammatory protein concentrations in child’s blood and cardiometabolic factors in 
childhood as derived by the xMWAS. Five communities were detected by the multilevel community detection algorithm, and are represented by different colors. 
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and HDL-C at 4 years were also reported in a Spanish cohort (Manzano- 
Salgado et al., 2017). Overall, the epidemiological evidence for a posi
tive association between PFAS exposure and HDL-C is largely consistent, 
in cross-sectional studies of background and high exposed populations 
and for several age groups (Canova et al., 2020; Château-Degat et al., 
2010; Dalla Zuanna et al., 2021; Frisbee et al., 2010; Geiger et al., 2014; 
Li et al., 2020; Lin et al., 2020; Liu et al., 2018; Starling et al., 2014), but 
the longitudinal association is inconsistent. When we examined every 
PFAS individually while other PFASs in the mixture were held at their 
median levels, we found that prenatal PFHxS was associated with a 
reduction in HDL-C; suggesting that when postnatal exposures are 
moderate, prenatal PFAS exposures can have a detrimental effect on 
child’s HDL-C profile. In approximately 200 mother–child pairs from the 
HOME study, in the Cincinnati, Ohio area, prenatal and cord blood PFAS 
were associated with a reduction in HDL-C at 12 years, but when 
exposure occurred in childhood the association changed direction, in 
models adjusting for longitudinal exposures (Li et al., 2021). In another 
recent study of 306 pregnant women, Tian et al., reported that all pre
natal PFASs were associated with a reduction in HDL-C in cord blood, 
when postnatal exposure has not occurred yet (Tian et al., 2021). 
Through the network analysis, we were not able to report a connection 
between the “HDL-C─postnatal PFUnDA” component with one of the 
studied inflammatory proteins, suggesting that higher PFUnDA exposure 
in healthy children was associated with higher HDL-C, also confirmed by 
the BKMR analyses, but did not modify the levels of the inflammatory 
biomarkers under study. Most children in our study had normal high 
levels of HDL-C, by comparison to the references curves produced by the 
IDEFICS consortium for European children (De Henauw et al., 2014). 
Other components that have been found to promote or obstruct the anti- 
inflammatory properties of HDL-C include high fat diet, trans-fatty acid 
consumption, dietary flavonoids, and the history of metabolic disorders 
or cardiovascular disease, while evidence of such effects in health young 
populations are scarce (Desgagné et al., 2016; Millar et al., 2017; Sadana 
et al., 2020; Su et al., 2021). 

Similarly to HDL-C, we found a negative association between the 
derived PFAS mixture, mostly driven by postnatal PFOA, and WC at 12 
years; but when keeping all PFAS in their median, prenatal PFNA was 
positively associated with WC. Similar opposing directions of the asso
ciation between PFAS and WC at 12 years, for different windows of PFAS 
exposure were reported in the mother–child pairs from the HOME study 
(Li et al., 2021). Thus, our study adds to the evidence that prenatal PFAS 
exposure, rather than childhood, are more strongly associated with an 
unfavorable cardiometabolic profile in childhood. Nevertheless, our 
reported associations were weaker than those reported previously, and 
this could be attributed to the lower exposure levels. More specifically, 
maternal blood concentrations of PFAS in our study were lower than 
those reported in the populations of the studies with similar findings as 
ours from USA and Shanghai, and the median PFOA, PFOS and PFHxS 
levels reported for female population and pregnant population (mainly 
PFOS and PFHxS) in the U.S. National Health and Nutrition Examination 
Survey (NHANES 1999–2010 and NHANES 2003–2008-Pregnant, 
respectively) were higher than the 75th percentile of our study popu
lation (CDC, 2021b; Jain, 2013; Li et al., 2021; Mora et al., 2018; Tian 
et al., 2021) (Supplementary Figure S5, panel A). Similarly, children 
PFAS levels were relatively low compared to American populations 
(CDC, 2021a; Li et al., 2021; Mora et al., 2018) (Supplementary 
Figure S5, panel B). 

In the same study population, using an exposome approach to study a 
wide range of prenatal and postnatal exposures and blood pressure (BP), 
authors reported a positive association between maternal fish con
sumption and childhood PFOA with systolic BP (Warembourg et al., 
2019). Fish consumption is a determinant of PFAS levels in maternal 
blood along with other contaminants, as reported previously (Papado
poulou et al., 2019). Using the BKMR methodology, we also found a 
positive association between exposure to PFAS mixture and systolic BP, 
but for levels of exposure above the 50th percentile. This might be 

explained by the U-shaped association with postnatal PFNA, one of the 
main contributors to the derived mixture. Our results, are in line with 
the HOME study, in terms of the positive association with BP, while they 
identified PFHxS exposure as the driver of this association (Li et al., 
2021). In our study, PFAS exposure in early life was not associated with 
diastolic BP. The association between PFAS exposure and BP is more 
complex and an area in need of further investigation. 

Through our network analysis, we identified a cluster of positive 
relationships between WC and the upregulation of pro-inflammatory 
adipokine, leptin, and the pro-inflammatory cytokines, IL-6and IL-1β. 
This is in line with the known role of leptin in obesity-induced inflam
mation, characterized by elevated release of pro-inflammatory cytokines 
(Kwaifa et al., 2020). In our study, postnatal PFAS were negatively 
linked to WC and to additional inflammatory biomarkers including HGF, 
IL-8, MCP-1, IL-4, IL-13, MIP1-α, MIP1-β, MIG and IFN-α, comprising a 
phenotype of low postnatal PFAS exposure and obesity-induced 
inflammation. We cannot exclude the possibility that low PFAS expo
sure might be explained by dilution effects of larger body mass. 

Postnatal PFNA and prenatal PFOS were negatively linked with 
systolic BP and IL-4, IL-13, MIP1-α, MIP1-β, MIG and IFN-α. Inflamma
tion is a key component in the pathophysiology of hypertensive disor
ders, and a marker of disease development and progression (Tanase 
et al., 2019). Our results suggest a negative link between PFAS exposure 
and this inflammatory response accompanied by high BP. 

Additionally, postnatal PFOA was negatively linked to LDL-C, TG, 
HGF and IL-8, and prenatal PFOA, PFNA and PFOS were negatively 
linked with TG, and through that with IL-8, MIG and MIP1-β. Increased 
levels of MIP-1beta and interleukin (IL)-8 have been observed in patients 
with familial hypercholesterolaemia and are suggested to promote an 
atherosclerotic inflammatory process that are involved in early athero
sclerosis (Holven et al., 2003). The hepatocyte growth factor (HGF) is a 
marker of endothelial damage and an interaction with serum lipids has 
been reported, towards an unfavorable disease prognosis for patients 
with dyslipidemia and high HGF levels (Bell et al., 2016; Zhu et al., 
2020). 

Overall PFAS exposure in childhood were mostly negatively linked 
with the clusters of cardiometabolic factors-inflammatory proteins and 
this is in line with the previous evidence on their role on suppression of 
inflammatory response. More specifically, from previous epidemiolog
ical evidence, PFAS exposure has been associated with suppressed 
antibody response to vaccination and increased occurrence of asthma, 
suggesting reduced immunological response, as well as lower levels of 
proteomic markers of inflammation (Chang et al., 2016; Pennings et al., 
2016; Rappazzo et al., 2017; Salihovic et al., 2020). 

Nevertheless, we found a positive relationship between prenatal 
PFOA and IL-1beta concentrations and WC and negative relationship 
with TG. PFOA-induced pro-inflammatory cytokine production, 
including IL-1beta, has been demonstrated in human lung and liver cells, 
supporting the concern that PFAS exposure may increase the risk of 
acute lung toxicity and hepatotoxicity (Sørli et al., 2020; Zhang et al., 
2021). Other experimental evidence supports the role of PFOA as potent 
immunotoxicant, acting by inducing the activation of NF-kB pathway 
and altering the IL-1β expression in zebrafish spleen (Zhang et al., 2014). 
Our findings are in line with the experimental evidence but there is a 
need of additional epidemiological evidence for further interpretation. 

One strength of this study is the use of a mixture approach to explore 
the association between the prenatal and postnatal PFAS exposure with 
child metabolic health. The BKMR methodology allowed us to examine 
the overall mixture effect, the independent effects of the individual 
chemicals in the mixture as well as interactions between them. The 
BKMR does not require the effects of all mixture members to be in the 
same direction, as other methodologies (i.e. WQS). Given the inconsis
tent findings from cross- sectional and prospective studies examining the 
associations of PFAS exposure and cardiometabolic factors, we could not 
assume the direction of the association. In addition, given the large 
cross-sectional nature of our data (postnatal PFAS, cardiometabolic 

E. Papadopoulou et al.                                                                                                                                                                                                                         



Environment International 157 (2021) 106853

8

factors and inflammatory biomarkers) we considered the xMWAS 
network analysis as an appropriate methodology to describe some of the 
complex relationships between the three panels of information, even 
without being able to discuss causal inferences. This method did not 
allow adjustment for confounders and our results are prone to con
founding by measured or unmeasured factors and should be interpreted 
with caution. Nevertheless, the molecular exacerbations underlying the 
association between early life PFAS exposure and cardiometabolic fac
tors is under current investigation. 

The PFAS exposure profile in childhood can substantially divert from 
the gestational exposure profile, due to the effect of key factors, such as 
transplacental transfer, early –life exposure through breastfeeding and 
later dietary exposures, while there are large variations by congener. 
Mutually adjusted models for pre- and post-natal exposures would most 
probably provide a less biased effect estimate. Especially for prenatal 
PFAS exposures, adjusting for postnatal levels is not expected to produce 
a large bias amplification due to co-exposure because of the relatively 
weak correlations between maternal and child PFAS concentrations 
(Weisskopf et al., 2018). 

Longitudinal birth cohorts, from which our study draws resources, 
are exposed to the risk of loss of subjects to follow-up and possible se
lection bias. Maitre et al., reported that the distribution of family 
characteristics in the HELIX subcohort, is somewhat different than the 
entire HELIX cohort, which consist of 31,472 mother–child pairs from 
the six source birth cohorts (Maitre et al., 2018). More specifically, 
children of low educated mothers (entire cohort vs. subcohort: 23% vs. 
7%), children of parents foreign to the country of the cohort (21% vs. 
11%) and firstborns (nulliparous women: 51% vs. 46%) were less likely 
to participate in the HELIX follow-up examination. We previously found 
that low maternal education is associated with lower maternal and child 
PFAS levels, meaning that mother–child pairs with high prenatal and 
postnatal PFAS exposure are more likely included in our analysis 
(Montazeri et al., 2019). On the other hand, the inclusion of less first
born children could mean lower prenatal PFAS exposure in our study, 
since parity is a strong determinant of maternal PFAS concentrations, 
but this can vary substantially by the inter-pregnancy interval 
(Brantsæter et al., 2013; Papadopoulou et al., 2015). Regarding the 
outcome, overweight and obesity in the HELIX subcohort was similar to 
what has been reported in cohort or country-specific reports (de Bont 
et al., 2020; Harskamp-van Ginkel et al., 2020; Kadawathagedara et al., 
2018). Overall selection and self-reporting bias is probable in birth co
horts based on voluntary enrolment and face-to-face interviews, while 
exposure assessment based on biomarkers and a thorough examination 
of the outcome by trained research assistants might reduce this bias in 
our study. Finally, non-fasting insulin levels were also assessed in chil
dren samples. However, given the moderate correlation between fasting 
and non-fasting insulin it was not that this will provide an adequate 
measure of glucose-insulin homeostasis (Hancox and Landhuis, 2011) 
and we have decided not to include it in our analysis. Therefore, the 
absence of this measure is a limitation of our study. 

5. Conclusion 

In this large mother–child study, we found that exposure to a mixture 
of prenatal and postnatal PFAS was associated with higher HDL-C and 
lower adiposity at 8 years, and postnatal PFAS were the main contrib
utors to the derived BKMR mixtures. Postnatal PFAS exposure was also 
linked to lower levels of inflammatory biomarkers in child’s blood. 
Nevertheless, when we examined individual PFAS while other PFASs in 
the mixture were held at their median levels, we found that prenatal 
PFAS exposures were associated with an unfavorable cardiometabolic 
profile of lower HDL-C and increased adiposity, but these associations 
were weak. We found a positive relationship between prenatal PFOA 
and concentrations of the pro-inflammatory cytokine, IL-1beta, which 
was itself linked with larger WC, suggesting increased inflammation but 
more studies are needed to confirm this association. 
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