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Abstract

Background: The current epidemic of obesity and associated diseases calls for swift actions to better understand
the mechanisms by which genetics and environmental factors affect metabolic health in humans. Monozygotic
(MZ) twin pairs showing discordance for obesity suggest that epigenetic influences represent one such mechanism.
We studied genome-wide leukocyte DNA methylation variation in 30 clinically healthy young adult MZ twin pairs
discordant for body mass index (BMI; average within-pair BMI difference: 5.4 ± 2.0 kg/m2).

Results: There were no differentially methylated cytosine-guanine (CpG) sites between the co-twins discordant for
BMI. However, stratification of the twin pairs based on the level of liver fat accumulation revealed two epigenetically
highly different groups. Significant DNA methylation differences (n = 1,236 CpG sites (CpGs)) between the co-twins
were only observed if the heavier co-twins had excessive liver fat (n = 13 twin pairs). This unhealthy pattern of obesity
was coupled with insulin resistance and low-grade inflammation. The differentially methylated CpGs included 23 genes
known to be associated with obesity, liver fat, type 2 diabetes mellitus (T2DM) and metabolic syndrome, and potential
novel metabolic genes. Differentially methylated CpG sites were overrepresented at promoters, insulators, and
heterochromatic and repressed regions. Based on predictions by overlapping histone marks, repressed and weakly
transcribed sites were significantly more often hypomethylated, whereas sites with strong enhancers and active
promoters were hypermethylated. Further, significant clustering of differentially methylated genes in vitamin,
amino acid, fatty acid, sulfur, and renin-angiotensin metabolism pathways was observed.

Conclusions: The methylome in leukocytes is altered in obesity associated with metabolic disturbances, and our
findings indicate several novel candidate genes and pathways in obesity and obesity-related complications.
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Background
Obesity is associated with an increased risk for meta-
bolic disorders, in particular type 2 diabetes mellitus
(T2DM). However, the rate at which metabolic distur-
bances become clinically apparent varies. Approximately
30% of obese individuals appear metabolically healthy
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[1]. These individuals are insulin sensitive and have nor-
mal liver fat and visceral fat content, and their adipose
tissue remains free of inflammation and mitochondrial
dysfunction [1,2]. The causes of the variability in health-
related responses to excess weight are poorly understood.
Some of the variation may be due to genetic background,
lifestyle, and other environmental factors. The develop-
ment of high levels of liver fat predicts other metabolic
complications, and nonalcoholic fatty liver disease is
closely associated with obesity in many, but not all obese
ral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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individuals [3]. However, the genetic and environmental
factors are difficult to disentangle, and joint genetic and
environmental processes underlying the development of
metabolic consequences of obesity have not been studied.
Epigenetics, as a potential link between environmental

exposures and gene activity, is an ideal approach to unravel
the complex etiology of obesity and related comorbidities
[4]. As epigenetic mechanisms react to different envir-
onmental factors, including nutrients [5-7], environ-
mental components (such as chemicals, for example,
from tobacco [8-10]), and metabolic states [11-13], in a
tissue-specific manner, epigenetic studies may especially
benefit characterization of early disease progression.
Despite the large number of epigenetic studies of obes-

ity and metabolic diseases using animal models, there are
few epigenetic studies of obesity in humans. Most of the
human studies have explored the DNA methylation status
of a few previously identified genes known to affect obes-
ity [7,14,15] or obesity-associated traits [16]. To identify
novel genes and pathways related to obesity and obesity-
induced complications, hypothesis-generating epigenome-
wide association studies (EWAS) are needed. Two previous
studies using the HumanMethylation27 BeadChip with
27,000 cytosine-guanine sites (CpGs), primarily target-
ing gene promoters and CpG islands (CGIs), examined
blood leukocytes of obese and lean adolescents [17,18].
Wang et al. [6] discovered two obesity-associated in-
flammatory genes (UBASH3A and TRIM3), and Almen
et al. [18] identified 20 CpGs differentially methylated
between the groups. A larger study looking at the im-
pact of body mass index (BMI) on DNA methylation in
different tissues using the HumanMethylation 450 Bead-
Chip by Dick et al. found five probes correlated with BMI,
three of which were in the intron of HIF3A [19]. Recent
papers also show that specific DNA methylation profiles
in blood [20] and liver [21] may provide a link between
aging and obesity. None of the obesity-associated CpGs
were common to all studies, which may be due to dif-
ferences between the study populations, diverse genetic
backgrounds, or heterogeneous metabolic phenotypes
between different BMI categories. Importantly, these
studies provide evidence that obesity is associated with
DNA methylation changes in blood leukocytes. One re-
cent paper has addressed a question whether obesity-
associated metabolic syndrome differs from obesity with-
out metabolic complications by studying adipose tissue.
Guenard et al. identified over 3,000 genes and 41 pathways
differentially methylated between the two groups [22].
Genome-wide methylation studies are greatly enhanced

by the usage of samples of trait-discordant monozygotic
(MZ) twins. MZ twin pairs have the same genomic se-
quence, and the study design thus controls for the genetic
diversity that has encumbered previous studies comparing
obese and lean groups. In addition to being genetically
identical (excluding rare somatic mutations [23-25] and
structural variations [26-28]), MZ twins are matched for
many confounding factors (for example, age, sex, family
background). Thus, the co-twin control design is ideal
when identifying epigenetic changes induced by lifestyle
and acquired obesity.
The aim of this study was to identify DNA methylation

marks associated with acquired obesity with or without
metabolic dysregulation and thereby to identify potential
epigenetic biomarkers for unhealthy obesity. To do this,
we studied genome-wide DNA methylation patterns and
associated chromatin states in 30 extremely rare, clinically
healthy young adult MZ twin pairs discordant for BMI,
identified from population-based twin cohort studies
comprising ten birth cohorts (n = 5,200 pairs). Detailed
phenotyping for adiposity and metabolic status enabled
further stratification into two metabolically distinct sub-
groups characterized by either elevated or normal liver fat
in the heavy co-twins. The heavy co-twins with elevated
liver fat present several blood metabolic alterations, such
as increased amounts of glucose, lipid, cytokines, and co-
agulation factors [2]. As all of these are overproduced by
the fatty liver [29], liver fat accumulation is an interesting
intermediate phenotype linking obesity-related comorbidi-
ties and the search for novel epigenetic markers in blood
DNA. This distinction revealed DNA methylation differ-
ences in the obesity subtype with elevated liver fat and as-
sociated metabolic disturbances and thereby shows that
blood epigenetic profiling has a great potential to better
characterize the obesity phenotype, and identify subjects
most at risk for developing metabolic complications.

Results
Metabolic characterization of MZ twins
We studied MZ twin pairs discordant for BMI (delta
BMI >3 kg/m2, range 3 to 10.13 kg/m2, n = 30) and con-
cordant for BMI (delta BMI <1.6 kg/m2, range 0 to
1.6 kg/m2, n = 10). Among the BMI discordant pairs, the
co-twins differed for subcutaneous, intra-abdominal and
liver fat (P < 0.001, Additional file 1) and overall adiposity.
No differences in these measures were observed in the
BMI concordant pairs. In the discordant pairs, all measures
of adiposity increased linearly for each unit increase of
BMI, except for liver fat. In half of the discordant pairs for
whom liver fat was measured (n = 12), both co-twins had
low liver fat content (approximately 1% triglycerides from
liver weight) whereas in the other half (n = 13), the heavier
co-twins had an increase (on average 509%) in liver fat
compared to the leaner co-twins (P = 0.0015, Additional
file 1). Both liver fat concordant and discordant groups
were equally discordant for BMI (mean BMI difference
5.9 kg/m2 for the liver fat concordant and 4.9 kg/m2 for
the liver fat discordant, the distributions of BMI and liver
fat discordances are shown in Additional file 2: Figure S1),
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as well as for subcutaneous and intra-abdominal fat
(within-pair difference P < 0.01 for all, Additional file 1).
In accordance with the known harmful metabolic effects
of fatty liver, the pairs with large differences in liver fat
were also highly discordant for several physiological pa-
rameters. In this group, the heavier co-twins had sig-
nificantly higher fasting insulin and Homeostasis Model
Assessment (HOMA) index, larger area under the curve
(AUC) glucose and insulin during the oral glucose toler-
ance test (OGTT), higher low-density lipoprotein (LDL)
and lower high-density lipoprotein (HDL) cholesterol, and
higher high-sensitivity C-reactive protein (CRP) than their
leaner co-twins (Additional file 1). They also had higher
diastolic blood pressure. None of these differences, except
for HDL, were observed in the group where the heavier
co-twins had normal levels of liver fat. Based on these
within-pair differences in the metabolic profiles, we here-
after refer to the pairs discordant for BMI but concordant
for liver fat as the normal liver fat (nLF) group and the
pairs discordant for both BMI and liver fat as the ele-
vated liver fat (eLF) group. The within-pair differences
in glucose tolerance and liver fat were different be-
tween these two groups (AUC glucose, P = 0.04; liver
fat %, P = 3.85 × 10−07, Additional file 1). The heavy co-
twins from the nLF and eLF groups differed for liver
fat (P = 7.69 × 10−07) and fasting insulin (P = 0.02).

Technical and biological variation
Genome-wide DNA methylation was measured in whole
blood using the Infinium HumanMethylation 450 Bead-
Chip (Illumina). We applied stringent quality control and
filtering procedures to minimize technical variation. To
test for the reliability and consistency of the data, we con-
ducted three experiments. First, to ensure that the 450
BeadChip identifies genuine DNA methylation differences
between MZ co-twins rather than artificial differences due
to technical variation, we hybridized two technical rep-
licates of six different samples on the bead chips. DNA
methylation patterns of the technical replicates were
highly similar, showing greater resemblance among the
replicates (Euclidean distance, ED = 12.24) than within-
twin pairs (ED = 13.86 for concordant and 15.75 for dis-
cordant pairs), and greater similarity within pairs than
between-same sex unrelated individuals (ED = 21.65,
Additional file 2: Figure S2). This indicates high quality
of the data and that the within-pair methylation variation
exceeds the technical variation. Second, to validate the
within-pair DNA methylation differences, we performed
EpiTYPER MassARRAY analysis on eight selected CpGs
differentially methylated in the eLF group. Mean Pearson
correlation of methylation differences at all CpGs between
450 BeadChip and EpiTYPER was 0.87, ranging from
0.65 to 0.96 (Additional file 2: Figure S3). This clearly
shows that the observed differences in DNA methylation
between MZ co-twins are genuine. Third, to validate the
accuracy of the genome-wide DNA methylation mapping
using the 450 BeadChip, we compared data generated by
the Infinium platform and reduced representation bisulfite
sequencing (RRBS) [30] from a different set of MZ twin
pairs discordant for psoriasis (Gervin, K et al. manuscript
in preparation). We observed a mean Pearson correlation
of 0.96 across all CpGs covered by both methods (an Infi-
nium probe and at least ten RRBS reads, n = 60,000) in
ten representative samples (Additional file 2: Figure S4).
This is in agreement with a previous study [31] and dem-
onstrates the robustness of the Infinium technology.
Estimated proportions of CD4+ cells and granulocytes
differ within pairs
Our data are derived from peripheral whole blood, which
comprises a mixture of different cell types. These cell
types display different DNA methylation profiles, which
can potentially confound the analyses if the proportions
of the different cell types vary between cases and con-
trols. Because the obese co-twins of the eLF group show
low-grade inflammation as part of their metabolically dis-
turbed obesity phenotype, and this is likely to affect the
cell-type composition, we estimated the cell-type compo-
sitions in each sample. To do this, we applied a statistical
algorithm predicting distributions of six blood cell types
based on cell-specific 450 BeadChip methylation signa-
tures [32]. These cell-type estimates revealed within-pair
differences in granulocytes and CD4+ cells (false discovery
rate (FDR) 0.02, Additional file 3) in the eLF group while
the cell-type proportion estimates did not differ within the
pairs in the nLF group. As the script for estimating the
cell-type compositions is based on isolated cells from only
7 males [32], we investigated the accuracy of the estimated
cell counts using 10 individuals from our twin cohort with
both 450 K methylation data and differential blood cell
counts. We found inconsistencies between the estimates
and real cell counts as demonstrated by the moderate to
low correlation coefficients (r = 0.64, P = 0.05 for lympho-
cytes; r = 0.74, P = 0.02 for granulocytes; and r = 0.24, P =
0.5 for monocytes). Due to these inconsistencies and,
moreover, as our primary interest was to explore the DNA
methylation fingerprint of ‘unhealthy obesity,’ character-
ized by high liver fat and several preclinical metabolic al-
terations (Additional file 1), and to find potential novel
biomarkers that help in the detection of this complex
phenotype, we decided not to correct the data with
cell-type estimates prior to differential methylation
analysis. By correcting we would have over-adjusted
our data and missed important associations between
DNA methylation and liver fat (see Additional file 4, and
Additional file 2: Figure S5, for unadjusted versus cell-type
adjusted data).
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Obesity-associated DNA methylation differences are
associated with elevated liver fat
MZ co-twins were in general highly correlated for DNA
methylation across all CpGs (mean = 0.996, range = 0.994
to 0.997). After correction for multiple testing and applying
a biological relevance cutoff (mean within-pair methylation
difference of ≥5%), none of the CpG sites were differen-
tially methylated within the 30 BMI discordant twin pairs,
nor in the 10 BMI concordant pairs (data not shown). Be-
cause the phenotypic characterization of these twins clearly
identified two metabolically distinct groups, we sought to
test the hypothesis that the eLF and nLF groups differ for
their blood methylation profiles. While none of the CpGs
were differentially methylated in the nLF group, 1,236
CpGs in 765 genes were differentially methylated in the
eLF group (FDR <0.05, mean within-pair difference ≥5%, n
= 13, range of mean methylation difference 0.05 to 0.11,
Figure 1 and Additional file 4, and Additional file 2: Fig-
ure S6). In agreement with our hypothesis above,
1,042/1,236 CpGs showed different within-pair methy-
lation discordances between the eLF and nLF groups
Figure 1 Volcano plot of differences in DNA methylation between the
point represents a CpG site (n = 456,961) with mean within-pair differences
the uncorrected P value from a paired test (moderated empirical Bayes) on
and positive differences hypermethylation in the heavy compared to the le
CpGs (n = 1,236, FDR <0.05, mean within-pair DNA methylation difference ≥
with obesity and obesity-associated traits (T2DM, liver fat, and MetS, n = 13, A
shown to be differentially methylated in obesity and T2DM (n = 11, Addit
and epigenetically associated to obesity and obesity-associated traits (n =
(P < 0.05, Figure 2). This clearly demonstrates that the
epigenetic dissimilarity is consistent with differences
in metabolic parameters between the two groups.

DNA methylation differences in obesity-associated genes
The genes located <10 Kb away from the SNPs or CpGs
identified by genome-wide association studies (GWAS)
[33-50] and EWAS [7,17,18,51-56] for obesity, liver fat,
T2DM, and metabolic syndrome (MetS), which are cov-
ered by the 450 K bead chip (23 out of 247 genes re-
trieved from previous publications and from GWAS
catalog www.ebi.ac.uk/gwas), were overrepresented
among the 765 genes identified in the eLF group (Fish-
er’s exact test, P = 1.56 × 10−4, Figure 1, Additional files 5
and 6).

Differentially methylated CpGs are overrepresented at
promoters, insulators, and repressed states and are
enriched for hypomethylation
The genomic distribution of the differentially methylated
CpGs in relation to CpG density (CGIs, shores, shelves,
discordant co-twins (n = 13 twin pairs) in the eLF group. Each
in DNA methylation between co-twins on the x-axis and − log10 of
the y-axis. Negative methylation differences indicate hypomethylation
an co-twins. Black dots represent significantly differentially methylated
5%); red dots represent CpGs located in genes genetically associated

dditional file 5); green dots represent CpGs located in genes previously
ional file 6); blue dots represent CpGs located in genes genetically
3, Additional files 5 and 6).



Figure 2 Heat map of within-pair DNA methylation differences show clustering of the eLF and nLF groups. Heat map of the within-pair
DNA methylation differences (heavy-lean) at the top 100 most discordant CpGs (rows) identified in the eLF group show clustering of twin pairs
(columns) in the eLF (red bar) and nLF (blue bar) groups. Color scale from blue to yellow represents the level and direction of within-pair methylation
difference as Z-scores from negative towards positive values. (a) Heavy co-twins are more often hypermethylated relative to the lean co-twins in the
eLF group and more often hypomethylated in the nLF group. (b) Heavy co-twins more often hypomethylated compared to the lean co-twins in the
eLF group, and more often hypermethylated in the nLF group.

Figure 3 CGIs underrepresented and open seas overrepresented
among the differentially methylated CpGs. Bar plot shows the
proportions of the differentially methylated CpGs at CGIs, shores,
shelves, and open sea and the P values denote which of the CpG
categories are over- or underrepresented among the differentially
methylated CpGs (n = 1,236) in the eLF group. Fisher’s exact test was
used to generate P values for each group to see if they are under- or
overrepresented among the 1,236 CpGs. Open sea, isolated CpGs
outside any CGIs; shelves, 2 to 4 kb from CGI; CGI shores, <2 kb from
CGI.
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and open sea) in the eLF group was clearly different com-
pared to the whole array CpG distribution (Figure 3). The
differentially methylated CpGs were under-represented in
CGIs and overrepresented in shelves and open seas. We
also explored the location of the differentially methylated
CpGs in relation to known and predicted functional
elements in the genome (ChromHMM) by the use of
ENCODE data from cell line GM12878 [57]. ChromHMM
uses ChIP-seq data (CTCF and eight histone marks) to
generate 15 chromatin states which are grouped to predict
functional elements [58]. Based on the chromatin states,
differentially methylated CpGs were overrepresented at
active promoters, insulators, and within repressed and
heterochromatic states and underrepresented at enhancers
and transcribed sites (Figure 4).
Most of the differentially methylated CpGs were less

methylated in the DNA from the heavy compared to the
lean co-twins (1,121/1,236, 91%, P < 2.2 × 10−16, Figure 1)
of the eLF group. In addition, based on the predicted
chromatin states in the reference cell line, the functional
genomic distribution of the hypo- and hypermethylated
CpGs in the heavy co-twins showed distinct differences
(Figure 5). Repressed chromatin and regions with weak



Figure 4 Chromatin states at the differentially methylated CpGs. Bar plot shows the proportions of 15 chromatin states using the Chromatin
State Segmentation data from ENCODE/Broad Institute and which of the states are over- or underrepresented (Fisher’s exact test) among the
differentially methylated CpGs (n = 1,236) in the eLF group. Chromatin states with identical names differ from each other by the frequency of each
mark [58].
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transcription and transcription elongation were more
often hypomethylated (P < 0.05) and active promoters
and strong enhancers hypermethylated (P < 0.05) in the
obese co-twins.

Enrichment of gene sets and pathways relevant for obesity
Next, we performed gene set analysis (GSA) [59] to ex-
plore the potential of shared biologically relevant path-
ways among the obesity-associated methylation events.
GSA of the BMI discordant group without stratification
by liver fat discordance revealed only two enriched path-
ways (Table 1). Liver fat-stratified GSA did not reveal any
pathways in the nLF group (data not shown); however,
nine pathways showed enrichment in the eLF group
(FDR <0.1, Table 1). Altogether eight of these pathways
were less methylated in the heavy compared to their lean
co-twins (Table 1). As shown in Additional file 2: Figure S7,
vitamin- and amino acid-related pathways formed a linked
network. To interpret the GSA data in the context of
biological processes, pathways, and networks, the Core
Analysis function in Ingenuity Pathways Analysis
(IPA) (Ingenuity System Inc, USA) was performed for
genes that map to the significant KEGG pathways
from GSA (Additional file 7). Both GSA and IPA gave
strong indications that the differentially methylated
genes are involved with lipid, vitamin, and amino acid
metabolism and immune and endocrine systems and
liver dysfunction (Table 1).

Metabolic measures lend support to the pathway findings
In light of the pathway results, we determined serum
levels of linoleic acid, glycine, and histidine (Additional
file 1). In the eLF group, the heavy co-twins had less
linoleic acid than their lean co-twins. This was not seen
in the nLF group where the relative circulating linoleic
acid amount was similar in both co-twins. Also, glycine
concentrations were reduced in the heavy co-twins of
the eLF, but not of the nLF group. Histidine levels did
not differ between the co-twins in either of the groups.

Discussion
To our knowledge, this is the first comprehensive genome-
wide leukocyte DNA methylation survey in MZ twin pairs
discordant for BMI. Regardless of the within-pair discord-
ance in BMI, the MZ twin pairs were highly similar for
their methylation profiles, which is in line with previous
DNA methylation studies using trait-discordant MZ twin
pairs [60-67]. We show that DNA methylation profiles in
blood leukocytes differ between BMI-discordant MZ co-
twins only when high BMI is coupled with elevated liver



Figure 5 Proportions of hypo- and hypermethylated CpGs in the heavy co-twins in relation to chromatin states. The distributions of the
hypo- and hypermethylated CpGs in relation to chromatin states differ greatly. Most of the hypomethylated CpGs were within heterochromatin
(25%) whereas hypermethylated CpGs were most common at strong enhancers (26%).
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fat and preclinical state metabolic disturbances (insulin re-
sistance, low-grade inflammation, and dyslipidemia). This
suggests that specific DNA methylation marks may identify
obese individuals susceptible for the development of meta-
bolic comorbidities. Altogether 91% of the differentially
methylated CpGs were hypomethylated in the unhealthy
obese as compared to their lean co-twins, including
Table 1 Enriched KEGG pathways

KEGG pathway Score P va

BMI discordant

4977 Vitamin digestion and absorption −0.23 0.002

4614 Renin-angiotensin system −0.23 0.003

eLF group

260 Glycine, serine and threonine metabolism −0.19 <0.0

340 Histidine metabolism −0.13 0.002

4977 Vitamin digestion and absorption −0.19 0.003

4614 Renin-angiotensin system −0.22 0.004

300 Lysine biosynthesis −0.48 0.004

780 Biotin metabolism −0.61 0.006

920 Sulfur metabolism −0.29 0.006

591 Linoleic acid metabolism 0.36 0.001

830 Retinol metabolism −0.11 0.011

1,000 permutations were performed with no probe number cutoffs. CTEA cell-type
heterochromatic and repressed regions and promoters and
insulators of both novel and known obesity-associated
trait genes. The pathway analyses revealed clustering of
the differentially methylated genes in vitamin (especially
biotin and retinol), fatty acid, amino acid, and sulfur me-
tabolism and to the renin-angiotensin system. These re-
sults suggest that the epigenetic signatures related to
lue FDR CTEA score CTEA P value CTEA FDR

0.098 −0.23 0.002 0.065

0.098 −0.22 0.009 0.195

01 <0.001 −0.16 0.001 0.033

0.052 −0.12 0.005 0.065

0.052 −0.15 0.020 0.130

0.052 −0.24 0.001 0.033

0.052 −0.44 0.003 0.065

0.056 −0.64 0.009 0.084

0.056 −0.29 0.006 0.065

0.065 0.49 <0.001 <0.001

0.089 −0.19 0.005 0.065

estimate adjusted.
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unhealthy obesity may involve nutritional factors, as well
as point to possible new pathogenic routes to obesity-
related diseases with implications for treatment.
Liver is a key metabolic regulator, and when fatty, it over-

produces glucose, lipids, and inflammatory cytokines [68].
In turn, low liver fat has been suggested to be a hallmark
of the so-called healthy obesity [69]. Here, as well as in our
previous study [2], we showed that high liver fat is associ-
ated with several preclinical metabolic aberrations in obes-
ity, including increased glucose, insulin, lipid, and CRP
levels. With this in mind, it seems clear that the blood en-
vironment for the circulating leukocytes is different in
subjects with high liver fat compared to those with low
liver fat, that is, in those with or without metabolic ab-
errations. Because measurement of liver fat is laborious,
blood epigenetic profiles together with metabolic surro-
gate markers may provide an attractive additional tool
for the diagnosis and search for therapeutic targets in
the future [29].
Among the differentially methylated genes in the eLF

group, 23 have been previously found to be associated
with obesity and obesity-associated traits in multiple
GWAS meta-analyses and DNA methylation studies.
For example, hypermethylation of UBASH3A and hypo-
methylation of THADA were found in the present as
well as in previous studies [17,51].
We found that most of the differentially methylated

CpGs were hypomethylated and associated with chroma-
tin states marking important regulatory elements [52] and
that differentially methylated CpGs were overrepresented
at CGI shelves and open seas, and underrepresented at
CGIs. This is in accordance with previous studies inves-
tigating disease-associated methylation patterns [70-73].
We also explored chromatin states at differentially methyl-
ated CpGs using ENCODE data and showed overrepre-
sentation of promoters and insulators, suggesting that the
methylation differences may have functional consequences
by fine-tuning transcription of the associated genes. Un-
fortunately, no RNA is available from the study material
to explore this hypothesis further.
We identified a large number of differentially methylated

CpGs between co-twins highly discordant for liver fat
and BMI. This was not a surprise as multiple genes in
many pathways are likely to be differentially regulated in
unhealthy obesity, and because we reported the ‘total’
within-pair methylation differences including both direct
and indirect (via cell-type variation) obesity-associated
methylation marks.
It is known that different cell subpopulations in periph-

eral blood may display different DNA methylation profiles.
Consequently, there is a lot of discussion regarding the
impact of cell-type heterogeneity on epigenetic studies
performed on whole blood [74-81]. We acknowledge that
our DNA methylation findings in the eLF group may
be partly due to differences in cell-type proportions within
pairs. Indeed, this may be the case in most studies
comparing normal tissue to diseased tissue. Hence, in
studies aiming to identify biomarkers for a disease state,
adjusting for cell-type distributions could be over-
adjustment leading to false negative findings. Even though
co-twins from the eLF group differ for their estimates of
granulocytes and CD4+ cells, the most prominent clinical
parameters, liver fat, insulin resistance, and low grade
inflammation, were only weakly correlated with the cell-
type estimates. Regardless of the source of the observed
methylation differences, our cell-type unadjusted methyla-
tion data distinguishing high BMI with and without a fatty
liver may have a value for future development of diagnos-
tic biomarker panels for early metabolic disturbances in
obesity because such practical tools will be based on DNA
from whole blood samples, not specific cell types. Further,
the methylation profile of the eLF group may also serve
as a useful tool in imputing the liver fat phenotype in
epidemiological studies.
Like in any human study, we cannot exclude differences

in all potential environmental factors within the twin
pairs that may have an effect on DNA methylation. For
example, recent alcohol intake has been shown to have
genome-wide effects on blood DNA methylation [82].
Given the cross-sectional nature of our study, the direc-
tion of causality cannot be proven. We believe that only a
minority of the observed methylation differences preceded
obesity, but are mainly due to a complex mixture of differ-
ent metabolic and clinical parameters (including blood
cell-type heterogeneity), which are related to the complex
phenotype differences between the lean and metabolically
disturbed heavy co-twins characterized by elevated liver
fat levels. However, we cannot preclude the possibility that
some of the findings are indicative of processes that pre-
cede the onset of weight gain. Nevertheless, our main con-
clusion is that the observed epigenetic signature truly
reflects the phenotype and characterizes the heavy twins
in the eLF group.

Conclusions
The present study shows that epigenetic profiling has a
great potential to better characterize the obesity pheno-
type and identify subjects most at risk for developing
metabolic complications. The metabolically disadvantaged
obese MZ twins, with high liver fat, insulin resistance, in-
flammation, and dyslipidemia, were characterized by
differential blood DNA CpG methylation in a number
of novel and known obesity-associated genes when com-
pared to the methylation levels of their lean counterparts.
The pathways linked to the unhealthy obesity were related
to vitamin, amino and fatty acid, renin-angiotensin, and
sulfur metabolism. These results may harbor clues to the
etiology, such as nutritional defects in the development of
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metabolic derangements. In addition to their potential
role in diagnostics of the metabolic disturbances, the find-
ings may help expedite the search for novel therapeutic
targets for obesity.

Methods
Twin collection
The twin pairs were selected from two population-based
longitudinal studies, FinnTwin16 and FinnTwin12, each
consisting of five consecutive birth cohorts of Finnish
twins [83]. Altogether 30 BMI discordant (within-pair
difference (delta) in BMI ≥3 kg/m2) and 10 BMI concord-
ant (delta BMI <1.6 kg/m2) MZ twin pairs were selected
from the last follow-ups [2,84]. The range of the BMI of
the lean co-twins was 19.7 to 40.6 kg/m2 and of the heavy
co-twins was 24.2 to 48.6 kg/m2. Twins with concomitant
somatic and psychiatric diseases or medications (except
for oral contraceptives) were excluded.
The twin pairs (n = 40, 17 males, 23 premenopausal fe-

males) were 27 ± 3.3 (mean ± SD) years old. Their weight
had been stable for at least 3 months prior to the study.
Zygosity was confirmed by genotyping of ten informative
genetic markers [85]. The subjects provided written in-
formed consent. The protocol was designed and performed
according to the principles of the Helsinki Declaration and
was approved by the Ethics Committee of the Helsinki
University Central Hospital.

Phenotypic measurements
Weight and height were measured, after overnight fast,
barefoot and in light clothing, to calculate BMI. Body
composition was measured using whole body dual-energy
x-ray absorptiometry (DEXA) [86]. Abdominal fat distri-
bution and liver fat content were measured with a clinical
magnetic resonance (MR) imager (1.5 Tesla, Avanto,
Siemens, Erlangen, Germany) for MR imaging and MR spec-
troscopy [87]. MR images were analyzed using SliceOmatic
v4.3 segmentation software and the results were expressed as
total volumes of SAT and VAT. The liver spectra were ana-
lyzed with jMRUI v3.0 software [88] using the AMARES
algorithm [89].
After 12-h overnight fast, subjects underwent a 75-g

OGTT. Concentrations of plasma glucose were measured
using the spectrophotometric hexokinase and glucose-6-
phosphate dehydrogenase assay (Gluko-quant glucose/
hexokinase, Roche Diagnostics, Tokyo, Japan) with a
Hitachi Modular automatic analyzer (Hitachi, Tokyo, Japan),
and serum insulin with time-resolved immunofluorometric
assay (Perkin Elmer). Areas under the plasma glucose re-
sponse curve (AUC glucose) and the serum insulin response
curve (AUC insulin) were calculated from fasting, 30-, 60-,
and 120-min glucose and insulin concentrations, with the
trapezoid rule. The insulin resistance index (HOMA-IR)
was calculated during OGTT according to Matthews et al.
[90]. Total HDL cholesterol and triglyceride concentrations
in serum were measured freshly by enzymatic methods
(Roche Diagnostics Hitachi, Tokyo, Japan). LDL cholesterol
concentrations were calculated using the Friedewald for-
mula. Serum hsCRP was measured by particle-enhanced
immunoturbidimetric assay (Cobas CRP(Latex)HS, Roche
Diagnostics) on Modular automatic analyzer (Hitachi Ltd,
Tokyo, Japan). Serum fatty acid and amino acid profiles
were measured by proton NMR spectroscopy [91].

DNA extraction and bisulfite conversion
High molecular weight DNA was extracted from whole
blood using QIAamp DNA Mini kit (QIAGEN Nordic,
Sollentuna, Sweden). Bisulfite conversion of DNA was
completed using EZ-96 DNA Methylation-Gold Kit (Zymo
Research, Irvine, CA, USA) according to the manufac-
turer’s instructions, and the co-twins were always con-
verted on the same plate to minimize potential batch
effects.

DNA methylation analysis
DNA methylation status was assessed using the Infinium
HumanMethylation 450 BeadChip, performed by the
Microarray Consortium (Oslo, Norway) according to
manufacturer’s instructions (Illumina, San Diego, CA,
USA). The co-twins were always hybridized on the same
chip.
All analyses were carried out using the R programming

language (http://www.r-project.org/, v2.15) and Bioconductor
(v2.10) [92]. The raw data was preprocessed using methylumi
[93] and normalized using quantile normalization followed
by beta-mixture quantile normalization (BMIQ). BMIQ ef-
fectively adjusts the data for the two different probe designs
(Infinium type I and type II) on the array [94]. The ComBat
function in the R package sva [95] was then used to correct
for batch effects in the data. The data was filtered to remove
probes with detection P values above 0.001 in any sample
(5,372 probes), probes covering non-CpGs (3,063), and
those mapping to X and Y chromosomes (11022). Fur-
ther, Burrows-Wheeler Aligner (BWA) - short [96] - was
used to identify probes that map to multiple locations in
the genome (9,159 probes with >1 location), and all such
probes were removed. This resulted in a final data set with
456,961 probes. Log2 ratios of methylated probe inten-
sities to unmethylated probe intensities, the M-values,
were then generated using functions in the R package
lumi. Illumina Manifest was used for probe annotations.
Validation of within-pair differences at eight differentially

methylated CpGs (in seven genes) in the eLF group was done
by EpiTYPER MassARRAY (SEQUENOM Inc., Hamburg,
Germany). PCR primers (Additional file 8) were designed
using SEQUENOM’s EpiDesigner BETA (SEQUENOM Inc.,
Hamburg, Germany) tool (www.epidesigner.com). To reduce
methylation variability introduced during PCR [97], triplicate
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amplifications of each sample were performed and pooled
prior to MassARRAY analysis. PCR amplification was
performed as in [98] and methylation status of each
CpG was determined according to the manufacturer’s
instructions.

Statistical analysis
All differential methylation analyses were performed
using M-values, and beta-values, ranging from 0 to 1 (0
to 100% methylation), were used to report the outcomes
of the analyses. Statistical tests were conducted in R and
Stata statistical software (release 12.0; Stata Corporation,
College Station, TX). Comparisons of the clinical param-
eters within twin pairs were made by Wilcoxon signed-
rank tests. Correlation of DNA methylation within
discordant MZ twin pairs was computed as Pearson
correlation and similarity as Euclidean distances (ED).
The level of discordance in technical replicates, twin

pairs, and unrelated pairs was compared by using the
mean of the ED in methylation within technical replicates
of six samples, three randomly selected BMI concordant
twin pairs and six randomly selected unrelated, same-sex
individuals. Empirical cumulative distribution function
(ECDF) plots were generated using means of the within-
pair differences in the three pairs in each group. Probes
containing SNPs (n = 59,892) were not included in
computing the EDs or generating the ECDF plots. Fur-
thermore, an algorithm developed by Houseman et al.
[32] was utilized to determine the proportions of the
white blood cell types (CD4+ and CD8+ T cells, CD56+

NK cells, B cells, monocytes, and granulocytes).
Differential methylation analysis was performed after

adjusting the data for smoking, using empirical Bayes
paired moderated t statistics implemented in the R pack-
age limma [99]. The raw P values from the paired tests
were corrected for multiple testing using the Benjamini
and Hochberg (BH) method. CpG sites with FDR <0.05
and within-pair methylation difference of ≥5% were called
as differentially methylated. Moderated t statistics with
BH correction was also used to compare the within-pair
difference of twin pairs between groups to examine
whether the identified within-pair methylation discor-
dances were group specific.
The genomic distribution of the 1,236 differentially

methylated CpGs, in relation to CGIs, was compared
with the distribution of the CpGs in the whole data set.
P values were computed using the Fisher’s exact test to
determine over- or under-representation of the CpGs in
relation to CGIs.
ENCODE data (ChromHMM on cell line GM12878,

Broad Institute, Cambridge, MA, USA) was used to de-
termine the chromatin state at each of the 1,236 CpGs by
finding overlaps in the regions defined in the ENCODE
data and the probe locations. P values were computed
using Fisher’s exact test to determine if the differentially
methylated CpGs over- or under-represented any of the
chromatin states.

Gene set and pathway analyses
The R package GSA was used to find the significance of pre-
defined sets of CpGs, each set representing a pathway on
KEGG. GSA was applied on the within-pair differences in
methylation and run with 1,000 permutations. A P value
cutoff of 0.05 and FDR cutoff of 0.1 were applied to obtain
the list of significant pathways. GSA does not take into
account the number of CpG sites on individual genes in a
pathway; however, there was no obvious bias related to
number of probes per genes (Additional file 2: Figure
S8). The results give a list of pathways that need to be
studied more closely. The genes in the significant
KEGG pathways were further analyzed by IPA (Ingenuity
Systems, Redwood City, CA, USA) to examine networks,
functions, and associated diseases.

Additional files

Additional file 1: Anthropometric and metabolic measures of the MZ
twin pairs in the study. Table with the characteristics of the study material.

Additional file 2: A document with all supplementary figures (S1 to
S8) and figure legends. Figure S1: The distributions of BMI and liver fat
discordances within pairs. Figure S2: Similarity of methylation between
unrelated individuals, co-twins, and technical replicates. Figure S3: Validation
of the within-pair DNA methylation differences. Figure S4: Comparisons of
DNA methylation levels measured by Infinium 450 BeadChip and RRBS.
Figure S5: QQ plots of observed P values from the within-pair methylation
analysis of the eLF group twin pairs before and after correcting the data
with estimated cell count proportions. Figure S6: Distribution of mean
within-pair methylation differences and observed P values. Figure S7: Early
onset liver fat-associated pathways form networks. Figure S8: Scatterplot of
GSA results showing the mean number of probes per gene per pathway.

Additional file 3: Within-pair differences of the estimated cell type
proportions. Table showing the within twin pair differences in the cell
type estimates.

Additional file 4: Differentially methylated CpGs in the eLF group.
Table listing the differentially methylated CpG sites with mean betas,
mean delta betas, LogFC, and P values before and after cell type estimate
adjustments.

Additional file 5: Obesity and obesity-associated trait candidate
genes identified by GWAS that are differentially methylated in the
eLF group. Table listing differentially methylated CpG sites that are located
in obesity and obesity-associated trait candidate genes identified by GWAS.

Additional file 6: Obesity and T2DM candidate genes identified by
candidate gene DNA methylation or EWAS that are differentially
methylated in the eLF group. Table listing differentially methylated
CpG sites replicating previously published obesity and T2DM associated
methylation.

Additional file 7: The top IPA networks among the significant
pathways of the eLF group. Table showing the enriched networks
produced by IPA.

Additional file 8: PCR primers for EpiTYPER MassARRAY analysis.
Table showing the primer sequences used in the validation assays.
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