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Abstract

Systematic reviews are resource-intensive. The machine learning tools being

developed mostly focus on the study identification process, but tools to assist

in analysis and categorization are also needed. One possibility is to use

unsupervised automatic text clustering, in which each study is automatically

assigned to one or more meaningful clusters. Our main aim was to assess the

usefulness of an automated clustering method, Lingo3G, in categorizing stud-

ies in a simplified rapid review, then compare performance (precision and

recall) of this method compared to manual categorization. We randomly

assigned all 128 studies in a review to be coded by a human researcher blinded

to cluster assignment (mimicking two independent researchers) or by a human

researcher non-blinded to cluster assignment (mimicking one researcher

checking another's work). We compared time use, precision and recall of man-

ual categorization versus automated clustering. Automated clustering and

manual categorization organized studies by population and intervention/con-

text. Automated clustering failed to identify two manually identified categories

but identified one additional category not identified by the human researcher.

We estimate that automated clustering has similar precision to both blinded

and non-blinded researchers (e.g., 88% vs. 89%), but higher recall (e.g., 89%

vs. 84%). Manual categorization required 49% more time than automated clus-

tering. Using a specific clustering algorithm, automated clustering can be help-

ful with categorization of and identifying patterns across studies in simpler

systematic reviews. We found that the clustering was sensitive enough to

group studies according to linguistic differences that often corresponded to the

manual categories.
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Highlights

What is already known
Systematic reviews can use machine learning to drastically reduce time spent
during study identification, particularly screening.There remains significant
potential for automated approaches to reduce time needed for study analysis
and categorization, but performance must also be measured.

What is new
Automated text clustering applied to included studies' titles and abstracts
resulted in several useable thematic categories.The clustering algorithm Lin-
go3G was equally as precise as researcher categorizations, and had higher
recall.Systematic reviewers without machine learning expertise can success-
fully implement automated text clustering.

Potential impact for RSM readers outside the authors' field
Automated text clustering can provide useable and valid categorizations of
text. The time saved compared to human categorization outweighs the time
needed to sort through and make sense of the automated categories.

1 | INTRODUCTION

Systematic review production is highly labor-intensive. A
large number of studies must be identified and screened,
and depending on the type of review, studies judged eligi-
ble must be read in full text, and their results extracted,
synthesized, and reported.1–3 As the number of published
primary studies continues to increase each year,4 current
systematic review processes are scaling poorly: reviews
are becoming more expensive to produce and more likely
to require updates sooner as new studies are published. A
decade ago, Bastian and colleagues5 reported that 11 sys-
tematic reviews were published per day and called for
innovative evidence synthesis methods—although the
suggestions they gave mainly involved reducing the num-
ber of primary studies conducted and published. It has
also been estimated that the average intervention review
takes 1.25 years to complete,2 and that within 2 years of
publication, one of every four systematic reviews of effect
within medicine and health will become outdated.6 We
need methods and tools that reduce unnecessary human
labor and duplication of tasks to produce reviews at a
speed that matches the needs of policymakers and new
evidence production.

Computer-based automation and machine learning
(ML) are of current interest for reducing costs and accel-
erating systematic review production. When successful,
ML can reduce tasks that are resource-intensive
(e.g., difficult or time-consuming) to tasks that can be
performed more efficiently, quickly, and consistently via
full- or semi-automation. Screening,7–9 risk of bias

assessment,10 and study design or quality classifiers11,12

are some of the recent applications of ML to systematic
reviewing. However, systematic reviewers are often cau-
tious when adopting new review methods and are aware
that the benefits and potential harms of new methods
and tools should be characterized and tested before they
are adopted.13

This paper addresses the problem of categorizing stud-
ies based on study content, which has application in scop-
ing reviews that aim to map the literature published on a
particular topic, population, or context, and, in some
cases, identify research questions for study in subsequent
systematic reviews. There is relatively little research that
has applied machine learning to this problem; Stansfield
and colleagues provided an early and important case
study.14 This article presents a case study of the use of a
clustering algorithm to define a new categorization system
for a simple commissioned systematic review. We assess
the utility of the resulting clusters, and compare precision,
recall, and time use for completely manual categorizations
versus researchers using automated clustering.

Our main aim was to assess the usefulness of an auto-
mated clustering method in categorizing studies in a sim-
plified rapid review, then to compare performance
(precision and recall) of this method against manual cate-
gorization. Ultimately, we wanted to determine whether
we could “trust” a specific algorithm to cluster studies
using its own categorization system, as much as we trust
researchers to code to a researcher-created categorization
system. Our intended audience is systematic reviewers
who are not machine learning specialists.
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2 | BACKGROUND

Machine learning (ML) encompasses a wide range of
methods that fall under the narrower terms “supervised”
and “unsupervised” learning.15 Supervised learning is a
common ML approach, in which a model is first
“trained” (fitted to data for which ground truth annota-
tions are available), for the purpose of being used in a
fully- or semi-unsupervised predictive mode to annotate
new data (for which ground truth annotations are not
available). In other words, a machine first “learns” how
to do a new task and is then used to do that task at some
performance level. Unsupervised learning can be used
when ground truth annotations are not available, as in
the problem we address in this paper. In this approach, a
ML algorithm “learns” patterns from unannotated data
to build a useful model of the population of studies from
which the data originated.

Perhaps the best-known unsupervised ML method is
clustering,16 in which each item in a data set is assigned
to one or more automatically identified clusters such that
any two data items within the same cluster are similar in
some useful way, and any two clusters are dissimilar in
some useful way (see Figure 1). Clustering has been used
extensively in information retrieval, for example to group
web search results into meaningful categories
(e.g. Aurora borealis results separated from Aurora the
singer). In some applications, clustering is hierarchical,
which means that some clusters are contained within
other clusters that represent higher-level concepts.

Some clustering algorithms can also characterize each
cluster in a way that is useful with respect to the domain
of interest. For example, clusters can be automatically
named, so that humans can understand how items
within a given cluster are likely to be similar to one
another. In the context of systematic reviewing, an auto-
mated text clustering system “analyses the distribution of
terms (words) in a body of text (e.g., titles and abstracts)
and identifies groups of documents that use similar com-
binations of words; clustering ‘engines’ often then apply
a descriptive term to each cluster to aid human interpre-
tation” (Carpentino et al. 2009, in Stansfield et al.14).

The utility of each cluster label may vary according to
the algorithm's approach: description-centric algorithms
attempt to uncover descriptive, interpretable, and unam-
biguous names for each cluster, and then assigns text to a
cluster.17 Data-centric algorithms are focused more on
grouping text than providing readable cluster labels; k-
means methods are common, which vectorize text in a
bag-of-words model such that the text loses any inherent
meaning. There are also algorithms that fall in between
data-centric and description-centric, such as suffix text
clustering, which produces cluster labels that are more
adequately informative than data-centric algorithms.18

Within systematic reviews, most ML developments
have addressed problems related to study identification,
particularly screening. According to Marshall and
Wallace,19 “machine learning systems for abstract screen-
ing have reached maturity” (p. 5). Some researchers have
gone so far as to recommend ML-based screening as best
practice.20 Automatic data extraction and analysis repre-
sent subsequent areas of development.19,21 Weißer et al.
have recently proposed using clustering to automatically
categorize articles as low versus high interest when
researchers are scoping the literature in order to develop
specific research questions.22

Clustering algorithms could also be used in the analy-
sis phase of reviews. A simple form of analysis is catego-
rizing studies based on content. This is important in
scoping reviews, for example, in which reviewers aim to
map the volume of literature that has been published on
a particular topic, population, or context, and identify
research questions or categories that might be studied in
detail in subsequent systematic reviews. In scoping
reviews, categories are informed by the research ques-
tion, commissioner's needs, data accessibility (i.e., title
and abstract or full-text), and resources. Categories can
be defined a priori but are often adjusted iteratively, par-
ticularly during the pilot or early phase of the process.

Systematic reviewers are unlikely to have existing cat-
egorization schemes that can be used in new reviews, or
annotated sets of primary studies that would facilitate
use of supervised machine learning. Such reviewers mustFIGURE 1 Automatic clustering of text in a single hierarchy
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define a categorization scheme for each new review—
either manually or, as we discuss in this article, by using
ML methods such as clustering.

We are aware of only one pilot study that has used
automated clustering in the systematic review process.
Stansfield et al.14 retrospectively applied a description-
centric clustering algorithm to two large scoping reviews
and assessed the face validity of the algorithm's clusters,
and the performance of the algorithm's clusters compared
to researchers' manually created categories. They found
that automated clusters addressed eight of nine pre-
determined research questions. The clustering procedure
was estimated to have high precision (i.e., most of the
studies assigned to a given cluster were correctly assigned
to that cluster). However, relatively few studies that were
actually relevant to a given cluster were assigned to
it. Moreover, performance varied greatly according to the
cluster. In one review, clusters adequately captured broad
topics of the included studies as well as the most com-
mon interventions, but not smaller interventions. The
algorithm also struggled to describe qualitative studies.
Stansfield et al. examined the performance of each cluster
separately but did not report summary statistics of clus-
tering at the level of an entire review.

3 | METHODS

This experiment was an early exploration of ML within
the Cluster for Reviews and Health Technology Assess-
ments at the Norwegian Institute of Public Health. ML
activities in the cluster are coordinated by the ML imple-
mentation team, of which all authors are members. A
published report23 and strategy24 provide more informa-
tion on completed, ongoing, and planned activities and
evaluations.

3.1 | Data

This exploratory study is based on a review of the use of
secure institutions for children and youth, commissioned
by the Norwegian Directorate of Children, Youth and
Family.25 The specific product commissioned was a “sys-
tematic literature search with categorization”, a simple
review product that includes only analysis of titles and
abstracts.26 It begins with a systematic literature search
and screening of identified studies for relevance. The
resulting product is an overview of the literature
according to pre-defined topics (operationalized as cate-
gories), often with a focus on knowledge gaps, rather
than an answer to a research question about effect or
experience. It was therefore an ideal opportunity to trial

the automated text clustering function as a potential aid
in sorting, categorizing, or keywording studies.

This product aimed to identify the most recent
research (published 2015–2020) on the effect of secure
institutions for children and youth with behavioral prob-
lems. The intervention or phenomenon of interest
included secure institutions, a specific program or
approach within a secure institution, or children's experi-
ences of the effect of secure institutions. Study designs of
interest were literature reviews, studies with control or
comparison groups, and qualitative studies. A systematic
literature search in six databases and gray literatures
searches in Swedish, Norwegian, and Danish resulted in
more than 13,000 references. The research team screened
all studies at title/abstract level using EPPI Reviewer's
“priority screening” function, a ranking algorithm that
prioritizes likely relevant studies to be screened first and
likely irrelevant studies to be screened last.27 The product
ultimately included six literature reviews, 25 controlled
studies, 95 qualitative studies, and two mixed-methods
studies, for a total of 128 publications. The categorization
system of these 128 publications is described under Par-
ticipants and Procedures.

3.2 | Participants and procedures

The participants comprised two researchers with PhDs
and 3–9 years' experience with systematic reviews (AEM,
HMRA), and one researcher with 1 years’ experience
with systematic reviews (PSJJ).

We compared study categorization as per our usual
practice (two human researchers, and a third to reconcile
conflicts) with two ML-based approaches (Figure 2).

Arm 1 represented usual practice, and provided base-
line values for time use and precision/recall. Three
researchers (AEM, HMRA, and PSJJ) created a coding
system, and each researcher applied the system to a dis-
tinct subset of all included studies; one of the researchers
(AEM) then checked and reconciled all categorizations.
The categorization system used in arm 1 was a two-level
system created by the lead researcher (AEM) and refined
through discussion with the other two researchers
(HMRA and PSJJ). The categories were defined in terms
of study design, context/intervention (a variable that can
be applied to describe both the intervention tested in
experiments or the setting and topic explored in qualita-
tive studies), population, and country. These variables
are typically delivered to this commissioner as an output
of this type of review. Sub-categories were created
through discussion among the three researchers and were
piloted for usefulness and to reduce ambiguity. The final
coding for arm 1 was agreement of two researchers.
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Arm 2 used ML-based approaches. Automated clus-
tering was triggered by one of the researchers (AEM),
which automatically created a coding system and
applied it to categorize all 128 included studies. The cat-
egorization system used in arms 2-1 and 2-2 was defined
by applying EPPI Reviewer's27 built-in text clustering
function, which uses the Lingo3G clustering engine
powered by Carrot Search.28,29 As a description-centric
algorithm, the Lingo3G website consistently highlights
the instantaneous utility and meaningfulness of cluster
labels in its product description: “clearly-labeled” folders
enable “instant analysis” and give the user an “instant
overview” of text, and will help the user focus on “spe-
cific subject(s)”.30 Lingo3G's focus on informative labels
and user understanding differs from more common
data-centric clustering algorithms.

The default clustering settings displayed in EPPI
Reviewer are two hierarchy depths, a minimum cluster
size of 10%, and a maximum cluster size of 35%. We
changed these parameters iteratively to obtain immedi-
ately sensible clusters and proceeded with non-
hierarchical clustering. We retained the minimum cluster
size of 10% and increased the maximum cluster size to
50%. While the automated clustering procedure provides
cluster names, we found it necessary to edit some of the
names suggested by the software to be more easily under-
stood by other researchers. These names were chosen by
reviewer AEM, by studying the titles and abstracts of the
studies assigned to the poorly named clusters. Clusters

that were not judged as useful after exploration were
discarded.

We randomized studies in a 1:1 ratio across arms 2-1
and 2-2 using EPPI Reviewer's random distribution func-
tion, resulting in 64 different studies in each arm.

Arm 2-1 assessed the validity of the automatic clusters
by having a researcher (HMRA) apply the automatically
generated coding system to studies, blinded to how the
algorithm had clustered them. Another researcher
(AEM) then checked and reconciled all categorizations
(as per usual practice).

Arm 2-2 assessed how a researcher who was not
blinded to the clustering algorithm would categorize
studies. A second researcher (PSJJ) simply checked how
the clustering algorithm categorized the included studies,
as she would check another researcher's data extraction.

Note that the ML-based approaches only require two
researchers rather than three, as per usual practice, as
the algorithm itself represented a third researcher. How-
ever, for the purpose of comparing the two approaches, it
was necessary that the human tasks were performed by
different people, that is, researchers HMRA and PSJJ.

Both parts of Arm 2 were completed after Arm 1, and
Arm 1 was the commissioned review itself. By the com-
pletion of the review, all researchers were familiar with
all studies. There was no way to avoid their knowledge,
given that a manual categorization process beginning
with a new categorization system requires in-depth
knowledge of included studies.

FIGURE 2 Assignment of the

128 studies in human-only and

algorithm-assisted arms [Colour

figure can be viewed at

wileyonlinelibrary.com]
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3.3 | Analysis

To assess usefulness, one researcher (AEM) mapped each
automatically generated cluster to a manually generated
category. This provided a simple visualization of overlap
and gaps between the two approaches. Our main aim
was to objectively assess performance of the automated
clustering method, to determine whether we could
“trust” an algorithm to cluster studies using its own cate-
gorization system, as much as we trust researchers to
code to a researcher-created categorization system. We
therefore computed precision and recall (see Appendix 1)
with respect to the final coding,31 treating both the algo-
rithm and human researchers as coders/researchers.
Finally, we recorded and compared the time spent coding
using automated- versus human-generated categories.
Each researcher recorded her time manually in an Excel
file, for each step and task, and we calculated the total
time used for each arm.

4 | RESULTS

Figure 3 shows the 16 clusters identified by EPPI
Reviewer's document clustering function on the left side.
The right side displays the conceptual re-organization of
12 of these clusters into a two-level hierarchy (chosen for
ease of comparison to the manually created categories).
Of the original 16 clusters, four clusters (young people,
sample, suggest, and conclusion) were judged to be irrele-
vant upon examination and were discarded. One cluster
(no relevant categories/no abstract) corresponded to the

eight studies that either did not have an abstract or were
not assigned to any of the other 15 clusters. This cluster
contained nine studies; seven of which were identified
through gray literature searches, lacked abstracts, and
were published in Norwegian or Swedish. These lan-
guages are among the 19 languages that Lingo3G can
automatically detect and process, and therefore could
have been included in the other clusters had they con-
tained abstracts.

4.1 | Usefulness of automated clustering

Figure 4 displays the content of the automated clusters
and manually created categories, with overlapping cate-
gories highlighted in yellow. Both approaches contained
categories that described contexts/interventions and
populations. Within the contexts/interventions category,
both approaches identified when a study focused on a
program or approach within a secure institution
(e.g., anger management, animal therapy) rather than on
the secure institution itself.

The figure shows there were no automatically gener-
ated clusters that correspond to two of the manually cre-
ated top-level categories, namely country and study
design, which were of interest to the commissioners.
Table 1 below shows the amount of studies confirmed to
be in each automated cluster or human-created category,
after human coding and agreement. The lack of auto-
mated country codes might be explained by the fact that
only 73 (57%) of the 128 studies specified country in the
abstract and could be manually categorized. In addition,

FIGURE 3 Making sense of

categories created through automated

clustering [Colour figure can be viewed

at wileyonlinelibrary.com]
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nine of 11 countries were reported by less than 10% of
studies; our 10% minimum cluster size cut-off would
therefore have prevented studies being clustered around
these rarer words.

One reason for a lack of automated clusters relating
to study design is that it may be challenging for this
unsupervised ML method to infer important differ-
ences in study design. However, the clustering algo-
rithm identified categories related to study topics and
findings (factors related to criminality/desistance; life
experiences, lived experiences; positive changes; and
negative experiences), which were not part of the man-
ual categorization scheme. The topic/finding top-level
category corresponded roughly to study design. Sixty-
one (62%) of the 98 qualitative studies received a
topic-finding category, most often “life experiences,
lived experiences” and “negative experiences”. Only
12 (38%) of the 32 quantitative studies received a topic/
finding category, most often “factors related to crimi-
nality/desistance”.

“Population” was a top-level category in both auto-
mated clusters and manually generated categories. While
researchers did not deem it useful in their manually cre-
ated categories to group studies according to semantic
differences such as “juvenile” or “young”, it was straight-
forward to place studies in one of these two categories, as
study authors used either one or the other phrase to
describe their populations.

4.2 | Performance of automated
clustering (using algorithmically-generated
categories)

The leftmost column of Table 2 shows the cumulative
performance of the researchers using manually created
categories (Arm 1). Both precision and recall of the
researchers exceeded 96%, likely due to how these catego-
ries were created through discussion among the three
researchers, were piloted, and were intended to be unam-
biguous and mainly mutually exclusive.

Table 2 also shows estimates of precision and recall
for researchers and automated clustering in which con-
sensus between two researchers was used for final cod-
ing. In Arm 2-1, in which automated clustering
represented one independent researcher's coding, auto-
mated clustering and the actual researcher's precision
rates were similar: 81%–82% of their codes identified rele-
vant studies. In this study, recall for automated clustering
was 10% points greater than for the researcher. The statis-
tical analysis suggests it is plausible that recall may be
either similar across the two approaches or that the auto-
mated approach may be superior.

In Arm 2-2, in which one researcher saw and checked
the clusters rather than coding blind, precision was again
identical for both the algorithm and the researcher, and
higher than in Arm 2-1. The clustering algorithm again
had better recall than the researcher, and in Arm 2-2,

FIGURE 4 Comparison of

automated clusters and manually

created categories [Colour figure

can be viewed at

wileyonlinelibrary.com]
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TABLE 1 Studies assigned to automated clusters and manually created categories, after researcher agreement

Automated clusters N Manually created categories N

Context/intervention Design

Specific programs within closed institutions 42 Review, qualitative 1

Institution name: correctional facility 23 Review, quantitative 5

Institution name: secure care 23 Review, unknown methods 0

Institution name: juvenile detention 22 Primary study, qualitative 97

Institution name: juvenile justice 28 Primary study, (non-)randomized controlled 27

Population Context/intervention

Juvenile offenders 16 Secure institution itself 102

Young offenders 14 Specific programs within secure institutions:
boot camp

2

Specific programs within secure institutions 25

Topic/finding Population

Factors regarding criminality or desistance 26 Severe behavioral problems 10

Life experiences, lived experiences 40 Racial/ethnic minorities 9

Positive changes 13 Disabilities 1

Negative changes 18 Boys, young men 31

Girls, young women 28

LGBTQ+ 2

Adults who were in secure institutions as
children

12

Not reported 27

Country

Canada 1

Denmark 6

Norway 2

Israel 1

Poland 1

Portugal 2

Sweden 9

Netherlands 6

Great Britain 13

USA 33

Not reported 55

TABLE 2 Precision and recall of human-created categories and automated document-clustering categories (with 95% confidence

intervals)

Arm 1: Coding using
human-created categories Arm 2: Coding using algorithm's clusters

Researcher + researcher
(non-blinded)

Arm 2-1: Algorithm + researcher
(blinded)

Arm 2-2: Algorithm + researcher
(non-blinded)

Precision Recall Precision Recall Precision Recall

Clustering
algorithm

– – 0.825 (0.747–0.883) 0.780 (0.699–0.843) 0.884 (0.813–0.931) 0.843 (0.768–0.896)

Researcher 0.989 (0.968–0.998) 0.965 (0.937–0.982) 0.810 (0.723–0.874) 0.669 (0.583–0.745) 0.890 (0.816–0.937) 0.770 (0.689–0.835)
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retrieved 84% of relevant studies, compared to the
researcher's recall of 77%.

Table 3 displays the time spent in each arm. In Arm
1, manually creating codes, piloting them together, apply-
ing codes, and reconciling conflicts required 11.4 h
(approximately 49% longer than the automated
approaches). The majority of this time was spent in
applying and reconciling coding. In Arm 2, the time
needed to run the clustering algorithm, interpret the clus-
ters, apply the clusters independently (Arm 2-2) or check
the algorithm's clusters (Arm 2-1), and reconcile conflicts
was 7.7 h for the 128 studies. Almost half of this time—
3.45 min—was spent in making sense of the clusters,
including re-naming ambiguous clusters and discarding
irrelevant clusters. Coding using the algorithm's clusters
took less than 40% of the time that coding using human-
created categories did (4.2 h compared to 10.9 h).

5 | DISCUSSION

In this exploratory validation study, we tested the useful-
ness of automated clustering in categorizing 128 studies
in a simplified systematic review. We assessed the
performance of both this description-centric algorithm,
Lingo3G, and two researchers—blinded and non-
blinded—against final coding decisions and compared per-
formance and resource use of categorizing with help of
the algorithm against categorizing manually. Clustering
provided useful categories for the review, but these were
not exhaustive; it could not have replaced researcher-
created categories. In terms of performance, the algorithm
had remarkably similar precision to any one experienced
systematic review researcher when assessing both against
final coding, and 7%–11% better recall than any one
researcher. The automated approach also used 33% less
time. We therefore see exciting potential to supplement
researcher categorization with automated clustering, and
our study provides evidence that such methods can be as
accurate as one or two researchers.

There were surprisingly helpful overlaps between the
automated clusters and manual categories, as well as
clear benefits to each of the approaches; see Table 4. The
clustering algorithm was unable to organically cluster

TABLE 3 Time used in each arm (hours)

Steps
Arm 1: Coding using human-
created categories

Arm 2: Coding using algorithm's clusters

Arm 2-1: Algorithm
+ researcher (blinded)

Arm 2-2: Algorithm
+ researcher (non-blinded)

a) Making categories 0.5 0.01

b) Making sense of
automated categories

– 3.45

c) Coding and coming to
agreement

10.9 2.0 2.2

Total time used 11.4 7.66

TABLE 4 Summary of human-created categorization and

automated clustering benefits and limitations

Human-created
categorization

Automated
clustering

Benefits Can create
categorization
systems with
specific and
complicated
structures, such as
different levels of
hierarchies,
requiring mutual
exclusivity, and so
forth

Potentially more
trusted than
automated
clustering by
commissioners

Can identify “empty”
categories, that is,
knowledge gaps or a
lack of studies that
fit into a category of
interest

Negligible time
needed to create the
clusters

Pilot testing is not
necessary

Can be trusted to
perform as well as a
researcher

Highlights breadth/
range of clusters

May capture topics
not identified by
researchers

Range of flexible
settings

Limitations Time-consuming to
create the
categorization
system, pilot test,
categorize, and
check others'
categorizations

Cannot be used
exclusively to
categorize to a pre-
determined
categorization
system

Some time and
interpretation
needed to make
sense of some
clusters
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studies according to a pre-determined categorization sys-
tem. However, it was sensitive to linguistic differences
that sometimes corresponded to pre-determined catego-
ries. In social and welfare evidence synthesis we are often
faced with summarizing effects of interventions and poli-
cies that lack internationally agreed upon names and def-
initions. In this project, when the researchers manually
coded interventions/contexts and populations, they
intentionally disregarded what they assessed to be
country-level variation in terms, in a more semantic style of
categorization due to variation in intervention and policy
naming. For example, a study reporting on youth in “secure
care” in the UK and a study reporting on youth in “juvenile
detention facilities” in the United States were manually
coded to Context/intervention > Secure institution itself.
The exact name was not important in the manually created
categories. However, the clustering algorithm honed in on
these linguistic differences, and these two studies were clus-
tered to Context/intervention > Secure care, and Context/
intervention > Juvenile detention, respectively, which also
corresponded to the manual country codes of the UK and
USA. In a subsequent addition to the project, the commis-
sioner requested studies divided by type of secure institu-
tion. The automated document clustering categories
provide exactly those groups, saving us the time it would
have taken to recode from scratch.

One clear benefit of the algorithm was that it created a
unique cluster—Topics/Findings—that did not have a man-
ually created counterpart, and that proved particularly use-
ful. After the original simplified review was delivered, the
commissioner requested extensive summaries of the six
identified literature reviews, with a focus on their topics
and themes, and particularly whether results indicated posi-
tive or negative effects of secure institutions. Researchers
were able to refer to this cluster's sub-categories as they
summarized these publications.32 The algorithm therefore
proved useful as a supplement, but not a replacement.

Automated clustering required significantly less time,
even accounting for the three and a half hours needed to
make sense of clusters, which included re-labelling some
and discarding others. In fact, making sense of the clusters
was the most time-intensive step. Clusters' names tended to
be the words that characterized the cluster. This was differ-
ent than usual practice of categorizing according to study
content for two reasons: first, researchers often attempt to
create mutually exclusive categories or at least minimally
overlapping categories, while document clustering does not
allow for this. Second, researchers often create categories
within the same conceptual “plane” as one another: mutu-
ally exclusive types of program designs, mutually exclusive
population groups, and mutually exclusive contexts,
rather than a category that describes a particular population
and a particular context and a particular program design.

Automated clustering is just as likely to cluster studies once
into population groups and again into contexts, meaning
there will not only be overlapping categories, with the same
study categorized into a program design-related cluster and
into a population-related cluster, but the categories may
represent different “planes”.

Overall, this suggests that automated clustering has
limited utility, and does not save time, in assigning studies
into pre-determined categories that may be hierarchically
organized or with rules such as mutual exclusivity. Rather,
the unsupervised nature of clustering points to its useful-
ness in highlighting similarities between studies. Stansfield
et al.14 also reported that Lingo3G succeeded in accurately
describing a wider range of content than human categori-
zation but could not cluster according to all pre-defined
categories. A major advantage of description-centric algo-
rithms such as Lingo3G over standard clustering algo-
rithms that use a bag-of-words approach is their
production of reasonable, immediately understandable
cluster labels—nevertheless, we spent more than 3 h mak-
ing sense of them. We therefore assume that this stage
would have required even more time had we used a data-
centric algorithm. Time savings may have been greater
had we used a different algorithm that we were able to
fine-tune more, then apply to new data.

In addition to requiring less time, the clustering algo-
rithm performed as well as any two researchers categoriz-
ing according to the algorithm's system, whether blinded
or non-blinded. While there have been studies exploring
clustering algorithms within evidence synthesis for
comparison, our findings of the algorithm's precision
(83%–88%) were similar to the precision reported by the
algorithm's developers in their initial user study
(80%–95%).28 It is possible that the range of precision and
recall could have been related to differences in the two
arms' studies, although we hope that randomizing studies
protects against systematic differences. We also saw no indi-
cation of confirmation bias in the arm in which a researcher
was not blinded to the algorithm's assignment of studies.
We interpret these results to mean that this particular clus-
tering algorithm's “decisions” regarding how studies relate
to each other can be trusted as much as when researchers
themselves decide how studies relate to each other.

Performance of this clustering algorithm is based first
and foremost on researcher acceptance of automated cat-
egories, and second on recall/precision of the accepted
automated categories, compared to researcher classifica-
tion. The act of accepting (or rejecting, or modifying)
algorithmically generated clusters represents human
input and intervention into ML tools. We suggest this
human engagement be regarded as a necessary step in
implementing ML tools in evidence synthesis, even when
those tools could allow for full automation.
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5.1 | Recommendations for evidence
synthesis

In a systematic scoping review or a systematic literature
search with categorization, automated clustering using
the description-centric algorithm Lingo3G should be used
to create initial categories, before manually creating a
categorization system. All researchers involved in this
process should carefully review clusters for relevance and
clarity. Only the clusters that are useful should be carried
forward; ambiguous clusters or those that are taking time
to understand should be discarded. As automated cluster-
ing may outperform human researchers with respect to
recall (as our study suggests), we can probably depend on
it to identify more studies than a researcher who codes
blind. One researcher may then check the studies coded
to these selected categories for accuracy. Although we see
no evidence in this study that a researcher will be more
precise than document clustering, we hypothesize that
researcher precision will increase if all researchers are
involved in assessing and understanding the automated
clusters. It may be useful for a researcher to check the
precision of document clustering categories. These
hypotheses should be explored in subsequent studies.

After reviewing the automated clusters, researchers
should manually create and code any supplemental cate-
gories as needed. This is similar to a best-fit framework
synthesis33,34 used in qualitative evidence syntheses, in
which authors categorize data into a pre-existing frame-
work. Any data that are left outside of the framework are
then thematically analyzed to create new framework
areas. The framework is then expanded to accommodate
the new areas creating a new framework that includes all
of the relevant data. By using a hybrid human- and
automated-categorization system, future reviews may
benefit from the resources saved by automation as well as
the specificity provided by manual categorization.

The automated clusters were extremely helpful in a
subsequent, smaller commission. We echo Stansfield
et al.'s14 recommendation that automated clustering
could help provide direction and focus in a large review,
when there is a need to create a smaller dataset. Applica-
tions for automated clustering may therefore exist in
larger systematic reviews with specific quantitative or
qualitative research questions, or in preliminary searches
for such reviews.

5.2 | Study strengths and limitations

Our findings are based on a single review, only one clus-
tering algorithm, and three researchers. More compre-
hensive prospective studies and utilizing different

clustering algorithms would be required to provide rigor-
ous comparisons of human and automated approaches.
There are certainly more sophisticated algorithms to
explore. Another more advanced approach could use lan-
guage models that perform on more conceptual than
tokenist levels, such as the Generative Pre-trained Trans-
former 3 model with its 175 billion language parame-
ters.35 At the same time, this particular algorithm was
user-friendly and available in a popular systematic review
software. The most cutting-edge and complex ML sys-
tems are often the least user-friendly and transparent,
and both characteristics undermine uptake of ML in evi-
dence synthesis13 as well as more broadly.36 Systematic
reviewers are more likely to accept a ML tool if it is inter-
pretable, as Lingo3G's clusters were. We expect more
sophisticated algorithms to become more user-friendly
for systematic reviewers in the future.

The research reported in this paper was carried out dur-
ing a commissioned review that had a short time frame, a
large number of search hits, and a large number of relevant
studies. We are unsure of how well automated clustering
would work on a review with a limited number of included
studies. The timesavings in that scenario would be limited
and potentially not worthwhile. Our time estimates are also
likely dependent upon the clustering algorithm we used;
different algorithms may require more or less time to inter-
pret labels and discard irrelevant clusters.

5.3 | Future research agenda

We believe this is the first study in this area and hope our
work is a useful contribution that can be used to help
plan more rigorous randomized studies. Adoption of ML
methods are gaining traction within evidence synthesis—
for example, the well-known PRISMA study flow tem-
plates for systematic reviews now include specification of
manual versus automated study identification,37 and
recent reviews have further tailored PRISMA figures to
include neural network-based knowledge graphs38,39—
but these are still the exceptions, rather than the rule.
Research needs to explore how ML, particularly
unsupervised tools with modifiable parameters, should
be handled in the protocol stage: Is it better to pre-specify
parameters in a study protocol, thereby protecting against
human bias in modifying parameters in a particular
direction, or to plan for changing parameters iteratively
in order to obtain sensible clusters? Do ML methods lead
to conclusions within a systematic review, and ultimately
in a guideline, different from those had ML methods not
been used? Finally, how can we best educate systematic
reviewers and other users about the mechanism behind
ML tools, even when the tool is user-friendly, as well as
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about potential consequences and trade-offs occurring
when automating previously manual tasks?

One way in which the risks and benefits of clustering
and other ML-based tools could be studied is with a pro-
spective case–control study of systematic reviews and
health technology assessments with the same or similar
inclusion criteria. By pairing reviews and health technol-
ogy assessments that did and did not use ML, it should
be possible to analyze outcomes such as time-to-
publication and human agreement in data extraction.
Randomizing a pre-specified amount of commissioned
reviews to use or not use ML tools could also provide
comparative data about conclusions.

6 | CONCLUSION

This study shows that it is feasible and can be useful to
use automated clustering to create, inform, or otherwise
supplement study categorization systems for scoping
reviews or more simplified systematic review products.
We estimated that automated clustering with the
description-centric Lingo3G algorithm is as precise as
human researcher categorization and uses 33% less time.
Coding to human-created categories took far more time
than coding to clusters, but there was a sunk cost of
almost 3.5 h in making sense of the clusters, even using
an algorithm intended on providing descriptive and
meaningful cluster labels. At the same time, the clusters
identified by machine learning did not include essential
categories such as country or study design. In the future,
review teams could begin the categorization process by
applying a clustering algorithm to the included studies.
These clusters should be examined and discussed within
the research team and ambiguous or unnecessary clus-
ters removed. The remaining clusters could then be used
as the foundation for further categorization of the
included studies, and researchers can trust the perfor-
mance of the algorithm as much as one another's. Impor-
tantly, we suggest that this particular clustering
algorithm, available in a popular systematic review soft-
ware, can be used by systematic reviewers who are not
machine learning experts.
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