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Abstract. We describe the idempotent Fourier multipliers that act contrac-

tively on Hp spaces of the d-dimensional torus Td for d ≥ 1 and 1 ≤ p ≤ ∞.
When p is not an even integer, such multipliers are just restrictions of contrac-

tive idempotent multipliers on Lp spaces, which in turn can be described by

suitably combining results of Rudin and Andô. When p = 2(n + 1), with n a
positive integer, contractivity depends in an interesting geometric way on n,

d, and the dimension of the set of frequencies associated with the multiplier.

Our results allow us to construct a linear operator that is densely defined on
Hp(T∞) for every 1 ≤ p ≤ ∞ and that extends to a bounded operator if and

only if p = 2, 4, . . . , 2(n + 1).

1. Introduction

This paper grew out of an attempt to clarify the precise scope and nature of
certain contractive inequalities that have proven useful in the study of the Hardy
spaces Hp(Td) when d ≥ 1 and 1 ≤ p ≤ ∞. The inequalities in question can best
be seen as instances of idempotent Fourier multipliers that act contractively on
Hp(Td), and our main purpose will therefore be to describe such multipliers.

Since any Fourier multiplier on Lp(Td) induces a Fourier multiplier on Hp(Td),
it is natural to begin with the easier problem of describing idempotent Fourier
multipliers acting contractively on Lp(Td). To this end, we represent functions f

in Lp(Td) by their Fourier series f(z) ∼
∑

α∈Zd f̂(α) zα, where

f̂(α) :=

∫
Td

f(z) zα dmd(z)

and md denotes the Haar measure of the d-dimensional torus Td. For Λ a non-
empty subset of Zd, we consider the operator PΛ that is densely defined on Lp(Td)
by the rule

PΛf(z) :=
∑
α∈Λ

f̂(α)zα.

The operator PΛ is an idempotent Fourier multiplier, since it corresponds to point-

wise multiplication of the Fourier coefficients f̂(α) by the characteristic function of
Λ. We will say that Λ is a contractive projection set for Lp(Td) when PΛ extends
to a contraction on Lp(Td). Following Rudin [23], we say that a subset Λ of Zd

is a coset in Zd if Λ is equal to the coset of a subgroup of (Zd,+). The following
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result can be deduced by suitably combining arguments and results due to Rudin
[23] and Andô [1]. Note that the case p = 2 is omitted in the statement, since every
non-empty subset of Zd is trivially a contractive projection set for L2(Td).

Theorem 1.1. Let d be a non-negative integer and fix 1 ≤ p ≤ ∞, p ̸= 2. A subset
Λ of Zd is a contractive projection set for Lp(Td) if and only if Λ is a coset in Zd.

Theorem 1.1 has a striking bearing on the question of when PΛ extends to a
bounded operator on L1(Td). Indeed, results of Helson [16] in dimension 1 and
Rudin [21] in higher dimensions show that PΛ defines a bounded linear operator
on L1(Td) if and only if Λ =

⋃n
k=1 Λk, where Λ1, . . . ,Λn are cosets of Zd. By

a celebrated paper of Cohen [12], this result extends to L1(G) for G a compact
abelian group. It remains however a difficult open problem to describe the sets Λ
that yield bounded operators PΛ on Lp(Td) when p ̸= 1, 2.

We mention two examples of frequently encountered inequalities that are covered
by Theorem 1.1. The first of these is an inequality of F. Wiener that appeared
already in Bohr’s classical work on what later became known as the Bohr radius [8].
In our terminology, this is just the case d = 1 of Theorem 1.1. See [18, Sec. 1.7] for
a recent function theoretic application and [6] for a d-dimensional version of it. The
second example inequality deals with the restriction to the m-homogeneous terms
of a power series in d variables. This is again a special case of Theorem 1.1, with
the dimension of the coset being strictly smaller than the dimension of the ambient
space Zd. We refer to [5], [10] and [13, Sec. 9] for respectively an operator, number,
and function theoretic application of the corresponding contractive inequality.

Our main theorem shows that there are contractive projection sets for Hp(Td)
that are not covered by Theorem 1.1 when p is an even integer ≥ 4. To state this
result, we recall first that Hp(Td) is the subspace of Lp(Td) comprised of functions

f such that f̂(α) = 0 for every α in Zd \Nd
0, where N0 := {0, 1, 2, . . .}. We will say

that a subset Γ of Nd
0 is a contractive projection set for Hp(Td) if PΓ extends to a

contraction on Hp(Td). Since Hp(Td) is a subspace of Lp(Td), we get the following
immediate consequence of Theorem 1.1. If Λ is a coset in Zd, then Λ ∩ Nd

0 is a
contractive projection set for Hp(Td). We are interested in knowing if there are
other contractive projection sets for Hp(Td). It turns out that the dimension of the
affine span of Γ, henceforth called dim(Γ) or the dimension of Γ, plays a nontrivial
role in this problem, and we therefore make the following definition.

Definition. Suppose that 1 ≤ k ≤ d. We say that Hp(Td) enjoys the contractive
restriction property of dimension k if every k-dimensional contractive projection
set for Hp(Td) is of the form Λ ∩ Nd

0 with Λ a coset in Zd.

Now our main result reads as follows.

Theorem 1.2. Suppose that 1 ≤ p ≤ ∞.

(a) If d = 2 or k = 1, then Hp(Td) enjoys the contractive restriction property
of dimension k if and only if p ̸= 2.

(b) If either d = k = 3 or d ≥ 3 and k = 2, then Hp(Td) enjoys the contractive
restriction property of dimension k if and only if p ̸= 2, 4.

(c) If d ≥ 4 and k ≥ 3, then Hp(Td) enjoys the contractive restriction property
of dimension k if and only if p is not an even integer.

One may think suggestively of the case d ≥ 4 and k ≥ 3 as exhibiting higher-
dimensional behavior. We will see that the hardest part of the theorem is item (b)
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which can be thought of as representing the two cases of intermediate dimension,
namely d = k = 3 and d ≥ 3, k = 2.

As regards the variation in p, the simplest part of the proof of Theorem 1.2 is
the case p = ∞, because we can construct explicit examples demonstrating that
any contractive projection set must be the restriction of a coset to Nd

0. This is made
possible by the fact that the norm of H∞(Td) is easy to understand. In the case
1 ≤ p < ∞, we will by contrast reformulate the problem using duality arguments
(see e.g. Shapiro’s monograph [26, Sec. 4.2]). In this approach, it is crucial to
understand the Fourier coefficients of

|f |p−2f

in terms of the Fourier coefficients of f . It is clear that this problem takes on a
completely different character when p is an even integer, in which case we have
an interesting geometric description of the contractive projection sets that depend
crucially on p.

Suppose that Γ is a non-empty subset of Nd
0, and let Λ(Γ) denote the coset in Zd

generated by Γ. We can represent every λ in Λ(Γ) as a finite linear combination

(1.1) λ = γ +
∑
α∈Γ
α ̸=γ

mγ,α(α− γ),

where γ is any element in Γ and mγ,α are integers.

Definition. Let Γ be a non-empty subset of Nd
0 and suppose that λ is in Λ(Γ).

The distance from Γ to λ is

d(Γ, λ) := inf max

 ∑
mγ,α>0

mγ,α,−
∑

mγ,α<0

mγ,α


where the infimum is taken over all possible representations (1.1) of λ. For a non-
negative integer n, the n-extension of Γ is

En(Γ) := {λ ∈ Λ(Γ) ∩ Nd
0 : d(Γ, λ) ≤ n}.

Clearly, Λ(En(Γ)) = Λ(Γ) for every n ≥ 1. Moreover, we find that Γ = Λ ∩ Nd
0

for a coset Λ in Zd if and only if

Γ =

∞⋃
n=1

En(Γ).

See Figure 1.1 for an example illustrating the possibility that E2(Γ) ̸= E1(Γ) = Γ.
The proof of Theorem 1.2 in the case that p is an even integer, which is the most

difficult case, is based on the following result.

Theorem 1.3. Let d be a positive integer and n be a non-negative integer. A set
Γ in Nd

0 is a contractive projection set for H2(n+1)(Td) if and only if En(Γ) = Γ.

Theorem 1.3 gives rise to an effective algorithm for checking whether a finite
subset Γ of Nd

0 is a contractive projection set for H2(n+1)(Td).
The d and k dependence of Theorem 1.2 appears when we operationalize the

condition of Theorem 1.3. Inspired by a suggestive terminology introduced by
Helson [17], we will sometimes refer to Nd

0 as the narrow cone in Zd to visualize
how the geometry changes when d increases: Nd

0 becomes narrower in Zd, and this
permits more sets Γ to enjoy the crucial property that En(Γ) = Γ.
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Figure 1.1. Points λ which satisfy d(Γ, λ) = 1 and d(Γ, λ) = 2
for Γ = {(3, 0, 0), (0, 3, 0), (1, 1, 1)}, represented in the projected
plane defined by z = 3−x− y. The shaded triangle represents the
intersection of this plane and the narrow cone. Note that (0, 0, 3) is
in E2(Γ), so E2(Γ) = Λ(Γ)∩N3

0. However (0, 0, 3) is not in E1(Γ),
so E1(Γ) = Γ.

Two of our examples reflecting the kind of narrowness just alluded to, has an
interesting application in the limiting case d =∞. To state this final result of the
present paper, we first define T∞ as the countably infinite product of the torus T
and equip it with its Haar measure m∞. The dual group of T∞ is

Z(∞) =

∞⋃
d=1

Zd

in view of the natural inclusion Zd ⊆ Zd+1. Fix 1 ≤ p ≤ ∞. Every f in Lp(T∞)

can be represented as a Fourier series f(z) ∼
∑

α∈Z(∞) f̂(α) zα, where

f̂(α) =

∫
T∞

f(z) zα dm∞(z).

The Hardy space Hp(T∞) is the subspace of Lp(T∞) comprised of functions f such

that f̂(α) = 0 for every α in Z(∞) \ N(∞)
0 . It is not hard to see that Theorem 1.1,

Theorem 1.2, and Theorem 1.3 extend to the infinite-dimensional torus.
Bayart and Masty lo [4] have recently demonstrated that there are no variants of

the classical real and complex interpolation theorems for Hp(T∞) in contrast to the
finite dimensional case. The following result strikingly exemplifies the impossibility
of interpolating between Hardy spaces on the infinite-dimensional torus.

Theorem 1.4. Fix an integer n ≥ 1. There is a linear operator Tn which is densely
defined on Hp(T∞) for every 1 ≤ p ≤ ∞, and which does not extend to a bounded
operator on Hp(T∞) unless p = 2, 4, . . . , 2(n + 1).

Our main interest in Theorem 1.4 stems from the Bohr correspondence, which
allows us to translate results from Hardy spaces on the infinite-dimensional torus to
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Hardy spaces of Dirichlet series. Readers familiar with that field of study will im-
mediately notice the partial analogy between Theorem 1.4 and the local embedding
problem (see [24, Sec. 3] or Section 4 below). However, it should be stressed that
the construction of Theorem 1.4 is purely multiplicative, while the local embedding
problem concerns the interplay between the additive and multiplicative structure
of the integers.

We close this introduction by giving a brief overview of the contents of the three
additional sections of this paper. Section 2 contains an exposition of the proof of
Theorem 1.1 and the proof of Theorem 1.2 in the case p =∞. The body of the paper
is Section 3 which deals with contractive projection sets for Hp(Td) and contains
the proof of Theorem 1.3 and Theorem 1.2 for p < ∞. In the final Section 4, we
establish Theorem 1.4 and discuss our results in the context of Hardy spaces of
Dirichlet series.

2. Contractive projection sets for Lp(Td)

2.1. Proof of Theorem 1.1. The purpose of this section is to present a self-
contained proof of Theorem 1.1. As mentioned above, this can be achieved by
combining arguments and results due to Rudin [23] and Andô [1]. For expositional
reasons, we have nevertheless chosen to furnish a complete proof.

Suppose that Λ is a non-empty subset of Zd. We begin by noting that we may
assume without loss of generality that 0 is in Λ. Indeed, suppose that this is not
the case. Fix some λ in Λ and consider the translated set

Λ− λ :=
{
α ∈ Zd : α + λ ∈ Λ

}
which clearly contains 0. Define Mλ on Lp(Td) by Mλf(z) := zλf(z). Evidently,
Mλ is an isometric isomorphism on Lp(Td). Note also that

(2.1) PΛMλ = MλPΛ−λ,

which implies at once that Λ is a contractive projection set for Lp(Td) if and only
if Λ− λ is a contractive projection set for Lp(Td).

The following part of the proof is from Section 3.1.2 and Section 3.2.4 in Rudin’s
monograph [23], where the analogous statement is established for L1(G) with G
a compact abelian group. This part of Rudin’s argument extends to 1 < p ≤ ∞,
p ̸= 2, without modification.

Proof of Theorem 1.1: Sufficiency. As noted above, we may restrict our attention
to the case that Λ is a subgroup of Zd by translating a coset if necessary.

We will require some preliminary results regarding Td and Zd. Recall that Td is
a compact abelian group whose dual group is Zd. Suppose that Λ is a subgroup of
Zd. The annihilator

Λ⊥ :=
{
z ∈ Td : zα = 1 for every α in Λ

}
is the dual group of the coset group Zd/Λ (see e.g. [23, Thm. 2.1.2]). Since Λ⊥ is a
closed subgroup of Td, it is a compact abelian group whose Haar measure we shall
denote by µ. By the duality relations between Zd/Λ and Λ⊥, we may represent the
characteristic function of Λ in Zd as

1Λ(α) =

∫
Λ⊥

ζα dµ(ζ).
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For any f in Lp(Td), set fζ(z) := f(ζ1z1, ζ2z2, . . . , ζdzd). We now find that

(2.2) PΛf(z) =
∑
α∈Λ

f̂(α) zα =
∑
α∈Zd

1Λ(α)f̂(α) zα =

∫
Λ⊥

fζ(z) dµ(ζ).

Taking the Lp(Td) norm on both sides and combining Minkowski’s inequality and
the fact that ∥fζ∥p = ∥f∥p for every ζ in Td, we see that

∥PΛf∥p ≤ ∥f∥p
(
µ(Λ⊥)

) 1
p = ∥f∥p,

since µ is the Haar measure of Λ⊥. □

Observe that (2.2) says that any projection with respect to a subgroup Λ is in
fact an averaging operator in L1(Td). Douglas [14] proved that any projection in
L1 that fixes the constants, is in fact a conditional expectation with respect to a
sigma-algebra.

Before we proceed with the proof that every contractive projection set in Lp(Td)
for 1 ≤ p ≤ ∞, p ̸= 2, is necessarily a coset in Zd, let us explain how F. Wiener’s
projection and the m-homogeneous projection mentioned in the introduction fit
into the framework of the proof presented above. Note that by Theorem 1.1, we see
that Example 2.1 and Example 2.2 contain all the contractive projection sets for
Lp(T), since the only cosets in Z are the arithmetic progressions and the singletons.

Example 2.1. The contractive projection sets that correspond to F. Wiener’s
projection, are the arithmetic progressions Λ := r + kZ for integers k > 1 and
0 ≤ r < k. The associated subgroup of Z is kZ and clearly

(kZ)⊥ =
{
ωj
k : j = 0, 1, . . . , k − 1

}
,

where ωk = exp(2πi/k). The Haar measure of (kZ)⊥ is the normalized counting
measure. Combining (2.1) and (2.2), we get the well-known formula

PΛf(z) =
1

k

k−1∑
j=0

f(ωj
kz)ω−jr

k

for f in Lp(T).

Example 2.2. Fix d ≥ 1. For an integer m, the m-homogeneous projection on
Lp(Td) corresponds to the contractive projection set

Λm :=
{
α ∈ Zd : α1 + α2 + · · ·+ αd = m

}
.

The associated subgroup of Zd is Λ0, so Λ⊥
0 =

{
z = (w, . . . , w) : w ∈ T

}
, and the

Haar measure is m1 on T. Combining (2.1) and (2.2), we get

PΛmf(z) =

∫
T
f(z1w, z2w, . . . , zdw)w−m dm1(w)

for f in Lp(Td).

By results in Section 1.4.1 and Section 3.2.3 in Rudin’s monograph [23], it follows
that if Γ is a contractive projection set for L1(Td), then Γ is necessarily a coset
in Zd. This part of Rudin’s argument does not work for p > 1. However, we can
appeal to a general result of Andô [1, Thm. 1] which states that any contractive
projection on Lp for 1 < p < ∞, p ̸= 2, which fixes the constants, extends to
a contractive projection on L1. Hence any contractive projection set for Lp(Td),



IDEMPOTENT FOURIER MULTIPLIERS ACTING CONTRACTIVELY ON Hp SPACES 7

for 1 < p < ∞, p ̸= 2, must be a coset in Zd. The case p = ∞ is handled by
Riesz–Thorin interpolation, since the linear operator PΛ is contractive on Lp for
2 < p < ∞ when it is contractive on L2 and L∞. These considerations also apply
if Td is replaced by a compact abelian group G.

To highlight the new difficulties that arise when we later treat the corresponding
problem for Hp(Td), we will present a direct proof of the necessity part of The-
orem 1.1 below. We shall require two preliminary estimates. We note in passing
that it is possible to obtain similar estimates if Td is replaced by a compact abelian
group G, thereby sidestepping the need for Andô’s theorem and Riesz–Thorin in-
terpolation.

Lemma 2.3. Fix 1 ≤ p ≤ ∞, p ̸= 2, and set cp := 2/p− 1. Then

(2.3) ∥cpεz + 1 + εz∥p < ∥1 + εz∥p

for every sufficiently small ε > 0.

Proof. Let c be a real number and compute

(2.4) |cεz + 1 + εz|2 = 1 + ε(1 + c)(z + z) + ε2
(
(1 + c2) + c(z2 + z2)

)
.

Using the binomial expansion, we find that

|cεz + 1 + εz|p = 1 + ε
p

2
(1 + c)(z + z)

+ ε2
(
p

2

(
(1 + c2) + c(z2 + z2)

)
+

(
p/2

2

)
(1 + c)2(z + z)2

)
+ O(ε3)

for every sufficiently small ε > 0. Integrating over T and simplifying, we get

∥cεz + 1 + εz∥pp = 1 +

(
p2

4
(c + 1− 2/p)2 + p− 1

)
ε2 + O(ε3).

If 1 ≤ p < ∞ and ε > 0 is sufficiently small, then the minimum is attained at
c = 2/p− 1, which yields (2.3). It remains to deal with the case p =∞. Inspecting
(2.4) with c = c∞ = −1, we find that the supremum is attained at z = ±i.
Consequently, (2.3) reduces in this case to√

1 + 4ε2 < 1 + ε,

which holds for all sufficiently small ε > 0. □

Lemma 2.4. Fix 1 ≤ p <∞, p ̸= 2, and set cp := 1− p/2. Then

∥1 + ε(z1 + z2) + cp ε
2z1z2∥p < ∥1 + ε(z1 + z2)∥p(2.5)

for every sufficiently small ε > 0. Moreover,

∥1 + z1 + z2 − z1z2∥∞ < ∥1 + z1 + z2∥∞.(2.6)

Proof. Let c be a fixed real number. For sufficiently small ε > 0, expand

(2.7)
(
1 + ε(z1 + z2) + c ε2z1z2

)p/2
=

∞∑
j=0

(
p/2

j

)(
ε(z1 + z2) + c ε2z1z2

)j
.
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In this expansion, any monomial of degree m will have εm in front of it. Hence we
can rearrange in terms of m-homogeneous polynomials to obtain

(2.8)
(
1 + ε(z1 + z2) + cε2z1z2

)p/2
=

∞∑
m=0

εmPm(z).

Here Pm is an m-homogeneous polynomial whose coefficients do not depend on ε.
Since Pm ⊥ Pn in L2(T2) for m ̸= n, we get from (2.8) that

(2.9) ∥1 + ε(z1 + z2) + cε2z1z2∥pp =

∞∑
m=0

ε2m∥Pm∥22.

We need the first three terms, which we can read off from (2.7). They are

P0(z) = 1,

P1(z) =
p

2
(z1 + z2),

P2(z) =
p

2
(c + p/2− 1)z1z2 +

(
p/2

2

)
(z21 + z22).

Inserting this into (2.9) we find that

∥1 + ε(z1 + z2) + cε2z1z2∥pp = 1 +
p2

2
ε2

+
p2

4

(
(c + p/2− 1)2 +

(p− 2)2

8

)
ε4 + O(ε6).

Hence if 1 ≤ p < ∞, p ̸= 2, and ε > 0 is sufficiently small, then the minimum is
attained at c = 1− p/2, and (2.5) follows.

It remains to establish (2.6). The right-hand side is clearly equal to 3. For the
left-hand side, we rewrite 1 + z1 + z2− z1z2 = 1 + z2 + z1(1− z2) which implies that

∥1 + z1 + z2 − z1z2∥∞ = sup
z2∈T

(|1 + z2|+ |1− z2|) = 2
√

2.

Hence (2.6) holds since the right-hand side equals 3. □

Proof Theorem 1.1: Necessity. Fix 1 ≤ p < ∞, p ̸= 2, and suppose that Λ is a
contractive projection set for Lp(Td). As above, we may assume without loss of
generality that 0 is in Λ, and we are therefore required to prove that Λ is a subgroup
of Zd. If Λ = {0}, there is nothing to prove, so we shall assume that there is at
least one element ̸= 0 in Λ and use this to establish that Λ must be closed under
the group operations.

Suppose that α is in Λ \ {0}. By substituting z = zα in Lemma 2.3 and using
that PΛ is a contraction on Lp(Td), we conclude at once that −α must be in Λ.
Suppose next that α and β are two (not necessarily distinct) elements in Λ \ {0}.
We need to show that α + β is in Λ. There are two cases.

If jα ̸= kβ for every pair of integers j, k ̸= 0, then we may substitute z1 = zα

and z2 = zβ in Lemma 2.4. The fact that PΛ is a contraction on Lp(Td) implies at
once that α + β is in Λ, since z1z2 = zα+β .

If jα = kβ for integers j, k ̸= 0, then we may write α = aγ and β = bγ, where a, b
are integers and γ in Zd satisfies gcd(γ1, γ2, . . . , γd) = 1. We will prove that if PΛ

is a contraction on Lp(Td), then Λ must contain all integer multiples of gcd(a, b)γ.
In particular, α + β = (a + b)γ will be in Λ.
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If n gcd(a, b)γ and (n+ 1) gcd(a, b)γ are in Λ, then we may appeal to Lemma 2.3
to see that (n + 2) gcd(a, b)γ and (n − 1) gcd(a, b)γ must be in Λ. Hence it is
sufficient to establish that gcd(a, b)γ is in Λ.

To prove this, we use a modified Euclidean algorithm. We identify the integer
n with the point n gcd(a, b)γ and start with the integers a1 = a/ gcd(a, b) and
b1 = b/ gcd(a, b). We may assume without loss of generality that 0 < a1 < b1, since
if a1 = b1, there is nothing to do. By Lemma 2.3, we know that c1 = 2a1 − b1 is
in Λ. We also see that gcd(a1, b1) = gcd(a1, c1) and 0 ≤ |c1| < b1. If c1 = 0, then
a1|b1 and gcd(a, b) = a. If |c1| > 0, then max(a1, b1) > max(a1, |c1|) and we repeat
the procedure starting with a1 and |c1|. □

2.2. Proof of Theorem 1.2 for p = ∞. Since Hp(Td) is a subspace of Lp(Td),
we know from Theorem 1.1 that if Γ is the restriction of a coset in Zd to Nd

0, then
Γ is a contractive projection set for Hp(Td). In this case, Γ = Λ(Γ)∩Nd

0, where we
recall that Λ(Γ) denotes the coset generated by Γ.

Let us take a look at how Lemma 2.3 and Lemma 2.4 can be applied in the
context of Hp(Td). Pick three affinely independent points α, β, γ from Γ. Consider
the function f(z) = cεz + 1 + εz from Lemma 2.3. By replacing f by

g(z) := zβf
(
zα−β

)
= cεz2β−α + zβ + εzα,

we see that Lemma 2.3 implies that if Γ is a contractive projection set for Hp(Td)
and the point 2β−α is in Nd

0, then it must be included in Γ. Geometrically, 2β−α
is the point obtained by linear reflection of α through β. By similar considerations
starting from Lemma 2.4, we also find that if the point α + (β − α) + (γ − α) is
in N3

0, then it must be included in Γ whenever Γ is a contractive projection set.
Geometrically, this new point is obtained by triangular reflection of α through β
and γ.

Figure 2.1 contains all the points obtained by linear and triangular reflections
starting from the set Γ = {(3, 0, 0), (0, 3, 0), (1, 1, 1)}. From the figure, we see that
the necessary conditions derived from Lemma 2.3 and Lemma 2.4 provide no insight
into whether this Γ is a contractive projection set for Hp(T3).

Moreover, when comparing Figure 2.1 and Figure 1.1 (which are based on the
same initial set Γ), we see that the linear and triangular reflections in Figure 2.1
correspond precisely to the points in E1(Γ). This is not a coincidence. It is easy
to verify that every 1-extension is the same as a linear reflection or a triangular
reflection. In the latter case, we can see this by rewriting

α + (β − α) + (γ − α) = β + (β − α)− (β − γ).

Is it therefore possible to prove Theorem 1.2 (a) using Lemma 2.3 and Lemma 2.4.
To see what additional estimates are required to handle case (b) and (c) of

Theorem 1.2, recall that every λ in Λ(Γ) can be represented as

(2.10) λ = γ0 +

n∑
j=1

mj(γj − γ0),

where mj are integers and {γ0, γ1, . . . , γn} is an affinely independent subset in Γ
for n = dim(Λ(Γ)). If we hope to prove Theorem 1.2 by the same approach as
Theorem 1.1, we would require estimates for every representation (2.10).
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x

y

Figure 2.1. The points λ obtained by linear and triangular re-
flection starting from the set Γ = {(3, 0, 0), (0, 3, 0), (1, 1, 1)}, rep-
resented in the projected plane defined by z = 3 − x − y. The
shaded triangle represents the intersection of this plane and the
narrow cone. Note that none of the points obtained are in N3

0 and
that the point (0, 0, 3) is not obtained.

In the case p =∞, we may actually establish the additional estimates in one fell
swoop. This is especially fortunate since the duality techniques that we will employ
in the next section to study the case 1 ≤ p <∞, p ̸= 2, do not apply when p =∞.

Lemma 2.5. Fix any α in Zd. Then

(2.11)

∥∥∥∥∥d +

d∑
j=1

zj − εzα

∥∥∥∥∥
∞

<

∥∥∥∥∥d +

d∑
j=1

zj

∥∥∥∥∥
∞

for every sufficiently small ε > 0.

Proof. The right-hand side of (2.11) is plainly equal to 2d, so it suffices to show
that the left-hand side is strictly less than 2d for some sufficiently small ε > 0. By
the triangle inequality, we find that∣∣∣∣∣d +

d∑
j=1

zj − εzα

∣∣∣∣∣ ≤ 2(d− 1) + |1 + zj |+ ε

for any j = 1, 2, . . . , d. Suppose that the supremum on the left-hand side of (2.11)
may be attained for |1 + zj | ≤ 2(1− ε) for some j. Then, clearly, the left-hand side
is equal to 2d− ε, and we are done. Suppose therefore that∥∥∥∥∥d +

d∑
j=1

zj − εzα

∥∥∥∥∥
∞

= sup
z∈Td

|1+zj |≥2(1−ε)

∣∣∣∣∣d +

d∑
j=1

zj − εzα

∣∣∣∣∣.
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To handle this case, we first estimate

sup
z∈Td

|1+zj |≥2(1−ε)

∣∣∣∣∣d +

d∑
j=1

zj − εzα

∣∣∣∣∣ ≤ 2(d− 1) + sup
z∈Td

|1+zj |≥2(1−ε)

|1 + z1 − εzα| .

Hence we are done if we can prove that

(2.12) sup
z∈Td

|1+zj |≥2(1−ε)

|1 + z1 − εzα| < 2

for some sufficiently small ε > 0. To this end, we see that when 0 < ε < 1, we have

|1 + zj | ≥ 2(1− ε) ⇐⇒ |θj | ≤ 2 arccos(1− ε).

Hence, if |1 + zj | ≥ (2 − ε), then certainly |θj | ≤ 4
√
ε. If this estimate holds for

every j = 1, 2, . . . , d and zα = eiϑ, then |ϑ| ≤ 4|α|
√
ε. By expanding and using

Taylor’s theorem, we find that

|1 + zj − εzα|2 = (1 + cos θj − ε cosϑ)2 + (sinϑj − ε sinϑ)2

= 2 + 2 cos(θj) + ε2 − 2ε
(
(1 + cos θj) cosϑ− ε sin θj sinϑ

)
= 4− 4ε− θ2j + O(ε2),

which establishes (2.12) for every sufficiently small ε > 0. □

Proof of Theorem 1.2 for p =∞. Suppose that Γ is not the restriction of a coset
in Zd to Nd

0. Hence we can find λ in
(
Λ(Γ) ∩ Nd

0

)
\ Γ. By (2.10) we write

λ = γ0 +

n∑
j=1

mj(γj − γ0),

where mj are integers and {γ0, γ1, . . . , γn} is an affinely independent set in Γ. Let

f1(z) = n +

n∑
j=1

zj − εzα, f2(z) = n +

n∑
j=1

zj

be the functions from Lemma 2.5 with α = (m1,m2, . . . ,mn) and define

gi(z) = zγ0fi
(
zγ1−γ0 , zγ2−γ0 , . . . , zγn−γ0

)
, i = 1, 2.

Since {γ0, γ1, . . . , γn} is an affinely independent set, the estimates of Lemma 2.5
imply that ∥g1∥∞ < ∥g2∥∞. Hence Γ is not a contractive projection set for H∞(Td).

□

3. Contractive projection sets for Hp(Td) with 1 ≤ p <∞

3.1. Overview. This section is devoted to the proof of Theorem 1.2 for p <∞. We
begin in the next subsection by reformulating the problem in terms of duality. We
then record some immediate consequences, which include the proof of Theorem 1.3
and the verification of Theorem 1.2 when k = 1 and when p not even integer.

Section 3.2 sets the stage for the most substantial part of the proof of Theorem 1.2
which splits naturally into three parts:

• Section 3.3: The necessity of the conditions in part (b) and (c);
• Section 3.4: The sufficiency of the case d ≥ 3 and k = 2;
• Section 3.5: The sufficiency of the cases d = k = 2 and d = k = 3.
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The necessity part requires four examples, while the two sufficiency parts rely on
making appropriate extensions of a given subset of Nd

0 in terms of a sequence of 1-
or 2-extensions. Both constructions are quite intricate in the case of 2-extensions,
and they also differ substantially. The arguments used in the case d ≥ 3 and
k = 2 combine geometric and arithmetic considerations, while those used in the
case d = k = 3, relying on linear algebra, are more of a combinatorial nature.
Another notable distinction between the two cases is that the first deals primarily
with finite sets, while the second is concerned with extensions of finite sets to infinite
sets.

3.2. Duality reformulation with some immediate consequences. The main
tool for the case p <∞ of Theorem 1.2 is the following result.

Lemma 3.1. Fix 1 ≤ p < ∞ and d ≥ 1. A set of frequencies Γ in Nd
0 is a

contractive projection set for Hp(Td) if and only if

(3.1)

∫
Td

|f(z)|p−2f(z) zλ dmd(z) = 0

for every f(z) =
∑

γ∈Γ aγz
γ in Hp(Td) and every λ in

(
Λ(Γ) ∩ Nd

0

)
\ Γ.

Proof. A function f in Lp(Td) is said to be orthogonal to a closed subspace Y of
Lp(Td) if

∥f∥p ≤ ∥f + h∥p
for every h in Y . We will use the following characterization of orthogonality due
to Shapiro (see [26, Thm. 4.2.1 and Thm. 4.2.2]): a function f is orthogonal to Y
if and only if ∫

Td

|f(z)|p−2f(z)h(z) dmd(z) = 0,

for every h in Y . When p = 1, this holds if in addition the zero set {f = 0} has
measure 0, which will be the case because the functions f that we consider are in
H1(Td), and thus log |f | will be in L1(Td) (see [22, Thm. 3.3.5]). We begin by
proving the necessity of (3.1). Consider f(z) =

∑
γ∈Γ aγz

γ in Hp(Td) and for any

λ in
(
Λ(Γ) ∩ Nd

0

)
\ Γ take Y to be the one-dimensional space spanned by zλ. Since

Γ is a contractive projection set, ∥f∥p ≤ ∥f + czλ∥p for any complex number c,
thus f is orthogonal to Y , and (3.1) holds.

To prove the reverse implication, we start by noting that since Λ(Γ) is a coset,
PΛ(Γ) is a contraction on Lp(Td) by Theorem 1.1. Thus writing PΓ = PΓPΛ(Γ),

we see that to prove that PΓ is a contraction on Hp(Td), we just need to show
that for any h in Hp(Td) with Fourier coefficients supported on Λ(Γ)∩Nd

0, we have
∥PΓh∥p ≤ ∥h∥p. In fact, since the polynomials form a dense subset of Hp(Td)
and PΛ(Γ)g is a polynomial whenever g is a polynomial, it suffices to prove this
for an arbitrary polynomial h. If we define Y as the finite-dimensional subspace of
Hp(Td) spanned by {zλ} for λ in the spectrum of h minus Γ, we may decompose
h as h = PΓh + r, where r belongs to Y . By (3.1), PΓh is orthogonal to Y , thus
∥PΓh∥p ≤ ∥PΓh + r∥p. □

Proof of Theorem 1.2 for p <∞ not an even integer. If Γ is not the restriction of
a coset in Zd to Nd

0, there is some λ in
(
Λ(Γ) ∩ Nd

0

)
\ Γ. Set n = dim(Λ(Γ)) ≥ 1.
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There is an affinely independent subset {γ0, γ1, . . . , γn} of Γ which generates Λ(Γ).
In particular, we may write

λ = γ0 +

n∑
j=1

mj(γj − γ0),

where mj are integers. Since λ is not in Γ, we may assume without loss of generality
that m1 > 0 by reordering {γ0, γ1, . . . , γn} if necessary. Similarly, we may assume
that there is some 1 ≤ k0 ≤ n such that m1, . . . ,mk0

≥ 0 and mk0+1, . . . ,mn < 0.
We set

m+ :=

n∑
j=1

max(mj , 0), m− := −
n∑

j=1

min(mj , 0) and M := m+ + m−.

Our assumptions imply that m+ ≥ 1. Set

f(z) := zγ0 + ε

n∑
j=1

zγj

for 0 < ε < 1/n and define g(z) =
∑n

j=1 z
γj−γ0 . By the binomial series, we obtain

|f(z)|p−2 =

∞∑
k1,k2=0

(
p/2− 1

k1

)(
p/2− 1

k2

)
εk1+k2g(z)k1g(z)k2 .

Since p is not an even integer, none of the binomial coefficients vanish. Writing

f(z) = (1 + εg(z))zγ0 ,

we see that

F (ε) :=

∫
Td

|f(z)|p−2f(z) zλ dmd(z),

is a non-trivial power series in ε. Indeed, we observe that

F (ε) =

∞∑
k=M

ckε
k,

where

cM =

(
p/2− 1

m−

)(
m+

m1, . . . ,mk0

)(
m−

|mk0+1|, . . . , |mn|

)((
p/2− 1

m+

)
+

(
p/2− 1

m+ − 1

))
which evidently is nonzero. Consequently, there is some 0 < ε < 1/n, such that
F (ε) ̸= 0. We invoke Lemma 3.1 to conclude that Γ is not a contractive projection
set. □

It remains to deal with the most difficult case, which is when p = 2(n + 1) for
some non-negative integer n. We begin by establishing Theorem 1.3, which is a
geometric reformulation of Lemma 3.1.

Proof of Theorem 1.3. We will use Lemma 3.1. Let Γ0 be any finite subset of Γ
and consider the polynomial

f(z) =
∑
α∈Γ0

zα.
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We fix some γ in Γ0 and study the Fourier coefficients of zγ |f(z)|2n. By the binomial
theorem

|f(z)|2n =

n∑
j,k=0

(
n

j

)(
n

k

)( ∑
α∈Γ0\{γ}

zα−γ

)j( ∑
β∈Γ0\{γ}

z−(β−γ)

)k

.

The binomial coefficients are strictly positive, so by expanding further we see that
|f |2n has strictly positive Fourier coefficients for the frequencies which may be
represented by ∑

α∈Γ0\{γ}

jα(α− γ)−
∑

β∈Γ0\{γ}

kβ(β − γ)

where the coefficients jα and kβ are non-negative integers whose individual sums
do not exceed n. Equivalently, we obtain the exponents∑

α∈Γ0\{γ}

mα(α− γ) for max

( ∑
mα>0

mα,−
∑

mα<0

mα

)
≤ n.

It is evident that no other choice of f supported on Γ0 can give more frequencies.
Returning to (3.1), we see that the only possible λ such that the integral is non-zero
are those in En(Γ). The claim now follows from Lemma 3.1. □

By Theorem 1.3, our task is now to clarify under which conditions on a subset
Γ of Nd

0 we will have En(Γ) = Γ. To this end, the following terminology will be
useful.

Definition. Let T be a subset of Nd
0. Define inductively Ek+1

n (T ) := En(Ek
n(T ))

for all positive integers k and set

E∞
n (T ) :=

∞⋃
k=1

Ek
n(T ).

We will refer to the set E∞
n (T ) as the n-completion of T .

Clearly, E∞
n (T ) is the smallest set Γ satisfying T ⊆ Γ and En(Γ) = Γ. We close

this subsection by recording two immediate consequences, both pertaining to the
simplest case of 1-completions. The first of these settles the essentially trivial case
k = 1 in part (a) of Theorem 1.2.

Lemma 3.2. Let T be a subset of Nd
0 with dim(T ) = 1. Then the 1-completion of

T is Λ(T ) ∩ Nd
0.

Proof. The assertion is trivial if T consists of only two points, so suppose that there
are at least three points in T . Choose two distinct points α and β in E∞

1 (T ) subject
to condition that the vector α−β have minimal length. By assumption, there is at
least one more point η in E∞

1 (T ). Now it is clear that η = α + k(β − α) for some
integer k since otherwise we could find a point τ in E∞

1 ({α, β}) so that the length
of η − τ is positive and strictly smaller than that of α− β. □

The next lemma will be useful for the analysis of our examples in Section 3.3. It
will also be instrumental in Section 3.5, for the computation of E∞

1 (T ) and E∞
2 (T )

for subsets T of codimension 0 in respectively N2
0 and N3

0.

Lemma 3.3. Let T be a subset of Nd
0. If there are points α and β in E∞

n (T ) such
that β − α is in Nd, then E∞

n (T ) = E∞
1 (T ∪ {α, β}) = Λ(T ) ∩ Nd

0.
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Proof. Let τ be any point in Λ(T ) ∩ Nd
0. Then there exist a positive integer k and

(not necessarily distinct) points γ1, . . . , γk in T , with a choice of signs εj such that

τ = α +

k∑
j=1

εj(γj − α).

Now let r be a positive integer which is so large that for η := α+ r(β−α), we have

that η +
∑l

j=1 εj(γj − α) lie in Nd
0 for l = 1, . . . , k. This implies that τ + r(β − α)

is in E∞
1 (T ∪ {α, β}), which in turn means that also τ is in E∞

1 (T ∪ {α, β}). □

3.3. Examples. Our goal is now to compile a collection of examples which, in view
of Theorem 1.3, collectively demonstrate the necessity part of points (b) and (c)
of Theorem 1.2 in the case when p is an even integer. Two of the examples will
also be used in the proof of Theorem 1.4. After each example, we will elucidate
explicitly its usage in the proof of Theorem 1.2.

We will make use of the following equivalent representation of the n-extensions,
which can be deduced from Lemma 3.1 similarly to how we proved Theorem 1.3.
Suppose that Γ = {γ1, γ2, . . . , γk}. A point λ is in En(Γ) if and only if there are
functions τ+ : {1, . . . , n+1} → {γ1, . . . , γk} and τ− : {1, . . . , n} → {γ1, . . . , γk} such
that

(3.2) λ =

n+1∑
m=1

γτ+(m) −
n∑

m=1

γτ−(m).

The formulation (3.2) is particularly useful for checking if a given λ is in En(Γ).
The following example is presented graphically in Figure 1.1.

Example 3.4. Consider Γ := {(3, 0, 0), (0, 3, 0), (1, 1, 1)}. We may represent every
λ in Λ(Γ) as

(3.3) λ = (1, 1, 1) + j(2,−1,−1) + k(−1, 2,−1)

for integers j and k. We are only interested in λ that lie in N3
0. We see that this

can only be achieved if j + k ≤ 1 by inspecting the third coordinate of (3.3) and
j, k ≥ −1 by inspecting the first and second coordinates of (3.3). The only choice
of j and k that provides a new point in N3

0, is j = k = −1 which gives λ = (0, 0, 3).
Hence we conclude that

Λ(Γ) ∩ N3
0 = Γ ∪ {(0, 0, 3)}.

Returning to (3.3) with j = k = −1, we see that (0, 0, 3) is in E2(Γ), which shows
that E2(Γ) = Λ(Γ) ∩ N3

0. It remains to show that E1(Γ) = Γ. In view of the
reformulation (3.2) and the discussion above, this is equivalent to showing that the
equation

(0, 0, 3) = γ1 + γ2 − γ3

does not have a solution for (not necessarily distinct) γ1, γ2, γ3 in Γ. To see this, it
is sufficient to note that the third coordinate of γ1 + γ2 − γ3 is at most 2.

Example 3.4 extends trivially to an example for d ≥ 3 if we retain the first three
entries as above and set the jth entry to 0 for 3 ≤ j ≤ d. This means that this
example yields the necessity of the case k = 2 in part (b) of Theorem 1.2.
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Example 3.5. Consider Γ := {(4, 0, 0), (0, 4, 0), (0, 0, 4), (1, 1, 1)}. It is clear that
the only way to get γ1 + γ2 − γ3 in N3

0 for (not necessarily distinct) γ1, γ2, γ3 in Γ
is to set γ1 = γ3 or γ2 = γ3. Hence E1(Γ) = Γ. However, since

(4, 0, 0) +
(
(0, 4, 0)− (1, 1, 1)

)
+
(
(0, 0, 4)− (1, 1, 1)

)
= (2, 2, 2)

we conclude that (2, 2, 2) is in E2(Γ). Since (2, 2, 2)− (1, 1, 1) is in N3, we get from
Lemma 3.3 that E∞

2 (Γ) = Λ(Γ) ∩ N3
0.

We see that Example 3.5 settles the necessity of the case d = k = 3 in part (b)
of Theorem 1.2.

Example 3.6. Fix an integer n ≥ 2 and consider

Γn := {(n, 1, 0, 1), (n + 1, 0, 1, 0), (0, 0, n + 1, 0), (0, 0, 0, n + 1)} .

The generating vectors for the coset Λ(Γn) with respect to α := (n, 1, 0, 1) are

v1 := (1,−1, 1,−1),

v2 := (−n,−1, n + 1,−1),

v3 := (−n,−1, 0, n).

Hence, every λ in Λ(Γn) may be represented as

(3.4) λ = α + j1v1 + j2v2 + j3v3

for integers j1, j2, j3. We want to check whether there are λ in N4
0 that satisfy the

equation (3.4). This means that we require

n + j1 − nj2 − nj3 ≥ 0,(3.5)

1− j1 − j2 − j3 ≥ 0,(3.6)

j1 + (n + 1)j2 ≥ 0,(3.7)

1− j1 − j2 + nj3 ≥ 0.(3.8)

We divide our analysis into four cases.

Case 1. Suppose that j1 = 1. By (3.7), we get j2 ≥ 0. Rewriting (3.6) as j3 ≤ −j2
and inserting this into (3.8), we find the necessary condition −(n+1)j2 ≥ 0. Hence
j2 ≤ 0 and so j2 = 0. Returning to (3.6) and (3.8) we find that j3 = 0. We get

λ = α + v1 = (n, 1, 0, 1).

Case 2. Suppose that j1 = 0. By (3.7), we get j2 ≥ 0. Rewriting (3.6) as j3 ≤ 1−j2
and inserting this into (3.8), we find the necessary condition (1 − j2)(n + 1) ≥ 0.
Hence j2 ≤ 1 and so either j2 = 0 or j2 = 1. Returning to (3.6) and (3.8), we see
at once that if j2 = 0, then j3 = 0, 1 and if j2 = 1, then j3 = 0. The three cases
give

λ = α = (n + 1, 0, 1, 0),

λ = α + v2 = (0, 1, n, 0),

λ = α + v3 = (0, 0, 0, n + 1).
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Case 3. Suppose that j1 > 1. Rewriting (3.6) as j3 ≤ 1− j1− j2 and inserting this
into (3.8), we obtain the necessary condition

0 ≤ (1− j1 − j2)(n + 1),

which means that 1 − j2 ≥ j1. Since j1 > 1 we conclude that j2 < 0. From (3.7)
we see that j1 ≥ −(n + 1)j2. Hence we need j2 < 0 to satisfy

1− j2 ≥ −(n + 1)j2,

which is impossible since n ≥ 2.

Case 4. Suppose that j1 < 0. By (3.7), we find that j2 ≥ 1. Inserting this into
(3.5) and (3.8), we find that

0 ≤ j1 − nj3,

0 ≤ nj3 − j1,

whence j1 = nj3. Returning to (3.5), we find that n(1− j2) ≥ 0 which means that
j2 ≤ 1 and hence j2 = 1. Returning to (3.7), we see that j1 + n + 1 ≥ 0 and since
j1 is a strictly negative multiple of n, we must have j1 = −n and hence j3 = −1.
This gives the solution

λ = α− nv1 + v2 − v3 = (0, n + 1, 1, 0).

Note that here we have used an (n+1)-extension, since j1+j2 = n+1 and j3 = −1.

Final part. We have demonstrated that

Λ(Γn) ∩ N3
0 = Γn ∪ {(0, n + 1, 1, 0)} = En+1(Γn).

It remains to establish that En(Γn) = Γn. We want to prove that it is impossible
to write λ = (0, n + 1, 1, 0) in the representation (3.2). We begin by looking at the
more general equation

(0, n+ 1, 1, 0) = k1(n, 1, 0, 1) + k2(n+ 1, 0, 1, 0) + k3(0, 0, n+ 1, 0) + k4(0, 0, 0, n+ 1)

for arbitrary integers k1, k2, k3, k4. The second coordinate shows that k1 = n + 1.
In the first coordinate this gives that k2 = −n. In the third coordinate we find
that k3 = 1 and in the fourth coordinate we find that k4 = −1. Hence the only
solution is k1 = n + 1, k2 = −n, k3 = 1 and k4 = −1. However, this is not of the
representation (3.2) since k1 + k3 = n + 2 > n + 1. Hence (0, n + 1, 1, 0) is not in
En(Γn), which shows that En(Γn) = Γn.

Example 3.6 extends trivially to an example for d ≥ 5 if we keep the four first
entries as above and set the jth entry to 0 for 5 ≤ j ≤ d. Hence this example yields
the necessity of the case k = 3 in part (c) of Theorem 1.2.

Example 3.7. Fix an integer n ≥ 3 and consider

Γn := {(n, 1, 0, 1), (n + 1, 0, 1, 0), (0, 0, n + 1, 0), (0, 0, 0, n + 1), (0, n + 1, 0, 0)} .
The first four points in Γn are the same as in Example 3.6, so we know that
(0, n+ 1, 1, 0) is in En+1(Γn). Using this point and the fifth point in Γn to perform
n + 2 successive 1-extensions we conclude that

(n, 1, 0, 1) + (n + 2)
(
(0, n + 1, 1, 0)− (0, n + 1, 0, 0)

)
= (n, 1, n + 2, 1)

is in E∞
n+1(Γn). Since (n, 1, n + 2, 1) − (0, 0, n + 1, 0) = (n, 1, 1, 1) is in N4 we can

appeal to Lemma 3.3 to conclude that E∞
n+1(Γn) = Λ(Γn) ∩ N4

0.
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To investigate En(Γn) \Γn we look at points in Nd
0 which may be represented as

k1(n, 1, 0, 1)+k2(n+1, 0, 1, 0)+k3(0, 0, n+1, 0)+k4(0, 0, 0, n+1)+k5(0, n+1, 0, 0)

where the integers k1, k2, k3, k4, k5 must be chosen in accordance with (3.2). In
particular, −n ≤ k1, k2, k3, k4, k5 ≤ n + 1 and k1 + k2 + k3 + k4 + k5 = 1. By the
analysis in Example 3.6 we may restrict our attention to the case that k5 ̸= 0.

If k5 ≥ 1, then k1, k2, k3, k4 ≤ n which implies that k3, k4 ≥ 0 and k1 + k2 ≤ 0.
Looking at the first coordinate we get the condition

k1n + k2(n + 1) = (k1 + k2)n + k2 ≥ 0.

By the requirements above, this is only possible if k1 = −k2 and k2 ≥ 0. Since now
k1 + k2 = 0 we get that k3 = k4 = 0. The fourth coordinate is currently equal to
−k1, which means that k1 = 0 and hence k2 = 0. We get (0, n + 1, 0, 0) which is
already in Γn.

If k5 ≤ −1, the second coordinate shows that k5 = −1 and k1 = n + 1. We now
get from (3.2) that k2, k3, k4 ≤ 0 and k2 + k3 + k4 = −(n − 1) < 0. By looking at
the third coordinate, we find that k2 = k3 = 0. Hence k4 = −(n− 1), so the fourth
coordinate is

n + 1− (n− 1)(n + 1) = 2 + n− n2 < 0

since n ≥ 3. Hence En(Γn) = Γn.

When d ≥ 4, Example 3.7 allows us to settle the necessity of the case 4 ≤ k ≤ d
in part (c) of Theorem 1.2. This is immediate if d = 4, and for d ≥ 5 we make the
following trivial extension. We retain the first four entries as above the points and
put the jth entry to 0 for 5 ≤ j ≤ d, and then we extend the set by adding d − k
affinely independent points with only zeros in the first 4 entries.

3.4. Two-dimensional subsets of Nd
0 for d ≥ 3. The purpose of this subsection

is to settle the sufficiency of the case k = 2 in part (b) of Theorem 1.2. In view
of Theorem 1.3, this will be furnished by Lemma 3.9 below. We begin with the
following special case of the required result.

Lemma 3.8. Let T be a set of three affinely independent points in Nd
0 for d ≥ 3.

Then the 2-completion of T is Λ(T ) ∩ Nd
0.

Proof. Let α1, α2, α3 be the points in T , and let β be a point in Λ(T ) ∩ Nd
0. We

denote the plane of which T is a subset by P (T ). We let ℓ(γ, τ) be the line through
the two points γ and τ , and we let ∆(γ, τ, η) be the triangle with corners γ, τ , η.
Let V and W be the two components of P (T ) \ ℓ(α2, β). We may assume that the
remaining two points α1 and α3 lie in either V or W . We may also assume that
α3 is contained in the closed strip lying between ℓ(α2, β) and the line through α1

parallel to ℓ(α2, β), since otherwise it could be moved into this strip by a finite
number of 1-extensions. In fact, we may assume that α3 lies in the interior of this
strip, because the problem has a trivial solution in terms of a finite number of
1-extensions should α3 lie on the boundary of the strip.

Now if α3 lies in the parallelogram with corners α1, α2, β, β + α1 − α2, then it
must lie inside the triangle ∆(β, α1, α2), since otherwise β would not be contained
in Λ(T ). If α3 does not lie in this parallelogram, then we may replace α3 by
α1 + α2 − α3 which then must lie inside ∆(β, α1, α2). We may therefore assume
that α3 lies inside ∆(β, α1, α2).
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α1 α2

α3

β

ξ

η

Figure 3.1. The case m = 5 and n = 2 in the proof of Lemma 3.8.
The shaded area represents a part of the plane P (T ) that must lie
inside the narrow cone Nd

0. We need a 2-extension to reach β which
is accommodated by the move β = ξ − (α2 − ξ)− (α3 − ξ).

Let η be the point at which ℓ(α1, α3) and ℓ(α2, β) intersect. Since β is in Λ(T ),
the distance from α2 to η divides the distance from α2 to β, whence β − α2 =
n(η − α2) for a positive integer n. This means that

(3.9) α3 − α1 = a(α2 − α1) + b(β − α2),

where a and b are two positive rational numbers such that b = 1/m ≤ 1/n and
a = n/m. We see that then

(3.10) β = α2 + m(α3 − α1)− n(α2 − α1).

We may assume that (m,n) = 1 since otherwise we could replace m and n by
respectively m/(m,n) and n/(m,n). Figure 3.1 illustrates the case when m = 5
and n = 2. We need to show that we can get to β starting from T = {α1, α2, α3}
and using 2-extensions. Reformulating (3.10) to

β = α3 + (m− 1)(α3 − α1)− (n− 1)(α2 − α1),

we may exclude from our discussion the case when m,n ≤ 3, since we may evidently
reach β directly from α3 using a single 2-extension.

Our plan is now to make successive extensions so that the point that is added
in each step, lies inside ∆(β, α1, α2). Using (3.9), we see that the condition that a
point of the form

(3.11) ξ = α2 + j(α3 − α1)− k(α2 − α1)

for j, k > 0 to be inside ∆(β, α1, α2) is that j/m ≤ jn/m + 1− k ≤ 1. This means
more specifically that

(3.12) k =

⌈
jn

m

⌉
and

{
jn

m

}
≥ j

m
.

We will begin by identifying what will be the final extension required to reach β.
The basic idea is that it suffices with one final extension once we have reached



20 OLE FREDRIK BREVIG, JOAQUIM ORTEGA-CERDÀ, AND KRISTIAN SEIP

essentially half way from the base of the triangle ∆(α1, α2, β) to the corner at β.
We make this precise by distinguishing between the following three cases:

Case 1. If m is an even number, then it is clear by (3.12) that

ξ = α2 +
m

2
(α3 − α1)− (n + 1)

2
(α2 − α1)

is in ∆(β, α1, α2). Assuming that ξ is in Ek
2 (T ) for some k, we see that β is in

Ek+1
2 (T ) by recalling (3.10) and observing that

β = α2 + 2(ξ − α2)− (α1 − α2).

Case 2. If m and n are both odd numbers, then{
(m + 1)n

2m

}
=

{
1

2
+

n

2m

}
=

(m + n)

2m
≥ (m + 1)

2m
,

whence

ξ = α2 +
(m + 1)

2
(α3 − α1)− (n + 1)

2
(α2 − α1)

is in ∆(β, α1, α2) by (3.12). Assuming again that ξ is in Ek
2 (T ) for some k, we now

find that β is in Ek+1
2 (T ) by recalling (3.10) and observing that

β = α2 + 2(ξ − α2)− (α3 − α2).

Case 3. The case when m is an odd number and n is an even number requires a
slightly more refined analysis. To begin with, we observe that{

(m− 1)n

2m

}
=
{
− n

2m

}
=

(2m− n)

2m
≥ (m− 1)

2m
,

whence

ξ1 := α2 +
(m− 1)

2
(α3 − α1)− n

2
(α2 − α1)

is in ∆(β, α1, α2) by (3.12). We use next that{
(m± 3)n

2m

}
=

{
±3n

2m

}
.

We observe that if m/n > 3/2, then at least one of the two inequalities{
3n

2m

}
≥ m + 3

2m
and

{
−3n

2m

}
≥ m− 3

2m

must hold. On the other hand, if m/n < 3/2, then{
−3n

2m

}
=

4m− 3n

2m
≥ m− 3

2m
.

We conclude that at least one of the three points

ξ2 := α2 +
(m + 1)

2
(α3 − α1)−

(n
2

+ 1
)

(α2 − α1),

ξ3 := α2 +
(m− 3)

2
(α3 − α1)− n

2
(α2 − α1),

ξ4 := α2 +
(m− 3)

2
(α3 − α1)−

(n
2
− 1
)

(α2 − α1),
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is in ∆(β, α1, α2) by (3.12). Assuming first that ξ1 and ξ2 are in Ek
2 (T ) for some

k, we see that β is in Ek+1
2 (T ) because

β = α2 + (ξ1 − α2) + (ξ2 − α2)− (α1 − α2).

Next, if ξ1 and ξ3 are in Ek
2 (T ) for some k, then we find again that β is in Ek+1

2 (T )
because

β = ξ1 − (α2 − ξ1)− (ξ3 − ξ1).

Finally, if ξ1 and ξ4 are in Ek
2 (T ) for some k, then we find as before that β is in

Ek+1
2 (T ), this time because

β = ξ1 − (α1 − ξ1)− (ξ4 − ξ1).

Final part. We are now left with the simpler problem of reaching each of the points
considered above. We claim that any one of them can be reached by starting
from α1 or α3 and making successive additions of multiples of the vectors α3 − α1

and α1 − α2. We will refer to the integers j and k in (3.11) as respectively steps
and levels. Notice that a step j determines a unique point in the strip between
α1 − α2 + ℓ(α2, β) and ℓ(α2, β), while there may in general be several points in
this strip at each level. Note that α3 is always step 1. In Figure 3.1, the point ξ
corresponds for example to step 2 and the point β is at level 2.

A simple geometric consideration suffices to settle the case n < m/2. In-
deed, then for every level k ≤ m/2, there are points of the form (3.11) lying in
∆(β, α1, α2), and it is clear that the points accumulated at the initial level k = 1
can be used to connect those lying at any level k ≤ m/2 with those found at the
next level k + 1.

The case m/2 < n < m requires a more careful analysis. It may be helpful to
bear in mind that the lead role will now be played by the steps j rather than the
levels k. We begin by treating separately a special case. Suppose that m is odd
and n = (m + 1)/2. If j is odd and j < m, then{

jn

m

}
=

1

2
+

j

2m
>

j

m
,

which means that each of the points ξ in (3.11) with j odd and j < m will be in
∆(β, α1, α2). These points are reached in an obvious way, once we have made the
initial extension

ξ := α3 − (α1 − α3)− (α2 − α3).

We now write n = m− r and assume that 1 ≤ r ≤ m/2− 1. The condition that
the point ξ in (3.11) be in ∆(β, α1, α2) is that{

jn

m

}
=

{
−jr
m

}
≥ j

m
.

This means that we must have

(3.13)
(t− 1)m

r
< j ≤ tm

r + 1

for some t such that 1 ≤ t ≤ r/2 + 1, where the latter inequality should hold
because we require that j ≤ m/2 + 1. We now observe that, under this restriction,
the interval defined by (3.13) has length

m

(
t

r + 1
− (t− 1)

r

)
=

m(r + 1− t)

r(r + 1)
≥ m

2(r + 1)
≥ 1,
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α1 α2

α3

τ1

τ

Figure 3.2. The case k = 2 and τ1 = τ + (α1 − α2) + k(α2 − α3)
in the proof of Lemma 3.9. The shaded area represents a part of
the plane P (T ) that must lie inside the narrow cone Nd

0.

whence it contains at least one integer. This yields an algorithm for reaching all
steps j with j ≤ m/2 + 1 such that ξ in (3.11) is in ∆(β, α1, α2). Indeed, initially
we go step-by-step until j = [m/(r + 1)]. (Notice that this suffices when r = 1.)
We then observe, denoting the interval defined by (3.13) by It, that

dist(It+1, It) =
tm

r(r + 1)
≤ m

2(r + 1)

when t ≤ r/2. This means that the points corresponding to the steps j ≤ [m/(r+1)]
can be used to connect those associated with steps lying in It to those lying in
It+1. □

The general case can now be settled with a proof that requires less effort than
the preceding one.

Lemma 3.9. Fix d ≥ 3 and let T be a set in Nd
0 with dim(T ) = 2. Then the

2-completion of T is Λ(T ) ∩ Nd
0.

Proof. Lemma 3.8 proves the assertion in the special case when the cardinality of
T is 3. We will use this result to run what may be thought of as a kind of Euclidean
algorithm. We pick three arbitrary affinely independent points α1, α2, α3 in T and
assume that τ is a fourth point in T such that τ is not in Λ({α1, α2, α3}). The
crucial point will be to prove that, on this assumption, there exists a point β in
E∞

2 ({τ, α1, α2, α3}) such that at least one of the triangles ∆(α1, α2, β), ∆(α1, α3, β),
∆(α2, α3, β), say ∆(α1, α2, β) for definiteness, is nondegenerate with area strictly
smaller than that of ∆(α1, α2, α3). This argument may be iterated so that in the
next step we use α1, α2, β in place of α1, α2, α3. The iteration must terminate after
a finite number of steps, which means that eventually there are no points in T lying
outside of the coset generated by the points α1, α2, α3 used in this final step of the
iteration.

We are now in a situation similar to that considered in the preceding lemma. We
have a trivial solution if τ lies on ℓ(α1, α2): Then the desired β lies on the segment
[α1, α2] and is reached by a finite number of 1-extensions. We therefore ignore this
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case in what follows. We may assume that τ and α3 lie in the same component of
the set P (T ) \ ℓ(α1, α2).

We now let m be the smallest positive integer such that τ is contained in the
open strip between ℓ(α1, α2) and m(α3 − α2) + ℓ(α1, α2). If neither α3 nor any of
the points α3 ± (α2 − α1) lie in the triangle ∆(α1, α2, τ), then our problem has a
trivial solution: For k = m−1 and i = 1 or i = 2, the point β := τ −k(α3−αi) will
lie in the closure of ∆(α1, α2, τ) and have distance to ℓ(α1, α2) strictly smaller than
that from α3 to ℓ(α1, α2). (This distance may be 0.) This point β will therefore
have the desired property, unless it lies on ℓ(α1, α2) in which case the solution is
again trivial as we saw above.

What remains to consider is the case when α3 lies inside ∆(α1, α2, τ). Let k be
the smallest positive integer such that α2 + k(α3 − α2) does not lie in the closure
of ∆(α1, α2, τ). If k = m, then we see that β = τ + (m − 1)(α2 − α3) solves our
problem. If k < m, then the point

τ1 := τ + (α1 − α2) + k(α2 − α3)

is in ∆(α1, α2, τ) ∩ E∞
2 ({α1, α2, α3, τ}). See Figure 3.2. Now τ1 lies in the open

strip between ℓ(α1, α2) and (m− k)(α3 − α2) + ℓ(α1, α2) or on ℓ(α1, α2). We may
thus iterate the argument with τ1 in place of τ . It is clear that after a finite number
of such iterations, we will reach a point τj in E∞

2 ({α1, α2, α3, τ}) such that the
desired β can be reached in any of the trivial ways described in the preceding
discussion. □

3.5. Subsets of N2
0 and N3

0 of codimension 0. It remains to establish the case
d = k = 2 in part (a) and to finish the case d = k = 3 in part (b) of Theorem 1.2.
In either case, we will be dealing with sets of codimension 0 in the ambient space.

We begin with the easiest case d = k = 2. By Theorem 1.3, we need to show
that E∞

1 (T ) = Λ(T ) ∩ N2
0 when T is a subset of N2

0 with dim(T ) = 2. In view of
Lemma 3.3, this is accomplished by means of the following lemma.

Lemma 3.10. Let T be a set of three affinely independent points in N2
0. Then for

every α in T there exists a point β in E∞
1 (T ) \ {x} such that β − α is in N2.

We will in the proof of this lemma and later, in its more elaborate 3-dimensional
counterpart, make use of the following quantity.

Definition. Given a set U of d linearly independent vectors u = (u1, . . . , ud) in
Zd, we define the negativity index of U as

ind(U) :=

d∑
j=1

min
(
0,min

u∈U
uj

)
.

The vectors u will be assumed to relate to a fixed point α in Nd
0 by the condition

that α + u be in Nd
0 as well. When this holds, we say that u is α-admissible. Our

goal will be to successively change U by making 1- or 2-extensions of α + U to
get to new vectors with a larger negativity index. It will be crucial that linear
independence of the vectors of U be preserved during the course of this iteration.

Proof of Lemma 3.10. We begin by noting that it suffices to find a point β in
E∞

1 (T ) \ T with β − α in N2
0. Indeed, should one of the entries of β − α be 0,

we may replace β by either α+m(β−α) + (τ −α) or α+m(β−α)− (τ −α) for a
sufficiently large m, where τ is one of the two other points in T . Since dim(T ) = 2,
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both entries of either m(β−α)+(τ−α) or α+m(y−α)−(τ−α) will be positive for
at least one such τ . It is plain that the corresponding point α+m(β−α)± (τ −α)
will lie in E∞

1 (T ).
Now fix a point α in T , and let v1, v2 be the vectors going from α to the other

two points in T . It will be helpful to represent an entry in any of the two vectors
v1, v2 symbolically by + if it is nonnegative and − if it is negative. If one of the vj ,
say v1, is of the form (+,+), then we may choose β = α + v1. Similarly, if v1 is of
the form (−,−), then we choose β = α− v1. It remains therefore only to consider
the two combinations (+,−), (+,−) and (+,−), (−,+), where we in either case
may assume that all plus signs correspond to positive entries.

In the first case, at least one of the two vectors v1 − v2 and v2 − v1 will be α-
admissible. If, say, v1 − v2 is α-admissible, then we observe that ind(v1, v1 − v2) >
ind(v1, v2). In the second case, we have plainly ind(v1, v1 + v2) > ind(v1, v2).

After this initial iteration, we have two new linearly independent α-admissible
vectors with a larger negativity index. We are done if one of the vectors is of the
form (+,+) or (−,−). Otherwise we repeat the iteration. Since the negativity
index increases in each step, this iteration will eventually terminate with one of
the vectors being of the form (+,+) or (−,−). This vector is necessarily nonzero
because the two vectors are linearly independent. □

We turn to the final and most difficult case d = k = 3. By Theorem 1.3 and
Example 3.5, it remains to show that E∞

2 (T ) = Λ(T ) ∩ N3
0 when T is a subset of

N3
0 with dim(T ) = 3. Again appealing to Lemma 3.3, we see that this follows from

the following lemma.

Lemma 3.11. Let T be a set of four affinely independent points in N3
0. Then for

every α in T there exists a point β in E∞
2 (T ) \ {α} such that β − α is in N3.

Proof. We begin as in the preceding case by noting that it suffices to find a β in
E∞

2 (T ) \ T with β − α in N3
0. Should only one of the entries be 0, we may make a

similar adjustment as in the proof of Lemma 3.10. Should two of the entries be 0,
then we make the following elaboration of this argument. Since dim(T ) = 3, we can
find two points τ1 and τ2 in T such that β−α is not in the plane spanned by τ1−α
and τ2−α. We now claim that we may replace β by α+m(β−α)+k(τ1−α)+ℓ(τ2−α)
for a large positive integer m and suitable integers k and ℓ. We see that this can
be achieved by applying Lemma 3.10 to the two entries of α, τ1, τ2 for which β − α
is 0.

We now turn to the sequence of 2-extensions needed to reach the desired point
β, starting from any of the points α in T . Our plan is to act in the same way as
was done in the case d = 2. Hence we wish to prove that there exists a k such that
at least one of the two assertions is true:

(i) There is a nonzero vector in Ek
2 (T )− α with only nonnegative entries.

(ii) There are three linearly independent vectors v′1, v′2, v′3 in Ek
2 (T ) − α such

that
ind(v′1, v

′
2, v

′
3) < ind(v1, v2, v3).

We are done if (i) is true, and if (ii) holds, then the argument can be iterated,
starting with the α-admissible vectors v′1, v′2, v′3 in place of v1, v2, v3. Our algorithm
will be such that the initial assumption that v1, v2, v3 be linearly independent will
automatically guarantee that v′1, v′2, v′3 be linearly independent. It is clear that this
iteration will eventually produce a nonzero vector in Ek

2 (T )− α for some k.
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We begin by identifying combinations of signs of the entries of the vectors vj
that immediately lead to the desired β. To this end, we represent again an entry
symbolically by + if it is nonnegative and − if it is negative. If one of the vj , say
v1, is of the form (+,+,+), then we may choose β = α + v1. Similarly, if v1 is of
the form (−,−,−), then we choose β = α − v1. We assume therefore that neither
of the vectors vj are of these kinds.

We have found it convenient to group our treatment of the remaining nontrivial
combinations of signs into seven cases. The first three cases deal only with combi-
nations of two vectors; we are then either able to reach the desired increase of the
negativity index or we are led to consider a combination of signs of three vectors
which is then treated later.

Case 1: (+,−,+) and (+,+,−). Suppose that v1 is of the form (+,−,+) and v2 is
of the form (+,+,−). Then plainly v1 + v2 is again α-admissible. We may assume
that at least one of the two entries v1,3 and v2,2 is nonzero. Indeed, if this were not
the case, then at least one of the vectors v1−v2 and v2−v1 would be α-admissible,
and then we could replace v1 by v1 − v2 or v2 by v2 − v1 to force one of the entries
in question to be nonzero. If, say v1,3 ̸= 0, then we will increase the minimal value
of the third entry if we replace v2 by v1 + v2. If the new vector v1 + v2 is of the
form (+,+,+), then we are plainly done; if it is of the form (+,+,−), then we may
iterate the same argument, now applying it to the two vectors v1 and v1 + v2. If
it is of the form (+,−,+) or (+,−,−), then we bring in v3 and note that we have
increased ind({v1, v2, v3}) unless v3,3 < 0. If v3 is either of the form (+,+,−) or
(−,+,−), we would then achieve the desired increase of the negativity index by
replacing v3 by v3 + v1. If both v1 + v2 and v3 are of the form (+,−,−), then we
obtain the desired increase by replacing v3 by one of the vectors ±(v3 − v1 − v2).
The only remaining case to be considered is therefore that v1 + v2 is of the form
(+,−,+) and v3 is of the form (+,−,−). We will treat it as Case 6 below.

Case 2: (+,−,+) and (−,+,−). Suppose next that v1 is of the form (+,−,+) and
v2 is of the form (−,+,−). We have a nontrivial situation if both v2,2 > 0 and at
least one of the two entries v1,1 and v1,3 is positive. Assume, say, that v1,3 > 0.
We may assume that v1 + v2 is not of the form (−,+,−), since otherwise v1 and
v1 +v2 are two vectors of the same form as the initial ones, and thus we may iterate
the argument. Now if v1 + v2 is of one of the forms (−,+,+) or (+,+,−), then
we are back to the preceding case and may proceed accordingly. The remaining
possibilities are that v1 + v2 is of one of the forms (−,−,+), (+,−,−), (+,−,+).
We bring again in v3 which must be of the form (+,−,−) unless we already achieved
the desired increase of the negativity index. Should v1+v2 be of the form (+,−,−),
then we may v3 replace by one of the vectors ±(v3 − v1 − v2). The two remaining
cases will be dealt with as respectively Case 6 and Case 7 below.

Case 3: (+,−,−) and (+,−,−). If we have a combination with v1 of the form
(+,−,−) and v2 of the form (+,−,−), then it is plain that at least one of the two
vectors v1 − v2 and v2 − v1 is α-admissible. Should the new vector u be of the
same form, we may iterate the argument with v2 replaced by u. Then after a finite
number of iterations, we either reach a vector of the desired form (+,+,+) or we
end up with a combination like (+,−,−) and (+,−,+). This situation is covered
by Case 6 and Case 7 below.
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Up to inessential permutations, it now remains to check the following possible
combinations of signs:

(3.14)

v1
v2
v3

 =

− − +
+ − −
− + −

 ;

(3.15)

v1
v2
v3

 =

+ − +
+ − +
+ − +

 ;

(3.16)

v1
v2
v3

 =

− − +
+ − +
+ − +

 ;

(3.17)

v1
v2
v3

 =

− − +
+ − −
+ − +

 .

Case 4: The combination (3.14). If a nonnegative entry, in absolute value, is less
than or equal to the two other entries in the same column, then we may replace the
corresponding vector by v by −v without changing the negativity index of the three
vectors v1, v2, v3. That leads us to (3.17) (see below), that will be treated later.
Otherwise, v1 + v2 + v3 is α-admissible, and we increase the negativity index if we
replace the three vectors v1, v2, v3 by v1, v2, v1+v2+v3. Notice that α+v1+v2+v3
is indeed in E2({α, α + v1, α + v2, α + v3}) because

α + v1 + v2 + v3 = (α + v1) + (v2 − v1) + (v3 − v1)− (−v1).

Case 5: The combination (3.15). We may assume that 2vi,2 < minj vj,2 since
otherwise we may add vi to vi as many times as needed to achieve this. These
operations will not change the negativity index of the three vectors. Suppose that
the largest value in the first column is v1,1. In this case, if v1,3 ≥ vi,3 for i ̸= 1, we
then get a larger value in the second entry by replacing v1 by v1−vi. Iterating this
argument, we see that we may assume that v1,3 < vi,3 for i ̸= 1. Assume similarly
that the maximum in the third column is v2,3 and that v2,1 < vi,1 for i ̸= 2. Assume
first that v1,2 = v2,2 = v3,2. Then v4 := v1 + v2− v3 has the same second entry but
with v2,1 ≤ v4,1 < v1,1 and v1,3 ≤ v4,3 < v2,3. If we have equality in any of the two
inequalities to the left, then v2− v4 or v1− v4 will be of the form (+,+,+) so that
we have reached the desired β. Otherwise we replace v1 by v4, which implies that
we have decreased the first entry and increased the third entry of the first vector.
Iterating, we see that we will then reach our desired β in a finite number steps.

Hence we may assume in what follows that vi,2 is not the same for all i = 1, 2, 3.
If now v3,2 < max(v1,2, v2,2), then v4 := v1 + v2 − v3 is α-admissible, and its
second entry is > min(v2,2, v1,2). Hence, if say v1,2 = max(v1,2, v2,2), then the
negativity index of the vectors v1, v3, v4 is strictly larger than that of v1, v2, v3. If
v3,2 = max(v1,2, v2,2), then still v4 is α-admissible and v4,2 = min(v2,2, v1,2). If, say,
again v1,2 = max(v1,2, v2,2), then we may replace v2 by v4 and iterate the arguments
just given. To simplify the notation, let v2 denote the replacement found for v2 at
any stage of the iteration. If eventually v2,3 = v3,1, then the iteration will terminate
because v1 − v2 will be of the form (+,+,+). Otherwise, since v2,3 will be strictly
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decreasing as long as v2,3 > v3,3, we see that v2,3 will eventually be smaller than
or equal to v3,3. If also v3,1 ≥ v2,1, then v3 − v2 will now be of the form (+,+,+).
Should this not be the case, then we may interchange the roles of v2 and v3 and
eventually obtain that v3,2 < max(v1,2, v2,2), as in the preceding case.

It remains to consider the case when both v3,2 > v1,2 and v3,2 > v2,2. If both
v1,1 ≥ 2v3,1 and v2,3 ≥ 2v3,3, then we see that v4 := v1 + v2 − 2v3 will be α-
admissible. Indeed, since by assumption 2v3,2 < min(v1,2, v2,2), wee see that v4,2 >
max(v1,2, v2,2). If, say, v1,2 < v2,2, then the negativity index of v4, v2, v3 will exceed
that of v1, v2, v3. Otherwise, if v1,2 = v2,2, then we replace v1 by v4 and return to
the starting point of the argument, noting that our gain in this first step is a strict
increase of the second entry of the vector v1.

Finally, if we have v1,1 < 2v3,1, then the vector v4 := 2v3 − v1 will satisfy
v4,2 > min(v1,2, v2,2), and if we have v2,3 < 2v3,3, then v4 := 2v3 − v2 will satisfy
the same inequality. We may in either case proceed in exactly the same way as
when both v1,1 ≥ 2v3,1 and v2,3 ≥ 2v3,3.

Case 6: The combination (3.16). We may assume that the largest value in the first
column is v2,1. If v2,3 ≥ v1,3, then we see that either v2−v1 is of the form (+,+,+)
or we reach Case 5 by replacing v1 by the α-admissible vector v2 − v1. So we may
assume that v2,3 < v1,3. If instead v3,3 ≥ v1,3, then in a similar fashion v3− v1 is of
the form (+,+,+) or we may replace v1 by v3 − v1 to once again return to Case 5.
We may therefore assume that both v1,3 > v2,3 and v1,3 > v3,3. If now v2,3 ≥ v3,3,
then v2 − v3 is α-admissible; if it is not of the form (+,+,+), then we may replace
v2 by v2−v3 and repeat the reasoning just made. This iteration will either produce
a vector of the form (+,+,+) or a situation in which v2,3 is maximal in the first
column and v2,3 < v3,3 < v1,3. From this point on, we may follow word for word
the reasoning in the preceding Case 5, now with the roles of v1 and v2 interchanged.

Case 7: The combination (3.17). Assume first that v3,3 is the largest value in the
third column. Then we may replace v1 by v3−v1 so that either v3−v1 is of the form
(+,+,+) or we have reduced our problem to the preceding Case 6. Similarly, if v3,1
is the largest value in the first column, then either v3 − v2 is of the form (+,+,+)
or we reduce our problem to Case 6 by replacing v2 by v3 − v2. We consider the
final possibility that v2,1 is maximal in the first column and v1,3 is maximal in the
third column. Hence we may assume that v2,1 > v3,1 and v1,3 > v3,3. We have now
plainly that v1,1 is minimal in the first column and that v2,1 is minimal in the third
column. This allows us to follow word for word the reasoning in Case 5, again with
the roles of v1 and v2 interchanged. □

4. Hp(T∞) and applications to Hardy spaces of Dirichlet series

4.1. Hardy spaces on the infinite-dimensional torus. Since T∞ is a compact
abelian group, Theorem 1.1 remains true for d =∞ if we use the Haar measure m∞
of T∞ to define Lp(T∞). To this end, we may as before either rely on combining
the results of Rudin [23] and Andô [1] as indicated above or simply repeat our proof
in Section 2.1 word for word. It is also plain that Theorem 1.2 and Theorem 1.3
remain valid when we set d = ∞. In the latter case, it should be noted that all

subsets Γ of N(∞)
0 will consist of points with finitely many nonzero entries and that

En(Γ) can be defined in exactly the same way as in the finite-dimensional case. We
refer to [9] and to [20, Ch. 6] for further information about the spaces Hp(T∞).
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Proof of Theorem 1.4. We will apply Theorem 1.3 with Example 3.4 for n = 1 and
Example 3.6 for n ≥ 2. We go through the details only in the latter case, since the
former is completely analogous. Consider

Γn := {(n, 1, 0, 1), (n + 1, 0, 1, 0), (0, 0, n + 1, 0), (0, 0, 0, n + 1)}

for n ≥ 2. By Theorem 1.3, we know that Γn is a contractive projection set for
Hp(T4) if and only if p = 2, 4, . . . , 2(n+1). Decompose T∞ into a infinite cartesian
product of four-dimensional tori,

T∞ = T4
1 × T4

2 × T4
3 × · · · ,

where T4
j contains the variables z4j−3, z4j−2, z4j−1, and z4j .

For m ≥ 1, let Tm,n be the operator defined by letting the projection PΓn act on
each of the m four-dimensional tori T4

(m−1)m/2+1, . . . , T
4
m(m+1)/2 independently.

Clearly,

(4.1) ∥Tm,n∥Hp(T∞)→Hp(T∞) = ∥PΓn
∥mHp(T4)→Hp(T4).

Define the operator Tn by

(4.2) Tnf =

∞∑
m=1

Tm,nf

m2
.

The operator (4.2) is well-defined for f in Hp(Td) for every finite d, since in this
case Tm,nf = 0 for every sufficiently large m. From this we conclude that Tn is
densely defined on Hp(T∞) (see e.g. [9, Thm. 2.1]).

We first consider the case when p = 2k for some integer 1 ≤ k ≤ n + 1. Since
∥PΓn

∥Hp(T4)→Hp(T4) = 1 by Theorem 1.3, we get from (4.1) and the triangle in-
equality that

∥Tnf∥p ≤
π2

6
∥f∥p,

so the operator (4.2) is well-defined on Hp(T∞) with norm at most π2/6.
Consider next the case when 1 ≤ p ≤ ∞, p ̸= 2n, for 1 ≤ k ≤ n + 1. Since PΓn

is not a contraction on Hp(T4) we have

∥Tm,n∥Hp(T∞)→Hp(T∞) = (1 + δp)m

for some δp > 0. Since each Tm,n acts on separate variables, we get from (4.2) that

∥Tn∥Hp(T∞)→Hp(T∞) ≥
(1 + δp)m

m2

for every positive integer m and, consequently, Tn is unbounded on Hp(T∞). □

Problem 4.1. Is there a linear operator T that is densely defined on Hp(T∞) for
1 ≤ p ≤ ∞ and extends to a bounded operator on Hp(T∞) if and only if p is an
even integer or p =∞?

4.2. Hardy spaces of Dirichlet series. For 1 ≤ p < ∞, the Hardy space of
Dirichlet series H p can be defined as the closure of the set of Dirichlet polynomials

f(s) =
∑N

n=1 ann
−s in the Besicovitch norm

∥f∥pH p = lim
T→∞

1

2T

∫ T

−T

|f(it)|p dt.
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The endpoint case H ∞ is comprised of somewhere convergent Dirichlet series
that may be analytically continued to bounded analytic functions in the half-plane
Re s > 0, and we set

∥f∥H ∞ := sup
Re s>0

|f(s)|.

Let (pj)j≥1 denote the increasing sequence of prime numbers. By the fundamental
theorem of arithmetic, every positive rational number is uniquely represented as

q =

d∏
j=1

p
αj

j ←→ α(q) = (α1, α2, . . . , αd, 0, 0, 0, . . .).

This representations associates to each q in Q+ a unique multi-index α in Z(∞).
It follows that the groups (Z(∞),+) and (Q+,×) are isomorphic. Note that the

subset N(∞)
0 of Z(∞) is identified with the subset N of Q+.

The Bohr correspondence

Bf(z) :=

∞∑
n=1

anz
α(n)

defines an isometric isomorphism from H p to Hp(T∞). In the range 1 ≤ p < ∞
this can be established either by the ergodic theorem (see [2, Sec. 2]) or by a
simple argument using the Weierstrass approximation theorem (see [24, Sec. 3]).
For p = ∞ we can prove the isometric isomorphism by taking the limit p → ∞
and using Bohr’s theorem [7], which guarantees that Dirichlet series in H ∞ are
uniformly convergent in the half-plane Re s ≥ δ for every δ > 0.

A set Γ ⊆ N is called a contractive projection set for H p if the projection
PΓf(s) :=

∑
n∈Γ ann

−s is a contraction on H p. In view of the discussion in
Section 4.1, we may then translate Theorem 1.2 for the special case d = ∞ into
a corresponding assertion about H p. We refrain from carrying out the details,
noting only that we will then be dealing with restrictions of sets and cosets in Q+

to N.
In this context, computations with contractive project sets for H p will frequently

involve arithmetic functions. A useful example, alluded to in the introduction and
employed in [10], is the set

Γm := {n ∈ N : Ω(n) = m} ,

where Ω(n) denotes the number of prime factors of n (counting multiplicities). As
in Example 2.2, the formula for the projection is

PΓmf(s) =

∫
T

( ∞∑
n=1

anw
Ω(n)n−s

)
w−m dm1(w)

for f(s) =
∑

n≥1 ann
−s in H p.

We may reformulate Theorem 1.4 to obtain the following result.

Corollary 4.2. Fix an integer n ≥ 1. There is a linear operator Tn which is
densely defined on H p for every 1 ≤ p ≤ ∞, and which does not extend to a
bounded operator on H p unless p = 2, 4, . . . , 2(n + 1).

Perhaps the most important open problem in the study of the spaces H p is the
local embedding problem [25, Prob. 2.1], which asks whether there is a constant
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Cp > 0 such that

(4.3)

∫ 1

−1

|f(1/2 + it)|p dt ≤ Cp∥f∥pH p

for every f in H p. The answer to the embedding problem is known to be positive
if p is an even integer (see e.g. [24, Sec. 3]) and negative if p < 2 as a corollary to
a recent result of Harper [15].

The work of Bayart and Masty lo [4], which we discussed in the introduction,
demonstrates that the standard interpolation techniques cannot be employed to
extend the positive conclusion for the embedding problem from even integers p to
general p > 2. Based on this and the analogy with the Hardy–Littlewood majorant
principle (elucidated in [19, Sec. 7.3]), it is conjectured in [20, p. 274] that the local
embedding should hold only for even integers p (and, trivially, for p =∞).

The local embedding problem can be restated in terms of the boundedness of a
densely defined linear operator. Consider the composition operator defined on H p

by Cφf := f ◦ φ for

φ(s) :=
1

2
+

1− 2−s

1 + 2−s
.

The operator is well-defined and bounded on H ∞ by Bohr’s theorem, so it is
densely defined on H p for every 1 ≤ p ≤ ∞. We know from [3, Thm. 3] that Cφ is
bounded on H p if and only if the local embedding (4.3) holds. We note in passing
that if p is an even integer or p =∞, then actually ∥Cφ∥H p→H p = 21/p by results
in [11] and [20, Sec. 8.11].

The operator Cφ is unbounded for p < 2 by Harper’s result. Hence, if the local
embedding (4.3) holds for p > 2 only if p is an even integer, then Cφ is the operator
enquired after in Problem 4.1. In this context, Corollary 4.2 does not render it
implausible that the local embedding may hold only for even integers (and p =∞).
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