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Abstract

Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. 

The underlying pathophysiological processes and causal relationships of insomnia with disease are 

poorly understood. Here we identify 57 loci for self-reported insomnia symptoms in the UK 

Biobank (n = 453,379) and confirm their impact on self-reported insomnia symptoms in the 

HUNT study (n = 14,923 cases, 47,610 controls), physician-diagnosed insomnia in Partners 

Biobank (n = 2,217 cases, 14,240 controls), and accelerometer-derived measures of sleep 

efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of 

genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, 

skeletal muscle, and adrenal gland. Evidence of shared genetic factors is found between frequent 

insomnia symptoms and restless legs syndrome, aging, cardio-metabolic, behavioral, psychiatric 

and reproductive traits. Evidence is found for a possible causal link between insomnia symptoms 

and coronary artery disease, depressive symptoms and subjective well-being.

Editorial summary:

Genome-wide association analyses identify 57 loci associated with insomnia symptoms and 

evidence of shared genetic architecture between insomnia and cardio-metabolic, behavioral, 

psychiatric and reproductive traits.

Insomnia disorder, persistent difficulty in initiating or maintaining sleep, and corresponding 

daytime dysfunction, occurs in 10–20% of the population1. Up to one-third of the population 

experience transient insomnia symptoms at any given time2. Longitudinal studies suggest 

that insomnia increases the risk for developing anxiety disorders, alcohol abuse, major 

depression, and cardio-metabolic disease3. However, little is known about underlying 

pathophysiologic mechanisms. Cognitive-behavioral therapies are the recommended first-

line treatment, but many barriers to treatment exist4,5. Common drug treatments target 

synaptic neurotransmission (via GABAergic pathways), hypothalamic neuropeptides (via 

hypocretin/orexin), cortical arousal (via histamine receptors), or the melatonin system, but 

these drugs have variable effectiveness, may be habit forming, and have side effects6,7. 

Therefore, it is necessary to develop new personalized therapeutic strategies. Model 

organism studies have identified genes involved in sleep processes8–13. Family-based 

heritability estimates suggest that insomnia has a genetic component (22%–25%)14. Recent 

GWAS reported four loci for insomnia symptoms15,16, but insights into underlying 

biological pathways and causal genetic links with disease are limited.

UK Biobank participants of European ancestry (n = 453,379) self-reported insomnia 

symptoms to the question “do you have trouble falling asleep at night or do you wake up in 

the middle of the night?”. In this sample, 29% of individuals self-reported frequent insomnia 

symptoms (“usually”), with a higher prevalence in women (32% vs. 24%) and in older 
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participants, shift workers, and those with shorter self-reported sleep duration 

(Supplementary Table 1).

We performed two parallel GWAS: (i) frequent insomnia symptoms (“never/rarely” vs. 

“usually” insomnia symptoms, n = 129,270 cases and 108,357 controls); (ii) any insomnia 

symptoms (“never/rarely” vs. “sometimes”/”usually” insomnia symptoms, n = 345,022 cases 

and 108,357 controls), adjusting for age and sex using 14,661,600 genotyped and imputed 

genetic variants across the autosomes and genotyped variants on the X chromosome. We 

identified 57 association signals explaining 1% of the variance (Fig. 1, Supplementary Table 

2, and Supplementary Figs. 1 and 2). Of these, 20 loci were identified in both analyses, 28 

loci in analysis of frequent insomnia symptoms only, and 9 in analysis of any insomnia 

symptoms only (Supplementary Table 2). Conditional analyses identified no secondary 

association signals. The 57 associations were independent of insomnia risk factors, as 

sensitivity analyses adjusting for body mass index (BMI), lifestyle, caffeine consumption, 

and depression or recent stress did not notably alter the magnitude or direction of effect 

estimates (Supplementary Table 3). The MEIS1 association signal identified in the interim 

release of the UK Biobank was confirmed in the remainder of the UK Biobank sample (n = 

75,508 cases of frequent insomnia symptoms and 64,403 controls; rs113851554 T, OR (95% 

CI) = 1.19 (1.15–1.23), P = 1.5 × 10−21), and nominal replication was seen for previously 

reported CYCL1 (P = 9.0 × 10−3). The TMEM132E and SCFD2 signals showed concordant 

direction of effect in both UK Biobank sub-samples, but were not significant, perhaps 

reflecting selection bias in the interim release sample17. No other findings from previous 

candidate gene association studies or smaller GWAS were confirmed (Supplementary Table 

4).

Secondary GWAS excluding current shift workers or individuals reporting hypnotic, anti-

anxiolytic or psychiatric medication usage, and/or with selected chronic diseases or 

psychiatric illnesses (excluding n = 76,470 participants) revealed strong pair-wise genetic 

correlation to the primary GWAS (rg ~ 1) and did not identify additional association signals 

(Supplementary Figs. 1–3). Thus, biological processes underlying pathophysiology of 

insomnia symptoms may be common between the general population and those with co-

morbidities, in accordance with the recent clinical reclassification of primary and secondary 

insomnia diagnoses into an insomnia disorder18.

The prevalence of insomnia symptoms varies by sex; therefore, we performed secondary sex 

stratified GWAS (Supplementary Table 5). As described previously15,16, the genetic 

architecture for frequent insomnia symptoms differed by sex, with a genetic correlation 

between the stratified GWAS of rg = 0.807 (Supplementary Fig. 3). We found 13 additional 

loci (8 in women and 5 in men), although there were no genome-wide significant sex 

interactions. Effects in women were not modified by menopausal status.

Self-report of insomnia symptoms has limitations, including recall bias and lack of 

granularity19. Therefore, we sought replication of association signals in the HUNT 

population study with self-reported insomnia symptoms (n = 14,923 cases, 47,610 controls; 

Supplementary Table 6)20 and the Partners Biobank with physician-diagnosed insomnia (n = 

2,217 cases, 14,240 controls). Replication was observed for the MEIS1 variant in both 
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cohorts, and a genetic risk score (GRS) using our 57 variants and weighted by the effect 

estimates from GWAS of frequent insomnia symptoms (provided in Supplementary Table 2) 

was also associated with insomnia symptoms in HUNT (OR (95%CI) = 1.015 (1.01–1.02) 

per allele, P = 2.71 × 10−11) and the Partners Biobank (OR (95%CI) 1.017 (1.007–1.027) per 

allele, P = 8.88 × 10−4) (Table 1 and Supplementary Table 8). A meta-analysis of the UK 

Biobank, HUNT, and Partners Biobank studies shows consistency across all three cohorts 

(Supplementary Table 2). Next, to investigate impact of genetic variants on objective sleep 

patterns, we tested the 57 lead variants for association with 8 activity-monitor sleep 

measures in a subset of the UK Biobank participants of European ancestry who had 

undergone up to 7 days of wrist-worn accelerometry (n = 84,745; Supplementary Table 6). 

The lead MEIS1 risk variant was associated with a higher number of sleep episodes, 

indicating an interrupted sleep pattern, lower sleep efficiency, shorter sleep duration and 

later sleep timing (P < 0.0008; Supplementary Table 9). The GRS was associated with 

reduced sleep efficiency (difference = −0.04 (0.01) % per allele; P = 4 × 10−14), shorter 

sleep duration (difference = −0.25 (0.035) minutes per allele; P = 8 × 10−13), and greater 

day-to-day variability in sleep duration (difference = 0.077 (0.025) minutes per allele; P = 

0.0017) but not with the number of sleep episodes or diurnal inactivity duration (Table 1 and 

Supplementary Table 9).

In order to gain insight into the probable causal variants underlying the 57 association 

signals, we performed fine-mapping in PICS21 and identified 38 variants with a causal 

probability of 0.20 or greater (Supplementary Table 10 and Supplementary Fig. 4)22. This 

list includes missense variants in NAD kinase NADK (N262K) and MDGA1 (L61P), as well 

as rs324017, a SNP within the gene encoding transcriptional repressor NAB1 (EGR-1 

binding protein) that is predicted to disrupt a binding site for EGR1 (Supplementary Table 

10), a transcription factor involved in response to stress23 and synaptic plasticity during 

REM sleep23.

The 57 insomnia symptoms loci lie in genomic regions encompassing up to 236 genes, and a 

summary of annotations for signals or genes within each locus is shown in Supplementary 

Table 11. Association signals at 14 loci overlapped with NHGRI GWAS signals (r2 > 0.7 in 

1KG CEU) for one or more complex traits, with the insomnia symptoms risk allele 

associated with a greater risk of restless legs syndrome, schizophrenia, Tourette’s syndrome, 

or obsessive-compulsive disorder, and associated with higher systolic blood pressure, greater 

carotid plaque burden, lower age at menarche and influencing adiposity traits, height, and 

educational attainment. Notably, experimental studies in mouse or fly models have 

implicated five genes at three associated loci in sleep regulation (DVL1, LRP1, NR1H3, 

PRKAR2A, and SEMA3F). Genes within 16 loci are known drug targets.

Two lead SNPs were associated with one or more of 3,144 human brain structure and 

function traits assessed in the UK Biobank (P < 2.8 × 10−7, n = 9,707; Oxford Brain 

Imaging Genetics Server)24, including rs1544637 (within a transcript LOC642659) with 

several large white matter tracts and with cingulate gyrus morphometry, which has 

previously been connected to insomnia25, and rs62158170 (near PAX8) with resting-state 

fMRI networks (Supplementary Fig. 5).
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Gene-based tests26 identified 135 associated genes (P ≤ 2.29 × 10−6; Supplementary Table 

12). These genes are enriched for expression in brain regions9 (Supplementary Table 13), 

including the cerebellum (P = 1.3 × 10−6), frontal cortex (P = 1.3 × 10−5), anterior cingulate 

cortex (P = 1.7 × 10−5), hypothalamus (P = 2.2 × 10−5), basal ganglia (P = 7.0 × 10−4), 

amygdala (P = 3.4 × 10−4), and hippocampus (P = 8.4 × 10−4), in line with previous research 

linking these brain regions to insomnia25,27 and mouse single-cell studies linking insomnia 

GWAS hits to specific populations of brain cells28. Integration of gene expression data with 

GWAS using transcriptome-wide association analyses29 identified 24 genes where insomnia-

SNPs influence gene expression in one or more of 14 tissue types tested, including eight 

brain regions, muscles, peripheral nerves, whole blood, pituitary, thyroid, and adrenal gland 

tissue (Supplementary Table 16).

SNP-based heritability of frequent insomnia symptoms was estimated at h2 = 16.7%30. 

Partitioning of heritability across tissue types31,32 confirmed enrichment in the central 

nervous system, adrenal/pancreas tissue, and skeletal muscle (P < 10−5) (Supplementary 

Table 17). Partitioning across functional class implicated activation and repression of 

enhancers (Supplementary Table 17). Pathway and ontology analyses26,33,34 reveal a 

significant role for ubiquitin mediated proteolysis (Pbonf = 0.04; Supplementary Table 14), 

similar to findings in recent GWAS of RLS35, and suggestive roles for phototransduction 

and muscle tissue development, across several databases (Supplementary Tables 14 and 15). 

Evidence from model organisms supports the link between Cullin-3 mediated ubiquitination 

and sleep/circadian rhythms36–39. Furthermore, the restless legs syndrome (RLS) gene 

BTBD9 has been implicated as a substrate adaptor for E3 ubiquitin ligases40. We find no 

evidence for enrichment of neurotransmission receptor or biosynthesis genes known to be 

involved in the regulation of sleep (e.g. GABA, glutamate, adenosine).

We investigated the genetic link between frequent insomnia symptoms and other behavioral 

and/or disease states. Based on previous links between RLS and insomnia symptoms15,16, 

we tested a GRS of 20 SNPs for RLS35 and found association with frequent insomnia 

symptoms (OR = 1.03 (1.02–1.04) per RLS risk allele, P = 2.57 × 10−57), driven partly by 

the MEIS1 region (GRS excluding MEIS1 region OR = 1.02 (1.02–1.03) per RLS risk allele, 

P = 2.06 × 10−31)(Supplementary Table 18 and Supplementary Fig. 6). We also tested a GRS 

of our 57 insomnia SNPs in RLS and found an association with RLS (OR = 1.39 (1.34–

1.44), P = 1.70 × 10−80) driven partly by the MEIS1 signal (GRS excluding MEIS1 region 

OR = 1.17 (1.13–1.21), P = 2.56 × 10−20) (Supplementary Table 18). We also observe a 

positive genetic correlation between insomnia and RLS (rg = 0.291, P = 6.33 × 10−12). We 

performed BUHMBOX analysis to distinguish between pleiotropy and heterogeneity. 

BUHMBOX41 analyses using all 20 RLS SNPs points towards heterogeneity (P = 4.09 × 

10−6), most likely due to undiagnosed RLS cases misclassified as insomnia. However, when 

we exclude the MEIS1 locus, we detect a possible shared genetic basis not explained by 

heterogeneity (P = 0.137).

To test the proportion of variance frequent insomnia symptoms shares with other traits based 

on genetic overlap, we performed genetic correlation analyses with 233 traits with public 

GWAS summary statistics31,32,42,43. We found strong positive genetic correlations (P ≤ 2 × 

10−3) between frequent insomnia symptoms and adiposity traits, coronary artery disease, 
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number of children ever born, neuroticism, smoking behavior, and depressive symptoms and 

disorder. Strong negative genetic correlations were observed with self-reported sleep 

duration, subjective well-being, cognitive measures, proxy longevity measures, and the 

remaining reproductive traits (Fig. 2 and Supplementary Table 19). These genetic links 

persisted with GWAS excluding subjects with chronic and psychiatric illnesses 

(Supplementary Table 19), indicating a relationship not driven by the presence of 

concomitant conditions.

To test for causal links between frequent insomnia symptoms and seven clusters of 

genetically correlated traits, we performed Mendelian randomization (MR) analyses mostly 

within a two-sample summary data framework. Using the inverse variance (IVW) method44 

(Fig. 3 and Supplementary Table 20), we found evidence of a causal association (P < 0.001) 

between frequent insomnia symptoms and prevalent coronary artery disease (CAD; OR 

(95%CI) = 2.15 (1.38–3.35)) reduced subjective well-being (difference in mean SD units of 

−0.29 (s.e. 0.06)), greater depressive symptoms (difference in mean SD units of 0.42 (s.e. 

0.08)); all associations had a consistent direction and similar magnitude of effect in 

sensitivity analyses using MR-Egger45 and weighted median methods (Fig. 3 and 

Supplementary Table 20)46. We found similar results using effect estimates from GWAS 

excluding those with preexisting conditions. We validated the causal association between 

insomnia and CAD with one-sample MR in the UK Biobank (n = 23,980 cases and 361,706 

controls, OR (95%CI) = 2.95 (2.18–3.99), P = 2.3 × 10−12) (Supplementary Table 20 and 

Supplementary Fig. 7). Bidirectional MR identified no evidence of reverse causality. The 

one-sample MR causal association between insomnia status and CAD in UK Biobank is 

consistent with the robust empirical evidence seen in prospective studies and meta-

analyses3,47.

This study provides a comprehensive description of the genetic architecture of frequent or 

persistent insomnia symptoms, pointing to putative causal variants and candidate genes, 

pathways and tissues for functional studies. Further, we define physiological correlates for 

insomnia symptoms and meaningful clinical links, including a causal link with CAD.

Methods

UK Biobank population and study design.

Study participants were from the UK Biobank study, described in detail elsewhere48. In 

brief, the UK Biobank is a prospective study of >500,000 people living in the United 

Kingdom. All people in the National Health Service registry aged 40–69 and living <25 

miles from a study center were invited to participate between 2006–2010. In total, 503,325 

participants (5%) were recruited from over 9.2 million mailed invitations. Self-reported 

baseline data were collected by questionnaire and anthropometric assessments were 

performed. For the current analysis, individuals of non-white ethnicity (n = 48,667) were 

excluded to avoid confounding effects. A subset analysis was also performed excluding UK 

Biobank subjects from the interim release and their relatives (exclusion n = 190,216).
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Insomnia and covariate measures.

Study subjects self-reported insomnia symptoms, depression, medication use, age, and sex 

on a touch-screen questionnaire at baseline assessment. Height and weight were measured at 

baseline. To assess insomnia symptoms, subjects were asked, “Do you have trouble falling 

asleep at night or do you wake up in the middle of the night?” with responses “never/rarely”, 

“sometimes”, “usually”, “prefer not to answer”. Subjects who responded “Prefer not to 

answer” (n = 637) were set to missing. We undertook two GWAS, one in which insomnia 

symptoms were dichotomized into controls (“never/rarely”) and cases with any symptoms 

(“sometimes” and “usually”), and the second in which participants were dichotomized into 

controls (“never/rarely”) or frequent insomnia symptoms (“usually”), with those reporting 

“sometimes” excluded. Additional covariates used in sensitivity analyses included BMI, 

self-reported and prevalent sleep apnea diagnosis, area deprivation index, alcohol intake, 

snoring, nap behavior, smoking status, menopause status, weekly physical activity, tea and 

coffee intake, depression, and extreme stress. BMI was calculated from measured height and 

weight at baseline visit. Prevalent sleep apnea cases were defined based on primary or 

secondary ICD10 diagnosis code (G47.3; n = 391 cases) at the time of baseline assessment. 

Social deprivation for participant area of residence at the time of recruitment was 

represented by the Townsend deprivation index, based on national census data immediately 

preceding participation in the UK Biobank. The Townsend deprivation index was log 

transformed for use in the analyses. Alcohol intake was self-reported in response to the 

question “About how often do you drink alcohol?” with answers ranging from “daily or 

almost daily” to “never”. Snoring was reported in answer to the question “Does your partner 

or a close relative or friend complain about your snoring?”. Nap behavior was self-reported 

in response to the question “Do you have a nap during the day” with answers “never/rarely”, 

“sometimes”, or “usually”. Smoking status was self-reported as past smoking behavior and 

current smoking behavior, and classified into “current”, “past”, or “never” smoked. 

Menopause status was reported in answer to the question “Have you had your menopause 

(periods stopped)?” with answers “yes”, “no”, “not sure – had a hysterectomy”, “not sure – 

other reason”. Weekly physical activity in total metabolic equivalents per week, total MET-

h/week, was calculated using self-reported estimates of type and duration of physical 

activity. Tea and coffee intake was estimated using the questions “How many cups of tea do 

you drink each day? (Include black and green tea)” and “How many cups of coffee do you 

drink each day? (Include decaffeinated coffee),” respectively, with responses in cups/day. 

Employment status was self-reported in response to the following question “Which of the 

following describes your current situation?” with responses “in paid employment or self-

employed”, “retired”, “looking after home and/or family”, “unable to work because of 

sickness or disability”, “unemployed”, doing unpair or voluntary work”, “full or part-time 

student”, “none of the above”, “prefer not to answer”. Marital status was derived from self-

reported household occupancy and relatedness data as follows: married/partner was derived 

from those reporting husband/wife/partner in household with >1 person reported to live in 

household. Depression was reported in answer to the question “How often did you feel 

down, depressed or hopeless mood in last 2 weeks?” (cases, n = 4,242 based on answers 

“more than half the days”, or “nearly every day”). Extreme stress was assessed with the 

question “In the last two years have you experiences any of the following (you can select 

more than one answer” with responses “serious illness, injury or assault to yourself”, 
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“serious illness, injury or assault of a close relative”, “death of a close relative”, “death of a 

spouse or partner”, “marital separation/divorce”, “financial difficulties”, “none of the 

above”. A secondary GWAS further excluded shift workers, sleep and psychiatric 

medication users, and subjects with chronic and psychiatric illness (n = 76,470). Cases of 

psychiatric disorder was determined using any of the following definitions (derived from 

Howard et al.): (i) ICD-10 codes for major depressive disorder (F32, F33), bipolar disorder 

(F30, F31), schizophrenia (F20-F29), autism (F84.0, F84.3, F84.5), intellectual disability 

(F70.0, F70.1, F70.9), anxiety disorder (F40 - F43), multiple personality disorder (F44.8), or 

mood disorder (F30 - F39); (ii) Self-reported antidepressant, antipsychotic, or anxiolytic use 

at nurse-led interview; (iii) Self-reported depression, major depressive disorder, bipolar 

disorder, or schizophrenia at nurse-led interview at baseline visit; (iv) “Broad depression”: 

responded yes to the question “Have you ever seen a general practitioner (GP) for nerves, 

anxiety, tension or depression?” and yes to either, “have you ever had a time when you were 

feeling depressed or down for at least a whole week,” or, “Have you ever had a time when 

you were uninterested in things or unable to enjoy the things you used to for at least a whole 

week?” lasting for more than 1 week; (v) Questionnaire-assessed bipolar disorder (Smith 

algorithm) responded yes to the question, “Have you ever had a period of time lasting at 

least two days when you were feeling so good, “high”, excited or “hyper” that other people 

thought you were not your normal self or you were so “hyper” that you got into trouble?” or 

“Have you ever had a period of time lasting at least two days when you were so irritable that 

you found yourself shouting at people or starting fights or arguments?” for a duration of at 

least one week and with at least 3 manic/hyper symptoms49. A list of sleep medications can 

be found in the Supplementary Note.

A description of coronary artery disease and activity monitor derived measures of sleep in 

the UK Biobank can be found in the Supplementary Note.

Genotyping and quality control.

Phenotype data is available for 502,631 subjects in the UK Biobank. Genotyping was 

performed by the UK Biobank, and genotyping, quality control, and imputation procedures 

are described in detail here50. In brief, blood, saliva, and urine was collected from 

participants, and DNA was extracted from the buffy coat samples. Participant DNA was 

genotyped on two arrays, UK BiLEVE and UKB Axiom with >95% common content and 

genotypes for ~800,000 autosomal SNPs were imputed to two reference panels. Genotypes 

were called using Affymetrix Power Tools software. Sample and SNPs for quality control 

were selected from a set of 489,212 samples across 812,428 unique markers. Sample QC 

was conducted using 605,876 high quality autosomal markers. Samples were removed for 

high missingness or heterozygosity (968 samples) and sex chromosome abnormalities (652 

samples). Genotypes for 488,377 samples passed sample QC (~99.9% of total samples). 

Marker based QC measures were tested in the European ancestry subset (n = 463,844), 

which was identified based on principal components of ancestry. SNPs were tested for batch 

effects (197 SNPs/batch), plate effects (284 SNPs/batch), Hardy-Weinberg equilibrium (572 

SNPs/batch), sex effects (45 SNPs/batch), array effects (5417 SNPs), and discordance across 

control replicates (622 on UK BiLEVE Axiom array and 632 UK Biobank Axiom array) (P 
< 10−12 or <95% for all tests). For each batch (106 batches total), markers that failed at least 
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one test were set to missing. Before imputation, 805,426 SNPs pass QC in at least one batch 

(>99% of the array content). Population structure was captured by principal component 

analysis on the samples using a subset of high quality (missingness <1.5%), high frequency 

SNPs (>2.5%) (~100,000 SNPs) and identified the sub-sample of white British descent. We 

further clustered subjects into four ancestry clusters using K-means clustering on the 

principal components, identifying 453,964 subjects of European ancestry. Imputation of 

autosomal SNPs was performed to UK10K haplotype, 1000 Genomes Phase 3, and 

Haplotype Reference Consortium (HRC) with the current analysis using only those SNPs 

imputed to the HRC reference panel. Autosomal SNPs were pre-phased using SHAPEIT351 

and imputed using IMPUTE4. In total ~96 million SNPs were imputed. Related individuals 

were identified by estimating kinship coefficients for all pairs of samples, using only 

markers weakly informative of ancestral background. In total, there are 107,162 related pairs 

comprised of 147,731 individuals related to at least one other subject in the UK Biobank.

Genome-wide association analysis.

Genetic association analysis across the autosomes was performed in related subjects of 

European ancestry (n = 453,964) using BOLT-LMM30 linear mixed models and an additive 

genetic model adjusted for age, sex, 10 PCs, genotyping array and genetic correlation matrix 

with a maximum per SNP missingness of 10% and per sample missingness of 40%. We used 

a genome-wide significance threshold of 5 × 10−8 for each GWAS. Genetic association 

analysis was also performed in unrelated subjects of white British ancestry (n = 337,545) 

using PLINK52 logistic regression and an additive genetic model adjusted for age, sex, 10 

PCs and genotyping array to determine SNP effects on self-reported insomnia symptoms. 

We used a hard-call genotype threshold of 0.1, SNP imputation quality threshold of 0.80, 

and a MAF threshold of 0.001. Genetic association analysis for the X chromosome was 

performed using the genotyped markers on the X chromosome with the additional –sex flag 

in PLINK. We are 80% powered to detect a relative difference of 4% or more (i.e. an OR of 

1.04 or 0.96 assuming a MAF 0.1, P = 5 × 10−8). Sex-specific GWAS were performed in 

PLINK 1.9 using logistic regression stratified by sex adjusting for age, 10 principal 

components of ancestry, and genotyping array. We used a hard-call genotype threshold of 

0.1, SNP imputation quality threshold of 0.80, and a MAF threshold of 0.001. SNP x sex 

interactions (13 tests) and SNP x menopause interaction in females (13 tests) were tested for 

genome-wide significant signals with the significance threshold defined by Bonferroni 

correction. SNP-based trait heritability was calculated as the proportion of trait variance due 

to additive genetic factors measured in this study using BOLT-REML30, to leverage the 

power of raw genotype data together with low frequency variants (MAF ≥ 0.001). Additional 

independent risk loci were identified using the approximate conditional and joint association 

method implemented in GCTA (GCTA-COJO)53. Fixed effects meta-analysis was performed 

using METAL54 with the standard error scheme.

Sensitivity analyses on top signals.

Follow-up analyses on genome-wide significant loci in the primary analyses included 

covariate sensitivity analysis individually adjusting for sleep apnea, coffee/tea intake, 

physical activity, severe stress, depression, psychiatric medication use, socio-economic 

status, smoking, employment and marital status, and snoring, or BMI in addition to baseline 
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adjustments for age, sex, 10 PCs and genotyping array. Sensitivity and sex-specific analyses 

were conducted only in unrelated subjects of white British ancestry.

Gene, pathway and tissue-enrichment analyses.

Gene-based analysis was performed using PASCAL26. Tissue enrichment analysis was 

conducted using FUMA55. Enrichment for pathways and ontologies was performed in 

EnrichR33,34 using the human genome as the reference set and a minimum number of 2 

genes per category. A genetic risk score for RLS was tested using the weighted genetic risk 

score calculated by summing the products of the RLS risk allele count for 20 genome-wide 

significant SNPs multiplied by the scaled RLS effect reported by Schormair et al.35 using 

the summary statistics from our frequent insomnia symptom GWAS using the GTX package 

in R56. Integrative transcriptome-wide association analyses with GWAS were performed 

using the FUSION TWAS package29 with weights generated from gene expression in 8 

brain regions and 6 tissues from the GTEX consortium (v6), and SNPs common to the 1000 

Genomes LD reference panel and our frequent insomnia symptoms GWAS summary 

statistics. Tissues for TWAS testing were selected from the FUMA tissue enrichment 

analyses and here we present significant results that survive Bonferroni correction for the 

number of genes tested per tissue and for all 14 tissues. In the results table, we show the 

number of individuals per tissue type used to generate expression weights, the total number 

of genes expressed per tissue, gene symbol for significant gene, rsID for the best GWAS and 

eQTL SNPs in the reference panel, and the TWAS P value. GWAS and eQTL SNPs 

analyzed include only those SNPs present in the 1000 Genomes LD reference panel used by 

the FUSION TWAS software; therefore, the best GWAS SNP listed in this table may be in 

strong linkage disequilibrium with, but not identical to, the lead GWAS SNP for hits in 

Supplementary Table 2.

Heterogeneity analysis.

Analyses to distinguish pleiotropy and heterogeneity between insomnia and RLS was 

performed using Breaking Up Heterogeneous Mixture Based On Cross-locus correlations 

(BUHMBOX)41. BUHMBOX analyses tests the presence of heterogeneity between two 

traits. BUHMBOX was performed in the insomnia GWAS using all 20 RLS SNPs and 

weights reported by Schormair et al.35 and in the RLS GWAS using all 57 SNPs reported in 

Supplementary Table 2. Additional sensitivity analyses were performed excluding SNPs in 

the MEIS1 region.

Genetic correlation analyses.

Post-GWAS genome-wide genetic correlation analysis of LD Score Regression 

(LDSC)32,42,43 using LDHub was conducted using all UK Biobank SNPs also found in 

HapMap3 and included publicly available data from 224 published genome-wide association 

studies, with a significance threshold of P = 0.002 after Bonferroni correction for all tests 

performed. LDSC estimates genetic correlation between two traits from summary statistics 

(ranging from −1 to 1) using the fact that the GWAS effect-size estimate for each SNP 

incorporates effects of all SNPs in LD with that SNP, SNPs with high LD have higher X2 

statistics than SNPs with low LD, and a similar relationship is observed when single study 

test statistics are replaced with the product of z-scores from two studies of traits with some 
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correlation. Furthermore, genetic correlation is possible between case/control studies and 

quantitative traits, as well as within these trait types. We performed partitioning of 

heritability using the 8 pre-computed cell-type regions, and 25 pre-computed functional 

annotations available through LDSC, which were curated from large-scale robust datasets31. 

Enrichment both in the functional regions and in an expanded region (+500 bp) around each 

functional class was calculated in order to prevent the estimates from being biased upward 

by enrichment in nearby regions. The multiple testing threshhold for the partitioning of 

heritability was determined using the conservative Bonferroni correction (P of 0.05/25 

classes). Summary GWAS statistics will be made available at the UK Biobank web portal.

Mendelian randomization analyses.

MR analysis was carried out using MR-Base57, using the inverse variance weighted 

approach as our main analysis method44, and MR-Egger45 and weighted median 

estimation46 as sensitivity analyses. MR results may be biased by horizontal pleiotropy, i.e. 

where the genetic variants that are robustly related to the exposure of interest (here frequent 

insomnia symptoms) independently influence levels of a causal risk factor for the outcome. 

IVW assumes that there is no horizontal pleiotropy. MR-Egger provides unbiased causal 

estimates even if all of the genetic instruments have horizontal pleiotropic effects, but it 

assumes that the association of genetic instruments with risk factor is not correlated with any 

pleiotropic genetic instrument associations with outcome. The weighted median approach is 

valid if less than 50% of the weight is pleiotropic (i.e. no single SNP that contributes 50% of 

the weight or a number of SNPs that together contribute 50% should be invalid because of 

horizontal pleiotropy. Given these different assumptions, if all three methods are broadly 

consistent, this strengthens our causal inference. For most of our MR analyses, we used two-

sample MR, in which, for all 57 of the insomnia GWAS hits identified in this study, we 

looked for the per allele difference in odds (binary outcomes) or means (continuous) with 

outcomes from summary publicly available data in the MR-Base platform. Results are 

therefore a measure of ‘any insomnia’ and sample 1 is UK Biobank (our GWAS) and sample 

2 a number of different GWAS consortia covering the outcomes we explored 

(Supplementary Table 17). For all four of the longevity outcomes and as follow up for CAD, 

we used one-sample MR with the SNP-outcome associations also obtained from UK 

Biobank. If we could not find one of the 57 SNPs in the outcome database we substituted for 

a proxy where possible, LD proxies are defined using 1000 Genomes European sample with 

r2 > 0.8. The number of SNPs used in each MR analysis varies by outcome from 11 to 53 

because of some SNPs (or proxies for them) not being located in the outcome GWAS (Table 

1).

Primary association analyses of the 57 genome-wide significant insomnia SNPs with CAD 

were performed in Hail (https://github.com/hail-is/hail) using imputed genotype dosages and 

a logistic regression model adjusting for age at first visit, sex, genotyping array, and the first 

10 principal components of ancestry. A total of 23,980 CAD cases were compared to 

388,326 referents. For Mendelian randomization, a fixed-effects inverse-variance weighted 

meta-analysis was performed of the SNP-specific association estimates with CAD, aligning 

each insomnia SNP allele/beta coefficient to “increased risk of insomnia.” Sensitivity 
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analyses were performed excluding the variants with the strongest effect estimate and/or 

widest confidence intervals to account for SNP heterogeneity.

Replication cohort.

Replication cohort sample ascertainment, phenotype definition, genotyping, quality control, 

imputation, and analyses are described in the Supplementary Note.

Reporting summary.

An accompanying Life Sciences Reporting Summary is published along with this 

manuscript.

Data availability.

GWAS summary statistics are available at the Sleep Disorders Knowledge Portal data 

download page (http://sleepdisordergenetics.org/informational/data).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 ∣. Manhattan plots for genome-wide association analyses of insomnia.
a, Frequent insomnia symptoms (ncases = 129,270, ncontrols = 108,352). b, Any insomnia 

symptoms (ncases = 345,022, ncontrols = 108,352). Dotted line is genome-wide significant (P 
= 5 × 10−8) results of linear mixed models adjusted for age, sex, principal components of 

ancestry, and genotyping array. SNP-based heritability estimates were calculated using 

BOLT-REML variance components analysis. Chromosomes are annotated with the nearest 

gene to each association signal.
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Figure 2 ∣. Shared genetic architecture between frequent insomnia symptoms and behavioral and 
disease traits.
LD-score regression estimates of genetic correlation (rG) of frequent insomnia symptoms are 

compared with the summary statistics from 224 publicly available genome-wide association 

studies of psychiatric and metabolic disorders, immune diseases, and other traits of natural 

variation. Blue, positive genetic correlation; red, negative genetic correlation, rG values 

displayed for significant correlations. Larger squares correspond to more significant P-

values. Genetic correlations that are significantly different from zero after Bonferroni 

correction are shown on the plot (after Bonferroni correction, P-value cut-off is 0.0002). All 

genetic correlations in this report can be found in tabular form in Supplementary Table 19. 

IQ, intelligence quotient.
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Figure 3 ∣. Causal relationships of insomnia symptoms.
a-f, Association between single nucleotide polymorphisms associated with frequent 

insomnia symptoms and CAD (a), subjective well-being (c), and depressive symptoms (e). 

Per allele associations with risk plotted against per allele associations with frequent 

insomnia symptom risk (vertical and horizontal black lines around points show 95% 

confidence interval for each polymorphism) results are shown for three different MR 

association tests. Forest plots show the estimate of the effect of genetically increased 

insomnia risk on CAD (b), depressive symptoms (d), and subjective well-being (f) as 

assessed for each SNP. Nearest gene(s) is displayed to the right of plot. Also shown for each 

SNP is the 95% confidence interval (gray line segment) of the estimate and the Inverse 

Variance MR, MR-Egger, and Weighted Median MR results in red. Sample size of each 

GWAS used in the MR analyses is as follows: frequent insomnia symptoms (ncases = 

129,270, ncontrols = 108,352), CAD (ncases = 60,801, ncontrols = 123,504), subjective well-

being (n = 298,420), and depressive symptoms (n = 161,460).
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