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Abstract

Purpose: To improve the precision of prescription duration estimates when using the

reverse waiting time distribution (rWTD).

Methods: For each patient we uniformly sampled multiple random index dates within

a sampling window of length δ. For each index date, we identified the last preceding

prescription redemption, if any, within distance δ. Based on all pairs of last prescrip-

tion and index date, we estimated prescription durations using the rWTD with robust

variance estimation. In simulation studies with increasing misspecification we investi-

gated bias, root mean square error (RMSE) and coverage probability of the rWTD

using multiple index dates (1, 5, 10, and 20). We applied the method to Danish data

on warfarin prescriptions from 2013 to 2014 stratifying by and adjusting for sex

and age.

Results: In simulation scenarios without misspecification, the relative bias was negli-

gible (�0.04% to 0.01%) and nominal coverage probabilities almost retained (93.8%–

95.4%). RMSE decreased with the number of random index dates (e.g., from 1.3 with

1 index date to 0.6 days with 5). With misspecification, the relative bias was higher

irrespective of the number of index dates. Precision increased with the number of

index dates, and hence coverage probabilities decreased. When estimating durations

of warfarin prescriptions in Denmark, precision increased with number of index

dates, in particular in strata with few patients (e.g., men 90+ years: width of 95%

confidence interval was 16.2 days with 5 index dates versus 35.4 with 1).

Conclusions: Increasing the number of random index dates used with the rWTD

improved precision without affecting bias.
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• The reverse Waiting Time Distribution (rWTD) considers the last prescription of each patient

before an index time point.

• The rWTD with only one index date (fixed or random) is statistically inefficient.

• Using the rWTD with multiple random index dates improves precision.

• Estimates can be found in Stata using the publicly available -wtdttt- package.

1 | INTRODUCTION

How to determine prescription durations and hence exposure status

remains an important question in most pharmacoepidemiological stud-

ies based on register data of redeemed prescriptions. Often, studies

rely on simple decision rules based on assumed consumption of a

defined daily dose or one tablet per day. However, not all prescription

registries contain information on the prescribed daily dose or days'

supply, and even when they do the information may not be consistent

with actual intake. We have therefore suggested the parametric

Waiting Time Distribution (WTD) as a flexible model-based alterna-

tive, which provides estimates of prescription durations only relying

on observed prescription data using a formal statistical model.1–3 The

WTD is an umbrella term for both the ordinary and reverse WTD

(rWTD). The methods rely on selecting a fixed index date and then

consider either the time to the first subsequent redemption (ordinary)

or from the last previous redemption (reverse) for each patient, in

both cases within a fixed time window. The WTD has been developed

for settings, where drugs are dispensed repeatedly to each patient

and it assumes an absence of seasonality in rates of prescription

redemptions and treatment stopping. However, even in situations

with detectable misspecification, the WTD has been shown to provide

estimates with modest bias.1 Further, in a recent extension of the

model, we have introduced random sampling of index dates to miti-

gate the effect of seasonal variation in rates of prescription redemp-

tions.4 In settings with seasonal variation, estimated prescription

durations will vary markedly with the location of a single fixed index

date, whereas using individual random index dates will provide a sta-

ble marginal estimate of the prescription duration for the entire sam-

pling period.

Current versions of the WTD all use a single index date for each

patient, which is statistically inefficient as it discards most of the

observed data. Especially when data is only available for few patients

or prescription durations need to be estimated in subgroups or

adjusted for multiple covariates, estimates may have low precision.

Building upon our previous approach of using a single random index

date, we suggest to improve the precision by sampling multiple ran-

dom index dates for each patient. By doing so, information from more

redemptions are used for each patient, which increases the effective

sample size. To account for the dependence of observations originat-

ing from the same patient, we use robust variance estimation. The

focus of this paper is on the rWTD, since it allows covariates, but the

extension with sampling multiple random index dates is also applicable

for the ordinary case, although then without covariates.

We first describe the modification of the rWTD with random

index dates to sampling more index dates for each patient within a

pre-specified sampling window. We then investigate the performance

of the method in simulation studies both without and with seasonal

variation in rates of prescription redemptions. Finally, we apply the

method to Danish data on warfarin redemptions.

2 | METHODS

The rWTD using either a fixed index date for all, t0, or individual ran-

dom index dates, t0i , has been introduced in previous papers.2,4

Briefly, the rWTD is a parametric two-component model consisting of

a prevalent component, given by the backward recurrence density

(BRD), and a uniform stopping component (Appendix A, Figure A1).

The BRD is the distribution of the time from the last preceding

redemption to a given index time, r, and is related to the inter-arrival

distribution (IAD), which governs the time between redemptions for

patients continuing treatment. If we let the distribution function F

denote the IAD depending on parameters θ and with mean M, it is

related to the density function g of the BRD through the formula

g r;θð Þ¼1�F r;θð Þ
M

:

For the approach with a fixed index date only redemptions within the

observation window t0�δ;t0ð Þ are included in the rWTD analysis,

whereas with random index dates the observation windows are indi-

vidual t0i�δ;t0ið Þ. The individual random index dates are uniformly

sampled from a sampling window of length δ, typically a calendar year

in applications. Hence, to perform a rWTD analysis with random index

dates, a data window of total length 2δ is needed so as to contain all

individual observation windows.

We now consider sampling multiple random index dates for each

patient, t0ij, within the sampling window (see Figure 1). Here t0ij

denotes the j'th random index date for patient i.

For each patient and each index date, we consider the observa-

tion window t0ij�δ;t0ij
� �

and identify the last prescription redemption

within this observation window, if any (see Figure 2).

The time rij is the time from this last redemption to the index date

t0ij. As we base the analysis on the rij 's we have effectively shifted the

time scales for each patient and each index date to align all index

dates. We can therefore include all the times from the pairs of last

preceding redemption until the given index date in the rWTD analysis
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in the same manner as for the analysis with one random index time

for each patient.4 Since we have more observations from the same

patient, we use robust variance estimation to account for this non-

independence in the data. Similar to the previously introduced WTD

methods, we estimate prescription durations as the time within which

80% of the prevalent patients have redeemed a new prescription,

τ80%, i.e. the 80th percentile of the IAD.1–4

The rWTD depends on the parameters θ, from the IAD, and p, the

fraction of prevalent users among the observed users in the observa-

tion window. As for the rWTD with a single fixed index date the

parameters of the rWTD can depend on covariates.3

2.1 | Simulation studies

We evaluated the performance of the proposed methods in four scenarios

with varying degrees of misspecification, as described below—for further

details see the Appendix A. To allow transparent comparison, the consid-

ered scenarios are the same as those used in a previous study to examine

the properties of the WTD with a single random index date.4

All scenarios assume that patients have a treatment episode con-

sisting of a sequence of prescription durations. The prevalence of

treated patients is assumed constant over time due to a constant inci-

dence rate and a stable distribution of the length of treatment epi-

sodes. The durations of treatment episodes vary independently of the

distribution of prescription durations within the treatment episode as

described below. For convenience in the simulations, stockpiling can

occur in the same way for both prevalent and incident users initiating

treatment in the stockpiling period. The scenarios are briefly described

below, for further details see Appendix A.

• Scenario 1: No stockpiling and constant probability that any pre-

scription redemption is the last of a treatment episode—no

misspecification.

• Scenario 2: No stockpiling and Log-Normally distributed durations

of treatment episodes—misspecification with respect to the treat-

ment stopping process.

• Scenario 3: Stockpiling due to larger redemptions at the end of the

year and Log-Normally distributed durations of treatment

episodes—misspecification with respect to the homogeneity of a

single Log-Normal IAD.

• Scenario 4: Stockpiling due to more frequent redemptions at the

end of the year and Log-Normally distributed durations of treat-

ment episodes—again misspecification with respect to the IAD

homogeneity as in Scenario 3.

Let IAD1 and IAD2 denote the Log-Normal IADs for prescriptions

redeemed in periods without and with stockpiling, respectively. For

Scenario 4 we further have IAD3, which denotes the Log-Normal IAD

for the last prescription of the year redeemed after stockpiling.

The simulated datasets are analyzed using the rWTD with 1, 5,

10, and 20 random index dates for each patient, respectively. The prevalent

component of the rWTD corresponds to a single Log-Normal IAD. We

estimate the relative bias, root mean square error (RMSE) and coverage

probability of nominal 95% confidence intervals with respect to τ80% for

each setting. By definition, the RMSE can be decomposed into a bias

and standard error term, where the latter is a measure of precision.

The Stata code for the simulation scenarios are available upon request.

2.2 | Application

In the empirical analysis we used Danish data on prescription redemp-

tions of warfarin in the years 2013 and 2014.5 We applied the new

method with 1, 5, 10, and 20 random index dates for each patient,

respectively, and a Log-Normal prevalent component with parameters

μ and σ. We conducted two analyses; one stratified by sex and age

group (0–49, 50–59, 60–69, 70–79, 80–89, and 90+ years); and a

joint model for both sexes and all age groups where the parameters of

the rWTD (p, μ, and σ) depend on sex and age group. For details on

the model likelihood see Appendix B, which also shows results from a

model exploring how parameters in this case depends on sex and age

group.

F IGURE 1 Prescription redemption dates, Rx, for two individuals.
For each patient, the drug purchase history is replicated three times
corresponding to three different random index dates, t0ij, sampled
uniformly within the sampling window

F IGURE 2 Prescription redemption dates, Rx, for two individuals.
For each patient, the drug purchase history is replicated three times
corresponding to three different random index dates, t0ij. The last
observation (dark gray) in the individual random observation windows,
t0ij�δ;t0ij
� �

, are identified and we consider the time from the index
date to the last observation, rij
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All statistical analyses were conducted in Stata 15.1.6 A dedicated

software package (wtdttt) implementing the method is provided at the

IDEAS repository (http://ideas.repec.org) and may be installed in Stata

using a search for the package name, that is, -search wtdttt, all-.

3 | RESULTS

3.1 | Simulation studies

The results of the simulation studies (annual number of treated

patients, n¼5,000), conducted using the rWTD with multiple random

index dates, are presented in Table 1. Similar results were found for

n¼1,000 and n¼15,000 and are hence not presented here

(Appendix A, Table A1 and A2).

In Scenario 1, a correctly specified rWTD model, corresponding to a

single Log-Normal IAD, was used to analyze the simulated data. With a

single random index date, the RMSEs were 0.5 and 1.3 days for median

prescription durations of 1.5 and 3 months, respectively. The precision

was almost doubled by sampling five random index dates. In scenarios

with median prescription durations of 3 months, the RMSE decreased

from 1.3 days to 0.6 days when using 5 random index dates and further

to 0.4 days with 20 random index dates. Whether sampling 1, 5, 10, or

20 random index dates for each patient, the relative bias was negligible

(�0.04% to 0.01%) and the nominal coverage of 95% was almost

retained (93.8%–95.4%) for all setups.

Scenario 2 introduces a form of length-bias due to the way treatment

stopping is implemented (stopping is more likely to occur after a prescrip-

tion with a long duration—for further details see Appendix A). Conse-

quently, the relative bias (�0.43% to �0.20%) is slightly higher for all

setups than in Scenario 1. As expected, the small bias is not affected by the

number of random index dates used for each patient, and consequently

the RMSE is the same as or only slightly higher than for Scenario 1 (0.8 and

0.6 days for median 3 months when sampling 5 and 20 random index

dates, respectively). It shows the same tendency of RMSEs decreasing with

the number of random index dates due to an increase in precision. As pre-

cision increases, the misspecification leads to lowered coverage probabili-

ties (80.0% for median 3 months with 20 random index dates).

For Scenario 3 and 4 misspecification is more pronounced, since we

use a model with a single Log-Normal IAD to fit data corresponding to a

two- or three-component mixture of IADs. The varying degrees of mis-

specification lead to higher relative bias (�0.83% to 6.71%) and lower cov-

erage probabilities (3.2%–95.2% for all setups using 1 random index date).

The relative bias is unaffected by the number of random index dates and

coverage probabilities decreases with the number of index dates (0.0%–

95.1% using 20 random index dates). Again, the precision improves with

the number of random index dates irrespective of themisspecification.

3.2 | Empirical study

The 80th percentiles for prescription durations of warfarin in Den-

mark, 2013–2014 based on stratified analyses using the rWTD with

1, 5, 10, and 20 random index dates for each patient showed

improved precision with increasing number of index dates (Table 2).

Using 1 random index date for each patient led to an estimate of 89.7

(87.7; 91.7) days for males corresponding to a width of the 95% confi-

dence interval of 4.0 days. By increasing this to 5 random index dates

for each patient, and hence increasing the total number of observa-

tions in the analysis fivefold, the precision improved with an estimate

of 91.1 (90.0; 92.3) days, that is, the width decreased to 2.3 days. By

increasing the number of random index dates for each individual fur-

ther to 10 and 20, the precision improves slightly with the width

decreasing to 2.0 and 1.9 days, respectively. For the subgroup of

males aged 90 years or above, the width decreases from 35.4 to

16.2 days when using 5 random index dates instead of 1—and it fur-

ther decreases to 11.1 days with 20 index dates. Similar tendencies

for the precision where seen for the females and other age groups.

When a joint model for both sexes and all age groups was used to

estimate prescription durations for groups defined by sex and age

group, precision again increased with number of index dates (Table 3).

We first explored how the three parameters of the rWTD (p, μ, and σ)

depended on age and sex and found that the variation in prescription

durations, σ, had no clear dependence on sex and age, while the pro-

portion of patients continuing treatment, p, depended on age (for fur-

ther details see Appendix B, Tables B1 and B2). Consequently, we

present results from a model where σ did not depend on any

covariates, p depended on age group, and μ depended on sex, age

group and their interaction. Similar to the stratified analysis the width

of the 95% confidence interval decreases for males aged 90 years or

above, from 35.1 to 18.4 days, when using 5 random index dates

instead of 1. It further decreases to 13.9 days with 20 index dates.

Similar tendencies for the precision were seen for females and the

other age groups.

4 | DISCUSSION

Using multiple random index dates for each patient to include more

observations in the rWTD analysis increases the precision of the esti-

mates as intended. When the model was correctly specified, precision

doubled when using 5 random index dates instead of 1. In line with

previous studies, the relative bias is negligible when there is no or

very little misspecification.4 It was a general finding that the relative

bias of rWTD estimates of prescription duration was unaffected by the

number of random index dates. Consequently, nominal coverage was

retained in scenarios where the model was correctly specified, but in cases

with misspecification, the coverage probabilities were lower when using

more random index dates due to the increased precision. For the small

strata in our empirical study, for example, males and females above

90 years, we have a low precision when using only 1 random index date

and hence we see a more substantial gain in precision when using more

random index dates here as compared to the larger strata. A stratified anal-

ysis based on sex and age group resembles a joint model adjusting all

parameters for sex, age and their interaction. Results of the reduced model

were similar with lowest precision using only 1 random index date, espe-

cially for the smaller groups of sex and age, and a precision that increased

with number of random index dates.
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The primary advantage of sampling multiple random index dates for

each patient is that we utilize the information in the data more efficiently

than when sampling only one random index date. The approach is straight-

forward since we for each random index date consider the time since the

last preceding prescription redemption and use them as before in the

rWTD analysis to obtain estimates of the 80th percentile of the prescrip-

tion duration. Hence, by sampling multiple random index dates we have a

larger dataset to perform the rWTD analysis on, which improves the preci-

sion of the estimates. However, we now have to use robust variance esti-

mation to allow for the dependence of multiple observations from the

same individual.

This further development of the rWTD method shares most limita-

tions with the previous versions using a single index date, such as ignoring

censoring, being applicable for drugs with a more or less chronic usage

pattern and being sensitive to misspecification due to seasonality in rates

of prescription redemptions or treatment stopping.1–4 The sensitivity of

the model to misspecification, combined with the improved precision,

leads to lower coverage probabilities when the number of random index

dates is increased. It is therefore crucial to investigate the model fit in

diagnostic plots to detect misspecification. However, even though bias

may be present, it is reassuring that even for the most extreme case with

stockpiling due to larger redemptions, the estimate was only 4.1 days off

from the true duration of 60.8 days, which may in many applications be

within the acceptable margin of error.

When prescription durations are not recorded directly in the

pharmacoepidemiological databases they have to be estimated, either

from the available data or by imposing external knowledge. This is the

case for many countries, for example, Denmark, but for some countries,

for example, in North America, databases contain measures of days sup-

ply.5,7 However, although intended days supply are registered in the data-

bases this is, not necessarily, consistent with their actual consumption and

hence it can still be relevant to have a way of estimating prescription dura-

tions. The WTD approach is intended to estimate prescription durations

consistent with actual consumption. Prescription durations are directly

associated with treatment durations which in turn are used for defining

exposure status. Hence the choice of prescription duration can drastically

affect the results of a pharmacoepidemiologic study. A common approach

for estimating prescription durations has been to use decision rules, such

as assuming a consumption of one defined daily dose or one tablet per

day, or other more flexible decision rules.8–11 These approaches are based

on decision algorithms and it is not straightforward to validate and refine

these methods since they are not based on an explicit model, in contrast

to the WTD-based approaches. The main challenge to using the WTD has

until now been its poor efficiency, as it only utilizes one prescription for

each patient. Using multiple random index dates improves precision, which

is a virtue, although it does not affect bias and hence causes coverage

probabilities to drop when the model is misspecified. In general using the

WTD with random index dates is preferable since this method performs

equally well or even better than the WTD with a fixed index date.4 How-

ever, it also depends on whether we are interested in a marginal estimate

for the entire period or the point prevalence at a given time. For the latter

we need to use the WTD with a fixed index date, assuming there is no

misspecification.T
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Using the WTD with more random index dates yields a consider-

able gain in precision, which becomes even more evident when we

have a small sample size or when we wish to account for patient char-

acteristics in stratified or adjusted analyses. However, this gain in pre-

cision comes at a computational cost. For the scenarios without

seasonal variation (Scenario 1 and 2) we found that the RMSE was

almost reduced by half when sampling 5 random index dates instead

of 1. Using j≥ i random index dates leads to an approximate
ffiffiffiffiffi
j=i

p

times decrease in standard error as compared to using i random index

dates. Sampling 5 random index dates instead of 1 thus gives us

approximately 2.2 times narrower confidence intervals and 20 random

index dates 4.5 times narrower. Even though precision improves with

the number of random index dates, the most noticeable improvement

is obtained with the first additional index dates, that is, increasing

from 1 to 5. Since the number of observed prescription redemptions

is limited for each patient, there is likely to be an upper limit for the

number of index dates that can be meaningfully included. However,

even with 20 index dates we found a small improvement in precision,

although this exceeded the average annual number of individual

redemptions.

In conclusion, we suggest using the rWTD with multiple random

index dates to obtain estimates of the marginal prescription duration

over a sampling period of interest with a higher precision. Further

work is needed on how to detect and account for misspecification, for

example by inclusion of covariates in the model and we expect that

having more data available for the analyses will give us a higher flexi-

bility in trying to model various kinds of misspecification.
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