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Abstract 

Background: Regression models are often used to explain the relative risk of infectious diseases among groups. For 
example, overrepresentation of immigrants among COVID-19 cases has been found in multiple countries. Several 
studies apply regression models to investigate whether different risk factors can explain this overrepresentation 
among immigrants without considering dependence between the cases.

Methods: We study the appropriateness of traditional statistical regression methods for identifying risk factors for 
infectious diseases, by a simulation study. We model infectious disease spread by a simple, population-structured ver-
sion of an SIR (susceptible-infected-recovered)-model, which is one of the most famous and well-established models 
for infectious disease spread. The population is thus divided into different sub-groups. We vary the contact structure 
between the sub-groups of the population. We analyse the relation between individual-level risk of infection and 
group-level relative risk. We analyse whether Poisson regression estimators can capture the true, underlying parame-
ters of transmission. We assess both the quantitative and qualitative accuracy of the estimated regression coefficients.

Results: We illustrate that there is no clear relationship between differences in individual characteristics and group-
level overrepresentation —small differences on the individual level can result in arbitrarily high overrepresentation. 
We demonstrate that individual risk of infection cannot be properly defined without simultaneous specification of the 
infection level of the population. We argue that the estimated regression coefficients are not interpretable and show 
that it is not possible to adjust for other variables by standard regression methods. Finally, we illustrate that regression 
models can result in the significance of variables unrelated to infection risk in the constructed simulation example 
(e.g. ethnicity), particularly when a large proportion of contacts is within the same group.

Conclusions: Traditional regression models which are valid for modelling risk between groups for non-commu-
nicable diseases are not valid for infectious diseases. By applying such methods to identify risk factors of infectious 
diseases, one risks ending up with wrong conclusions. Output from such analyses should therefore be treated with 
great caution.
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Background
Identifying overrepresented groups in infectious disease 
case statistics is important to guide targeted interven-
tions. Previous studies have shown that interventions 
are most effective if they are targeted towards high-risk 
groups [1, 2]. If the elevated risk of infection can be 
attributed to intervenable causes, then targeted interven-
tions can be implemented to eliminate these causes as 
part of the mitigation process.

During the COVID-19 outbreak, many studies have 
investigated potential risk factors for infection by using 
traditional statistical methods on data of the occurrence 
of infection in different groups [3–11]. As a motivating 
example in this article, we will consider studies investi-
gating overrepresentation of foreign-born, immigrants, 
and certain ethnic minorities among individuals infected 
with COVID-19 [3–10]. Some suggested explanations 
include that these individuals are disproportionately 
overrepresented in specific groups of the population 
with higher risk of infection; they typically live in more 
crowded households, have lower socioeconomic status, 
have less access to health care and insurance, are at ele-
vated risk for other underlying diseases, and are overrep-
resented in occupations with high exposure [3, 4, 12, 13].

To understand whether overrepresentation in such 
individual risk factors can explain the overrepresentation 
in cases, different studies have applied statistical regres-
sion models [3–9]. Common for these studies is that they 
find an effect of ethnicity or country of birth, even after 
adjusting for confounding/mediating factors associated 
with an elevated risk of infection, like socioeconomic 
status and household size. In these studies, the research 
question is often framed in terms of the direct effect of 
ethnicity on infection, therefore they want to control for 
known mediators and confounders. In our example, we 
thus also consider a mediating variable, but the numeri-
cal results would be identical in a situation where one 
would control for a confounding variable instead.

Traditional statistical regression methods can be 
applied to identify risk factors associated with different 
medical conditions, which in turn can provide insights 
into identifying potential causes for the condition. These 
methods are, as we will show, not in general suitable for 
infectious diseases. Infectious diseases differ from non-
communicable diseases as there is no simple relationship 
between an increased risk of infection and the number of 
individuals infected.

Another related problem is that data from infectious 
diseases violate the crucial assumption for regression 
models of independent observations. This dependence 
is not easy to adjust for through, for example, cluster or 
time series analyses. Because transmissible diseases are 

acquired through contacts, the contact pattern and social 
network are the most important explanatory variables for 
infectious diseases [14]. Hence it is not only your individ-
ual risk factors that are important for your risk of infec-
tion, but also the properties/risk factors of your social 
network. This study will separate between individual risk 
factors that only include covariates related to the individ-
ual, and properties related to the social network. We will 
refer to the first as individual risk factors, and the latter 
as properties/risk factors of the individual’s contacts. As 
the disease outcome on an individual directly depends on 
the outcomes (and thus exposures) of other individuals 
in the population, we can both have direct effects on the 
individual due to their individual risk factors, and indi-
rect effects of different exposure variables through the 
population due to the risk factors of the individual’s con-
tacts [15–17]. In this study, we focus on estimating direct 
effects of exposures.

In this study, we will employ state-of-the art statisti-
cal methods to analyse data on communicable diseases 
by standard regression methods. By standard/traditional 
regression methods, we refer to readily available meth-
ods in statistical software which do not account for the 
detailed contact structure nor the dynamics of disease 
transmission. Though we refer to the methods as regres-
sion methods, other statistical techniques like statistical 
tests and ANOVA analyses are subject to the same prob-
lems if the contact structure and transmission dynamics 
are not considered.

One of the key reasons for using regression models is 
to adjust relationships for confounders or mediators, 
allowing estimates of direct effects of an exposure. In 
studies addressing the causes of why ethnic minorities 
are disproportionately affected by coronavirus disease, 
this is a main aim. In regression models, one can estimate 
the effect of a change in a variable on another variable, 
adjusted for other variables, in terms of the regression 
coefficient. Hence, by interpreting the regression coeffi-
cient, one can answer questions like: what is the risk of 
becoming sick in group A compared to group B if the fac-
tors C, which are differentially represented in the groups, 
would have been equally distributed. For infectious dis-
eases, adjusting for potential confounders can be even 
more problematic than investigating univariant relation-
ships because kinships, households, social and cultural 
structures shape human-to-human contact patterns, and 
hence the infection dynamics.

Assortative mixing, meaning a preference for individu-
als to have contacts with others that share characteristics 
or origins, is common in social networks. For example, 
this has been shown for traits like gender, age, occupa-
tion, religion, obesity, smoking, number of contacts, 
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happiness, and negative vaccine sentiments [18–23]. 
Importantly, preferential mixing by ethnicity and immi-
grant status is well documented [18, 24, 25]. Hence, since 
certain immigrants/ethnic minorities belong to a high-
risk group for infection, and typically have strong social 
ties within their group, individuals from these groups can 
be at higher risk of infection, even if they exhibit low-risk 
characteristics at the individual level.

In this study, we have constructed a simulation experi-
ment to investigate the consequences of applying tradi-
tional statistical regression methods to analyse individual 
risk of infectious diseases. We use a simple, population-
structured SIR-model [1] (susceptible-infectious-recov-
ered), a general and well-established model for the spread 
of respiratory infections with acquired immunity, assum-
ing random mixing within the population groups. We 
show that both point estimates and significance tests 
from regression models are likely to be wrong when 
applied to infectious diseases, and that it is necessary to 
take the data generation process into account. Although 
this study is motivated by the studies on risk factors for 
COVID-19 among immigrants, our results and conclu-
sions are more general and relevant in other settings, 
specifically when the contact pattern is assortative.

Methods
Framework
We consider analyses where the goal is to use observed 
counts or prevalence of infection in various groups to 
learn about the underlying parameters of disease trans-
mission. In this paper we analyse a simplified SIR-model 
where we divide the population into first two and then 
extend to four sub-groups. The two-group setting is the 
most parsimonious setting considered and is used to 
illustrate the relationship between individual and group-
level risks, whether one can use a fitted regression model 
for contrafactual predictions to generalise to other group 
sizes, and the dependence between the incidence ratio 
in the two groups. The four-group setting is motivated 
by the studies of ethnicity and COVID-19 and is used to 
study the estimated regression coefficients from observa-
tional data.

We assume that we have data on the number of infected 
and total population sizes for each sub-group (individual-
level data will give similar results) at timepoint t. In this 
simplified setup, either four or sixteen key parameters 
control the transmission dynamics between the two or 
four sub-groups, respectively. These parameters, βij , typi-
cally derived from contact studies, are summarised in a 
Who-Acquires-Infection-from-Whom matrix as usual in 
infectious disease modelling, where βij is the rate of trans-
mission from an individual in group j to an individual in 

group i . We assume here that all groups have the same 
duration of infectiousness.

An important distinction is that “high-risk” can in this 
setup be due to at least three different factors that alone 
or in combination can explain an overrepresentation of 
cases in one of the sub-groups. We can decompose each 
βij as βij = inf j × cij × susci , where inf j is the infectiv-
ity of group j , cij is the number of contacts group i has 
with group j per time unit, and susci is the susceptibility 
of group i . Hence, we in general expect higher incidence 
in a group with higher susceptibility, or if the group has 
overall more contacts. We also expect higher incidence in 
a group with higher infectivity, if there are more contacts 
within than between groups. These three different poten-
tial causes of increased infection prevalence may have 
different effects on the overall disease dynamics in the 
population. In this study, we assume for simplicity that 
inf j = 1 in all simulations.

We define cij as the total contact rate between groups i 
and j , hence depending on the population sizes in the 
groups. It is easier to specify our scenarios in terms of pij , 
which is the relative frequency of contacts between indi-
viduals in groups i and j . We specify a situation in which 
individuals have twice as many contacts within their 

group as between groups by pij =
(

2/3 1/3
1/3 2/3

)

.

This matrix is related to cij as follows:

where Ci is the total relative contact rate for group i . 
If all the groups have the same number of contacts, we 
have Ci = 1 . Hence, the cij are calculated from the pij 
in a way that ensures that the total number of contacts 
per time unit for everyone in group i is given by Ci . In 
all settings except the last one (defined as case 4), we use 
Ci = 1 , such that all groups have the same total contact 
rate. Hence, when Ci = 1 , the cij are calculated from the 
pij , ensuring that all groups have the same total number 
of contacts in the population per time unit.

In all simulations, we start with 0.1% infected in each 
group as our initial conditions.

Simulated population
Two sub‑groups
We simulate data in a population with N = 100000 citi-
zens. We first split the population into two sub-groups 
A  and B , and we assume a higher susceptibility in group 
B  than in group A , such that suscB = a · suscA , where 
a ≥ 1 . We let NA = 90000 and NB = 10000 be the number 
of individuals in groups A and B , respectively. The relative 
contact matrix is defined by

cij =
pij

wi
,wi =

∑

jpijNj

NCi
,
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(

pAA pAB
pBA pBB

)

, where pij , i, j ∈ A,B is the relative number 

of contacts group i has with individuals in group j.
As an example of a contact structure in this population, 

let CA = CB = 1, pAB = pBA = 1/3, pAA = pBB = 2/3 . 
This corresponds to a setting where all individuals have 
the same total number of contacts, but twice as many con-
tacts within their own sub-group. Plugging in the quanti-
ties we get cAA = 1.05, cAB = 0.53, cBA = 0.91, cBB = 1.82.

Cases We simulate two cases in the two-group setting, 
case 1 and case 2.

Case 1: We let a = 1.2 . We vary the basic reproduction 
number R0 (or, equivalently, suscA ) and the timepoint for 
which we compare the outcome (T). We assume no con-

tact between the groups, so 
(

pAA pAB
pBA pBB

)

=

(

1 0
0 1

)

 . We 

compute the incidence rate ratio (hereafter denoted as 
relative risk) resulting from the simulations, that is, the 
proportion infected in sub-group B divided by the pro-
portion infected in sub-group A . For non-communicable 
diseases, one would expect a one-to-one relationship 
between individual risk of disease and relative risk, i.e. a 
relative risk of 1.2.

Case 2: We set suscA such that for a = 1 , R0 = 0.9 , and 
then vary a . See supplementary material for the expression 
for R0 . We assume random mixing between the groups, so 
(

pAA pAB
pBA pBB

)

=

(

1/2 1/2
1/2 1/2

)

 . We study the results for time 

point T = 200 days, which for most parameter choices in 
the paper corresponds to after the epidemic has burnt out. 
We compare two different outcomes:

A) We investigate whether the predictions of a Pois-
son regression model (see Sect.  Poisson regres-
sion model) fitted to simulated data on the number 
infected in each group from a setting with a differ-
ence between the two groups can be used to pre-
dict the total number of infections in the setting 
with no difference between the groups. Specifi-
cally, the fitted regression model is used to predict 
the proportion infected in the contrafactual sce-
nario where the entire population belongs to the 
low-risk group A , that is, NA = 100000,NB = 0 . 
We compare this prediction with the simulations 

when the whole population is in A . For non-com-
municable diseases, one would expect no discrep-
ancy between the simulations and the predictions 
from the fitted model.

B) We plot the proportion infected in the low-risk group 
when we vary the susceptibility in the high-risk 
group. If individual risks of infection only depended 
on individual characteristics, one would expect the 
proportion infected in the low-risk group to be inde-
pendent of the properties of the high-risk group.

Four sub‑groups
We split the population into four groups, Ah , Al , Bh , 
and Bl , inspired by the recent analyses of ethnicity 
and risk of COVID-19 infection. We assume two eth-
nicity groups A and B , and that one ethnicity group 
( B ) is disproportionately represented in a high-risk 
group. Hence, the two ethnicity groups are divided 
into two risk groups, with one risk group ( h ) having 
a higher risk than the other ( l  ). This could for exam-
ple represent a high-risk occupation. As before, we let 
NA = 90000 individuals, and NB = 10000 individuals. 
We further assume that 10% and 50% of the individuals 
in ethnicity groups A and B are in the high-risk group, 
respectively. Hence, we let group Ah be the NAh

= 9000 
individuals in ethnicity group A with the high indi-
vidual risk, group Al be the NAl

= 81000 individuals in 
ethnicity group A with low individual risk, group Bh be 
the NBh = 5000 individuals in ethnicity group B with 
high individual risk, and finally Bl be the NBl = 5000 
individuals in ethnicity group B with low individual 
risk.

The contact matrix is defined by the contacts between 
the risk levels h and l , and the contacts between the eth-
nicity groups A and B . Hence, let
(

phh phl
plh pll

)

 be the relative contact matrix between the 

risk levels, where pij , i, j ∈ h, l is the relative number of 
contacts risk group i has with individuals in risk group j . 
Further, let
(

pAA pAB
pBA pBB

)

  be the relative contact matrix between 

ethnicity groups A and B , where pij , i, j ∈ A,B is the rela-
tive number of contacts ethnicity group i has with indi-
viduals in ethnicity group j . The relative contact matrix 
between the groups Ah , Al , Bh , and Bl is then defined by 
the outer product of these two matrices, such that
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We vary the amount of mixing within and between 
the ethnicity groups (assortativity). We define random 
mixing in ethnicity groups as a contact structure where 
every individual has the same probability of being in 
contact with any other person irrespective of ethnicity 
groups, while we denote an assortative contact structure 
as homogeneous mixing. We simulate with different lev-
els of assortative mixing, defined by the relative number 
of contacts within to between the ethnicity groups. An 
assortativity of 1 then corresponds to random mixing 
with pAA = pAB = pBA = pBB = 1/2 . An assortativity 
of 2 is defined as twice as many contacts within ethnic-
ity groups, that is, pAA = pBB = 2/3, pAB = pBA = 1/3 , 
where we divide by 3 for normalisation. More gener-
ally, an assortativity of x is defined by x times as many 
contacts within as between ethnicity groups, such that 
pAA = pBB = x/(x + 1), pAB = pBA = 1/(x + 1).

Cases We simulate two different cases in the four-
group setting, cases 3 and 4, with varying definitions 
of the high-risk individuals. We set the parameters in 
both cases such that R0 = 1.3 . We study the results at 
T = 200 days.

Case 3: In case 3, the high-risk individuals are defined by a 
higher susceptibility than the low-risk individuals, in such 
manner that suscAh

= suscBh = a · suscAl
= a · suscBl , 

with a ≥ 1 . We assume pij = 1/2 for all i, j ∈ h, l and 
vary a . This definition of elevated risk could correspond 
to closer contact, genetic or biological differences, fewer 
hygienic precautions, or a mixture of those effects. We 
compute how much of the relative risk of ethnicity group 
B compared to A can be explained by a higher proportion 
of high-risk individuals (see Sect.  Unexplained relative 
risk). For non-communicable diseases, we would expect 
no unexplained relative risk. For a = 2 we fit a Poisson 
regression model on the outcome of the simulations, 
adjusting for risk level and ethnicity. We investigate how 
the confidence interval (CI) of the regression coefficient 
related to ethnicity varies with assortativity.

Case 4: In case 4, we assume suscAh
= suscAl

= suscBh

= suscBl
= 1 , but we let the high-risk individuals have 

more contacts than the low-risk individuals. The addi-
tional contacts are with other high-risk individuals, such 
that phh = d · phl = d · plh = d · pll , where d ≥ 1 . We 
assume phl = plh = pll = 1 and let d = 3 . To account 
for the increased number of contacts, we now use 

⎛
⎜
⎜
⎜
⎜
⎝

pAhAh
pAhAl

pAlAh
pAlAl

pAhBh
pAhBl

pAlBh
pAlBl

pBhAh
pBhAl

pBlAh
pBlAl

pBhBh
pBhBl

pBlBh
pBlBl

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

phhpAA phlpAA
plhpAA pllpAA

phhpAB phlpAB
plhpAB pllpAB

phhpBA phlpBA
plhpBA pllpBA

phhpBB phlpBB
plhpBB pllpBB

⎞
⎟
⎟
⎟
⎟
⎠

.

CAh
= CBh = 1,CAl

= CBl = 1.28 . As for case 3, we fit a 
Poisson regression model to the simulation outcome and 
investigate the CI for the ethnicity regression coefficient 
when varying assortativity. This definition of elevated 
risk could be due to larger households, less adherence to 
social distancing advice, or an occupation that requires 
more contacts.

Transmission model
We simulate disease spread by a stochastic SIR-model [1]. 
Let Si , Ii, and Ri be the number of susceptible ( S ), infectious 
( I ), and recovered ( R ) individuals in group i . The following 
set of difference equations describes the disease develop-
ment over time Si(t + Δt) = Si(t) − X

1
, Ii(t + Δt) = Ii(t) + X

1
− X

2
, 

where X1 ∼ Binom

�
Si(t),Δt

∑
j

suscipij infj Ij

N

�
, and  X

2
∼

Binom
(
Ii(t),Δt�

)
, where 1/γ = 3 days is the assumed 

duration of the infectious period, �t = 0.2 is the time-step 
used in the simulations, and i = A,B in the two-group set-
ting, and i = Ah , Al , Bh , Bl in the four-group setting. We 
assume a constant population size so that Ri = Ni − Si − Ii.

Analysis of simulation results
Poisson regression model
We fit a Poisson regression model on the outcome 
of the disease simulation, here exemplified in the 
four-group setting. We include ethnicity and risk 
level as covariates, resulting in the following regres-
sion model logµi = logNi + β0 + βeei + βrri , where 
Yi ∼ Poisson(µi) denotes the number of infected indi-
viduals in group i , ei and ri denote ethnicity and risk 
group status for group i , respectively, and as before, Ni 
are the population sizes of each group used as an offset. 
We are interested in the estimated regression coefficient 
βe , which quantifies the effect of ethnicity. We let ethnic-
ity group B and l be the reference levels for ethnicity and 
risk level, respectively. We assume a standard significance 
level of 0.05.

Unexplained relative risk
Since a higher proportion of ethnicity group B belongs 
to the high-risk group, we expect a larger infected pro-
portion in ethnicity group  B . We denote the explained 
relative risk in ethnicity group B compared to A as the 
relative risk which can be explained by a higher propor-
tion in the high individual risk group. This can be com-
puted from the proportion of high-risk individuals in 
each ethnic group, together with the observed relative 
risk between the high and low-risk group. Specifically, let 
RAh

,RAl ,,RBh , and RBl be the total proportion of infected 
individuals in each group. The explained relative risk, ER , 
is then given as  ER = (0.5+ 0.5RRr)/(0.9+ 0.1RRr) , 
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where RRr = (RAh
+ RBh)/(RAl

+ RBl ) , is the observed 
relative risk between the high- and low-risk groups. 
The unexplained relative risk, UR , in ethnic group 
B is then given by the observed relative risk in eth-
nic group B , minus the explained relative risk, that is 
UR = (RBh + RBl )/(RAh

+ RAl
)− ER . For non-communi-

cable diseases, we would expect no unexplained relative 
risk.

Estimating from the data‑generation model using 
approximate Bayesian computation
In addition to analysing the simulated data with regres-
sion models, we apply a simple Markov Chain Monte 
Carlo approximate Bayesian computation (ABC-MCMC) 
algorithm [26] to estimate the risk parameters in the 
groups from the simulations. We use these simulations to 
explore if we can obtain the correct parameters when the 
true data-generating model is accounted for. Details are 
provided in the supplementary material.

Results
Case 1
Figure  1 shows the relative risk obtained in the simula-
tions when R0 is varied and the individual risk in group B 
is 20% higher than the individual risk in group A for dif-
ferent simulation times T. We note that there is no simple 
relationship between the difference in individual risk and 
the overrepresentation at group level in the simulations; 
when varying R0 , the overrepresentation varies between 
0 and 10. There is a large spread of relative risk values for 

each value of R0 due to the stochastic nature of the trans-
mission model. As R0 becomes large, the overrepresenta-
tion becomes small, as most of the population is infected. 
For higher R0 , the overrepresentation is in general larger 
earlier in the outbreak (low T) than later. For lower R0 , 
the overrepresentation is in general larger later in the 
outbreak (high T) than early in the outbreak. The disease 
dynamics for this set of models are provided in the sup-
plementary material, section Infection dynamics in cases 
1 and 2.

Case 2
Figure 2a shows the discrepancy between the predictions 
from the regression model and the model simulations 
when we use the regression model fitted on data based 
on two groups with different susceptibilities to predict 
the total number of cases if we only had one group (low 
risk), when the difference in susceptibility is varied. We 
note that the regression model’s predictions significantly 
overestimate the proportion of infected when everyone 
belongs to the low-risk group. The problem increases 
when the relative susceptibility between the groups 
( a ) increases. When there is no difference between the 
high- and low-risk group, the point predictions from the 
regression model perform well in this simple two-group 
setting. However, the figure clearly shows that the pre-
diction intervals from individual simulations do not ade-
quately cover the spread in simulations, indicating that 
the Poisson regression underestimates the uncertainty. 
For non-communicable diseases and other settings where 

Fig. 1 Case 1. Proportion infected in group B divided by the proportion infected in group A when varying R0 . Median and 95% CI based on 1000 
simulations



Page 7 of 13Engebretsen et al. BMC Medical Research Methodology          (2022) 22:146  

Poisson regression is applicable, we would expect no 
discrepancy.

Figure 2b shows how the proportion of infected in the 
low-risk group depends on the properties of the high-risk 
group. The larger the susceptibility in the high-risk group, 
the larger proportion infected in the low-risk group. We 
note that we need a large enough a to sustain an epidemic 
in the high-risk group. We also note a saturation effect in 
a, such that above a certain level, the fraction infected in 
the low-risk group is almost constant when a increases. 
The ratio of infected in the low-risk group increased from 
approximately 0 to almost 0.3, through increasing the 
susceptibility of the high-risk group. The disease dynam-
ics for case 2 are provided in the supplementary material, 
section Infection dynamics in cases 1 and 2.

Note that we have chosen to illustrate the results for 
T = 200, but for other time points, the results would 
likely be different, as illustrated in Fig. 1.

Cases 3 and 4
Figure  3a shows how the unexplained relative risk for 
ethnicity group B increased when we increased the rela-
tive risk between the high- and low-risk group. The effect 
is more prominent when the assortative mixing within 
ethnic groups is larger. For non-communicable diseases, 
we expect no unexplained relative risk.

Figures 3b and c show the CI for the ethnicity regres-
sion coefficient when the proportion of contacts within 
the same ethnicity groups increases for cases 3 and 4, 
respectively. Since we know the truth in the simulation, 
we know that ethnicity does not affect the individual risk 

of infection. For random mixing, the regression analysis 
resulted in the truth—no effect of ethnicity (CIs cen-
tred at 1). However, the higher the tendency for contacts 
within the ethnicity groups, the higher the estimated 
effect of ethnicity. With a large enough degree of assorta-
tive mixing, we find an ethnicity coefficient significantly 
different from 1. Note that we are focussing on the sig-
nificance of the coefficients and not on the effect sizes. 
As illustrated for case 1 (cf. Figure  1), the effect sizes 
are highly dependent upon which time point is used to 
compare the relative risks, as these cannot be interpreted 
as estimates of individual-level properties. This is the 
case for both cases 3 and 4. The effect is larger when we 
increase the susceptibility in the high-risk group than 
when we increase the number of contacts, but the results 
for the two different definitions of the high-risk group are 
qualitatively very similar.

In the supplementary material we show that we can 
apply the ABC-MCMC algorithm together with the 
simulation model to accurately estimate the trans-
mission parameters. To accurately estimate some of 
the parameters, the true transmission model and the 
other parameters are needed. For example, one needs 
to assume a value, or a range of possible values, for the 
assortativity.

Validity of traditional methods
The results above show that, in general, one cannot 
use traditional statistical methods to estimate the indi-
vidual-level effects from population-level infectious 

Fig. 2 Case 2. a) Predictions from the fitted Poisson regression model in green and disease simulations in orange for a population with only low-risk 
individuals. b) Fraction infected in the low-risk group when keeping all parameters fixed except the susceptibility in the high-risk group ( a). Median 
and 95% CI based on 1000 simulations
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Fig. 3 Cases 3 and 4. a) Unexplained relative risk as a function of the relative susceptibility of the high- to low-risk individuals ( a ). The different 
lines correspond to different levels of assortative mixing. Median and 95% CIs based on 500 simulations. b) 95% CIs for the effect of ethnicity 
exp(βe) from the fitted Poisson regression model for varying levels of assortative mixing. The high-risk individuals are defined by a larger 
susceptibility than the low-risk individuals (case 3). There are 100 simulations for each assortativity level. c) Same as b), except the high-risk 
individuals are defined by a larger total number of contacts (case 4)
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disease outcomes. While this is true, if we are inter-
ested in explaining factors that are associated with 
increased risk, such methods can be adequate and can 
give a good approximation when the dynamics and 
feedback characterising the spread of infectious dis-
eases are not important.

To illustrate, we consider a deterministic version of the 
SIR model with two sub-groups, with the same popula-
tion sizes in the groups, and a relative difference in sus-
ceptibility by a factor a in group B compared to group A . 
We further assume that we start with the same number 
infected in each group. In this example, the number of 
infectious individuals Ii is given by the following differen-
tial equations:

 Under random mixing, we find �i = susciI , where 
I = IA + IB is the total number of infected individuals 
in the population. During the early phase of an outbreak 
( S ≈ N  ), we can approximate the number of new cases in 
�t by:

 where incA and incB are the incidences in groups A and 
B , respectively. We then find RR = incB/incA = a. This 
approximation holds until Si/N  becomes different in 

dIi

dt
=

�iS

N
− γIi, �i =

∑

j

suscicijIj .

incA = suscA × I ×�t, incB = suscA × a× I ×�t,

the two groups. The difference in susceptibility means 
that this ratio will change at different rates in the two 
groups. Therefore, after some time, the incidence ratio of 
observed cases will diverge from a.

One of the most important settings where traditional 
statistical methods are used to estimate relative risks of 
infection is in randomised controlled trials to estimate 
vaccine effect [27]. In this setting traditional methods will 
still work, since even if the mixing in the whole popula-
tion might not be random, it has been shown that as long 
as the two groups we are comparing have the same con-
tact structure, we are in a similar regime as described 
above [28, 29]. This requirement will be fulfilled by 
randomisation. As above, one might still get a biased 
estimate if a large fraction of the population is infected 
during the trial such that Si/N  changes. Typically, these 
trials take part over a reasonably short time so the tradi-
tional methods will still likely be valid.

In the situation without random mixing, for exam-
ple assuming twice as many contacts within as between 
groups, the main difference from the approximated rela-
tions above is that �i is no longer proportional to I . This 
means that although we could recover the individual 
effect from the population effect in the very beginning, 
the relation is broken immediately as soon as I1  = I2 , 
which will occur after the first generations of the dis-
ease spread. Figure  4 shows the ratio of the daily inci-
dence in the two groups, simulated using the stochastic 

Fig. 4 Incidence ratio comparison. Daily incidence ratio between two groups with a relative difference of susceptibility of 2. The R0 = 1.3 in all 
settings
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model with a = 0.5 . We consider three contact struc-
tures: assortativity of 2, random mixing, and no contact 
between groups ( pAA = pBB = 1, pAB = pBA = 0 ). With 
random mixing, the incidence ratio is approximately 0.5 
for about 25 days, while for assortative mixing, the inci-
dence ratio drops almost immediately to about 0.4. The 
drop is caused by the indirect protection in group B , 
since they have more contacts with individuals who are 
less likely to be infected. The setting with no contact 
between the groups shows an extreme effect of the indi-
rect protection as for this model R0 < 1 in group B , and 
hence there is no large outbreak in the group. For the 
randomly mixing case, or when comparing two groups 
with the same contact patterns, it is possible to analyti-
cally relate the population incidence ratio to the individ-
ual-level difference in susceptibility [28, 30].

Discussion
Our simulations show that the standard traditional 
regression methods are not, in general, valid for infec-
tious diseases. We show that the results from applying 
such methods to data on infectious diseases to identify 
risk factors are not interpretable. One can even risk end-
ing up with qualitatively wrong results by using them. 
The main reason is that traditional regression methods 
do not consider the dependency between the cases. For 
the risk of acquiring directly transmissible infections, the 
indirect effects are the most important—unless you are 
exposed to the infection, your individual risk profile is 
irrelevant.

The interdependence between the individuals in trans-
mission chains leads to a complex relationship between 
increases in transmissibility and the total number 
infected that depends on many parameters that either 
need to be measured or assumed.

We summarise the main take-home messages related 
to the use of traditional statistical methods as

1. There is no obvious relationship between increased 
individual-level risk of infection and the observed 
number of cases on population-level. This relation 
must be interpreted through untangling the trans-
mission dynamics.

2. The regression coefficients are not interpretable. Esti-
mates from regression analysis on observed relative 
risk will not estimate the underlying parameters of 
the transmission process.

3. There is no one-to-one relationship between indi-
vidual risk and population risk. Estimates like regres-
sion coefficients cannot be interpreted in the stand-
ard way as how the incidence would change if we 
removed or changed a risk factor.

4. Individual risks are not identifiable as they depend on 
the properties of the rest of the population. The pro-
portion of infected in the low-risk group increased 
significantly by only changing the susceptibility of the 
high-risk group.

5. As regression coefficients are not interpretable, this 
also means that adjusting for confounders and medi-
ators is not possible in traditional ways. We cannot 
assess how much of the overrepresentation can be 
explained by other, correlated covariates.

In a simple setting of two sub-groups, one can conclude 
that if the relative observed risk between the two groups 
is different from one, then there is a difference between 
the two groups. However, it is not possible to use regres-
sion analysis assuming independence between the obser-
vations to assess the size of the effect and/or whether the 
difference is significantly different. In a more complex 
setting of more than two groups, we cannot conclude 
anything about the relative individual risks of infection 
between two groups, as there is potential confounding 
or mediation that we cannot adjust for, depending on the 
research question.

In our simulation experiment, we find a significant 
effect of ethnicity, even though the example was con-
structed such that the behaviour was identical in the two 
ethnicity groups. The only difference was the proportion 
of individuals belonging to a high-risk group, which we 
adjusted for in the regression analysis. The larger the ten-
dency for mixing within ethnicity groups, the larger the 
estimated effect of ethnicity, while for random mixing, 
we correctly found no effect of ethnicity. It is thus clear 
that by applying a standard regression model, we have 
not properly adjusted for the mediation through the risk 
level variable and thus we have not been able to estimate 
the direct effect of ethnicity.

Multiple studies conclude an effect of ethnicity/coun-
try of birth/immigration status on the risk of infection of 
COVID-19, even after adjusting for socioeconomic vari-
ables and other potential risk factors [3–9]. As illustrated, 
regression models cannot be used to adjust for these vari-
ables, even if the variables were perfect measures of what 
one wishes to control for. We therefore conclude that 
great caution should be applied when interpreting such 
results.

Though we have chosen to illustrate our points by the 
example of the overrepresentation of COVID-19 among 
certain ethnic groups, our results will be valid in gen-
eral when analysing infectious disease case data with 
traditional regression methods. Another important 
example arises in analysing vaccine efficacy from obser-
vational studies. Regression models have been used in 
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observational studies to evaluate vaccine efficacy during 
COVID-19 [31–33]. As we have illustrated in this paper, 
it is generally not feasible to estimate the individual vac-
cine efficacy from aggregated observed counts of infec-
tion and compare infection risks. It is also not possible 
to adjust for confounding effects like age, a well-docu-
mented strong confounder with vaccination due to age-
prioritised COVID-19 vaccination strategies. Age mixing 
is also known to be assortative, as seen for example from 
the POLYMOD study [34]. The effects of assortativity on 
bias in observational vaccination studies was also studied 
by simulation in [35]. However, randomised controlled 
trials on vaccine efficacy do not suffer from the same 
problem, as the independence assumption is more rea-
sonable in a randomised controlled trial. Hence, there are 
settings when traditional techniques are applicable. How-
ever, if traditional techniques are to be used, they should 
be accompanied by an argument about why the situation 
under study falls into such a regime.

Recently, there have been developed methods for 
causal inference under different dependence structures 
which could be used to estimate effects of interventions 
like vaccination on infectious diseases [16, 17, 36, 37]. 
However, these methods typically require either specific 
experimental designs such that one can assume partial 
interference, that is, that the population can be divided 
into independent groups, or knowledge of the underlying 
social network.

In this study, we have only investigated the effect of vio-
lation of the independence assumption. A more general 
problem with many of these studies is the lack of a clear 
definition of risk factors, and an unclear specification of 
the research question. Whether a factor is found to be a 
risk factor or not for a specific condition depends on both 
how the research question and risk factor are defined 
[38]. For example, risk factors for becoming infected in 
the future may differ from risk factors of having been 
infected, as certain groups may have gained high immu-
nity levels. To conclude about the (causal) meaning of the 
risk factor from an analysis, a proper understanding of 
the interplay between the different factors is necessary, 
through for example a directed acyclic graph of the prob-
lem. This is necessary to avoid so-called table 2-fallacies, 
where effects in multiple regression analysis can be mis-
interpreted, as discussed in [39]. Another general prob-
lem is measurement error and confounding [40], as many 
variables like socioeconomic status are hard to measure, 
and there is strong correlation between many covariates. 
The conclusions may also depend on the model specifica-
tion through for example the response distribution and 
the assumed shape of the covariate effects. Moreover, 
in this study we have focussed on estimating the direct 
effect of an exposure on the disease outcome. One could 

also be interested in other parameters, like the total 
or indirect effect of an exposure [15–17]. This can for 
example be of key interest when analysing the effect of 
an intervention like vaccines, where one might be inter-
ested both in the direct protective effect of the vaccine 
on the individual, and on the indirect effect of protection 
through for example herd immunity. In an infectious dis-
ease modelling framework these indirect effects can be 
estimated from the individual level direct effects.

This study only considered how the overrepresentation 
might vary when the number of contacts and susceptibil-
ity differ between groups, assuming different underlying 
contact structures. Other factors which could affect over-
representation are different importation rates, infectivity, 
and duration of infectious period. It is straightforward to 
extend our framework also to consider the effect of these 
three factors.

The population structure assumed in this study is overly 
simplified, and random mixing is a very strong assump-
tion which does not reflect well a realistic contact structure. 
Similarly, we assume little heterogeneity between individu-
als within the same sub-group (e.g. the same duration of 
infectiousness, susceptibility, infectivity, and contact pat-
tern). Our aim has thus not been to perform an exhaus-
tive overview of parameters and how they may affect the 
results. The model is constructed primarily for a theoreti-
cal, academic purpose with focus on parsimony to illustrate 
a point. Our model is thus not meant to be used to con-
clude about causes for the observed overrepresentation of 
COVID-19 cases among ethnic minorities.

The fact that regression methods that do not consider 
transmission do not apply to infectious diseases is neither 
surprising nor novel. The bias of traditional measures like 
risk ratios and odds ratios was demonstrated in a study 
from 1991 [41] inspired by the AIDS epidemic, among 
several other studies [42–44]. However, recent statistical 
analyses of COVID-19 case data show the necessity of a 
reminder. Moreover, to our knowledge, our study is the 
first to consider this in a regression setting.

Different methods suitable for inference on infectious 
diseases have been proposed [45–48]. The problem with 
many of these methods is that they are hard to use and 
may require detailed data about the contact pattern of 
the population. Such data are rarely available, particu-
larly for diseases which do not necessarily require direct 
physical contact but may spread through the environ-
ment through aerosols and droplets (e.g. COVID-19). In 
this paper, we show that if one can specify an assumed 
data-generating model, it could be possible to esti-
mate some of the parameters of interest. Such methods 
require a lot of data, especially about contact structures, 
and must be tailored to each study context. For interve-
nable factors like for example vaccines, there have been 



Page 12 of 13Engebretsen et al. BMC Medical Research Methodology          (2022) 22:146 

suggested experimental designs which would allow the 
use of classical statistical methods to analyse the effects 
of the factors, as mentioned above. However, for immu-
table properties (like ethnicity), we believe that it is bet-
ter to use pure descriptive analyses rather than perform 
regression methods where the coefficients are not inter-
pretable. In particular, one should not draw conclusions 
or interpret the effects from such studies. Hence, there 
is a need for popularised, easy-to-use methods appli-
cable to inference on infectious diseases, which can be 
applied to the data typically available at hand. There is 
also a need for continuous ongoing surveys to collect 
data on social contacts and behaviour. In recent years 
and particularly during COVID-19, new, alternative data 
streams like mobile phones have been used to inform 
models, enabling detailed real-time information on 
behaviour.

In this article we only consider using regression mod-
els to identify and measure risk-factors for infection. 
There are many other applications of regression models 
in infectious diseases that are not affected by the prob-
lems discussed here, including using regression to esti-
mate the growth rate of cases and for anomaly detection 
in surveillance.

Conclusions
We conclude that using standard methods like Pois-
son regression models to study overrepresentation of 
different groups does not make sense for infectious 
diseases. If the methods developed for non-communi-
cable diseases are used to analyse infectious diseases, 
one can risk ending up with the wrong qualitative 
conclusions.
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