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Low reliability of DNA methylation across Illumina Infinium 29 

platforms in cord blood: implications for replication studies and 30 

meta-analyses of prenatal exposures 31 

Abstract 32 

Background: There is an increasing interest in the role of epigenetics in epidemiology, but the 33 

emerging research field faces several critical biological and technical challenges. In particular, recent 34 

studies have shown poor correlation of measured DNA methylation (DNAm) levels within and across 35 

Illumina Infinium platforms in various tissues. In this study, we have investigated concordance 36 

between 450k and EPIC Infinium platforms in cord blood. We could not replicate our previous 37 

findings on the association of prenatal paracetamol exposure with cord blood DNAm, which 38 

prompted an investigation of cross-platform DNAm differences.  39 

Results: This study is based on two DNAm data sets from cord blood samples selected from the 40 

Norwegian Mother, Father and Child Cohort Study (MoBa). DNAm of one data set was measured 41 

using the 450k platform and the other data set was measured using the EPIC platform. Initial analyses 42 

of the EPIC data could not replicate any of our previous significant findings in the 450k data on 43 

associations between prenatal paracetamol exposure and cord blood DNAm. A subset of the samples 44 

(n = 17) was included in both data sets, which enabled analyses of technical sources potentially 45 

contributing to the negative replication. Analyses of these 17 samples with repeated measurements 46 

revealed high per-sample correlations (Rഥ ≈ 0.99), but low per-CpG correlations (Rഥ ≈ 0.24) between 47 

the platforms. 1.7% of the CpGs exhibited a mean DNAm difference across platforms 0.1. 48 

Furthermore, only 26.7% of the CpGs exhibited a moderate or better cross-platform reliability (intra-49 

class correlation coefficient 0.5).  50 

Conclusion: The observations of low cross-platform probe correlation and reliability corroborate 51 

previous reports in other tissues. Our study cannot determine the origin of the differences between 52 
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platforms. Nevertheless, it emulates the setting in studies using data from multiple Infinium 53 

platforms, often analysed several years apart. Therefore, the findings may have important 54 

implications for future epigenome-wide association studies (EWASs), in replication, meta-analyses 55 

and longitudinal studies. Cognisance and transparency of the challenges related to cross-platform 56 

studies, may enhance the interpretation, replicability and validity of EWAS results both in cord blood 57 

and other tissues, ultimately improving the clinical relevance of epigenetic epidemiology. 58 

Keywords: epigenetic epidemiology, epigenetics, EWAS, MoBa, MBRN, validity, replication, 59 

reliability, Illumina Infinium platforms, microarrays. 60 

Background 61 

Epigenetics entails modifications of the DNA that can impact gene expression, but does not involve 62 

changes in the underlying DNA sequence. The most commonly studied epigenetic modification is 63 

DNA methylation (DNAm), which occurs at cytosine bases of cytosine-phosphate-guanine 64 

dinucleotide sites (CpGs). DNAm can be impacted by the DNA sequence, as well as environmental 65 

influences [1–4]. There is an increasing interest in the role of epigenetics within epidemiology. 66 

Several pharmacoepidemiological studies have reported an association between prenatal 67 

psychotropic or analgesic medication exposure, and neurodevelopmental outcomes in the offspring 68 

[5–13]. Furthermore, multiple epigenome-wide association studies (EWASs) have identified DNAm 69 

changes associated with medication exposure during pregnancy (e.g., valproic acid, antidepressants, 70 

and paracetamol) [14–20]. Recently, we found an association between prenatal long-term exposure 71 

to paracetamol in children with attention-deficit/hyperactivity disorder (ADHD) [21]. These initial 72 

findings may suggest that DNAm is involved in the relationship between prenatal medication 73 

exposure and adverse neurodevelopmental outcomes [3, 4].  74 

Despite a growing interest in epigenetics, and an increasing number of published EWASs, there are 75 

several critical biological and technical challenges in epigenetic epidemiology, which have important 76 
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implications for the interpretation, validity, and clinical translation of the findings [1, 22, 23]. One 77 

key challenge is the paucity in the replication of findings. For instance, two systematic literature 78 

reviews on the association of offspring epigenetic patterns with medication use [20] and maternal 79 

well-being in pregnancy [24], uncovered largely inconsistent findings. These reviews suggest 80 

multiple origins of the discrepant results, such as small sample sizes resulting in low statistical power, 81 

and poor study designs [20, 24]. The majority of EWASs are based on DNAm data generated using 82 

the Illumina Infinium HumanMethylation BeadChip platforms, including the 27k (n>27,000 CpGs), 83 

450k (n>450,000 CpGs), and the EPIC arrays (n>850,000 CpGs) [25]. Recent studies have elucidated 84 

technical aspects related to the Infinium platforms, which have significant influences on the analyses 85 

and interpretation of results. These studies have shown significant per-CpG differences and poor per-86 

CpG correlation both within [26–35] and across [31, 32, 36–40] microarray platforms, which 87 

challenges combined analyses of DNAm data from both platforms (e.g., [41–45]). In cord blood, the 88 

median correlation of individual CpGs across platforms was only 0.24 [37]. Furthermore, 2.4% of 89 

the CpGs exhibited a mean difference in measured DNAm level between the platforms 0.1 [37], on 90 

the same order as the low effect sizes often observed within epigenetic epidemiology [1, 22, 46]. 91 

Furthermore, only 18.0% of CpGs in adult whole-blood exhibit a moderate or better reliability across 92 

platforms (intra-class correlation coefficient [ICC] 0.5) [31]. The technical aspects contributing to 93 

low reliabilities of CpGs may affect the power of EWASs [28, 47]. Consequently, poor concordance 94 

of measured DNAm levels across platforms may impact both the replicability and validity of EWAS 95 

results. 96 

In an ongoing study, we aim to replicate and expand our previous findings showing associations 97 

between long-term prenatal exposure to paracetamol (20 days) and DNAm in children with ADHD 98 

[21]. Analyses of DNAm data generated from a larger number of samples selected from the same 99 

cohort using the Infinium EPIC platform, find no significant CpGs associated with paracetamol 100 

exposure. Accordingly, we fail to replicate any of our previous significant findings [21]. Examining 101 

a subset of samples with repeated measurements in both data sets have enabled a thorough 102 
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investigation of potential technical origins of the negative replication. These results could not explain 103 

the failure to replicate our previous findings, but are still important for replication EWASs, as well 104 

as studies combining DNAm from different Infinium platforms, such as longitudinal studies or meta-105 

analyses. 106 

Results 107 

Lack of replicability may originate from several technical sources 108 

This study is based on a subset of samples (n = 17) included in two datasets, and consists of repeated 109 

measurements using the Infinium 450k and EPIC platforms. The samples were selected from the 110 

Norwegian Mother, Father and Child Cohort Study (MoBa). In the data set assessed on the 450k 111 

platform (n = 384 samples), we have previously published associations between prenatal exposure to 112 

paracetamol and DNAm differences in children with ADHD [21]. Analysis of the second data set (n 113 

= 261 samples), which was designed to expand on these findings using the EPIC platform, has failed 114 

to replicate our previous findings (data not shown). This prompted a thorough investigation of 115 

whether technical aspects of the Infinium platforms could explain the negative replication. Using a 116 

subset of samples with repeated measurements from both studies (n = 17 samples), we conducted 117 

systematic analyses to assess the integrity and reliability of the DNAm data between the Infinium 118 

platforms.  119 

The DNAm data separate into clusters explained by microarray platforms  120 

We performed stringent quality control, normalisation and probe filtering procedures of the DNAm 121 

data from the two data sets containing the samples with repeated measurements, to minimize technical 122 

variation related to pre-processing of the data. First, we examined DNAm data measured for a set of 123 

genotyping probes on each platform (n = 59 probes). Clustered heatmaps of DNAm values at these 124 

genotyping probes showed that the repeated cross-platform measurements of each sample grouped 125 
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together and hence excluded potential mix-up of samples (Additional file 1: Figure S1). Second, we 126 

examined whether pre-processing steps such as background and probe-type correction impacted the 127 

cross-platform concordance. To do this, we used the intra-class correlation coefficient (ICC), which 128 

equals 1 if there is perfect per-CpG concordance between the measured DNAm in the 450k and EPIC 129 

data sets. Generally, an ICC<0.5 is considered poor [48, 49]. We computed the ICCs after pre-130 

processing the 450k and EPIC data sets separately, using the default settings of five commonly used 131 

pre-processing pipelines ChAMP [50, 51], ENmix [34], minfi [52], RnBeads [53] and wateRmelon 132 

[54] (Additional File 1: Table S1). We also included one pipeline commonly reported in the literature, 133 

namely RnBeads with the background and probe-type corrections ENmix.oob [55] and BMIQ [56], 134 

respectively. This analysis revealed that the ENmix pipeline exhibited larger ICCs than the other 135 

pipelines (Figure 1). Therefore, we performed the rest of the analyses on data sets normalised using 136 

the default settings of the ENmix pipeline. 137 

 138 

Figure 1. Overview of the ICC distribution computed from raw data and from data pre-processed using the default 139 

settings of five common EWAS analysis pipelines. Additionally, we included one common analysis pipeline (“RnBeads 140 

(customised)”, including the normalisation methods ENmix.oob and BMIQ). All pipelines examined also exhibited ICCs 141 
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lower than –2, but these were removed from the illustration for visualisation purposes. The default settings of each 142 

analysis pipeline are detailed in Additional file 1: Table S1.  143 

Next, we performed principal component analysis (PCA) to explore technical variation in the DNAm 144 

data related to the 450k and EPIC platforms. As expected, PCA revealed distinct clustering of samples 145 

corresponding to the 450k and EPIC platforms (Figure 2). Similar plots were observed when pooling 146 

all the available 450k and EPIC samples (n = 607 samples; data not shown).  147 

     148 

Figure 2. (A–C) Scatter plots of the first three principal components (PC1–3) from PCA of DNAm data from samples 149 

with repeated measurements (n = 17 samples) using 450k and EPIC platforms, and (D) a scree plot showing the amount 150 

of variance explained by the first nine PCs.  151 

DNAm levels differ between the 450k and EPIC platforms 152 

To further investigate the dissimilarities between the 450k and EPIC platforms, we computed the 153 

difference in and correlation of DNAm at overlapping CpGs on the two platforms (n = 397,813 154 

CpGs). These analyses revealed small per-sample absolute differences in DNAm at overlapping 155 

CpGs between the two arrays (median ≈ 0.008 and mean ≈ 0.017 absolute DNAm differences). For 156 
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0.1% (n = 454) of CpGs the mean DNAm difference over all replicates was >0.25, while 0.007% (n 157 

= 27) of CpGs exhibited a mean DNAm difference >0.5 (Figure 3). These numbers are largely in line 158 

with previous studies, comparing differences in measured DNAm between the 450k and EPIC arrays 159 

in cord blood [37], whole-blood [31, 32, 36, 37], placenta [38] and cartilage [39]. Furthermore, of the 160 

27 CpGs with an absolute mean DNAm difference >0.5, 5 of these CpGs also exhibited absolute 161 

mean DNAm difference >0.5 in both cord blood [37], whole-blood [37], placenta [38] and cartilage 162 

[39] (Additional file 1: Figure S2).  163 

 164 

Figure 3. Mean absolute difference in measured DNA methylation () per CpG, on the 450k and EPIC platforms. Red 165 

dotted lines indicate a mean >0.1, >0.25, and >0.5. Illumina CpG IDs are named if the mean >0.5. 166 

We observed a high per-sample correlation of DNAm between the platforms, both when comparing 167 

replicates, and when comparing two independent samples across the platforms (Figure 4A). The 168 

median per-sample Pearson’s correlation coefficient was 0.996, and the mean was 0.992, with the 169 

lowest correlation between any two samples being 0.969 and the highest being 0.998. In contrast, the 170 

per-CpG correlations of measured DNAm between the platforms were significantly lower: the median 171 

correlation was 0.237, and the mean was 0.238, with the lowest correlation being -0.822, and the 172 

highest being 1.00 (Figure 4B). The per-CpG correlation appeared to be related to the variance of 173 
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each CpG, which were similar for both platforms; CpGs with high correlation also exhibited larger 174 

variance (Figure 4B). The high per-sample correlation, low per-CpG correlation and the relationship 175 

between CpG variance and correlation, has previously been reported for cord blood [37], and multiple 176 

other tissues [31, 32, 36–39].  177 

 178 

Figure 4. Pearson’s correlation coefficients of DNAm in replicates of the 450k and EPIC platforms, for (A) per-sample 179 

correlations in a correlogram, and (B) per-CpG correlations as distributions stratified by variance quartiles, based on 180 

the variance of the respective CpGs on the EPIC platform.  181 

Few CpGs are reliable between the 450k and EPIC platforms 182 

In order to examine concordance of cross-platform DNAm levels, we assessed the reliability of the 183 

CpGs, reflecting both correlation and agreement. To do this, we computed the ICC, as previously 184 

suggested by Sugden et al. (2020) comparing cross-platform DNAm levels in adult whole-blood [31]. 185 

Overall, the ICCs of the overlapping CpGs were poor (median = 0.246 and mean = 0.230; Figure 186 

5A). Approximately 26.7% (n = 106,078) of the CpGs exhibited an ICC≥0.5. This is similar to the 187 

findings of a recent study by Sugden et al. in adult whole-blood, where 18.0% of CpGs exhibited an 188 

ICC≥0.5 [31]. Approximately 38.6% (n = 40,916) of the CpGs with an ICC≥0.5 in the current study, 189 

overlapped with the CpGs with an ICC≥0.5 reported by Sugden et al. [31] (Additional File 2). The 190 

microarray type II probes exhibit slightly better ICCs and correlation coefficients than type I probes 191 

(Additional File 1: Figure S3). Probes with poor ICCs and correlation coefficients appear more 192 
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frequently in CpG islands (Additional File 1: Figure S4 and S5), possibly due to an increased 193 

proportion of largely unmethylated CpGs in these regions (Additional File 1: Figure S6).  194 

 195 

Figure 5. (A) Histogram of the ICCs computed from the 17 samples assessed on both the 450k and EPIC platforms. (B) 196 

Density distribution of mean difference in DNAm level, stratified by ICC category. (C) Density distribution of Pearson’s 197 

correlation coefficient, stratified by ICC category. The ICC categories are defined as follows: poor: ICC<0.5; moderate: 198 

0.5ICC<0.75; good: 0.75ICC<0.9; excellent: ICC0.9. The dark grey, dotted line indicates the median ICC, and the 199 

light grey, dotted line indicates the mean ICC. Outlying CpGs with ICCs less than the mean ICC minus three standard 200 

deviations, were removed for visualisation purposes, but were included for summary statistic calculations. 201 

 202 
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Considering the poor CpG reliabilities, we investigated if the ICCs of the repeated measurements 203 

were higher than expected for two randomly paired samples. Therefore, we paired each EPIC sample 204 

with a randomly selected 450k sample. The distribution of ICCs computed from the 17 repeated 205 

measurements (Figure 5A), is significantly different from the ICC distributions computed from the 206 

17 random 450k-EPIC pairs (Kolmogorov-Smirnov test: p<2.2*10-16; Additional file 1: Figure S7). 207 

Furthermore, only a small percentage of the CpGs of the random pairs (2.4%–4.8%) exhibit an ICC208 

≥0.5, which are significantly different proportions from the ICCs of the repeated measurements 209 

(Pearson’s chi-squared test: p<2.2*10-16).  210 

The ICC reflects both correlation and agreement across microarray platforms  211 

To investigate if the ICCs reflect both agreement and correlation across platforms, we examined the 212 

distribution of mean differences in DNAm and Pearson’s correlation coefficients, for each of four 213 

ICC categories: poor (ICC<0.5), moderate (0.5ICC<0.75), good (0.75ICC<0.9) and excellent 214 

(ICC0.9) [48]. The distribution of mean differences in DNAm is relatively similar between the ICC 215 

categories. However, there are far more of the poor CpGs displaying large differences in mean DNAm 216 

levels across platforms compared to the other ICC categories (Figure 5B). In contrast, the correlation 217 

coefficient increases with improving ICC category; the poor ICC category exhibits a wide range of 218 

low correlation coefficients (median ≈ 0.12), while the distribution of the correlation in the excellent 219 

category is highly skewed to the right (median ≈ 0.92). The moderate and good categories exhibit a 220 

wider range of correlation coefficients than the excellent CpGs, with a median of 0.52 and 0.74, 221 

respectively (Figure 5C).  222 

These observations demonstrate that the reliability of each CpG depends on both the correlation, and 223 

the agreement between the two platforms [48]. An excellent CpG will have both a low mean 224 

difference in DNAm between platforms, and a high correlation, explaining the small range in values 225 

of both the mean DNAm differences, and the correlation coefficients. In contrast, a poor probe 226 

(including a larger range of ICCs), may exhibit an acceptable correlation but have a large mean 227 
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DNAm difference (Additional file 1: Figure S8). For instance, 685 of the 5,407 CpGs with an R0.9 228 

nevertheless have an ICC0.9, with 22 CpGs even having a poor ICC (<0.5). Furthermore, of the 229 

395,286 CpGs with a mean DNAm difference 0.1, 289,327 exhibit a poor ICC (<0.5). This is likely 230 

due to low correlations, as the median R for these poor CpGs is 0.12, while the median R was 0.59 231 

for the 105,959 CpGs with a mean DNAm difference 0.1 and an ICC ≈ 0.5. Hence, the ICC better 232 

reflect reliability than either accuracy or correlation on their own. 233 

The significant CpGs in the 450k data have low reliabilities 234 

We then asked if our failure to replicate the findings in our original study [21] could be explained by 235 

poor-performing probes, by examining the ICCs of the significant CpGs from the 450k data set. The 236 

significant CpGs for the three group comparisons performed in the original study, have median ICCs 237 

of 0.119, 0.122, and 0.135 (Additional file 1: Figure S9). These reliabilities are low compared to the 238 

overall mean and median of the ICCs including all common CpGs across platforms.  239 

Discussion 240 

Replication of association studies is important to ensure robust and valid findings. In an ongoing 241 

study, we aimed to replicate and expand on findings in our previous study, where we found an 242 

association between long-term prenatal paracetamol exposure and differences in DNAm in children 243 

with ADHD, using the Infinium 450k platform [21]. Surprisingly, analyses of the follow-up data 244 

consisting of a larger sample and use of the Infinium EPIC platform have not replicated the results 245 

from our original study. Indeed, a challenge of EWASs is to discern spurious findings from true 246 

positives, rendering the replication of significant associations challenging [1, 22, 23]. Recent studies 247 

have shown low concordance across 450k and EPIC platforms in different tissues [31, 32, 36–40]. 248 

Therefore, we have conducted a systematic evaluation of technical aspects related to concordance of 249 

DNAm data across the Infinium platforms in our studies in cord blood by using data from a subset of 250 

samples with repeated measurements from the 450k and EPIC platforms. 251 
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Technical variation such as batch effects are systematic variation caused by for example processing 252 

by different technicians, varying reagent batches, and differences in the scanner performance. PCA 253 

of DNAm data from the samples with repeated measurements demonstrated distinct clustering of 254 

samples corresponding to the platform. If these differences in DNAm were independent of the 255 

platform and resulted entirely from positioning on the beadchip or bisulphite conversion plate, we 256 

would expect the changes to be relative and to not impact the replicability. Considering the general 257 

challenge of replication of EWASs [1, 22, 23] and the low per-CpG concordance across platforms 258 

reported in several recent studies [31, 32, 36–40], we were encouraged to examine possible cross-259 

platform differences in DNAm. Corroborating previous studies, we observed a high per-sample 260 

correlation even between the randomly paired samples [32, 36–40]. In contrast, the per-CpG 261 

correlation was significantly lower, and some probes exhibited large differences in mean measured 262 

DNAm for overlapping CpGs on the two platforms.   263 

Considering the highly concerning findings by Sugden et al. [31], reporting low reliabilities 264 

(measured by ICCs) for most CpGs across the 450k and EPIC platforms in adult whole-blood, we 265 

estimated the ICCs of each CpG across the two platforms in our cord blood samples. Ideally, the ICC 266 

will approach 1 if the between-sample variation is much larger than the within-sample variation, 267 

suggesting larger biological variation than technical variation. However, most CpGs in our study 268 

exhibited poor reliabilities (ICC<0.5) [31, 48], and we found that only 26.7% of CpGs in cord blood 269 

had an acceptable reliability across platforms. Interestingly, 38.6% of these CpGs overlapped with 270 

the 18.0% reliable CpGs identified in adult whole-blood [31]. This may suggest that some probes are 271 

generally unreliable in different tissues, possibly due to cell-type specific variability in DNAm. In 272 

contrast, other CpGs may perform worse in specific tissues, similar to what has been suggested for 273 

both per-CpG correlations and differences in DNAm between platforms [37–39]. In future studies, it 274 

would be interesting to examine the ICCs between Infinium platforms and other DNAm measuring 275 

technologies, such as whole-genome bisulphite sequencing (WGBS) or methylated 276 

immunoprecipitation (MeDIP). 277 
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We observed a substantial difference in the distribution of ICCs for different pre-processing steps 278 

used in common analysis pipelines. The ENmix pipeline exhibited the largest median ICC, suggesting 279 

that this pipeline may be best to best conserve the similarity of normalised repeated measurements 280 

from different platforms. In contrast, both the default RnBeads, minfi and wateRmelon pipelines have 281 

no better ICC distributions than the raw data. Notably, compared to a recent study reporting the ICC 282 

distribution of multiple different pipelines for within-platform repeated measurements [35], the 283 

distribution of cross-platform ICCs vary more dependent on the analysis pipeline used. However, the 284 

analysis pipeline with the highest median ICC is ENmix for both cross-platform and within-platform 285 

comparisons [35]. 286 

Interestingly, some studies have reported that cross-platform differences in DNAm and poor per-CpG 287 

correlations do not substantially impact the outcome of EWASs [32, 37]. However, when 288 

investigating the relationship of ICCs with the likelihood of replication of CpGs, Sugden et al. 289 

observed a positive relationship between increasing ICC and increasing replication rate for the 290 

association of DNAm with smoking [31]. Similar associations of ICCs with replicability have been 291 

found when ICCs were estimated from 450k-450k replicates [26, 49]. For instance, smoking-DNAm 292 

associations in whole-blood are highly replicable [57], and in one study, 96% of CpGs associated 293 

with smoking exhibit high reliability [26]. Additionally, poor ICCs have been shown to decrease the 294 

power of individual CpGs in EWASs, i.e., reducing the positive predictive value (PPV) by decreasing 295 

the number of true positives [28, 31, 47]. The median ICC of the significant CpGs in our original 296 

study was poor. However, if these findings were explained by the low reliability of the probes, we 297 

would expect none or very few significant CpGs. Consequently, based on the calculated ICCs using 298 

our 17 samples with repeated measurements, we have no explanation for the lack of replicability of 299 

our original findings.   300 

A limitation of the present study is the small sample size used to assess the ICCs. However, ICC 301 

calculations generally require relatively small sample sizes [47, 58], and Sugden et al. found that 302 

sample sizes as small as 25 would be sufficient to detect 80% of all CpGs with an ICC0.75 [31]. 303 
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Furthermore, our results on both per-CpG correlations, differences in mean DNAm, and ICCs, are in 304 

line with other studies reporting one or more of these measurements for various tissues [31, 32, 36–305 

40]. Nevertheless, a study including a larger number of repeated measurements in cord blood across 306 

the 450k and EPIC platforms should be performed to strengthen our findings. Another limitation of 307 

our study is our inability to assess which technical variable(s) associated with the platform are 308 

contributing to the differences between platforms. Firstly, the DNAm on the 450k and EPIC platforms 309 

were measured three years apart. Yet, this largely emulates the setting in most studies relying on data 310 

processed at different times and in different facilities (e.g., longitudinal studies and meta-analyses). 311 

Furthermore, all samples included in the current study were processed in the same core facility and 312 

by the same technician. Secondly, batches of bisulphite conversion reagents and scanners may also 313 

contribute to the cross-platform differences. Nevertheless, we expect that such technical variation is 314 

relative within the platforms and consequently, that probes are mainly affected equally within the 315 

platform. Finally, it is challenging to assess the potential contribution of sample plate and beadchip 316 

to cross-platform differences, due to the different platform layouts (the 450k beadchip can load 12 317 

samples, while the EPIC beadchip can load 8 samples). To limit the contribution of variation from 318 

sample plate and beadchip in our data, the samples were randomly positioned on plates and beadchips. 319 

Accordingly, technical variation contributed by these variables should be random and should not 320 

inflict much bias when comparing DNAm between platforms.  321 

The substantial differences across platforms revealed in this and previous studies [31, 32, 36–40], are 322 

troubling when trying to replicate findings using a different platform than in the original study. 323 

Replication of findings have long been considered a major challenge within epigenetic epidemiology 324 

[1, 22, 23], and to our knowledge, only one study has highlighted the potential impact of unreliable 325 

CpGs for replication of findings using data from different microarray platforms [31]. Challenges 326 

associated with differences in mean DNAm levels across platforms are not necessarily limited to 327 

issues of replication. For instance, longitudinal studies based on DNAm measured at multiple 328 

timepoints may suffer under the development of new microarray technologies (e.g., [41, 42]). 329 
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Furthermore, this is also relevant for large meta-analyses combining data from multiple cohorts to 330 

increase the power of EWASs (e.g., [43, 44]), often based on large consortia such as the Pregnancy 331 

And Childhood Epigenetics (PACE) consortium [45]. Such strategies may be impacted by unreliable 332 

probes when combining data sets from different platforms. Similarly, unreliable CpGs across 333 

platforms may have implications for current EWAS knowledgebases, such as the EWAS Atlas [59], 334 

and the EWAS catalogue [60], which curate EWAS publications to report DNAm-trait associations. 335 

Conclusion 336 

In conclusion, our failure to replicate significant CpGs associated with prenatal paracetamol exposure 337 

prompted a thorough investigation of potential technical origins of our null findings. The observation 338 

of low cross-platform per-CpG correlation and reliability corroborate previous reports. However, the 339 

low-reliability probes could not explain the inability to replicate previous findings in our case. 340 

Nevertheless, the poor cross-platform reliabilities may have important implications for future 341 

EWASs, in replication, meta-analyses and longitudinal studies. Therefore, we encourage researchers 342 

performing EWASs to examine the reliability of probes within and across tissues, and to establish 343 

which probes are most comparable across microarray platforms. However, in many cases, the 344 

availability of repeated measurements from individual samples may be limited for reasons such as 345 

extra cost and limited availability of sample material. To this end, we encourage joint efforts to more 346 

extensively outline reliable probes in different tissues. If such investigations reveal common poor-347 

performing probes across or within tissues, other studies may rely on this information when 348 

performing cross-platform studies. We hope our findings, supporting the results by Sugden et al. [31], 349 

increase awareness of possible challenges in including both 450k and EPIC data in the same study. 350 

Cognisance and transparency of these challenges as well as appropriate precautions when performing 351 

cross-platform epigenetic investigations, may enhance the interpretation, replicability and validity of 352 

results, and could ultimately improve the clinical relevance of epigenetic epidemiology. 353 
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Methods 354 

Sample population 355 

We analysed cord blood samples from the Mother, Father and Child Cohort Study (MoBa). MoBa is 356 

a population-based pregnancy cohort study conducted by the Norwegian Institute of Public Health 357 

(NIPH) [61–64]. Participants were recruited from all over Norway from 1999–2008 [61, 62]. The 358 

women consented to participation in 41% of the pregnancies [61, 62]. The cohort includes 359 

approximately 114,500 children, 95,200 mothers and 75,200 fathers [61, 62]. The current study is 360 

based on Data Version 8 of the quality-assured data files released for research in 2015. Observational 361 

data from MoBa questionnaires Q1 (gestational week 0–13), Q3 (gestational week 13–29), and Q4 362 

(gestational week 30 to delivery), were used to select individuals for the study. The personal, 11-digit 363 

identification number, unique to every permanent resident of Norway, was used to link MoBa to the 364 

Norwegian Patient Registry (NPR), and the Medical Birth Registry of Norway (MBRN). MBRN is a 365 

national health registry containing information about all births in Norway. We also analysed umbilical 366 

cord blood samples retrieved from the MoBa biobank [63, 64]. The biobank stores blood samples 367 

obtained from both parents during pregnancy, and from mothers and children (umbilical cord) at birth 368 

[63, 64].  369 

The establishment of MoBa and initial data collection was based on a license from the Norwegian 370 

Data Protection Agency and approval from the Regional Committees for Medical and Health 371 

Research Ethics (REC). MoBa is currently regulated by the Norwegian Health Registry Act. All 372 

MoBa participants have given their written informed consent to participate in the cohort study. The 373 

current study has been approved by REC South East Norway (REC reference: 23136, 2014/163). All 374 

data are de-identified, and the linkage between MoBa and the different health registries were handled 375 

by NIPH along with the relevant registries.  376 

Study design and measurements 377 
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The MoBa biobank contains 90,000 cord blood samples drawn at birth [65]. In our original study 378 

using the 450k platform we selected 384 samples from the biobank and in the study using the EPIC 379 

platform we selected 261 samples. Out of these samples, 611 samples were unique to either the 450k 380 

data set or the EPIC data set, and 17 samples were measured on both the 450k and EPIC platforms. 381 

The samples were selected based on prenatal exposure to paracetamol and child ADHD diagnosis, 382 

and all samples were term births (≥37 weeks). The 17 samples available in both data sets were all 383 

prenatally long-term exposed to paracetamol and had received an ADHD diagnosis. 384 

Long-term prenatal exposure to paracetamol (Anatomical Therapeutic Chemical [ATC] code: 385 

N02BE01) was defined as the use of paracetamol for ≥20 days during pregnancy (coded as “yes” or 386 

“no”), based on a threshold from previous studies [66–70]. Use was self-reported and collected from 387 

three MoBa questionnaires (Q1, Q3, and Q4). Offspring diagnosis of ADHD was retrieved from the 388 

NPR (2008–), containing all individual diagnoses asserted by specialists according to the 10th revision 389 

of the International Classification of Disease (ICD-10), as reported by governmental hospitals and 390 

outpatient clinics. Children were defined as having ADHD if they had received an ICD-10 diagnosis 391 

of hyperkinetic disorder (HKD; F90.0, F90.1, F90.8, or F90.9) between 2008, and 2016. HKD 392 

corresponds to ADHD in the Diagnostic and Statistical Manual (DSM) system [71–74], as an HKD 393 

diagnosis requires both inattentiveness and hyperactivity symptoms.  394 

DNA methylation 395 

Generation of DNAm data 396 

The 450k DNAm data from the samples in our original study is described elsewhere [21]. The samples 397 

assessed on the Infinium HumanMethylation EPIC BeadChip (Illumina) were processed similar to 398 

the 450k data set [21]. Samples were randomly allocated to sample plates and beadchips, as 399 

previously described [21]. 400 

Quality control and pre-processing 401 
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Analyses were performed in the R programming language (http://www.r-project.org/). Quality 402 

control, normalisation and filtering of the data (Table 1), was performed using the default pipeline of 403 

ENmix [55]. The EPIC and 450k data sets were pre-processed separately, and all samples were 404 

included in the pre-processing (nEPIC = 261; n450k = 384). Subsequently, the 17 samples with repeated, 405 

cross-platform measurements were used for further analyses.  406 

First, samples with >5% low-quality CpGs or low bisulphite intensity were removed (7 samples from 407 

the 450k data set and 0 samples from the EPIC data set). Then, CpGs with >5% low-quality values 408 

were also removed (5,598 and 8,947 CpGs from the 450k and EPIC data sets, respectively). 409 

Background correction was performed using the ENmix exponential-truncated-normal out-of-band 410 

(oob) method [34], dye bias correction was executed using RELIC (REgression on Logarithm of 411 

Internal Control probes) [75] and probe-type correction was achieved using RCP (Regression of 412 

Correlated Probes) [76]. We removed probes with SNPs overlapping with the CpG interrogation site 413 

or the nucleotide extension site (nEPIC = 29,176; n450k = 16,803), cross-reactive probes (nEPIC = 14,921; 414 

n450k = 21,563) [36, 77–79] and probes on the sex chromosomes (nEPIC = 17,532; n450k = 10,012). 415 

These pre-processing steps resulted in a total of 795,515 probes in the EPIC data set and 431,536 416 

probes in the 450k data set. Of these, 397,813 CpGs overlapped between the two platforms.  417 

Table 1. Overview of retained probes upon filtering of data from the EPIC and 450k microarray platforms. 418 

 EPIC probes 450k probes 

Raw data 866,091 485,512 

>5% low-quality values 857,144 479,914 

SNP-enriched probe removal  827,968 463,111 

Cross-reactive probe removal 813,047 441,548 

Sex chromosome removal 795,515 431,536 

Pre-processing using the default settings of common analysis pipelines  419 

The raw data were also pre-processed using the default settings of four other common EWAS analysis 420 

pipelines: ChAMP [50, 51], minfi [52], RnBeads [53] and wateRmelon [54]. Additionally, we used 421 

the default RnBeads pipeline [53], but changed the background and probe type correction methods to 422 

Enmix.oob [34] and BMIQ [56], respectively. The CpGs were annotated based on ilm10b4.hg19 [80]. 423 

http://www.r-project.org/
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Statistical analyses 424 

The β values (the ratio of methylated signal to the sum of methylated and unmethylated signal) was 425 

used for visualisations and calculation of all concordance measurements. To test for differences in 426 

distributions, we used the Kolmogorov-Smirnov test and to test for differences in proportions we sued 427 

the Pearson’s chi-squared test. To examine the correlations between both samples and CpGs from the 428 

different microarrays, we estimated the Pearson’s correlation coefficient. The ICC of each CpG was 429 

computed using the irr package [81]. We estimated the ICC by fitting an absolute agreement, and 430 

mean of k raters (k = 2), two-way random effects model, as has previously been suggested for such 431 

comparisons [31]. The visualisation of the overlaps between studies of CpGs with mean DNAm 432 

differences >0.5 across platforms was generated using the UpSetR package [82]433 
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