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Abstract
Motivation: Biological network analysis for high-throughput biomedical data interpretation relies heavily on topological characteristics. Networks
are commonly composed of nodes representing genes or proteins that are connected by edges when interacting. In this study, we use the rich
information available in the Reactome pathway database to build biological networks accounting for small molecules and proteoforms modeled
using protein isoforms and post-translational modifications to study the topological changes induced by this refinement of the network
representation.

Results: We find that improving the interactome modeling increases the number of nodes and interactions, but that isoform and post-
translational modification annotation is still limited compared to what can be expected biologically. We also note that small molecule information
can distort the topology of the network due to the high connectedness of these molecules, which does not necessarily represent the reality of bi-
ology. However, by restricting the connections of small molecules to the context of biochemical reactions, we find that these improve the overall
connectedness of the network and reduce the prevalence of isolated components and nodes. Overall, changing the representation of the net-
work alters the prevalence of articulation points and bridges globally but also within and across pathways. Hence, some molecules can gain or
lose in biological importance depending on the level of detail of the representation of the biological system, which might in turn impact network-
based studies of diseases or druggability.

Availability and implementation: Networks are constructed based on data publicly available in the Reactome Pathway knowledgebase:
reactome.org.

1 Introduction

Biological networks are a promising way to interpret modern
biomedical data at scale (Sonawane et al. 2019). They allow
the study of molecular patterns at both local and global scale,
and hence provide a systemic view on molecular processes.
The fundamental building blocks of a biological network are
the interactions between biological entities, with the entities
themselves represented by nodes and their interactions by
connections (Burger et al. 2018). The entire collection of inter-
actions in a biological system is called the interactome.
Interactions between biomolecules leading to biochemical
transformations are grouped into reactions, and combinations
of reactions achieving a biological function are termed path-
ways. The main participants of pathways are proteins, which
can interact with themselves, other proteins, or other

molecules. It is common in the study of biological networks to
focus on protein–protein interactions and to represent pro-
teins by the name of the genes encoding them. Genes form a
more generic network model that lacks molecular details of
the proteins, but that captures enough information to draw
meaningful inference on the interactome (Menche et al.
2015).

A relationship between nodes of the network can be inferred
from multiple sources: text mining, co-expression, physical inter-
action, or from literature knowledge on the functions of proteins
(Fernández-Tajes et al. 2019). Such networks have proved to be
particularly useful for understanding biological mechanisms
(Huttlin et al. 2017, Dimitrakopoulos et al. 2018, Reyna et al.
2020). For example, gene network approaches have been used
for analyzing functions of genes associated with different types
of cancer (Wu and Stein 2012, Creixell et al. 2015). Based on a
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given interactome, network analyses attempt to extract knowl-
edge concerning specific sets of proteins. For example, guilty by
association procedures assume that proteins colocalizing in the
network are functionally related (Creixell et al. 2015). Similarly,
diffusion models estimate the effects of gene alterations to-
wards their neighborhood (Vandin et al. 2011). By design,
such network analysis methods rely heavily on network struc-
tural properties such as the number of neighbors per node or
the number of connections between groups of nodes
(Sonawane et al., 2019). It is then vital to carefully choose
what the nodes and connections represent, such that any infer-
ence from the network mirrors the reality of biological systems.

In practice, as a result of genetic variation, RNA splicing, and
post-translational modification (PTM), a gene can yield many
distinct forms of a protein, called proteoforms (Smith et al.
2013). For most proteins, the different isoforms of a gene share
<50% of interactions (Yang et al. 2016). For example, Bcl-2
has two isoform products Bcl-xl and Bcl-xs resulting from alter-
native splicing. Bcl-xl, which contains the BH1 and BH2
domains, is responsible for programmed cell death, while Bcl-xs
lacks both domains, therefore contributing to the opposite func-
tion (Schwerk and Schulze-Osthoff 2005). One can legitimately
anticipate an even higher specificity when including PTMs.
However, this information is lost when creating biological net-
works using gene names as sole descriptor of the protein.
Another source of information lost in the construction of gene-
centric networks is the role of molecules that are not encoded in
the genome and would therefore not be represented in a gene-
network. Such molecules are referred to as SimpleEntity in the
Reactome object model and are called small molecules through-
out this study. Small molecules play essential roles in biological
systems, e.g. they include metabolites participating as reactants,
catalyzers, or inhibitors of reactions. For example, adenosine tri-
phosphate (ATP) and guanosine triphosphate (GTP) are essen-
tial metabolites needed as energy sources. ATP hydrolysis
provides the energy for protein transport in the mitochondria,
for binding and releasing the newly synthesized polypeptide mol-
ecules from the hsp70 chaperone proteins (Jinek et al. 2020).

Previously, we have demonstrated that it is possible to le-
verage the rich information contained in the Reactome path-
way knowledgebase to refine the representation of biological
networks by accounting for proteoform-specificity of biologi-
cal reactions (Sánchez et al. 2019). Here, we demonstrate
how changing the type of node from gene to proteoform influ-
ences the structure of the obtained networks. In addition, we
study how the inclusion of small molecules affects the repre-
sentation of the network. Together, our results show that
changing the representation of biological networks can help
refine the modeling of biological processes, but that the lim-
ited information on proteoform-specific interactions still
impairs the application of such approaches at scale.

2 Materials and methods

2.1 Reactome data

Reference knowledge to conduct the analysis was obtained
from the Reactome graph database (version 84). The database
dump file (reactome.org/download-data) was loaded and run
using Neo4j Desktop 1.5.7 to Neo4j Graph Database
Manager 4.4.19. The analysis scripts were implemented using
Python 3.11 organized as Jupyter notebooks. They communi-
cated with the database management system using the Neo4j
Python Driver Manual version 5.7.0.

2.2 Network construction

The Reactome graph database data model is organized as
nodes and relationships with properties and labels. We used
Event entities to infer the nodes and connections for the net-
work. Events involve the transformation of input nodes into
output nodes in one or multiple steps. We queried for two
types of event nodes: Pathway and ReactionLikeEvents.
ReactionLikeEvents convert input entities to output entities in
one step, while Pathways group sets of ReactionsLikeEvents.
Each event has participant molecules which perform roles of
input (reactant), output (product), regulators and catalyzers
(enzymes). The data model represents events occurring in se-
quence by annotating the output of the first event as input of
the second event.

Participants of reactions are physical entities, which are of
two main types: accessioned entities and simple entities.
Accessioned entities stand for molecules that feature a standard
identifier for each sequence pattern, typically nucleotide-based
sequences (genes or transcripts) or amino acid-based sequences
(proteins). They are annotated with references to the genes possi-
bly encoding them, annotated with HUGO gene nomenclature
identifiers (Tweedie et al. 2021), while proteins have UniProt
(UniProt Consortium 2020) accession numbers. Simple entities,
referred to as small molecules throughout this work, refer to
fully characterized molecules that are not genome encoded.
They include metabolites but are not restricted to these. Small
molecules have unique identifiers from the Chemical Entities of
Biological Interest (ChEBI) database (Hastings et al. 2016). The
other, rarer, types of participants include drugs, polymers, and
those labeled OtherEntity in Reactome, and were not included
in this study.

When this information is available, accessioned sequence
participants are additionally annotated with their isoform and
the minimal set of post-translational modifications necessary
to perform their role in the biological event. Combining the
set of modifications and isoform sequence, we built a theoreti-
cal proteoform state in which the gene products need to be
present to participate in a given reaction.

Participants of events may also be entity sets, complexes,
and genome encoded entities. Entity sets stand for groups of
entities which may be used almost interchangeably within a
biological event. For example, multiple proteins may inter-
changeably perform the same role in a reaction, e.g. catalyz-
ing a reaction. Complexes are the conjunction of multiple
molecules into a single unit. The members of the complex
may be of all other types of participants, i.e. accessioned
sequences, simple entities, or even complexes. Genome
encoded entities are protein or nucleic acid molecules whose
sequence is not yet clearly defined for a specific species.

We constructed gene- and proteoform-centric interaction
network representations of the Pathways in Reactome by tak-
ing all reaction participants as nodes of the network, as in pre-
vious studies (Burger et al. 2018, Sánchez et al. 2019). We
considered all entities with gene, protein, or chemical acces-
sions. We did not consider genome encoded entities that did
not have a reference identifier and did not include molecules
without a chemical accession.

For the gene-centric representation, all physical entities as-
sociated with a given gene and each of its associated UniProt
protein accessions are represented by a single node, i.e. merg-
ing all protein products, isoforms, and proteoforms into one
node. For the proteoform-centric representation, we repre-
sented each proteoform with a separate node. We took the
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associated protein accession, the isoform, and the set of post-
translational modifications annotated to represent a single
proteoform. Then, all physical entities yielding the same iso-
form with the same sequence modification combinations were
represented by a single node. For both the gene- and
proteoform-centric networks we constructed two alternative
networks that additionally considered the simple entities, i.e.
small molecules in this study; the first alternative adds a single
node for each small molecule, the second alternative adds a
node for each small molecule to every reaction in which the
given small molecule participates. We included all participant
accessioned entities and small molecules directly as nodes,
splitting complexes and entity sets into the single accessioned
entities and small molecules they consist of.

Once the nodes were defined, we created a connection be-
tween each pair of nodes that was annotated to perform a
role in the same reaction, such as input and output. To con-
struct a complete interactome we processed all pathways with
all their respective reactions to obtain their nodes and connec-
tions. Nodes were not repeated, but instead we aggregated
their connections obtained from the different pathways. All
connections were undirected.

2.3 Pathway-specific subnetworks

To build subnetworks representing a single pathway, we listed
the reactions the given pathway consists of, and built connec-
tions and nodes like done for the entire network. If a pathway
was found to contain another pathway, the subnetwork of
the subpathway was constructed and merged with the net-
work of the pathway.

2.4 Network analyses

Networks were represented and analyzed using the Networkx
library version 3.1 for Python. The library allows the calcula-
tion of size, articulation points, bridges, and connected
components.

Addition, we implemented our own procedure for percola-
tion analysis: 10% of the connections from the network were
randomly removed, and the size of the largest connected com-
ponent (LCC), also called giant component, was monitored;
this procedure was repeated iteratively until no connection
remained. The average size of the LCC was plotted against
the share of nodes remaining in the LCC, called network com-
pleteness. The point where the size of the LCC collapses rap-
idly represents the percolation threshold, a topological metric
of the network (Menche et al. 2015). For the creation of
Fig. 3, the procedure was conducted twenty times for every
network; the dots represent a point in the percolation and the
solid line the average LCC size at a given completeness.

2.5 Code availability

All the code used to construct the networks and replicate
the topological analysis is publicly available at the public re-
pository: github.com/PathwayAnalysisPlatform/Proteoform
Networks.

2.6 Data availability

All the data used in this study are available at the Reactome
website: reactome.org.

The networks produced by this study are available at the
public repository: github.com/PathwayAnalysisPlatform/
Networks.

3 Results

3.1 Increased size of the interactome

A recent estimate for the human genome lists approximately
47 000 genes, of which approximately 19 000 are coding for
proteins (Tweedie et al. 2021). The estimated number of pro-
tein products resulting from alternative splicing is around
70 000 isoforms (Aken et al. 2017). The total number of func-
tional proteoforms remains unknown, but estimates are in the
millions depending on how proteoforms are defined
(Aebersold et al. 2018). Changing the representation of a net-
work from a gene-centric to a proteoform-centric paradigm
should therefore result in a network several orders of magni-
tude larger. Based on isoform and post-translational modifi-
cation information from the Reactome knowledgebase v84
for Homo Sapiens, we can represent 14 253 distinct proteo-
forms participating in 14 212 reactions (see Section 2 for
details). These 14 253 proteoforms represent 11 057 proteins
linking to 11 039 gene names, making 1.29 proteoforms per
gene on average. We constructed a network based on all path-
ways in Reactome by connecting entities when they partici-
pate in the same reaction. Building the network based on
proteoforms instead of genes yields 3214 (þ29.1%) addi-
tional nodes and 216 204 (þ58.6%) additional connections.
Thus, while the proteoform annotation provides enough in-
formation to substantially increase the size of the network,
out of the millions of expected proteoforms, only a few pro-
teoforms are annotated functionally.

The genes which encode the proteins with the highest num-
ber of proteoforms annotated are UBC (Polyubiquitin-C),
H3C1 (Histone H3.1), and H3C15 (Histone H3.2), with 55,
52, and 48 proteoforms, respectively, participating in diverse
pathways and located in multiple subcellular compartments
(Supplementary Table S1). UBC, e.g. has products mostly
ubiquitinylated or with crosslinks between L-lysine residues
and glycine at multiple locations of the sequence, generating a
high number of proteoforms representing different combina-
tions of post-translational modifications. For these examples,
the proteoform representation of biological interactions was
completely different compared to a gene-centric network.
Another factor that can influence the respective number of
proteoforms per gene is the ambiguity of identifier mapping
between databases, where one gene can map to multiple pro-
teins, and the other way around, although the prevalence of
this problem diminishes as identifier mapping gets harmo-
nized between resources.

Reactome also contains small molecules annotated as par-
ticipants of human reactions. Extending the gene- and
proteoform-centric networks with small molecules increases
the number of nodes by 2070, representing an increase of
18.8% and 14.5%, respectively (Table 1). Adding small mole-
cules creates 86 195 and 91 921 new connections, correspond-
ing to an increase of 23.3% and 15.7% for the gene- and
proteoform-centric networks, respectively. However, this cre-
ates situations where small molecules ubiquitous in biochemi-
cal reactions, like H2O or ATP, connect most of the network.
To take the influence of small molecules into account without
distorting the network globally, we introduced the possibility
for small molecules to connect pathway participants within
but not between reactions. The number of new connections
then becomes 446 415 and 456 820, corresponding to an in-
crease of 120.9% and 78.0%, for the gene- and proteoform-
centric networks, respectively.
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3.2 Interconnected proteoforms alter the degree

distribution

The connectivity of a node in a network is measured by the
number of connections, also called the degree. Without ac-
counting for small molecules, 143 295 (24.5%) of the connec-
tions in the proteoform-centric network represent connections
where proteoform-level information is available for both
nodes, while 101 746 (17.4%) and 340 387 (58.1%) of the
connections present no proteoform annotation for one or both
nodes, respectively. Since proteoforms are specific forms of a
protein (Smith et al. 2013), changing a gene-centric network
into a proteoform-centric representation can be seen as distrib-
uting the protein–protein interactions between new, more spe-
cific, nodes. Thus, intuitively, proteoform nodes are expected
to have a smaller degree than the gene that encodes them. As
we previously described (Sánchez et al. 2019), the majority of
proteoforms (57.1%) indeed present a degree lower than their
genes in the gene-centric network, but a minority (35.4%)

increases its degree due to proteoform-proteoform interactions.
The degree distributions for nodes annotated with isoform or
PTMs are plotted in Fig. 1 and Supplementary Fig. S1, and
summary statistics on the overall degree in the networks are de-
tailed in Supplementary Table S2.

This is, e.g. the case for collagen-related genes such as
COL7A1, COL3A1, and COL6A3, which present much
higher degrees in the proteoform-centric than in the gene-
centric network: 606 versus 121, 547 versus 67, and 546 ver-
sus 66, respectively. These collagen nodes are expanded to a
wide variety of proteoforms as they become multiply modified
by sequential reactions. For example, in the pathway
Collagen biosynthesis a reaction converts collagen lysines to
5-hydroxylysines, and diverse COL7A1 gene products are in-
put and output of the reaction. In a gene-centric network, this
reaction is modeled as a single COL7A1 gene node, while in
the proteoform-centric network, the input nodes COL7A1,
3x4Hyp-COL7A1, and 3x4Hyp-3Hyp-COL7A1 are con-
nected to the output nodes 5Hyl-COL7A1, 3x4Hyp-5Hyl-

Figure 1. Node degree distribution for nodes with isoform or post-translational modifications annotated in the different interactomes depending on how

small molecules are considered and whether proteoforms are considered as individual nodes or collapsed into a single gene. (A) Left: only gene or

proteoform nodes; no small molecule nodes. Center: small molecule nodes included in the network; one node for each. Right: “reaction-unique” small

molecule nodes included; adding one separate node for each reaction where the small molecule participates. (B) Degree values for each node for

interactomes without small molecules. Comparison of gene node degree versus proteoform node degrees. Includes only proteoforms with isoform or

post-translational annotations. Each node is plotted with a transparent dark point. A dotted line shows where the degree is the same for both types of

nodes.

Table 1. Sizes of the six alternative interactome networks resulting from combining entity level (genes, proteoforms) and three options to consider small

molecule nodes.a

Small molecules Entity level Interactions Nodes Num accessioned entities Num small molecules

Not included Genes 369 224 11 039 11 039 0
Not included Proteoforms 585 428 14 253 14 253 0
Included Genes 455 419 13v109 11 039 2070
Included Proteoforms 677 349 16 323 14 253 2070
Reaction-unique included Genes 815 639 40 949 11 039 29 910
Reaction-unique included Proteoforms 1 042 248 44 163 14 253 29 910

a Sizes are shown as number of connections (interactions) and number of nodes.
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COL7A1, and 3x4Hyp-3Hyp-5Hyl-COL7A1, yielding nodes
with higher detail of information but also with higher degree
than in the gene-centric network. Other nodes that conse-
quently have their degree increased do not necessarily have
proteoform-level annotation, such as PLOD3, which has its
degree increased by an order of magnitude (from 46 to 529),
simply because it participates in reactions with multiple colla-
gen gene products, therefore connecting to many proteo-
forms. The node degrees for gene- and proteoform-centric
networks are listed in Supplementary Table S3.

As detailed in Supplementary Table S2, when extending the
networks with small molecules, the average degree of acces-
sioned entity nodes, i.e. genes or proteoforms, increased from
66.9 to 73.1 (þ9.3%) and from 82.2 to 87.4 (þ6.3%) for
genes and proteoforms, respectively. For the majority of
nodes, the degree of small molecules is lower than the degree
of accessioned entities, the resulting median degree in the
overall network is therefore lower or very similar (Fig. 1). As
previously introduced, the ubiquitousness of small molecules
however produces hyperconnected nodes with up to 3643
and 4308 connections in the gene-centric and proteoform-
centric networks, respectively, while the most connected genes
and proteoforms present 1306 and 1552 connections, respec-
tively. Restricting small molecules to reaction-specific rela-
tionships allows considering the local function of small
molecules without creating hyperconnected small molecule
nodes, decreasing their average degree from 50.2 to 17.8 and
from 53.0 to 19.1 for the gene and proteoform networks, re-
spectively. The average degree of accessioned entity nodes is
further increased to 99.5 and to 108.2 for the gene- and the
proteoform-centric networks, respectively, while the maximal
degree increases to 2349 and 2364, and the maximal degree
of small molecules remains 304 in both networks. The in-
crease in maximal degree when compartmenting small mole-
cules per reaction can be explained by highly connected genes
or proteoforms that participate in many reactions with the
same small molecule: when building reaction-specific small
molecules the degree of the gene or proteoform increases by
the number of reactions.

While interactome-wide studies have proven valuable in
biomedicine, they lack biological context, e.g. in time and
space, and can thus yield results that are biologically unlikely
or impossible: it is not because A can interact with B and B
with C, that the path A, B, C is possible. We used the path-
ways in Reactome to build bona fide subnetworks of chained
reactions and study the influence of introducing proteoforms
on these subnetworks, thereby providing a local view comple-
mentary to the global results obtained on the entire interac-
tome. We focused on the pathways that contain at least one
node with isoform or modification information (1134 path-
ways from a total of 2138). Note that pathways are organized
in a hierarchical structure and we included all pathways, i.e.
also pathways containing other pathways, some nodes and
reactions are therefore redundant between pathways (Burger
et al. 2018). The sizes of the pathway-based subnetworks are
displayed in Supplementary Fig. S2. The average degree per
proteoform, 17.35, was slightly higher than per gene, 15.5
(þ11.9%) (Supplementary Table S4). It therefore appears
that the increase in degree observed for the whole network is
preserved for within-pathway connections, and not only due
to between-pathway connections between proteoforms and
other proteins.

3.3 Proteoforms modify the properties of connected

components

Connected components are the maximal subnetworks in
which all nodes of the component can reach each other
through a path (Fig. 2). A subnetwork is a network containing
a subset of nodes or connections from the original network.
The Largest Connected Component (LCC) of a network is the
component with the highest number of nodes. In our analysis
of Reactome, gene- and proteoform-centric networks showed
similar relative size of the LCC (Supplementary Table S5),
both globally and per pathway (Supplementary Table S6).

The proteoform interactome extends gene nodes into multi-
ple proteoform nodes. Proteoforms resulting from variation
of a single gene, called a proteoform family, may participate
in disjoint sets of reactions in the network. If gene nodes are
represented by multiple proteoforms participating in separate
reactions or pathways, the overlap will only be observable at
the gene level and not at the proteoform level. In other words,
proteoforms from a single gene may be split over different
subnetworks, e.g. pathways or nodes of interest, and even dif-
ferent connected components. In this case, subnetworks
would intersect in the gene-centric representation of the net-
work, but not in the proteoform-centric representation, where
the different subnetworks would be disconnected.

We found 505 proteins where at least one proteoform of
the family participates in a biochemical reaction where the
other members of the family are not involved. Identifying
such a proteoform in a sample therefore provides pathway-
specific information that is lost in a gene-centric representa-
tion, as in that case all reactions and pathways where any of
the family members participate become indistinguishable. As
an example, the human protein Peroxiredoxin-5 (P30044)
has isoforms P30044-1 located at the Mitochondrial Matrix,
and P30044-2 in the Cytosol. They differ in sequence, the sec-
ond one missing the first 52 amino acids, and participate in
separate reactions in different subcellular locations: “PRDX5
reduces peroxynitrite to nitrite using TXN2” and
“PRDX1,2,5 catalyzes TXN reduced þ H2O2 ¼> TXN oxi-
dized þ 2H2O”, respectively. In this case, a proteoform-
centric representation would distinguish the mitochondrial
from the cytosol reaction, connecting them through the trans-
location and processing of P30044 into P30044-1, while a
gene-centric representation would make both reactions
indistinguishable.

We further evaluated whether the robustness of the net-
work was altered by introducing proteoforms using a percola-
tion analysis. Given that our representation of interaction
networks represents an incomplete picture of the interactome,
percolation analysis has been suggested to investigate whether
a network is dense enough for the systematic analysis of gene
sets (Menche et al. 2015). Both gene- and proteoform-level
interactomes showed similar percolation curves, with very
similar curves overlapping until the collapse of the network
where the proteoform displays a slightly better robustness,
which we ascribe to the cluster of tightly interconnected com-
ponents visible in Fig. 1B (Fig. 3).

3.4 Small molecules reduce the prevalence of

isolated components and nodes

Adding nodes representing small molecules considerably
increases the percentage of nodes part of the LCC, from 85%
to 98% in proteoform interactomes. Conversely, adding
reaction-unique nodes for small molecules, rather than once
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for the whole interactome, prevents merging connected com-
ponents when small molecules are the only nodes shared be-
tween reactions. By design, the number of connected
components using reaction-unique small molecules is then
greater than or equal to the number of connected components
obtained when using small molecules, as displayed in
Supplementary Table S5, and consequently the LCCs are
smaller. At the other end of the scale, some pathways contain
proteins performing multiple roles in a reaction but not con-
nected to other proteins, leading to isolated nodes only con-
nected to themselves in the network. This may happen when
different isoforms or proteoforms of the same protein partici-
pate in the reaction with different roles, resulting in the gene
centric representation being a single node interacting with it-
self while the proteoform-centric representation would show
a subnetwork composed of multiple nodes. We found 1665
and 1696 isolated nodes for the gene- and proteoform-centric
networks, respectively, showing an overall stable number of
isolated nodes. For example, the reactions sustaining Vitamin
B1 (thiamin) metabolism (Fig. 4) yield isolated nodes that stay
isolated even in the proteoform-centric representation.

Adding small molecules reduces the number of isolated
nodes to 164 and 174, respectively. Among the 11 039

accessioned entity nodes, 2715 (24.5%) are connected only
through small molecules. When considering 1134 pathways,
226 displayed less isolated nodes when considering small mol-
ecules. Conversely, for 40 pathways there were more isolated
nodes when adding small molecules. When the studied net-
work is sparse or with many disconnected nodes, it thus
becomes useful to include small molecules. They show indi-
rect ways to reach one node from another through reactions,
yet the relevance of connecting two distant entities by a small
molecule can be questioned. Reaction-unique small molecules
provide a balance between reducing the number of isolated
nodes while not connecting nodes across different pathways.
They allow connecting otherwise isolated nodes through a
path that alternates between accessioned entities and
reaction-relevant small molecules, while preserving the dis-
connection of pathways and components.

3.5 Articulation points and bridges

Articulation points and bridges are respectively nodes and
connections that, if removed, disconnect a connected compo-
nent into two or more components (Fig. 2). They are thus es-
sential members of the network, maintaining the connection
between otherwise disconnected subnetworks. A network is

Figure 3. Link percolation curves for gene and proteoform interactome networks. Having the Largest Connected Component (LCC) of a network as the

component with the highest number of nodes, the relative size of the LCC (y axis) is the number of nodes relative to the number of nodes at start of

percolation. Starting with a completeness of 1.0 (complete interactome) and iteratively removing connections until completeness is 0, 20 iterations of

percolation were conducted for the gene and proteoform networks. At each completeness level, the solid line shows the median relative size among all

iterations and the ribbon the distance between 20th and 80th percentile.

Figure 2. Illustration of graph theory concepts using hypothetical networks with proteoform nodes (green rectangles) and small molecule nodes (blue

circles). (A) Connected components of the network, each one surrounded with a dotted line. Largest connected component highlighted with red dotted

line. (B) Articulation points, nodes highlighted in red. (C) Bridges, connections highlighted with red lines.
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considered more robust when it contains fewer articulation
points and bridges. We investigated whether the prevalence of
bridges and articulation points changed from a gene-centric
to a proteoform-centric representation. However, as detailed
in Supplementary Tables S7 and S8 for articulation points
and bridges, respectively, adding proteoform annotation does
not substantially change the share of articulation points (from
2.45% to 2.5% of nodes). Articulation points in the gene-
centric network either stay articulation points in the
proteoform-centric network or become more connected due
to the multiplicity of proteoform nodes in a proteoform fam-
ily. Therefore, the use of proteoform nodes creates more con-
nected components rather than creating isolated nodes
(Supplementary Table S5). This indicates that, although pro-
teoform annotation increases the connectivity in the network,
it is mainly through within-component connectivity.

Given the ubiquitous nature of some small molecules,
which participate in many pathways across many contexts, it
can be anticipated that they create new connections between
connected components. Indeed, adding small molecules re-
duced the prevalence of bridges and articulation points. In
proteoform-centric networks they reduce from 356 (2.46%)
to 257 (1.57%). In the network extended with small

molecules, 40% of articulation points were small molecules
and 60% accessioned entities (Supplementary Table S7).
Conversely, when adding reaction-unique small molecules,
the number of bridges was tripled, and the robustness of the
network hence reduced. Adding reaction-specific small mole-
cules also has the effect of increasing the percentage of proteo-
forms that are articulation points and increasing the
percentage of bridges going out of small molecule nodes, from
3.57% to 10.78% (Supplementary Table S8).

We investigated the changes in prevalence and nature of
bridges and articulation points at the level of pathways.
Supplementary Tables S9 and S10 detail the averaged values
among all pathways in Reactome considered individually.
The share of articulation points considering pathways one by
one is slightly higher than when considering the complete
interactome, highlighting how interactomes aggregate path-
ways, overlapping the connections of nodes in different con-
texts. Once again, accessioned entities are more often
articulation points than small molecules, demonstrating their
key role in biological processes. Nevertheless, small molecules
still represent one third of articulation points. Even per path-
way, the tendency of small molecules to reduce the percentage
of bridge connections is clear, confirming the important role
of small molecules for the connectivity of the network at both
local and global levels.

Bridges connect more than twice as often accessioned enti-
ties rather than small molecules, and the prevalence increases
when studying per pathway than for the complete interac-
tome. This increase can be interpreted as the connections of
proteoforms conveying more unique information, whereas
small molecules may connect more diverse types of other mol-
ecules. Reaction-unique small molecules are expected to be ar-
ticulation points more frequently than regular small
molecules, but no difference was found on average. Reaction-
unique small molecules increase the total number of articula-
tion points by increasing the percentage of accessioned entity
nodes that are articulation points. This is due to the smaller
average node degree of the reaction-unique small molecules,
compared to the regular small molecules. Hence, when they
connect to an accessioned entity, they may convert that acces-
sioned entity into an articulation point.

4 Discussion

This study investigated the impact of changing the network
representation through the inclusion of proteoforms and
small molecules. We based these findings on the Reactome
knowledgebase, which contains rich information on biologi-
cal pathways. Due to the high level of detail on biochemical
reactions required to build such networks, functional annota-
tion on proteoforms and small molecules is still scarce. The
rapid pace in increase of functional knowledge indicates that
such analyses will become increasingly powerful. As the inter-
actome becomes more connected, refining its representation
using the rich information available in pathway knowledge-
bases represents a promising avenue to tease apart densely
connected functional regions. Our analysis focused on proteo-
forms and small molecules, but other information can be in-
cluded to refine network representations including the
directionality of interaction (from input to output), condition-
ing on previous reactions, participation in complexes or sets,
subcellular or biological location.

Figure 4. Network representations of Reactome Pathway “Vitamin B1

(thiamin) metabolism” (R-HSA-196819). Squares represent accessioned

entities. Gray circles are small molecules. (A) shows how the network

consists of only isolated nodes. (B) shows that nodes stay disconnected

when using proteoforms. (C) and (D) show how small molecules enable

connecting the nodes. (E) and (F) show how reaction-unique small

molecules connect isolated nodes by reaction. (SM/s.m.: small

molecules).
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By modeling the incomplete interactome Menche et al. (2015)
identified disease modules, and studied their topological proper-
ties and pairwise relationships. An overlap between disease mod-
ules would then indicate a functional relationship, hinting at
shared mechanisms and possible common drug targets. We hy-
pothesize that conducting such analyses with more detailed net-
works could change the topology at the interface of disease
modules, e.g. the connectivity of some modules might decrease
when considering proteoform specificity. Furthermore, having
an indication that disease modules share, or are connected
through, proteoform-specific events, e.g. a phosphorylation,
could influence considerations on druggability.

Factors such as analytical challenges, research interest, and
literature curation lead to some proteins or pathways to be
better annotated than others. The better annotated pathways
give a more detailed representation of the biological pro-
cesses, while understudied proteins or pathways have a much
less mature representation or even remain undiscovered. Such
biases have a strong influence on the representation of the bi-
ological processes involved, and dramatically alter the ability
to conduct refined studies such as proteoform-level network
analyses. The disparity in biological functional knowledge is a
strong limitation of the field, yielding to a network where
some processes yield densely connected subnetworks of pro-
teoforms and small molecules, while others are only repre-
sented by sparse disconnected gene names—when any
information is available at all.

Technologies to identify proteoforms and small molecules
are improving constantly but integrating these biological enti-
ties in pathways at scale poses numerous challenges. It is
therefore important to develop new biological network analy-
sis approaches that can handle the heterogeneity in pathway
annotation without losing the rich information gathered by
the scientific community. One can envision that such
approaches will be generalizable to hybrid networks combin-
ing pathway knowledgebases with interaction networks de-
rived from experiments or text mining.

Constructing an interaction network using refined informa-
tion like proteoforms or small molecules is even more challeng-
ing using multiple sources of data. Functional annotations often
refer only to gene or protein accessions (Luck et al. 2020), hence
overlooking post-translational regulatory mechanisms central to
many biological processes. The broad adoption of proteoforms
in the representation of biological processes is essential to gener-
alize the approaches presented in this study, and hence allow the
refinement of the representation of biological processes, which
will eventually provide biomedical researchers with more power-
ful tools to interpret their data.

Supplementary data

Supplementary data are available at Bioinformatics online.
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