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Background: Understanding the factors regulating our microbiota is important but requires appropriate

statistical methodology. When comparing two or more populations most existing approaches either discount

the underlying compositional structure in the microbiome data or use probability models such as the multi-

nomial and Dirichlet-multinomial distributions, which may impose a correlation structure not suitable for

microbiome data.

Objective: To develop a methodology that accounts for compositional constraints to reduce false discoveries

in detecting differentially abundant taxa at an ecosystem level, while maintaining high statistical power.

Methods: We introduced a novel statistical framework called analysis of composition of microbiomes

(ANCOM). ANCOM accounts for the underlying structure in the data and can be used for comparing the

composition of microbiomes in two or more populations. ANCOM makes no distributional assumptions and

can be implemented in a linear model framework to adjust for covariates as well as model longitudinal data.

ANCOM also scales well to compare samples involving thousands of taxa.

Results: We compared the performance of ANCOM to the standard t-test and a recently published

methodology called Zero Inflated Gaussian (ZIG) methodology (1) for drawing inferences on the mean taxa

abundance in two or more populations. ANCOM controlled the false discovery rate (FDR) at the desired

nominal level while also improving power, whereas the t-test and ZIG had inflated FDRs, in some instances

as high as 68% for the t-test and 60% for ZIG. We illustrate the performance of ANCOM using two publicly

available microbial datasets in the human gut, demonstrating its general applicability to testing hypotheses

about compositional differences in microbial communities.

Conclusion: Accounting for compositionality using log-ratio analysis results in significantly improved

inference in microbiota survey data.
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O
ur knowledge of the role of microbiota in human

health and disease has expanded substantially

over the past few years (2). It is now well known

that health outcomes in later life can be affected by early-

life microbial compositions (3�6), demonstrating the

need to better understand microbiota composition. The

composition of human microbial ecosystems is diverse,

containing hundreds to thousands of species-level phylo-

types, and analysis of such complex data requires special

statistical methods (7).

Current technologies for studying the microbiota at

a community-wide level are based on operational taxo-

nomic units (OTUs), which are microbial genomic

sequences clustered by sequence similarity. OTUs are

then typically mapped to a taxonomic reference database

(e.g. Greengenes [8]). High-throughput sequencing pro-

vides an estimate of the abundance of each OTU in the

specimen (e.g. a fecal sample); crucially, they are not to be

interpreted as the true parametric abundance of the

corresponding taxon in the microbial ecosystem (e.g. the
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human gut) from which the specimen was derived. It is

critical to understand what the observed data represent

and what statistical parameters are being tested. The

current literature on the analysis of microbiome data is

not very precise and may potentially lead to misinterpreta-

tion of the biology. To help researchers understand the dis-

tinctions among various statistical parameters, we provide

a detailed description in the online supplementary files.

Comparison of microbial composition between two or

more populations on the basis of OTUs in the specimen is

not equivalent to comparing the abundance of the taxa in

the microbial ecosystems from which the specimen is

obtained. Consider the following example: Suppose that,

in two random samples of 100 animals each captured from

two different forests, there are 20 and 30 bears, respec-

tively. It is then reasonable to estimate that 20 and 30% of

the animals in the two forests, respectively, are bears. But

we may not conclude that there are more bears in the

second forest than in the first. For example, if the first

forest has 10,000 animals and the second 500 animals,

then based on the above observed proportions of bears,

there are an estimated 2,000 bears in the first forest but

only 150 in the second. It is thus inappropriate to draw

inferences regarding the total abundance in the ecosystem

from the abundance of OTUs in the specimen. However,

it is more reasonable to draw inferences regarding the

relative abundance of a taxon in the ecosystem using its

relative abundance in the specimen. In this paper we

exploit this feature of the data.

Microbial relative abundances within a specimen sum

to one and thus result in compositional data residing

in a simplex (9) rather than the Euclidean space. As a

consequence, standard statistical methods such as the

Pearson correlation coefficient, t-test, ANOVA, linear

regression analysis, and so on are not directly applicable

for analyzing microbiome relative abundance data. Ignor-

ing the fact that the data are in a simplex may result in

incorrect or misleading results (10). For example, because

the sum of the relative abundances is unity, it is a

mathematical requirement that the Pearson correlation

coefficient be negative for at least one pair of taxa. It is

therefore impossible to distinguish between true negative

correlations and those induced by the compositional struc-

ture, which could potentially lead to misinterpretations of

association between taxa pairs. Recently, Friedman and

Alm (11) introduced the method of sparse compositional

correlation (SparCC) to analyze correlation networks

among OTUs in 16S rRNA amplicon studies. SparCC

uses the variance of log-ratios of pairwise components

(fraction of OTUs) instead of the Pearson product moment

correlation to appropriately describe networks between

OTUs. Although determination of pairwise correlations

among taxa is useful for understanding associations

among taxa, they cannot be used for comparing two or

more populations in terms of the abundance of taxa, a

common problem of interest.

Recent publications (12, 13) have advocated modeling

OTU counts using variants of the multinomial distribu-

tion, including the Dirichlet-multinomial distribution.

This family of probability models may not be appropriate

for microbiome data because, intrinsically, such models

impose a negative correlation among every pair of OTUs

(see Equation 16 on page 68 of Ref. [14]). The microbiome

data, however, display both positive and negative correla-

tions. To illustrate this point, we obtained Pearson cor-

relation coefficients among all pairs of OTUs in the global

gut data (15). The resulting histogram of the correlation

coefficients (Fig. 1) suggests that there is a high frequency

of both positive and negative correlations, which indicates

against the use of distributions such as the multinomial

and Dirichlet-multinomial distribution for microbiome data.

In view of the above observations, motivated by (9), we

propose a novel methodology based on compositional

log-ratios, called ANCOM (analysis of composition of

microbiomes), for detecting differences in microbial mean

taxa abundance. The proposed methodology is compu-

tationally straightforward and can process thousands of

taxa. Our extensive simulation studies show that ANCOM

outperforms Zero Inflated Gaussian (ZIG) methodology

(1) by substantially reducing the FDR and increasing

power. Detailed descriptions of the methodology and simu-

lations are provided in the online supplementary files.

Using two publicly available datasets of human gut

microbiota (15, 16), we illustrate how ANCOM detects

differences in microbial compositions.

Results

Comparison of ANCOM, t-test, and ZIG
We compared the performance of ANCOM with that of

the t-test and ZIG using a variety of configurations of

parameters, such as the number of microbial taxa (500 or

1,000) and proportion of differentially abundant taxa p

Fig. 1. Histogram of pairwise Pearson correlation between

operational taxonomic units in the global gut data set.
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(ranging from 0.05 to 0.25). To mimic a real data scenario,

we chose model parameters such that 10% of the taxa had

high abundance, 30% medium abundance, and 60% low

abundance. The number of subjects in the two study

groups was 20 and 30, respectively. A complete description

of the parameters and the probability model is provided in

the online supplementary files. We used the R program

provided in (1) to implement ZIG. The FDR and power

were estimated using 100 simulation runs. Because many

researchers (17�19) use the t-test on the relative abun-

dance data to test hypotheses regarding the population

abundance, presumably because of its familiarity rather

than its applicability to microbiome data, we also eval-

uated the performance of the t-test.

Figure 2 summarizes the simulation results. Using the

observed OTUs at the specimen level, in all our simula-

tions we estimated the FDR and power for hypotheses

regarding the mean abundance of taxa in the ecosystem,

which is the parameter of interest to a biologist, rather

than the mean abundance of taxa at the specimen level.

Thus, for a given taxon, in our simulation study, under the

null hypothesis both groups have the same mean abun-

dance (at the ecosystem level). The top panels correspond

to 500 taxa, the bottom panels to 1,000 taxa. In each

panel, results of FDR comparisons for different patterns

of p are provided on the left and power on the right. The

overall results vary little with the number of taxa. In every

case, we note that the t-test and ZIG have inflated FDRs,

whereas ANCOM almost always has a very small FDR.

The FDR of the t-test and ZIG can be very high, for

example 68% for t-test and nearly 60% for ZIG, meaning

that far more than half of the discoveries made by these

Fig. 2. Comparison of (a) false discovery rate and (b) statistical power to detect differentially abundant microbial taxa by t-test, ZIG,

and analysis of composition of microbiomes, based on 100 simulated data sets consisting of 500 (top panels) and 1,000 (bottom panels)

taxa. Value of p ranges from 0.05 to 0.25. Power for the t-test is unity over the entire range of p and is not shown on the plots.
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two procedures could potentially be wrong. Interestingly,

ANCOM not only controls the FDR but increases power.

In the supplementary file, we provide results from a

simulated example where the OTU abundances are much

smaller than abundances in the ecosystem. In that case, we

observed that the FDR of ZIG could be as high as 60%

(68% for t-test), whereas that for ANCOM never exceeded

5%. Our simulation studies clearly illustrate that, using

the relative abundance at the specimen level, our metho-

dology can successfully draw inferences regarding taxon

abundance at the ecosystem level.

Application of ANCOM to real data
To demonstrate that the above concerns are not simply

theoretical and that improved power to detect differences

can alter biological conclusions, we reanalyzed data from a

recent paper (16). This exciting study examined temporal

changes in the composition of the microbiome in preterm

babies, focusing primarily on three classes of bacteria:

Bacilli, Clostridia, and Gammaproteobacteria. Using

standard t-tests/ANOVA within linear mixed models,

they concluded that temporal changes in the relative

abundance of Bacilli, Clostridia, and Gammaproteo-

bacteria in premature babies were minimally influenced

by the mode of delivery, antibiotic use, or breast milk.

These results were surprising, because a substantial body

of literature has found these variables to have systematic

effects (20). However, because the denominator in calcu-

lating the proportion of any one taxon is the sum of the

abundance of all taxa, the relative abundance of any given

taxon is confounded by the abundance of others. Conse-

quently, even if the absolute abundances of most taxa

remain unchanged, the relative abundance of all taxa may

change because of changes in the abundance of one taxon.

A reanalysis of the data in (16) using ANCOM suggests

that, when analyzed using an improved statistical model,

the findings are more consistent with what has been

previously observed in the literature. Specifically, using

ANCOM, we find that the abundance of Bacilli, Clos-

tridia, and Gammaproteobacteria in premature babies is

influenced by factors including delivery mode, antibiotic

use, and breast milk (Fig. 3), in accordance with previous

literature. The difference in abundance of each of the three

bacterial classes between babies delivered by C-section

and those delivered normally also changed significantly

with gestational age. All three classes of bacteria showed a

significant interaction between gestational age and the

effect of C-section. Although all statistical inferences are

based on the log-ratios (see the supplementary file for

more details), in Fig. 3, we illustrate the relationship

graphically using the raw data, namely the unadjusted

OTU relative abundances for the three bacterial classes

against variables with significant effects. For plotting

purposes, we discretized days on antibiotics into four

categories.

In many studies where finer taxonomic resolution is of

interest, both in host-associated microbial communities

and in environmental samples, populations can be com-

pared on the basis of thousands of OTUs. ANCOM is de-

signed to accommodate such larger data sets. For example,

we applied ANCOM to the cross-cultural human gut

microbiota comparison mentioned above (15), consisting

of 11,905 OTUs. Subjectswere classified into five age groups:

0�2 years (Group 1), 2�10 (Group 2), 10�20 (Group 3),

20�50 (Group 4), and greater than 50 years (Group 5),

from three countries (USA, Malawi, and Venezuela). We

first tested for temporal patterns from early to later life at

the phylum level. Our analysis revealed that Firmicutes

(p-valueB0.001), Euryarchaeota (p-valueB0.0001), and

Lentisphaerae (p-valueB0.001) differed between Groups

1 and 2. Comparing subjects in Groups 2 and 3, we noted

that the rare Fusobacteria (p-valueB0.01), Spirochaetes

(p-valueB0.0001), Cyanobacteria (p-valueB0.0001), and

Elusimicrobia (p-valueB0.0001) were significantly different;

little is known about the role of these phyla in the human

gut. Cyanobacteria (p-valueB0.01) was the only phylum

detected to be significantly different between Groups 3

and 4. No phyla were detected to differ at later stages

of life. This further supports the idea that major changes

in the human gut microbiome occur early in life and sta-

bilize later (as described in the original paper) but suggests

that follow-up work on low-abundance taxa may be

especially important in understanding the basis for these

changes.

To investigate differences in microbial composition by

geographical location among infants aged 0�2 (Group 1),

we analyzed the 11,905 OTUs from global gut data (15).

As typically done (13), to avoid sparsely observed OTUs,

which tend to introduce noise, we investigated only those

OTUs that were prevalent in at least 25% of the sample.

The results of ANCOM are summarized in Table 1.

We observed significant differences in the composition

between samples from the United States and Malawi or

Venezuela, with the majority of detected OTUs belonging

to Firmicutes, Bacteroidetes, and Proteobacteria, among

the dominant taxa in the gut. These differences could be

caused by contrasting diet, feeding practices, and hygiene

during early life. On the other hand, only seven OTUs

were detected as significantly different between Malawi

and Venezuela, indicating the close similarity in composi-

tion between these two populations, despite being geo-

graphically far apart.

All computations were carried out in the publicly

available software R (version 3.0). ANCOM took 17, 23,

and 25 min to process the three examples shown in Table 1,

consisting of approximately 12,000 OTUs total (a typically

sized data set), on a Macbook Pro (Intel Core i7, 2.4 GHz,

16 GB RAM). This example illustrates that ANCOM is

applicable for analysis of a typical OTU count data set.
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Fig. 3. Unadjusted raw average OTU relative abundance and standard errors of Bacilli, Clostridia, and Gammaproteobacteria against

the variables detected as having significant effects by application of ANCOM on the microbial dataset provided in LaRosa et al. (16).

The mean OTU relative abundances for the two modes of birth at different gestational age categories are provided in the first

row. The second row provides the mean OTU relative abundances at different ‘Day of life’ categories. The third row provides the mean

OTU relative abundance for Bacilli against categories of breast milk variable and for Clostridia against categories of ‘Days on

antibiotics’. Although, as in LaRosa et al. (16), ‘Day of life’ and ‘Days on antibiotics’ were analyzed as continuous variables, for

simplicity of plotting in this figure they were discretized.

Table 1. Differentially abundant OTUs identified by ANCOM when comparing samples from infants (younger than 2 years) obtained

from Malawi, Venezuela, and USA. The number of OTUs considered for each comparison was determined using a prevalence cutoff of

25% on the entire set of 11,905 OTUs. Detected differentially abundant OTUs are grouped into phyla level based on corresponding

taxonomy classification.

USA vs. Malawi Malawi vs. Venezuela Venezuela vs. USA

Number of OTUs considered�1408 Number of OTUs considered�1597 Number of OTUs considered�1760

Phyla Significantly different OTUs Phyla Significantly different OTUs Phyla Significantly different OTUs

Firmicutes 128 Firmicutes 5 Firmicutes 126

Bacteroidetes 48 Proteobacteria 1 Bacteroidetes 43

Proteobacteria 16 Cyanobacteria 1 Proteobacteria 11

Actinobacteria 3 Tenericutes 9

Tenericutes 3 Actinobacteria 3

Cyanobacteria 2 Cyanobacteria 3

Spirochaetes 1 Elusimicrobia 1

Fusobacteria 1

Total 203 Total 7 Total 196
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Discussion
True taxon abundances in the ecosystem of interest are

typically unobservable, but data are available only for the

specimen obtained from the ecosystem. Differences in the

abundance of OTUs at the specimen level cannot be

extrapolated to differences in abundance at the ecosystem

level. However, assuming that specimens are random

observations from the ecosystem of interest, it is reason-

able to assume that the expected relative abundance of a

taxon in a specimen is the same as it is in the ecosystem.

Thus, comparison of the expected relative abundances at

the specimen level is approximately equivalent to making

comparisons at the ecosystem level. However, because the

relative abundance of taxa sum to 1, it is not appropriate

to use standard statistical methods such as the t-test,

ANOVA, and so on directly on the relative abundances,

because the standard methods implicitly assume that

there are no such restrictions on the data (9). Similarly, it

is not appropriate to use methods based on the multi-

nomial or Dirichlet-multinomial distributions, because

such distributions require all pairs of OTUs to be nega-

tively correlated. However, as demonstrated in this paper,

this requirement may not be valid for microbiome data,

since some pairs of OTUs may be positively correlated.

Lastly, our simulation studies indicate that the ZIG

methodology (1) can produce unacceptably high FDRs

and hence may not be suitable for comparing the mean

taxa abundance at the ecosystem level between two or

more populations. Furthermore, according to the statis-

tical model given in the middle of page 2 of the online

supplementary files of (1), the ZIG methodology appears

to implicitly require that the sum of all observed OTUs

be a constant, and not a random variable. However, it is

not clear how (or whether) this information is used in the

distributional assumptions made in (1).

As noted in the online supplementary files, it is not

feasible to estimate taxa abundance at the ecosystem

level. However, by assuming that either (a) out of p taxa,

at most p-2 are differentially abundant (in log scale) or

(b) if all taxa are differentially abundant then the mean

abundance (in log scale) of every taxon does not change

by the same amount between two (or more) popula-

tions, ANCOM can be used for drawing inferences

regarding taxa abundance at the ecosystem level using

the specimen level relative abundance data. To restate

the second assumption more precisely, suppose

ðE½logðcgroup1
1 Þ�;E½logðcgroup1

2 Þ�; :::;E½logðcgroup1
p Þ�Þ0 and

ðE½logðcgroup2
1 Þ�;E½logðcgroup2

2 Þ�; :::;E½logðcgroup2
p Þ�Þ0 denote

the expected abundance (in log scale) of p taxa in a

random ecosystem (e.g. the gut of a randomly chosen

baby) from two groups (e.g. vaginally delivered babies

and C-section babies, respectively). Then ANCOM

assumes that E½logðcgroup1
i Þ� and E½logðcgroup2

i Þ� do not

differ by the same constant for all taxa i. In practice,

these are very reasonable assumptions to make. However,

if these are not valid, then ANCOM can still be used

for comparing the relative abundances of taxa at the

ecosystem level by taking log-ratios relative to a pre-

defined taxon. Further, as commonly done in classical

data analysis involving log transformations (e.g. Box�
Cox transformations), to deal with zeros in the data,

ANCOM adds a small positive constant before perform-

ing log transformations. The choice of the positive

constant is not based on a rigorous statistical theory,

but is arbitrary. The effect of the choice of the constant

on the FDR and power of the methodology requires

careful investigation. As demonstrated in this article,

ANCOM dramatically controls the FDR while maintain-

ing high power. In large genomic surveys, where each

taxon is represented by several thousands of OTUs,

ANCOM provides a computationally simple methodology.

Thus, apart from ANCOM, none of the methods described

in this paper appear to be appropriate for comparing popu-

lations on the basis of taxa abundance at the ecosystem

level; at best, some of them may be useful for comparing

abundance at the specimen level. A concise description of

the relevant assumptions and parameters of interest is

provided in Table S2 of the online supplementary file.

Finally, similar to the usual linear regression analysis

for Euclidean space data, ANCOM can be used for

longitudinal analysis of microbial composition. It can be

easily adapted to include covariates and assess their effects

in the model. Although ANCOM draws its motivation

from microbiome data, it is a general methodology that

can be applied to similar data types in other functional

categories, such as genes, transcripts, or metabolites. The

mathematical formulation would be equivalent in these

cases, and it is enough to obtain data on the relative

proportions of these categories, without accurately obser-

ving the actual abundances. In our opinion, this strength

significantly broadens the impact of ANCOM among

researchers in the biological community.
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