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Particulate matter (PM) exposure is related to pulmonary and cardiovascular diseases, with increased inflammatory status. The
release of the proinflammatory interleukin- (IL-) 1𝛽, is controlled by a dual pathway, the formation of inactive pro-IL-1𝛽, through
Toll-like receptors (TLRs) activation, and its cleavage by NLRP3 inflammasome. THP-1-derived macrophages were exposed for
6 h to 2.5 𝜇g/cm2 of Milan PM

10
, and the potential to promote IL-1𝛽 release by binding TLRs and activating NLRP3 has been

examined. SummerPM
10
, induced amarked IL-1𝛽 response in the absence of LPSpriming (50-fold increase compared to unexposed

cells), which was reduced by caspase-1 inhibition (91% of inhibition respect summer PM
10
-treated cells) and by TLR-2 and TLR-4

inhibitors (66% and 53% of inhibition, resp.). Furthermore, summer PM
10
increased the number of early endosomes, and oxidative

stress inhibition nearly abolished PM
10
-induced IL-1𝛽 response (90% of inhibition). These findings suggest that summer PM

10

contains constituents both related to the activation of membrane TLRs and activation of the inflammasome NLPR3 and that TLRs
activation is of pivotal importance for the magnitude of the response. ROS formation seems important for PM

10
-induced IL-1𝛽

response, but further investigations are needed to elucidate the molecular pathway by which this effect is mediated.

1. Introduction

In the last decade great effort has been paid to understand
themechanisms involved in particulate matter (PM) induced
adverse health effects. Epidemiological evidence shows an
association between exposure to air pollution and the occur-
rence of respiratory pathologies (chronic bronchitis, COPD)
and exacerbation of allergic conditions such as asthma [1–3].
Furthermore, many studies also show an association between
PM atherothrombotic effects, cardiovascular morbidity, and
mortality [4–6].

PM is a heterogeneous pollutant composed of particles
of different chemical composition and different sizes (defined
as PM

10
, PM
2.5
, and PM

0.1
for their aerodynamic diameter).

Although the size determines the site of deposition of PM
in the respiratory tract [7], the chemical composition of

the inhaled particles is considered of primary importance
in determining the adverse biological effects [8, 9]. The
chemical properties of PM are strongly related to the sources
of emission of the particles, and this is known to be crucial
for the differences of the PM effects from different sampling
sites [10–13].

The fine fraction (PM
2.5
) is generally composed of pri-

mary particles derived from combustion processes, mostly
consisting of primary particles with mean diameter lower
than 100 nm (PM

0.1
, ultrafine particles) and secondary

aerosol deriving fromchemical reaction of free compounds in
the atmosphere.The particle composition reflects the sources
of emission; indeed fine PM has usually higher content in
organic compounds (such as PAHs) and elemental carbon
(the soot core of the particles) than the coarse PM.
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The coarse fraction (PM
10−2.5

) is on the contrary domi-
nated by particles derived from abrasion processes, such as
the erosion of crustal material, resuspension of deposited
particles, and biological components. We have previously
shown that the season of PM sampling strongly influences
the chemical and biological composition of both coarse and
fine PMs [14, 15]. In fact summer and winter PM

10
fractions

showed a completely different composition in chemical and
biological constituents, the latter being higher in summer
PM
10
[11, 16, 17].

Moreover, the chemical characterization showed that the
PM
10

contained crystal silica and other elements which can
contribute to its inflammatory potential.

A lot of studies have shown that PM
10

exposure pro-
motes inflammation in the lung which is associated with
a systemic inflammatory response. Macrophages and lung
epithelial cells incubated with PM

10
release significantly

increased amounts of cytokines and chemokines, includ-
ing granulocyte-macrophage colony-stimulating factor (GM-
CSF), interleukin IL-1𝛽, IL-6, and IL-8, and macrophage
chemo-attractant protein (MCP)-1 [18]. An increased lung
inflammation is known to be fundamental for the develop-
ment of different lung diseases, such as COPD [19–21]. How-
ever, despite the increased evidence that the coarse fraction
of PM is potent in inducing lung inflammation, a model
explaining its effects has not been completely understood.

A critical property of the innate immune system is its abil-
ity to discriminate microbes from “self ” by the recognition
of invariant microbial structure called pathogen-associated
recognition patterns (PAMPs) such as lipopolysaccharides
(LPS) [22].The sensing of these PAMPs is usuallymediated by
the membrane-bounded Toll-like receptors (TLRs), such as
TLR-2 and TLR-4 [23, 24]. Commonly these receptors trigger
the activation of the NF-kB pathway which determines the
release of different proinflammatory proteins, such as pro-
IL-1𝛽. Another set of pattern recognition receptors are the
cytoplasm Nod-like receptors. These receptors have been
demonstrated to be key proteins in the activation of pro-
caspase-1, through the formation of the caspase-1 activating
platforms, the inflammasomes. The inflammasomes control
in turn the cleavage and secretion of potent proinflammatory
interleukins such as IL-1𝛽 and IL-18. Among the different
inflammasomes, the NLRP3 (or NALP3) is the most char-
acterized. This complex is composed of a basic scaffold,
the adaptor molecule apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC), and the
caspase-1. The activation of this complex has been related
to the exposure of different PAMPs as well as host-derived
molecules [25].

IL-1𝛽 is released at the site of injury, or immunological
challenge is coordinating inflammatory responses, such as
the recruitment of other cells to the site of infection or injury
[26], and is known to be crucial in development of different
diseases, including silicosis [27, 28]. IL-1𝛽 is also, however,
known to regulate sleep, appetite, and body temperature. Due
to its potent activities, it is not surprisingly that IL-1𝛽 activity
is rigorously controlled throughout its entire release pathway,
from expression to maturation and final secretion.

The activation of the inflammasome machinery has been
related to different mechanisms which have been reviewed in
[25]. However for the release of IL-1𝛽 a priming stimulus is
required for the formation of pro-IL-1𝛽 as reported in [29].

It has been shown that particles occurring in ambient PM,
such as crystalline silica, as well as different nanoparticles,
may induce inflammasome activation [20, 30–33].The poten-
tial role of the inflammasome in PM-induced inflammation
is however not known. Reactive oxygen substances (ROS) are
known to be involved in PM

10
-induced inflammation [34, 35]

and also in silica-induced inflammasome activation [21, 36].
Potentially ROSmight be involved in the pro-IL-1𝛽 formation
as well as the inflammasome activation [37, 38].

In the present study it was hypothesized that PM
10

due to its chemical and physical nature might induce IL-
1𝛽 release. Summer Milan PM

10
contains both endotoxins,

which might activate TLR receptors, and elemental and
crustal constituents, which might activate the inflammasome
mechanism. Furthermore, it is hypothesized that ROS is
involved in PM

10
-induced IL-1𝛽 responses.

2. Materials and Methods

2.1. Cell Culture and Treatments. The human monocytes
cell line, THP-1, was maintained in Opti-MEM
medium supplemented with 10% FBS and 100U/100mL
Penicillin/Streptomycin at 37∘C, 5% CO

2
. THP-1 cells were

differentiated into macrophage-like cells by incubation with
phorbol myristate acetate (PMA, 20 nM) (Sigma Aldrich)
for 24 h. PMA was then removed and cells were washed
and incubated in Opti-MEM (Invitrogen, Italy) medium
supplemented with 20% FBS o/n. Cells were treated in 10%
FBS medium with summer PM

10
at different concentrations

(1 𝜇g/cm2, 2.5 𝜇g/cm2, and 5 𝜇g/cm2) for different times
of exposure (30min, 2 h, 4 h, and 6 h). Winter PM

10
and

carbon black (CB, 2–12 𝜇m, Sigma Aldrich, Italy) were
used (5 𝜇g/cm2) as comparison and reference particles,
respectively. In order to investigate TLR-2, TLR-4 and
caspase-1 involvement in IL-1𝛽 release, cells were pre-treated
for 1 h with inhibitors of TLR-2 and TLR-4 (0, 1 𝜇g/mL, R&D
Systems) and caspase-1 (z-YVAD-fmk, 10 𝜇M, Calbiochem)
and then exposed to summer PM

10
(2.5 𝜇g/cm2). Summer

and winter PM
10

particles have been characterised as
previously reported in [39] and [40] respectively. ROS
involvement in IL-1𝛽 release was assessed by treating PM

10

exposed cells with N-acetylcysteine (NAC, 15mM, 30min
prior to PM exposure).

2.2. IL-1𝛽 Release. Supernatants from control and PM
10
-

exposed cells were collected and stored at −80∘C. Super-
natants were assayed for IL-1𝛽 with ELISA kits (Invitrogen
Srl) according to manufacturer’s instructions.

2.3. Endocytic Pathway Analysis

2.3.1. Immunostaining. After 30min exposure to summer
PM
10
, cells were washed in phosphate-buffered saline 1X

(PBS), fixed in paraformaldehyde 4% for 20min, and washed
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Figure 1: IL-1𝛽 release by THP-1-derived macrophages exposed for
6 h to different PM

10
and carbon black (CB).The cells were exposed

to increasing concentrations of summer Milan PM
10
, and one

concentration (5𝜇g/cm2) of winter PM
10
and CB. CTRL: unexposed

cells. Results are themean and s.d. of three independent experiments
and presented as pg/mL released in the culture medium. ∗∗∗𝑃 <
0.001 versus CTRL.
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Figure 2: Time-dependent release of IL-1𝛽 in THP-1-derived
macrophages cells treated for 2, 4, and 6 h with summerMilan PM

10

at a concentration of 2.5 𝜇g/cm2. CTRL: untreated cells. Results are
the mean and s.d. of at least three independent experiments and
presented as pg/mL released in the culture medium. ∗∗∗𝑃 < 0.001
versus CTRL.

twice in PBS. Fixed cells were permeabilized with 0.1% Triton
X-100 (Sigma Aldrich), 0.1% Tween (Sigma Aldrich), and
2% BSA (Sigma Aldrich) in PBS and incubated o/n with
the rabbit anti-human early endosome antibody 1 (EEA1
Antibody, Cell Signaling Technology; dilution 1 : 100). Cells
were then washed in PBS and incubated with Alexa fluor-
488 (Invitrogen Molecular Probes Srl; dilution 1 : 1000) for
2 h. Samples were mounted on a slide with ProLong mount
(Invitrogen Srl) and observed by Axio Observer inverted
microscope (Zeiss, Germany).

2.3.2. Western Blot. After exposure to summer PM
10

cells
were washed in PBS and stored at −80∘C. Cells were then
lysed in RIPA buffer (50mM Tris-HCl pH 8; 150mM NaCl;
1% NP-40; 0.5% sodium deoxycholate; 0.1% SDS; Sigma
Ladrich Italy) and then sonicated three times for 30 sec on
ice. Cell lysates were then separated by 8% SDS-PAGE and
transferred on nitrocellulose membranes. Blots were incu-
bated with rabbit polyclonal antibody against human EEA1
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Figure 3: PM
10
-induced IL-1𝛽 release dependent on caspase-

1 activation in THP-1-derived macrophages cells. The cells were
pretreated with the caspase-1 inhibitor, z-YVAD-fmk (10𝜇M) for
1 h, and exposed to summer PM

10
for 6 h. Results are the mean

and s.d. of three independent experiments. CTRL: untreated cells.
∗∗∗𝑃 < 0.001 versus CTRL, ###𝑃 < 0.001 versus summer PM

10
.

(Cell Signaling Technology; dilution 1 : 1000) o/n or anti-
actin antibody (Sigma Aldrich, Italy; dilution 1 : 2000). After
washes, the membranes were incubated with secondary anti-
body anti-rabbit IgG (Fab2 fragment-Alkaline Phosphatase,
SigmaAldrich; dilution 1 : 10000) and subsequently incubated
with SIGMAFASTBCIP/NBTalkaline phosphatase substrate
(Sigma Aldrich) for 10min for detection. Fold increase data
over control, obtained by acquisition of membrane and
densitometry analysis with dedicated software (UVP, US),
were normalized to the actin content.

2.4. Cells-Particles Interaction

2.4.1. Haematoxylin-Eosin Staining. THP-1-derived macro-
phage untreated and treatedwith summerPM

10
for 24 h at the

concentration of 2.5𝜇g/cm2, were fixed in paraformaldehyde
4% for 20min and then stained following haematoxylin-
eosin protocol and then observed under an Axiolab light
microscope (Zeiss, Germany).

2.4.2. Transmission Electron Microscopy. Samples were pre-
pared for transmission electron microscopy (TEM) using
standard procedures. At the end of exposure the cells were
fixed in 2.5% glutaraldehyde for 20min at 4∘C and postfixed
with 1% osmium tetroxide for 1 h, followed by dehydration
using a scale of graded ethanol. Cells were then embedded
in Epon resin, and semithin and ultrathin sections were
prepared by an ultramicrotome (Ultracut Jung E, Reichert
Germany). Ultrathin slides were mounted on copper grids
and counterstained by lead citrate and uranyl acetate prior to
examination by Jeol JEM 1220microscope operating at 80 kV
and digital images were taken with a Gatan CCD camera.

2.5. Statistical Analysis. Results are reported as mean ±
standard deviation of at least three independent experiments.
Statistical differenceswere analysed by the software SigmaStat
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Figure 4: Inhibition of PM
10
-induced IL-1𝛽 release in THP-1-derived macrophages by TLR-2 and TLR-4 antagonist molecules. The cells

were pretreated with TLR-2 and TLR-4 inhibitors (0.1𝜇g/mL) for 1 h and then incubated in the presence (+) or absence (−) of summer PM
10

(2.5 𝜇g/cm2) for 6 h. Results are the mean and s.d. of three independent experiments. ∗∗∗𝑃 < 0.001 versus CTRL, ###𝑃 < 0.001 versus summer
PM
10
, and ##𝑃 < 0.01 versus summer PM

10
.
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Figure 5: Inhibition of PM
10
-induced IL-1𝛽 release in THP-1-

derivedmacrophages by NAC.The cells were pretreated with 15mM
NAC (+) and then incubated with summer PM

10
(2.5 𝜇g/cm2) for

6 h. Results are the mean and s.d. of at least three independent
experiments. ∗∗∗𝑃 < 0.001 versus CTRL, ###𝑃 < 0.001 versus
summer Milan PM

10
.

3.1 performing ANOVA test with post hoc analysis (Dunn’s);
if required a parametric statistical analysis was performed.

3. Results

3.1. Release of IL-1𝛽 from Human Macrophage-Like Cell after
SummerMilan PM

10
Exposure. THP-1-derived macrophages

were treated as reported with summer Milan PM
10
and with

winter PM
10

and CB. The experiments showed that IL-1𝛽
was dose-dependently increased after summer Milan PM

10

treatment, with a progressive increase from 1 to 5 𝜇g/cm2.
In contrast, winter Milan PM

10
and CB did not induce

significant release of the interleukin (Figure 1). Cells were
then exposed to 2.5 𝜇g/cm2 of summerMilanPM

10
, chosen as

the first dose of effects, to investigate the time-course release
of IL-1𝛽.The IL-1𝛽 release showed a progressive increase from
2 to 6 h (Figure 2).

3.2. IL-1𝛽 Release and Inhibition of Caspase-1, TLR-2/-4
and Oxidative Stress. THP-1-derived macrophages were pre-
treated for 1 h with the caspase-1 inhibitor z-YVAD (10𝜇M)
and then treated with summer PM

10
(2.5 𝜇g/cm2) for 6 h, or

only with z-YVAD. Cells preexposed with z-YVAD showed
IL-1𝛽 release similar to the control (data not shown). The
experiments showed that z-YVAD significantly reduced sum-
mer PM

10
-induced release of IL-1𝛽 (approximately 90%),

compared to PM
10
treatment alone (Figure 3).

Subsequently THP-1-derived macrophages were pre-
treated with TLR-2 and TLR-4 inhibitors (0.1𝜇g/mL) for
1 h before exposure to summer PM

10
(2.5 𝜇g/cm2 for 6 h).

The inhibition of the TLR receptors significantly reduced
the release of IL-1𝛽 induced by summer Milan PM

10
(Fig-

ure 4). The TLR-2 inhibitor was more potent than the TLR-
4 inhibitor. Furthermore, combining the two inhibitors gave
the maximal reduction of IL-1𝛽 release. The TLR inhibitors
did not affect the IL-1𝛽 release from control cells (data not
shown).

Treatment with NAC, an inhibitor of oxidative stress,
reduced the release of IL-1𝛽 in THP-1-derived macrophages
treated with PM

10
to control levels (Figure 5).

3.3. Cells-Particles Interaction: Endocytosis Pathway. We
focused our study also on the molecular mechanisms
involved in summer Milan PM

10
-induced IL-1𝛽 release.

The activity of early endosomes after the exposure to
summer PM

10
was examined by analysing the expression

of the early endosome antigen 1 (EEA1) in THP-1-derived
macrophages. The cells were exposed to summer PM

10
for

30min and then assessed by EEA1 immunostaining. We
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Figure 6: PM
10
-induced overexpression of early endosomes in THP-1-derivedmacrophages.The cells were treated with summerMilan PM

10

at the concentration of 2.5 𝜇g/cm2 for 30min and then stained for the early endosome antigen EEA1 (green). Nuclei are stained with DAPI
(blue): representative images.
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Figure 7: Early endosome antigen 1 EEA1 protein expression in
THP-1-derived macrophages exposed to summer Milan PM

10
. The

cells were treated with summer PM
10

(2.5 𝜇g/cm2) for 30min, 1 h,
2 h, 4 h, and 6 h and then assessed for EEA1 expression by Western
analysis. Mean and s.d. of at least three independent experiments.
∗∗∗𝑃 < 0.001 versus CTRL, ∗∗𝑃 < 0.01 versus control, ∗𝑃 < 0.05
versus CTRL, and #𝑃 < 0.05 versus 30min.

observed that EEA1 expression after 30min was remarkably
increased compared to the control (Figure 6). This result is
also confirmed by immunoblotting of EEA1. The cells were
treated with summer PM

10
(2.5 𝜇g/cm2) for 2 to 6 h and

assessed for EEA1 expression by Western analysis. The data
show that the EEA1 is overexpressed from 30min to 4 h, but
was approximately similar to the control at 6 h (Figure 7).
These results suggest that THP-1-derived macrophages are
able to phagocytise summer PM

10
and its internalization

involves early endosomes.

3.4. Cell Particles Interaction. The interaction between sum-
merMilan PM

10
and THP-1-derived macrophages was deter-

mined by haematoxylin-eosin staining and electron trans-
mission microscopy (TEM). Haematoxylin-eosin-stained
macrophages exposed to summer PM

10
(for 6 h) showed

a high number of particles attached to the cells (Figures

8(b) and 8(c)). TEMpicture demonstrated the internalization
of summer PM

10
particles in cytoplasm vesicles and also

translocation of small aggregates in the nucleus (Figure 8(d)).
The TEM picture showed also a clear interaction of summer
PM
10
with plasma membranes with the formation of phago-

cyte structures (Figure 8(e)).

4. Discussion

Recently PM
10

was demonstrated to induce IL-1𝛽 release
via an inflammasome mechanism as revealed by caspase-
1 inhibition and siRNA against NALP3 in THP-1 cells and
by NALP3 knockout mice. The potential of PM

10
was how-

ever relatively slight, about 3-fold using 500𝜇g/mL [35].
Compared to this we report that PM

10
collected in the

summer in Milan induced a massive IL-1𝛽 response (a 50-
fold increase, at 10-fold lower concentrations) in THP-1-
derived macrophages. However, PM

10
collected in Milan in

the winter showed only a slight IL-1𝛽 response, underlining
the importance of the PM

10
sources. Our study also indicates

the importance of an inflammasome mechanism, as the
response was reduced by caspase- 1 inhibition. It is however
suggested that the summerMilan PM

10
-induced activation of

TLR-2 andTLR-4 receptors, leading to synthesis of pro-IL-1𝛽,
is themajor determinant for themassive response induced by
summer Milan PM

10
. Furthermore, our study showed a role

for oxidative stress in the PM
10
-induced IL-1𝛽 release.

Most of the in vitro studies of particle-induced IL-1𝛽
responses have primed the cells with the endotoxins like LPS
to increase the pool of pro-IL-1𝛽 before exposing to different
agents capable of inducing the inflammasome mechanism.
Indeed, for both crystalline and amorphous silica particles
[20, 30], the priming of exposed cells with bacterial LPS is
essential for the release of IL-1𝛽 following the activation of
the inflammasome. It is now emerging in a lot of studies that
different nanoparticles and other agents might activate the
inflammasomemechanism, and induce large IL-1𝛽 responses
in LPS-primed cells [30, 41]. In the present study it is also
shown that the activation of the inflammasome is a crucial
mechanism for the PM

10
-induced IL-1𝛽 response, as the

caspase-1 inhibitor z-YVAD reduced the interleukin release.
Furthermore, PM

10
induced amarked increase in endosomes
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Figure 8: PM
10
interaction with THP-1-derived macrophages. The cells were exposed to summer PM

10
at the concentration of 2.5 𝜇g/cm2

for 4 h (b) and 6 h (c) and stained by haematoxylin eosin and compared with the control (a). An increased number of particles associated
with the cells is indicated by black arrows. TEM images of the cells exposed to summer PM

10
after 6 h are showed in (d, e), showing particles

internalised in cytoplasm vesicles as well as particles into the nucleus (d). Particles interaction with the cell membrane are presented in (e).
N: nucleus; NM: nuclear membrane; C: cytoplasm; CV: cytoplasmic vesicle; CM: cellular membrane. Magnification = 10K.

internalization that has been shown to be involved in the
inflammasome pathway [22, 42]. The most striking in this
study is however that the marked IL-1𝛽 response is observed
in the absence of LPS-priming. This suggest that summer
Milan PM

10
contains constituents (endotoxins capable of the

activation of TLR-2 and/or TLR-4) which lead to pro-IL-
1𝛽 formation; in support of this, the suppression of TLRs
activation by pretreating the cells with anti-TLR-2 and TLR-
4 molecules induced a significant reduction of IL-1𝛽 release.
Both the TLR-2 and 4 are receptors which role in recognition
and binding of LPS, and other bacterial PAMPs have been
extensively described [43, 44]. Since airways macrophages
seldom recognize bacterial components individually, the

response to different bacterial PAMPs is usually orchestrated
by a combination of different TLRs. In fact we demonstrated
that the combination of the two inhibitors seems to give
the maximal reduction of IL-1𝛽 release after PM

10
exposure.

However, our data may indicate that other biological compo-
nents or PAMPs and/or other membrane receptors may be
involved in the priming of cells, since the reduction of TLR-
2 and 4 activities did not abolish completely the final release
of IL-1𝛽. Indeed is has been reported that the activation of
the different TRLs might be promoted by different molecules
which can be found in PM [45]. The inhibition of TLR2
and 4 indicates the importance of these two receptors in
summer Milan PM

10
-related effects, but the involvement of
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other TLRs cannot be excluded. Furthermorewe have already
reported [41] the presence of crustal elements in summer
Milan PM

10
which can promote proinflammatory responses.

Also, in the study of Hirota [35], a PM
10
-induced release

of IL-1𝛽 is observed without LPS priming, but to a much less
extent than for PM

10
collected in Milan in the summer. In

accordance with Hirota, we found a modest IL-1𝛽 response
upon treatment to winter Milan PM

10
.The differential effects

can presumably be attributed to the content of endotoxins
in the PM

10
. In fact, we have previously reported that coarse

fraction of summer PM
10

is rich in Gram-negative bacteria,
expressing LPS, in addition to crustal elements among which
also silica [39, 46]. Interestingly, with respect to other end-
points, like DNA damage and apoptotic cell death, we have
shown that winter Milan PM

10
is more potent than summer

Milan PM
10
.

Oxidative stress seems to be crucial for the PM
10
-

induced IL-1𝛽 response, as demonstrated by inhibition by the
inhibitorNAC. In addition to generation of ROS by a cell-free
mechanism, ROS may be generated via the mitochondrial
pathway [47]. Upon rupturing the lysosome membrane, the
ROS may also be released to the cytoplasm [21]. A critical
question is whether the ROS exerts its effect on IL-1𝛽 release
after PM

10
treatment by affecting the lysosome pathway or

the pathway from TLR activation to pro-IL-1𝛽 formation.
The increased number of endosomes subsequent to PM

10

exposure reported in this study could indicate a release of
ROS via this pathway that may be linked to inflammasome
mechanism. However, ROS scavengers, such as NAC, have
been reported to interact more with the priming of the
NLRP3 rather than its activation [48]. A better understanding
of the importance of ROS in the TLR-activation, subsequent
NF-kB activation, and synthesis of pro-IL-1𝛽, versus activa-
tion of the inflammasome, is thus needed.

4.1. Concluding Remarks. Since IL-1𝛽 has been related to a
number of human diseases, including different pulmonary
pathologies [49], and PM is known to increase the devel-
opment of lung disease [50], it is crucial to increase the
understanding of the pathways involved. Our findings, with
very marked effect of PM

10
in absence of exogenous addi-

tion of LPS, suggest that summer Milan PM
10

contains
constituents both related to the activation of membrane
TLRs and activation of the inflammasome NLPR3. Further-
more, our study suggests that the activation of TLRs is
of much importance for explaining the magnitude of the
PM
10
-induced IL-1𝛽 response. Thus, PM

10
containing less

biological components (PM
10

sampled in winter) induces
only a minor IL-1𝛽 response. The present study indicates an
important role for ROS in PM

10
-induced IL-1𝛽 formation,

but further investigations are needed to elucidate the origin
of the ROS (by lysosomes rupture or other pathways), and to
what extent the effect is mediated by inhibition of the NLP3
activation or the TLR-pro-IL-1𝛽 pathway, or a combination of
both these pathways.
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P. E. Schwarze, “Cytokine release from alveolar macrophages
exposed to ambient particulatematter: heterogeneity in relation
to size, city an season,” Particle and Fibre Toxicology, vol. 2,
article 4, 2005.

[19] K. F. Chung and I. M. Adcock, “Multifaceted mechanisms
in COPD: inflammation, immunity, and tissue repair and
destruction,” European Respiratory Journal, vol. 31, no. 6, pp.
1334–1356, 2008.

[20] V. Hornung, F. Bauernfeind, A. Halle et al., “Silica crystals and
aluminum salts activate the NALP3 inflammasome through
phagosomal destabilization,” Nature Immunology, vol. 9, no. 8,
pp. 847–856, 2008.
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