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The “Beijing” Mycobacterium tuberculosis (Mtb) lineage 2 (L2) is
spreading globally and has been associated with accelerated dis-
ease progression and increased antibiotic resistance. Here we per-
formed a phylodynamic reconstruction of one of the L2 sublineages,
the central Asian clade (CAC), which has recently spread to western
Europe. We find that recent historical events have contributed to the
evolution and dispersal of the CAC. Our timing estimates indicate that
the clade was likely introduced to Afghanistan during the 1979–1989
Soviet–Afghan war and spread further after population displacement
in the wake of the American invasion in 2001. We also find that drug
resistance mutations accumulated on a massive scale in Mtb isolates
from former Soviet republics after the fall of the Soviet Union, a pat-
tern that was not observed in CAC isolates from Afghanistan. Our
results underscore the detrimental effects of political instability and
population displacement on tuberculosis control and demonstrate the
power of phylodynamic methods in exploring bacterial evolution in
space and time.
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The Mycobacterium tuberculosis complex (MTBC) comprises
seven main lineages. Of these, lineages 2, 3, and 4 are found

across most of the globe, but their regional distribution varies and
reflects historical and recent human population movements. L2
(“L2” and “Beijing lineage” are used interchangeably throughout the
text) has a southeast Asian (1) or east Asian (2) origin and has re-
ceived considerable attention as it is spreading globally (3), may be
associated with accelerated progression of disease (4, 5), and is as-
sociated with increased antibiotic resistance (5). It also has been
suggested that L2 exhibits an elevated mutation rate relative to other
M. tuberculosis (Mtb) lineages, but studies have yielded differing
results in this regard (6, 7).
There is no consensus in the literature regarding the age of

the MTBC and its main lineages, and different studies have
approached this question using distinct strategies. One such ap-
proach, the “out of Africa” hypothesis, is based on the assumption of
codivergence ofMtb with its human host (1, 8), and suggests that the
most recent common ancestor (MRCA) of extant Mtb existed
roughly 40,000–70,000 y ago, with the bacillus subsequently spreading
globally with human migrations out of Africa (9, 10). In contrast, the
two studies that relied on genomic sequence data using ancient DNA
(aDNA) analysis point to a 10-fold younger origin, around 6,000 y
ago (11, 12). Even though calibration with aDNA is becoming
the gold standard for dating evolutionary events, few non-
contemporaneous MTBC genomes are available at present.
One previous study relied on ∼1,000-y-old M. pinnipedii iso-
lates, an animal-associated MTBC strain (11). A second study relied
on Mtb sensu stricto genomes for calibration, but the isolates were

only 200–250 y old (12). These two studies yielded similar rate esti-
mates, despite including data from very different time periods. The
substitution rate estimates of ∼5 × 10−8 substitutions/site/year (s/s/y)
obtained in these aDNA studies are slightly lower than estimates
from epidemiologic studies and other studies based on contempo-
raneous sampling, all of which produced rate estimates around 0.7 ×
10−7 – 1.3 × 10−7 s/s/y, corresponding to 0.3–0.5 substitutions/genome/
year (6, 13–18).
The origin and spread of the Beijing lineage have also been vig-

orously debated. According to a recent phylogeographic analysis of
L2 genomes, the lineage emerged in Southeast Asia some 30,000 y
ago and subsequently spread to northern China, where it experi-
enced a massive population expansion, purportedly related to the
Neolithic expansion of the Han Chinese population (1). The 30,000 y
age was obtained by extrapolating from the aforementioned 70,000 y
age of the MTBC. Another attempt to reconstruct the age and
evolutionary history of L2 and its clonal complexes (CCs), based on a
massive global collection of mycobacterial interspersed repetitive
unit (MIRU) genotyping data complemented with genome se-
quencing, resulted in an age of approximately 6, 600 y for the whole
lineage and 1,500–6,000 y for each of the CCs (2). However, this
study also relied on strong assumptions, particularly concerning the
underlying mutation model and mutation rate of the MIRUmarkers
(2, 10).
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Until recently, fine-scaled phylodynamic and phylogeograpic
methods were applied mainly to rapidly evolving taxa, such as RNA
viruses (19). The increased availability of whole-genome sequences
has shifted the limits of measurably evolving pathogens to also en-
compass bacteria (20), including Mtb (13, 21), despite its relatively
slow substitution rate compared with most other bacterial pathogens
(22). Here we applied phylodynamic methods, calibrated with sam-
pling dates (tip-dating), to a collection of Mtb isolates from Europe
and southeast and central Asia. The isolates belong to a L2
clade that we term the central Asian clade (CAC). The CAC
corresponds to the MIRU-defined CC1 (2) and includes the
Russian clade A (23). The isolates included in the study cover a
sampling period of 15 y, and even though we did not attempt to
reconstruct the age of Mtb or L2 as a whole, our dated CAC phy-
logeny points to a nearly 100-fold younger origin of the lineage than
was previously estimated.
We also show that the evolution and dispersal of the CAC in

Eurasia have been shaped by recent historical events. Specifically,

we find that being an ex-Soviet state is a major risk factor for high
prevalence of multidrug-resistant tuberculosis (MDR-TB), and
that this pattern also holds true within the CAC. We were able to
trace the introduction of this clade to Afghanistan during the
1979–1989 Soviet–Afghan war and document its subsequent
spread across Europe after migration events in the wake of recent
armed conflicts. Our results highlight the detrimental effects of
political instability and population displacement on global TB
control and demonstrate the power of phylodynamic methods for
understanding bacterial evolution in time and space.

Results and Discussion
Defining the CAC and the Afghan Strain Family. To investigate the
recent history and spread of an Mtb L2 clade associated with
Afghan refugees in Norway, Mtb genomes from a recent large TB
outbreak affecting mainly Norwegian and Afghan nationals in
Oslo, Norway were included in the study, along with related iso-
lates from Norway, Denmark, Germany, and Moldova. Sequence
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Fig. 1. Phylogenetic placement and antibiotic resistance of Mtb isolates in the study. (A) Bayesian dated phylogeny of the CAC. The ASF and the CAC to
which it belongs are highlighted in orange and blue, respectively. Filled dots indicate the presence of mutations colored by the compound to which they are
known or predicted to confer resistance (magenta, isoniazid; purple, rifampicin; blue, kanamycin; green, fluoroquinolones; yellow, pyrazinamide; orange,
streptomycin; red, ethionamide; gray, ethambutol). The TMRCA of the CAC lineage is indicated in red. Two clade B isolates (23) served as outgroups.
(B) Relative prevalence of multidrug-resistant TB (MDR-TB) stratified by a history of Soviet Union allegiance (blue, ex-Soviet states; yellow, rest of the world).
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data from two other relevant studies (2, 23) were included as well.
A whole-genome SNP phylogeny was constructed as described in
Materials and Methods. It was clear that the Oslo outbreak belongs
to an Afghan strain family (ASF) (Fig. 1A, orange highlighting).
This ASF belongs to a larger clade that includes the aforemen-
tioned clade A from Russia (23) and the CC1 isolates from a
recent global study (2) (Fig. 1, blue highlighting). Interestingly,
Casali et al. (23) noted that clade A isolates were consistently
found at a greater frequency east of the Volga River, a natural
border between Russian Europe to the west and Russian central
Asia to the east, whereas the other dominant clade in Russia,
clade B, was more frequent west of the river. Thus, we term this
clade, which encompasses the previously defined clade A and CC1
isolates (2, 23), the CAC (Fig. 1A).

The Fall of the Soviet Union and the Rise of MDR-TB. Mapping of
known and putative resistance mutations on the phylogeny
revealed that isolates originating in central Asia were strongly
enriched in resistance mutations relative to isolates of Afghan
origin (Fig. 1A). The countries in central Asia were all part of the
Soviet Union until its fall in 1991. To investigate geographic
patterns of drug resistance in a wider context, we calculated rel-
ative MDR-TB prevalence (MDR-TB = Mtb resistant to first-line
drugs isoniazid and rifampicin) in all countries of the world for
which appropriate data were available. The countries were divided
into two groups: ex-Soviet states and the rest of the world. Even
though it is widely acknowledged that MDR-TB represents a
particularly acute problem in many ex-Soviet countries, the
strength of the association remains striking (W = 2,577; P < 0.001,
Wilcoxon rank-sum test) (Fig. 1B).
To examine in more detail whether our CAC data support a role

of the fall of the Soviet Union in the rise of resistance within the
clade, we mapped individual resistance mutations to nodes in the
dated phylogeny. From this phylogeny, it is clear that the vast
majority of transmitted resistance mutations evolved in the years
after the collapse of the Soviet Union (Fig. S1). Taken together,
these findings support the notion that external factors, namely the
fall of the Soviet Union and the ensuing breakdown of public
health systems and drug stewardship, rather than features specific
to the Beijing lineage, are to blame for high rates of drug resistance
in former Soviet states.

A Recent Origin of the CAC. To investigate the temporal evolution
and spread of the CAC and the ASF in detail, we performed
Bayesian phylogenetic analyses using BEAST 1.8 (24) with tip-
dates (sampling dates) for temporal calibration. We investigated
root-to-tip distance as a function of sampling time and used tip-
randomization to assess the strength of the temporal signal in the
data (Materials and Methods). Both tests revealed a strong temporal
signal in the data. Bayesian phylogenetic analyses using various clock
and demographic models on various sample subsets resulted in
similar ages of the MRCAs of both the CAC and the ASF (Table 1).
Our estimated time of the MRCA (TMRCA) of the CAC is

1961 CE [95% highest posterior density (HPD), 1948–1972 CE],
which deviates considerably from a previous study based on
MIRU data that estimated that the Beijing lineage CC1 is 4,415 y
old (95% HPD, 2,569–7,509 y) (2). The CC1 isolates all fall within
the CAC in our phylogeny (Fig. S2), and we thus expect the
TMRCA of the CC1 to be less than or equal to the TMRCA of
the CAC. The TMRCA estimates of CC1 were based on a mean
MIRU mutation rate per year of 10−4 (2, 10).

Table 1. Estimated TMRCA for the CAC and ASF

Sample Substitution model Demographic model CAC TMRCA (95% HPD) ASF TMRCA (95% HPD) Substitution rate (×10−7)

ASF HKY Skyride 1988 (1980–1996) 3.13 (1.86–4.44)
ASF HKY Exponential 1987 (1977–1995) 3.24 (2.03–4.48)
ASF HKY Expansion 1987 (1975–1995) 3.26 (1.90–4.47)
ASF HKY Logistic 1987 (1977–1995) 3.28 (2.06–4.56)
ASF HKY Constant 1986 (1975–1995) 3.15 (1.88–4.44)
CAC ÷ Samara GTR Skyride 1957 (1935–1976) ND 2.42 (1.42–3.43)
CAC ÷ Samara GTR Constant 1955 (1932–1974) ND 2.56 (1.57–3.61)
Representatives* HKY Constant 1971 (1955–1984) 1987 (1978–1994) 3.78 (2.33–5.26)
Representatives* HKY Skyride 1968 (1952–1983) 1983 (1971–1993) 3.34 (2.00–4.79)
CAC GTR Skyride 1961 (1948–1972) 1977 (1967–1986) 2.79 (2.10–3.54)
CAC GTR Skyride (RC) 1961 (1945–1975) 1975 (1961–1987) 2.80 (1.91–3-75)
CAC HKY Skyride 1960 (1949–1972) 1977 (1967–1986) 2.78 (2.10–3.50)
CAC GTR Constant 1950 (1932–1966) 1973 (1960–1985) 2.30 (1.63–3.01)
CAC HKY Constant 1950 (1932–1966) 1973 (1960–1984) 2.31 (1.64–3.02)

Estimates reported in the text are highlighted in bold type. Unless stated otherwise, a strict clock was used for all of the analyses. ND, not determined; RC,
relaxed clock. Detailed information on the models and sample sets tested are provided in Materials and Methods.
*Maximum of one isolate included per year per patient country of origin.
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Fig. 2. MIRU repeat changes mapped on whole-genome tip-dated phylogeny.
Changes in repeat number relative to MtbC15-9 94–32 of nine variable MIRUs
loci annotated on the right. Individual state change events are indicated by
arrows in the phylogeny. The arrows are colored tomatch the color of individual
MIRU loci, and the direction of the arrows indicates repeat expansion (up) or
contraction (down). To the right, the lengths of the horizontal bars indicate
repeat numbers for individual loci.
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To investigate the mean MIRU evolutionary rate in our samples,
we first constructed a tip-dated genome phylogeny including isolates
for whichMIRU data were available—that is, all isolates except those
from Samara (23). We found that the total branch length of this
phylogeny, corresponding to the total evolutionary time (y) elapsed,
was 593 y [95% confidence interval (CI), 365–821 y]. Subsequently,
we annotated and counted repeat expansion and contraction events
(Fig. 2). Only 9 of the 24 MIRU loci had undergone any changes in
repeat number among the sampled isolates. Across all 24 loci, we
calculated a mean per-locus MIRU mutation rate of 1.62 × 10−3

(95% CI, 1.17 × 10−3 to 2.63 × 10−3 mutations/locus/y) (Dataset S3).
This rate is ∼15-fold higher than the rate used in the previous study.

Nonetheless, this estimate for MIRUmarkers is in line with other
recent rate estimates based on whole-genome sequencing of serial
Mtb isolates from Macaque monkeys and model-based Bayesian
estimates (25, 26). Also of note is the number of homoplasies in the
MIRU data. Out of a total of 23 repeat gain/loss events, 7 occurred
twice on independent occasions (i.e., on different branches) and
thus are homoplasies; that is, 14 of the 23 events were homoplasic
events. Furthermore, we observed five occasions of apparent si-
multaneous loss of two repeats, which are more parsimoniously
explained by mutations involving two tandem repeats. Although the
possibility of stepwise loss in unsampled strains cannot be ruled out,
these findings suggest that MIRU evolution does not follow a strict
stepwise mutation model as assumed previously (2), but might be
better modeled applying a slipped-strand model that allows for the
simultaneous insertion or deletion of multiple repeats (27). Taken
together, our observations suggest that MIRU data might not be
ideal for evolutionary inference over long time scales.

Spread of the CAC: The Role of Armed Conflict and Population
Displacement. Our TMRCA estimates suggest that the CAC
was introduced to Afghanistan from Soviet central Asia coincident
with the 1979–1989 Soviet occupation of the country (Table 1). A
dated phylogeny including only isolates belonging to the ASF
revealed that, apart from the Oslo outbreak, individual isolates
generally represented isolated TB cases among Afghan refugees in
Europe. All cases had been diagnosed between 2003 and 2015, and
(again excluding the Oslo outbreak) the isolates were situated on
long terminal branches stretching 5–20 y back in time (Fig. 3). These
observations suggest that these TB cases represent multiple indi-
vidual introductions of the strain to Europe with Afghan refugees in
the wake of the continued violent conflicts in the country. The long
terminal branches are consistent with reactivation of latent disease
in refugees, which in one case was followed by a local outbreak in
Norway, identifiable by very short terminal branches (Fig. 3).
When interpreting our phylogenetic analyses in the light of

historic events in the region, it appears that armed conflict has
played a major role both in introducing the CAC to Afghanistan
(Soviet invasion) and in the subsequent repeated export of the
clade with Afghans fleeing the country in the wake of the American
invasion in 2001. A hypothetical scenario for the spread of the
CAC and the ASF in time and space is presented in Fig. 4.

Substitution Rates Over Time. The origin and subsequent evolution-
ary history of Mtb have been subjects of much debate (1, 9, 11, 12).
It has been suggested that a high degree of congruence between
human and Mtb phylogenies supports a scenario of codivergence
for the two organisms, and thus that the age of the MRCA of Mtb
mirrors the timing of the migrations of anatomically modern
humans out of Africa approximately 40,000–70,000 y ago (9).
However, another study failed to identify such a congruence in
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Fig. 3. Bayesian evolutionary phylogeny of the ASF. Colored bars indicate
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Fig. 4. A scenario for the spread of the CAC and ASF in time and space. Color shading and arrows indicate the emergence and spread of the CAC (blue) and
ASF (orange). Dots represent cases or clusters of cases belonging to either the CAC or the ASF based on genome sequences, except the cases in Turkey, China,
and Tajikistan, for which only MIRU data were available. Red shading of countries is used to indicate membership in the Soviet Union. Red triangles symbolize
armed invasion. Afg, Afghanistan; Den, Denmark; Ger, Germany; Nor, Norway; Tur, Turkmenistan; Uzb, Uzbekistan.
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phylogenies and did not find support for a codivergence scenario
when using a host of formal tests (16). When it comes to the Beijing
lineage, age estimates range from approximately 6,000 y (2, 9) to
30,000 y (1); however, the two studies using aDNA to calibrate
MTBC phylogenies both estimated an age of approximately 6,000 y
for the TMRCA of all extant Mtb (11, 12).
We estimated a substitution rate for the CAC of 2.79 × 10−7 s/s/y

(95% HPD, 2.10 × 10−7−3.54 × 10−7), resulting in a TMRCA
estimate of roughly 1961 (95% HPD, 1948–1972). The age of a CC
corresponding to the CAC (CC1) was previously estimated as∼4,000 y
(2). The discrepancy between this estimate and the age of ∼55 y
obtained here by tip-date calibration is striking; however, across all of
the sampling subsets and clock and demographic models tested, the
lowest bottom 95%HPD to the highest upper 95%HPD restricts the
TMRCA of the CAC to the years 1932–1984. This time span also fits
well with the estimated age of resistance mutations (Fig. S1), whereas
these would likely predate the introduction of antibiotics if the CAC
were thousands of years old.
The substitution rate estimated for the CAC is slightly higher

than previous rates estimated in studies of modern, heterochronous
samples, but well within the margin of error for estimates obtained
in comparable studies (Fig. 5). Interestingly, the other lineage-
specific tip-dated rate estimates were all obtained for lineage 4
isolates, and thus it is possible that the higher rate obtained for the
CAC (L2) in the present study might reflect an intrinsically higher
mutation rate for L2 lineages (6). The similarity between rates
from contemporaneous studies and the two studies using aDNA
for temporal calibration is also striking, even if both Mtb aDNA
studies point to slightly lower substitution rates. This difference
may reflect time dependency in substitution rate estimates, owing
to the fraction of slightly deleterious mutations eliminated over longer
periods (28). A parallel observation of moderately decreased sub-
stitution rate estimates when older samples are included in the
analysis also has been observed in mitochondrial genomes (29) and
in the agent of the plague, Yersinia pestis (30).
That being said, although time dependency is a genuine and

general phenomenon, the effect seems to be relatively subtle in
Mtb (31), and seemingly incompatible with the extreme accelera-
tion in substitution rates in recent times that would have to be
invoked to reconcile these studies with 40,000–70,000 y age forMtb
generated under the ancient out of Africa scenarios (9). All cur-
rent studies based both on ancient and modern samples in which
substitution rates were directly inferred from the data support the
notion that the MRCA of Mtb circulating today existed ∼6,000 y
ago; however, this does not rule out the possibility that TB is a

more ancient disease, as has been suggested by archeological
studies (32, 33). Indeed, the MRCA of currently extantMtb strains
could be younger than that of TB as a result of a clonal
replacement in the global Mtb population. It is also possible that
the disease resembling TB in the archeological record was caused
by an organism other than what is currently identified as Mtb.

Materials and Methods
Samples.A total of 85 isolates were included in the study. Detailed information
on the sampling scheme and samples is provided in SI Materials and Methods
and in Datasets S1 and S2. Ethical approval was not required as the study was
initiated within the legal mandate of the Norwegian Institute of Public Health
(NIPH) to investigate and report on infectious disease outbreaks.

Calling SNPs.Genomic DNA isolation and preparation of sequencing librarieswas
performed at the Norwegian Institute of Public Health following a published
protocol (34), except using the Kapa HyperPlus Library Preparation Kit (Kapa
Biosystems) rather than the Kapa High-Throughput Library Preparation Kit for
DNA fragmentation and library preparation. All sequencing reads were paired
end (read length 100–250 bp) and had been generated on the Illumina platform
(NextSeq 500, HiSeq, or MiSeq). Reads were mapped against theM. tuberculosis
H37rv genome (NC_000962.3) using SeqMan NGen (DNASTAR), resulting in a
median alignment depth ranging from 25× to 719× for individual isolates. SNPs
in or within 50 bp of regions annotated as PE/PPE genes, mobile elements, or
repeat regions were excluded from all analyses. Heterozygous SNPs that were
found at a frequency of 10–90% of reads in at least one isolate also were
excluded. Finally, for inclusion of SNPs in our downstream analyses, a minimum
depth of 10 reads in one strain and at least four reads in all strains was required.

Phylogenetic Evolutionary Inferences and Testing of Tip-Based Calibration. A total
of 1,212 concatenated genome-wide SNPs were used for phylogenetic analyses
(Dataset S4). Based on Bayesian information criterion in jmodeltest2 (35), GTR
was the best-fitting substitution model for the CAC and ASF datasets. Dated
phylogenies, divergence times, and evolutionary rates were computed from
the alignments using BEAST 1.8 (36). On observing that the BEAST chains (see
below) failed to converge using the GTR model on the ASF dataset, we applied
the HKYmodel (a simpler and the second-highest scoring model) for this subset
and the GTR model for the other datasets. The XML-input file was modified
to specify the number of invariant sites. SNPs were partitioned into three
classes based on functional annotation: intergenic SNPs, synonymous SNPs, and
nonsynonymous + noncoding RNA SNPs. Phylogenetic trees were visualized
using Figtree v1.4.2 (tree.bio.ed.ac.uk/software/figtree) and ITOL v2 (37).

Maximum likelihood trees were computed in SeaView (38), and root-to-tip
distances were extracted using Path-O-Gen (tree.bio.ed.ac.uk/software/pathogen/).
As a complementary assessment of the temporal signal in the data, date ran-
domization was performed on our datasets using a recently developed R package
(39). Sampling dates of the genomes were randomly shuffled 20 times, and date-
randomized datasets were analyzed with BEAST using the same parameters as for
the original datasets (Fig. S3). For both datasets, there was no overlap between
the TMRCA 95% HPD intervals between the real data and the randomized data
(Fig. S3), suggesting that the data contain sufficient temporal structure and spread
(40). Root-to-tip regression also revealed a clear temporal signal in the data (Fig. S4).

Toensure that the estimateswere not driven by any particular sample subset,
we ran a root-to-tip regression on a subset of samples including a maximum of
one sample per year per country of patient origin (the “representatives” sample
subset). Estimated node ages and substitution rates were largely concordant
between sample subsets, indicating that nonrandom sampling did not signif-
icantly affect the results overall (Table 1).

Finally, to assess the robustness of our root-to-tip regressions, we also ran-
domized the tipdistances 1,000 times, reran the regressionanalyses, and recorded
the t statistics for the variable “year” for each iteration (Fig. S5). For each of the
four sample sets, the estimate from observed data differed significantly from
that using randomized data (P < 0.005 for all eight analyses).

We calibrated the trees using sampling dates spanning the years 2002–2015. We
defined uniform prior distributions for the substitution rates (1×10−9 –1 ×10−6 s/s/y),
and assessed the performance of various clock and demographic models using
stepping-stone sampling (Table S1). The GMRF Skyride demographic model (41)
was found to fit both the ASF and CAC data best. A strict clock model was found
to fit the ASF best, whereas an uncorrelated relaxed clockmodel scored highest on
the CAC dataset. However, because the Markov chain Monte Carlo (MCMC) failed
to converge properly over 100 million steps for the CAC dataset under a relaxed
clock, and observing that the age and rate estimates were highly congruent
between runs using either a strict or relaxed clock model (Table 1), we report the
strict clock estimates for the CAC dataset as well.
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Fig. 5. Estimated Mtb substitution rates in the present study and previously
published studies. Colors indicates the lineage to which the samples under
study belong: blue, lineage 2; red, lineage 4; black, all). Studies using aDNA
(11, 12) and human-Mtb codivergence (9) for calibration are annotated sep-
arately. The other studies used tip dating (6, 13, 14) or historical information
(16), or counted mutations in paired isolates (15) or serial isolates (17).
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We estimated posterior distributions of parameters, including divergence times
and substitution rates, using MCMC sampling. For each analysis, we ran three in-
dependent chains consisting of 30–300 million steps, the first 10% of which were
discarded as a burn-in. Convergence to the stationary distribution was assessed
within and between chains (Fig. S6), and sufficient sampling and mixing were
checked by inspecting posterior samples (effective sample size >200). Parameter
estimation was based on the samples combined from three different chains. The
consensus tree was estimated from the combined samples using the maxi-
mum clade credibility method implemented in TreeAnnotator (beast.bio.ed.ac.uk/
treeannotator). The Bayesian phylogenetic tree used to date the TMRCA of the CAC
is shown annotated with posterior node probabilities in Fig. S7 and with individual
node ages in Fig. S8. The results from themodel testing are summarized in Table S1.

Calculating MIRU Evolutionary Rates. To calculate the yearly rate of MIRU evo-
lution (contractionsandexpansions),we first constructedaBEASTphylogenyusinga
strict molecular clock and a GMRF skyride demographic model. We then extracted
the total branch length of the phylogenetic tree using TreeStat (tree.bio.ed.ac.uk/
software/treestat/). The sum of branch lengths corresponds to the evolutionary
time of every branch from the sampled tips to the MRCA of all of the isolates. The
number of repeats of eachMIRU locus was annotated on the tree (Fig. 3). The total
number of state changes over all 24MIRU loci over the sumof years covered by the
tree was then summed assuming a stepwise mode of MIRU evolution (Dataset S4).

Calculating Relative MDR-TB Prevalence. TB andMDR-TB prevalence data were
obtained from the World Health Organization (www.who.int/tb/country/
data/download/en/). TB prevalence data were available for all countries for
the year 2013, and point estimates of prevalence by 100,000 individuals
were retrieved (e_prev_100k).

The data onMDR-TB prevalencewere collected less systematically, relying on
a mix of surveillance, surveys, and models. We used the estimated number of
MDR-TB cases among all notified pulmonary TB cases (e_mdr_num), expressed
as prevalence per 100,000 individuals by dividing by country population size
estimates from the same source.We calculated the relative proportion ofMDR-
TB cases by dividing the prevalence of MDR-TB by the prevalence of TB and
multiplying this number by 1,000.
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