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Abstract 

Background: A rich literature exists that has demonstrated adverse human health effects 

following exposure to ambient air particulate matter (PM), with strong support for an 

important role for ultrafine (nano-sized) particles. At present, relatively little human health or 

epidemiology data exists for engineered nanomaterials (NM) despite clear parallels in their 

physicochemical properties and biological actions in in vitro models.  

Objectives: NMs are available in a range of physicochemical characteristics which allow a 

more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 

nm in diameter) provides an opportunity to identify plausible health effects for NM, while the 

study of NM provides an opportunity to facilitate the understanding of the mechanism of 

toxicity of UFP.   

Methods: A workshop of experts systematically analysed the information available and 

identified 19 key Lessons that can facilitate knowledge exchange between these discipline 

areas.   

Discussion: Key lessons range from the availability of specific techniques and standard 

protocols for physicochemical characterization and toxicology assessment, to understanding 

and defining dose and the molecular mechanisms of toxicity. This review identifies a number 

of key areas where additional research prioritisation would facilitate both research fields 

simultaneously.  

Conclusion: There is now an opportunity to apply knowledge from NM toxicology and use it 

to better inform PM health risk research and vice versa.  
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Introduction 

The idea of being able to manipulate materials and particles at the molecular level sounds like 

a film plot; however, over the last 25 years, it has become firmly part of science fact and a 

scientific field in its own right: nanotechnology. Although nanotechnology is a rapidly 

growing area of research, with real-world applications in virtually every area of human 

activity (health care, food and nutrition, water purification, manufacturing and engineering to 

name a few), the introduction of a wide-range of novel materials to the environment or 

humans either by design or inadvertently raises the possibility of harmful and/or unforeseen 

adverse effects. In response to this burgeoning field, governments and regulatory bodies have 

attempted to balance nanotechnology promotion (e.g. National Nanotechnology Initiative in 

the US and the Interagency Working Group on Nanotechnology), with risk assessment and 

regulation (e.g. EU NanoSafety Cluster and associated projects such as NANoREG).  

Nanotoxicology, the study of the toxicity of nano-scale materials, has advanced in line with 

nanotechnology in terms of the amount of literature being published. Indeed, unlike harmful 

substances in the past, nanotoxicology is running more in parallel with developments in 

nanotechnology.  

The original concerns about nanotoxicology were born out of research into PM in air 

pollution (Figure 1).  This review examines key findings from air pollution and 

nanotoxicology health effects research and the comparisons that can be drawn between these 

disciplines of particle toxicology.  In May 2015, the COST MODENA project hosted a 

workshop in order to exchange and merge knowledge in PM and nanoparticle toxicology.  

The following outlines the systematic comparison of these overlapping research fields, and 

identifies lessons (in boxes) for advanced understanding as well as priority research gaps (in 

italics) that must be addressed. 
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What can be learnt from PM research that has not yet been applied effectively to NM 

research?	

The Ultrafine Hypothesis and Nanomaterials 

At the end of the previous century, several epidemiological studies identified health effects 

induced by airborne PM at levels that, at that time, were considered safe (e.g. Brunekreef and 

Holgate 2002; Dockery et al. 1993). Particles smaller than 10 micrometers in aerodynamic 

diameter (PM10) can be inhaled by humans and deposit in the respiratory tract (ICRP-66 

1994)(Appendix I), with smaller particles having higher fractional deposition in the alveoli. 

Consequently, ambient PM is frequently regulated as PM10 and PM2.5 (smaller than 2.5 

micrometers aerodynamic diameter), the latter of which reflects the fine fraction of PM10. 

The composition of PM is complex and variable (Appendix I).   Although not contributing 

substantially to the (regulated) mass, UFP have also been identified as one component 

responsible for the adverse health effects observed at typical outdoor levels.  Evidence also 

exists for an involvement of other components in the toxicity, such as metals (Frampton	et	al.	

1999;	 Jimenez	 et	 al.	 2000;	 Pope	 1991) and biological components (Schins	 et	 al.	 2004). The 

relative importance of each component is likely to differ with composition reflecting 

differences in location and time. 

In the 1990s the UFP fraction was hypothesised to be responsible for driving the acute 

respiratory and cardiovascular effects of PM (Oberdörster et al. 1995; Seaton et al. 1995).  

The ‘UFP hypothesis’ was derived from toxicological evidence from rodent models that 

smaller TiO2 particles (20 nm) were more likely to cross the lung barrier and induce 

inflammation than larger TiO2 particles (250 nm) (Ferin et al. 1992; Oberdorster et al. 1994).  

The hypothesis was soon after supported by epidemiological evidence (Peters et al. 1997). 

Due to the lack of readily available PM samples, health effect studies in the following decade 
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used surrogate particles (e.g. carbon black, diesel engine soot, TiO2 and polystyrene beads) to 

investigate the mechanisms of toxicity of UFP, the results of which were then extrapolated to 

PM (e.g. Li et al. 1996; Stone et al. 1998).  

In contrast to ambient PM, which is derived from natural and combustion processes, NM are 

made deliberately at the nano-scale because they exhibit properties that provide technological 

advantages compared to the bulk form of the same material (The Royal Society 2004) 

Appendix I). For example, elemental (graphitic) carbon has semi-conductor properties at the 

nano-scale (e.g. carbon nanotubes). This expands the number of possible products and 

applications, offering great opportunities and economic gains. While UFP and NM are often 

derived from very different sources and processes, their physicochemical characteristics can 

overlap (Appendix I), suggesting that their properties, behaviours and, importantly, toxicities 

might also overlap. In the early 2000s a number of high profile national and international 

reports highlighted the importance of nanotechnology, but they also recognised the potential 

risks (e.g. SCENIHR 2005; The Royal Society 2004). These reports led to an increased 

interest in UFP toxicology, accompanied by a change in terminology from the mid-2000s.  

Ambient PM and UFP Health Effects  

Cardiopulmonary - Epidemiologic evidence  

Epidemiology studies clearly demonstrate links between PM10 and PM2.5 with both short-

term and long-term health effects, especially on the respiratory and cardiovascular systems 

(Dockery et al. 1993).  However, PM includes a range of particle sizes and very few studies 

have included UFP per se as a variable.  Using particle number concentration as a surrogate 

for UFP, exposure has been associated with hospital admissions for acute asthma and 

increased systolic blood pressure in children (Andersen et al. 2008; Pieters et al. 2015) as 

well as rehospitalisation in patients with prior myocardial infarction (Von Klot et al. 2005). 
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For hospitalisation with ischemic stroke, a stronger association was reported with particle 

number than with PM10 mass concentration (Andersen et al. 2010). Conversely, greater 

associations for particle number than mass metrics have been less convincing for acute 

myocardial infarction (Lanki et al. 2006). 

 

Particle number concentrations have also been associated with surrogate markers of 

cardiovascular health. For example, raised levels of fibrinogen, prothrombin factors 1 and 2, 

and von Willebrand factor are associated with exposure to UFP (Hildebrandt et al. 2009). 

Independent associations have been observed for UFP or PM2.5 with heart rate and heart rate 

variability in patients with diabetes mellitus and glucose intolerance (Peters et al. 2015; Sun 

et al. 2015). In patients undergoing cardiac rehabilitation, modulation of the parasympathetic 

innervation of the heart, increased blood pressure and markers of systemic inflammation were 

all associated with exposure to UFP (Rich et al. 2012). Epidemiological studies involving 

biomarkers related to oxidative stress and inflammation revealed that primary combustion 

markers from quasi-UFP (PM<0.25) were positively associated with systemic changes in IL-6 

and TNFα, platelet activation and erythrocyte antioxidant enzyme activity in an elderly 

population (Delfino et al. 2009). Similarly, elevated plasma fibrinogen and white blood cells 

have been associated with UFP exposure (Gong et al. 2014).  

Cardiopulmonary - Preclinical and clinical evidence 

Several preclinical and clinical studies have addressed the short-term inhalation and 

respiratory effects of UFP. For example, field studies have observed associations between 

UFP and carbon with reductions in lung function among asthmatics (McCreanor et al. 2007), 

while asthmatic and healthy adolescents in New York exhibited an increase in indicators of 

inflammation (Patel et al. 2013). The majority of preclinical and clinical studies on UFP have 

been conducted with diesel exhaust and diesel exhaust particles (DEP), an especially rich 
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source of UFP. These studies have shown airway inflammation in healthy individuals, 

including elevated levels of inflammatory cells and mediators (Ghio et al. 2012; Xu et al. 

2013; Yamamoto et al. 2013).    

Inhaled UFP modify numerous aspects of cardiac function, e.g., reduced heart rate variability 

(Cassee et al. 2011; Pieters et al. 2012), a predictor of cardiovascular risk, and increasing the 

incidence, duration and severity of arrhythmia (Delfino et al. 2005; Robertson et al. 2014). 

Furthermore, UFP in urban air (Weichenthal 2012) or diesel engine emissions (Mills et al. 

2007) exacerbate myocardial ischaemia (Cascio et al. 2007; Robertson et al. 2014). Blood 

vessels finely regulate blood flow through changes in the tone of vascular smooth muscle, 

and UFP generally alter the balance in favour of constriction (Moller et al. 2011). The 

resulting increased blood pressure (Bartoli et al. 2009) and reduced ability of arteries to relax 

are usually detrimental. Vascular dysfunction can be caused by loss of mediators such as 

nitric oxide released by the vascular endothelium (Courtois et al. 2008; Miller et al. 2009; 

Moller et al. 2011), increased sensitivity to vasoconstrictor factors (Langrish et al. 2009), and 

alterations in baroreceptor/neuroregulatory feedback (Rhoden et al. 2005; Robertson et al. 

2012). Blood components are also dysregulated, with UFP tending to increase blood 

coagulability (Kilinç et al. 2011; Nemmar et al. 2004), encouraging platelet activation 

(Cascio et al. 2007; Lucking et al. 2011) and reducing blood clot clearance (Mills et al. 2005). 

The cellular and biochemical mechanisms underlying these effects are wide-ranging, with 

oxidative stress and inflammation being key drivers (Miller et al. 2012) (Figure 3). In 

combination, these actions promote cardiovascular disease. Indeed, long-term exposure to 

UFP in animal models (Araujo et al. 2008; Miller et al. 2013) has been shown to worsen 

atherosclerotic vessels disease. 

Other target organs 
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Although research has predominantly focused upon the inhalation of UFP and their impact 

upon cardiovascular function, a number of additional, secondary target organs have been 

investigated (see Figure 3). Such research has been based upon the hypothesis of alveolar 

translocation of UFP to the blood-stream allowing for non-specific interaction with other 

essential organs such as the brain and kidneys. UFP exposure and mucociliary clearance from 

the lungs into the gut might also be linked with adverse effects on lipid metabolism and 

intestinal villus shortening (Li et al. 2015) conveying evidence of effects with potential 

clinical relevance for gut or liver diseases.  

Starting about 15 years ago, the effects of PM in the central nervous system (CNS) gained 

recognition with reports that exposure to polluted Mexico City air resulted in oxidative stress, 

inflammation, neuropathology, cognitive and behavioural changes in humans and animals 

(Calderón-Garcidueñas et al. 1999; Calderón-Garcidueñas et al. 2011). Other studies using a 

myriad of PM collection techniques upheld the early findings related to PM induced brain-

centric inflammatory processes, including regions related to learning and memory (Campbell 

et al. 2005; Fonken et al. 2011).  Such health outcomes could be explained by findings that 

inhaled particles can travel to the brain via the blood following alveolar deposition, nose-

brain transport following olfactory mucosa deposition (Balasubramanian et al. 2013; Elder et 

al. 2006), or via the spill-over of systemic inflammation to the CNS; a combination of these 

processes is also possible. While acute CNS inflammatory processes cannot be directly 

measured in living humans, it is interesting to note that neurodegenerative diseases are on the 

rise and that there is a well-established – albeit mechanistically murky – link between 

inflammation and neurodegeneration (Akiyama et al. 2000; Amor et al. 2010). Recent 

research has focused on one area where animal and human outcomes have good concordance, 

namely behaviour and cognition. For example, Fonken et al. 2011 showed that mice exposed 

to PM2.5 (which includes UFP) had deficits in spatial learning and memory.  Using mice 
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exposed to concentrated UFP as neonates, (Allen et al. 2014a; Allen et al. 2014b) showed that 

males had behavioural outcomes that were associated with persistent enlargement of the 

ventricles and innate immune cell activation.  In population-based studies, several 

investigators have now reported associations between traffic aerosol exposures and reduced 

cognitive function in the elderly (Ranft et al. 2009) and children (Freire et al. 2010; Suglia et 

al. 2008). Two US-based case-control studies have also reported increased odds ratio for 

autism in association with early-life exposure to traffic-related pollution, specifically PM2.5 

(Becerra et al. 2013; Volk et al. 2013). With the exception that NM research has 

demonstrated plausibility for PM translocation to the brain, very little has been investigated 

in terms of the nervous system impacts of NM. PM research therefore provides a basis to 

develop a strategy to identify potential neurological effects of NM in which physicochemical 

characteristics could be responsible. 

Epidemiological studies have also related PM2.5 and PM10 air pollution to reproductive 

toxicity and adverse effects on the progeny. A recent systematic review (Stieb et al. 2012), 

reported an association between exposure to PM2.5 and PM10 and low birth weight, pre-term 

birth and small-for-gestational-age birth. van Rossem et al. 2015 found that maternal 

exposure to PM2.5 and black carbon were associated with increased blood pressure in the 

new-born child. The effect seems to be mediated by altered placental vascular structure 

induced by PM2.5 (Veras et al. 2008). Preclinical studies indicate that adverse health effects of 

UFP exposures cannot be excluded, though the potential for hazard has not been well 

characterized (Hougaard et al. 2015). 

The evidence outlined above demonstrates the impact of ambient PM on a range of targets, 

but in particular respiratory, cardiovascular, neurological and reproductive adverse effects.  

For cardiovascular studies this extends to evidence for UFP.  Direct evidence for the role of 

UFP in the induction of the other disease targets is in general is still lacking.   
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Investigation	of	NM	impacts	on	human	health	
A few studies are now emerging that demonstrate effects of nanomaterial’s on human health, 

especially in an occupational setting. For multiwalled carbon nanotubes, Lee et al (2015) 

investigated workers manufacturing this material and found that while there was no impact 

on haematology and blood biochemistry, they did see an increase in a range of markers of 

lipid peroxidation in exhaled breath condensates of workers, including malondialdehyde, 4-

hydroxy-2-hexenal and n-hexanal. Multiwalled carbon nanotubes have also been reported to 

impact on a range of endpoints in workers exposed for at least six months. These endpoints 

include the targeting of genes associated with the cell cycle regulation, progression and 

control as well as genes involved in apoptosis and proliferation (Shvedova et al 2016). The 

same study also identified targeting of pathways involved in pulmonary and cardiovascular 

effects, as well as carcinogenic outcomes in humans.  

Another study followed workers in 14 nanomaterial manufacturing and/or application 

factories in Taiwan for six months (Liao et al 2014). The nanomaterials made or handled 

included silver, iron oxide, gold, titanium dioxide, carbon nanotubes or silicon dioxide. The 

group working with nanomaterials exhibited higher levels of antioxidant enzymes 

cardiovascular markers than workers handling other materials. In addition the study also 

identified that markers of small airway damage (Clara cell protein 16) and lung function were 

significantly associated with handling nanomaterials. 

A study by Liou et al (2015) reviewed 15 studies that have investigated the effects of 

engineered nanomaterial’s on workers. Of these 15 studies, 11 were cross-sectional, 4 were 

longitudinal and 1 was a descriptive pilot study. For the 11 cross-sectional studies all of them 

showed a positive relationship between various biomarkers and the exposure to engineered 

nanomaterials. For the longitudinal studies 3 of the 4 studies demonstrated a negative 
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relationship, with the fourth providing a positive relationship after one year follow-up. In 

general the exposure levels identified were not very high compared to those used in human 

inhalation chamber studies, however the were some exceptions with higher exposures. The 

studies in general were found to be limited by small numbers of participants, a lack of 

consistent exposure information, the detection of generally low exposures and finally short 

intervals between exposure and effect. 

Taken together, these initial human health studies suggest that occupational exposure to 

nanomaterials may have detrimental impacts on human health. Further work is required over 

the long term to ascertain the nature and extent of these effects, as well as their relevance to 

different types of materials. 

Lesson 1:  A rich literature exists that has demonstrated adverse human health effects 

following exposure to PM, with a proportion of that literature providing support for UFP 

involvement. In contrast, although initial studies suggest an association between exposure to 

nanomaterial’s and human health, relatively little clinical or epidemiology data exists, to date.   

Figure 4 outlines a range of health effects and biological indicators of disease reported in the 

literature.  This information can be used to better inform and justify NM study endpoints.  

Mechanisms of UFP induced health effects 

Cardiovascular effects 

Three hypothetical pathways to explain the cardiovascular effects of PM predominate; 

‘inflammation’, ‘autonomic regulation’ and ‘particle translocation’ [Figure 3]. The classical 

hypothesis is that particles inhaled into the lung are taken up by alveolar macrophages, 

triggering an inflammatory response within the lung. A sufficient particle dose, reactivity or 

lack of clearance, leads to amplification of the response with a resultant ‘spill-over’ of 
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inflammatory mediators into the blood causing systemic inflammation (Seaton et al. 1995), 

which is strongly associated with cardiovascular disease. Alternatively, inhaled particles (or 

the inflammatory response resulting from the particles) stimulate alveolar sensory receptors 

(Ghelfi et al. 2010; Hazari et al. 2011; Robertson et al. 2014), providing a signal to the central 

nervous system. This manifests through alterations in autonomic nervous system activity, 

which directly regulates cardiac function, and, indirectly, other aspects of the cardiovascular 

system (Pope Iii et al. 1999; Rhoden et al. 2005). The identification of the UFP fraction of 

PM paved the way for a third hypothesis: that the minute size of UFP allows them to 

translocate across the thin alveolar-capillary wall (by an as-yet undetermined mechanisms) 

and enter the circulation themselves to directly affect cardiovascular function (Nemmar et al. 

2001; Oberdorster et al. 2002). 

There is a wealth of evidence for and against each of these theories, but in truth all three are 

likely to occur, with the contribution of each dependent on the physicochemical properties of 

the UFP, the cardiovascular endpoint under investigation, and the susceptibility of the 

person/model being explored (Miller 2014). Furthermore, it is highly likely that many of the 

subtleties of these pathways have yet to be identified. Intricacies of these processes may 

encompass non-classical inflammatory/oxidative biological mediators such as acute phase 

proteins (Saber et al. 2014) or oxidised phospholipids (Kampfrath et al. 2011); the release and 

accumulation of chemical particle surfaces and constituents within biological compartments 

(Murphy Jr et al. 2008; Totlandsdal et al. 2015); particle/plasma-protein interactions (Deng et 

al. 2011; Monopoli et al. 2012); and the role of proteins/inflammatory cells in 

carrying/accumulating particles to susceptible areas of the body (Schaeffler et al. 2014). 

Reports are rapidly emerging from preclinical models that demonstrate similar cardiovascular 

effects for NM to that shown for UFP, e.g. altered autonomic function (Harder et al. 2005), 

impaired vasodilatation (Leblanc et al. 2010; Moller et al. 2011), blood hypercoagulability 
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(Kim et al. 2012; Radomski et al. 2005), and aggravated atherosclerosis (Li et al. 2007; 

Mikkelsen et al. 2011; Niwa et al. 2007). Identification of the biological mechanisms for 

these parallel observations will have important consequences for both fields of research.  

Lesson 2: The information elucidated from PM epidemiology and mechanistic research has 

provided an evidence base on which to develop hypotheses to stimulate research into the 

potential modes of action for NM.  

Genotoxicity/carcinogenicity 

Markers of genotoxicity, such as elevated levels of oxidized DNA nucleobases, bulky DNA 

adducts and clastogenic endpoints in leukocytes have been documented in biomonitoring 

studies of humans. Positive associations between UFP and oxidatively-damaged DNA in 

mononuclear blood cells have been observed (Bräuner et al. 2007; Vinzents et al. 2005). In 

contrast, there is a paucity of studies on UFP-generated oxidative DNA oxidation products in 

cultured mammalian cells and animal experimental models (Møller et al. 2014), as well as a 

lack of studies on neoplastic lesions in the respiratory tract. Studies including exposure to 

traffic-related outdoor air pollution or DEP (Stinn et al. 2005; Valberg and Crouch 1999) 

have identified increased lung adenomas in rodent models.  

The carcinogenic mechanism is believed to involve genotoxicity by both oxidative reactions 

and formation of bulky DNA adducts from polycyclic aromatic hydrocarbons (PAH), which 

may give rise to mutation and structural chromosome damage. Early genotoxic events such as 

DNA adducts and small nucleobase oxidative lesions can be generated by primary (direct) 

mechanisms in relevant target cells, whereas oxidative-mediated DNA damage may also 

occur as a consequence of secondary inflammation-driven events (Schins and Knaapen 

2007). Importantly, the latter mechanism has been discussed as a major mechanism 

contributing to the mutagenic and carcinogenic properties of DEP, as well as poorly soluble 
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nanoparticles like carbon black and titanium dioxide in long-term high-dose inhalation 

studies in rats (Knaapen et al. 2004). However, the relevance of this mechanism towards the 

carcinogenicity of PM and the specific contribution of the UFP component herein remains to 

be elucidated. Recent reviews on comparisons of genotoxicity between DEP and NM have 

indicated similar mechanistic causes of DNA damage (Magdolenova et al. 2014), although 

the dose metric of ‘mass concentration’ causes difficulties in comparison across studies 

(Møller et al. 2015). Interestingly, it has recently been revealed that single- and multi-walled 

carbon nanotubes could interfere with the mitotic spindle apparatus (Sargent et al. 2012; 

Siegrist et al. 2014). 

Lesson 3:  NM research provides an opportunity to better understand the (mechanistic) role 

of UFP in the genotoxicity, mutagenicity and carcinogenicity of PM. 

Lessons learnt from NM toxicology that could be applied to PM 

Regulatory standards for ambient PM are promulgated from a rich literature that has 

demonstrated adverse human health effects following exposure.  Conversely, the 

toxicological research with NM is motivated by a desire to define material properties that are 

linked to adverse health effects, thus supporting effective risk management. To achieve 

engineering for safety goals, it is necessary to understand the toxicity of the NM themselves 

while recognizing that toxicological assessment is only one part of an overall risk assessment 

process.  On the other hand, it is impossible to determine safer exposure levels and safer 

material design without first understanding dose-specific toxicological effects. Studies that 

address these questions have provided a wealth of knowledge that might now be useful to 

better understand the toxicology of PM. 

Characterization of test materials 
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In the past, characterization of UFP has focused on mass and number concentrations, 

chemical composition and size distribution.  For NM characterization, studies initially used 

existing methods obtained from PM and material science research, but over time, the 

methodology has been refined. This has allowed NM toxicological researchers to generate a 

list of desired characterization information 

(https://www.iso.org/obp/ui/#iso:std:iso:ts:17200:ed-1:v1:en). A similar list of requested 

characterization end-points was not developed in PM research due to the lack of 

understanding of how different physical and chemical characteristics could interact to 

influence PM toxicity. However, a comparable list for PM health effect studies could 

potentially be beneficial for understanding mechanisms as well as enhancing comparability 

across fields. In future, these techniques provide an opportunity for improved monitoring of 

PM. 

Lesson 4: A range of particle characteristics have been shown to influence their toxicity. 

These should also be considered in UFP research, where appropriate characteristics that can 

be used for the prediction of toxicity have not yet been identified. Furthermore, the variance 

of these characteristics in space and time should also be determined comparably to the 

methods used for NM. 

Prior to the development of NM toxicity testing, standard operating procedures (SOPs) for 

particle characterization were rarely in place.  Development of SOPs is currently ongoing in 

the nanosafety communities, as well as via standardization projects conducted by the 

European Committee for Standardisation (CEN) and International Organization for 

Standardization (ISO) (EC Mandate M461 to CEN).  

Especially relevant particle parameters protocols for standardization are that of dispersion, 

size, agglomeration and aggregation in different environmental and biological media. 
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Techniques that can (semi-)automatically obtain multiple size parameters using transmission 

electron microscopy will help to satisfy the challenges of regulatory NM definitions such as 

those proposed by the European Commission (EU, 2011 

http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm). Advances in 

dynamic light scattering and coupling to inductively coupled plasma mass spectroscopy 

(ICPMS) technologies such as ‘field flow fractionation multi-angle light scattering ICPMS’ 

or ‘single particle ICPMS’ have been driven by requirements for particle sizing and 

behaviour in liquid dispersions. For airborne particles, great improvements in understanding 

the applicability of different measurement devices has also been reached. This includes 

knowledge of the care needed in using and interpreting charge based instruments, especially 

instruments using unipolar charging such as surface area monitors and Fast Mobility Particle 

Sizer (Asbach et al. 2009; Levin et al. 2016). These instruments can provide erroneous results 

when significant amounts of agglomerates and aggregates with ca. >200 nm are present in the 

aerosol (Todea et al. 2015).  

Advances have also been made in chemical analysis of NM where ICPMS is an often 

preferred method, either using the single particle mode or particle extraction protocols (Lee et 

al. 2014). Non-destructive methods such as Instrumental Nuclear Activation analysis (INAA) 

and X-ray Fluorescence (XRF) may be preferable for bulk chemical characterization to avoid 

challenges to develop material-specific extraction techniques.  

New developments also include procedures to identify and quantify specific surface 

coatings/functionalization of NM using combinations of Differential Thermal Gravimetric/ 

Differential Thermal Analysis - Gas Chromatography and chemical specific methods such 

High Performance Liquid Chromatograph – Mass Spectroscopy/Optical Emission 

Spectroscopy or Gas Chromatography – Mass Spectroscopy. Combinations of these methods 
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are particularly important for 2nd and 3rd generation NM analysis and methods have recently 

been developed as part of the EU FP7 NANoREG project 

(http://www.nanoreg.eu/images/2015_12_03_NANoREG_Factsheet_D2.4.pdf). Further 

knowledge transfer of techniques between material science, environmental and nanosafety 

researchers continues and is highly likely to be applicable to PM research. 

Analysis of surface charge via zeta-potential measurements is straight-forward in simple 

systems (e.g. a pure NM in pH-controlled water with moderate ionic strengths ), but becomes 

challenging in multi-component complex systems such as PM in air pollution. From a 

toxicological perspective, since zeta-potential significantly varies due to pH and composition 

of the test medium, a full assessment should consider all likely mediums and biological 

compartments of interest.  

Particle reactivity is currently not well-defined, perhaps understandably considering this is 

unlikely to be a single parameter.  ‘Simple‘ methods include measurement of reactive oxygen 

species, pH and redox-potential, and band gap.  In recent years, band gap has been shown to 

be related to the toxicity of metal oxide NM (Zhang et al. 2012). In vitro dissolution can also 

be an important indicator of reactivity for some NMs insofar as it is indicative of 

biodurability/biopersistance, methods which are under development (CEN/ISO). Recent work 

has shown that great care must be taken in designing and harmonization of such experiment 

to achieve comparable results (Tantra et al. 2015). These developments are relevant for both 

NM and PM research, although the weight has been strongly tilted towards NM research in 

the last decade. 

Lesson 5:  A range of new and improved techniques for assessing the physicochemical and 

nanoscale characteristics of NM have been developed. These should be applied appropriately 
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to inhalation exposure assessment in population studies, to better determine the relationship 

between particle characteristics and health effects.  

It is worth noting that the procedures used for sample preparation and the mode of exposure 

used in toxicology studies determines the requirements for characterization of exposure and 

fate. For example, quantification and characterization of aerosolized particles might include 

aerosol monitors and filter samples, whereas particles used as dispersions for exposure would 

require analysis via hydrodynamic size-distribution, agglomeration state, sedimentation and 

reactivity in the dispersion medium.  NMs are often dispersed in protein rich media which 

can affect both the biokinetics and toxicity, whereas ambient UFP can be dispersed to some 

extent without these additives (Moore et al. 2015). 

The improved characterization knowledge has revealed the need for correct storage of NM 

test items over time. For NM in the OECD working party of manufactured nanomaterials 

(WPMN), this has resulted in storage under argon, in single-use vials, in the dark. Previously, 

both nanosafety and PM researchers have stored both dry powders, filter-bound particles and 

wet suspension under many different conditions. For many ambient PM samples, storage 

under argon at <0oC could potentially prevent oxidation/loss of toxicologically relevant 

(semi)volatile substances.  

Exposure characterization  

Since the emergence of nanotoxicology as a discipline it has become increasingly recognized 

that particles can be modified upon interactions with cells and tissues, for example, due to the 

influence of the surrounding media (e.g. surfactant proteins). Such biomolecule interaction is 

likely to impact the ‘fate’ of the particles by modifying the surface properties, the behaviour 

of the particle (e.g. agglomeration, solubility, bioavailability, biodurability) and the adsorbed 

protein properties (Brown et al. 2010a; Deng et al. 2011). This could, in turn, alter how a 
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particle is taken up into cells, triggers signalling pathways, and in what physicochemical 

format they are translocated between cells and to distal organs.  

Characterization of NM at various stages throughout the life-cycle of the material is far from 

simple. For PM this is further complicated by the complex mixtures present in ambient air. 

Furthermore, it is important to note that consumer exposure to NM may be different than 

occupational exposure depending on the state of the material (e.g. native NM, embedded in a 

product, degradation and disposal). For toxicology studies, many NM have been studied as 

dispersions (usually of agglomerates) in biological or culture media.  Several protocols for 

NM dispersion have been developed using different dispersion principles and mediums 

(Hartman et al., 2015). But first attempts have been also made to establish harmonized 

dispersion for regulatory testing (e.g. Jensen et al. 2014). In contrast, harmonized dis several 

persion protocols have largely been lacking in PM research.  

Lesson 6: Harmonised dispersion protocols can be transferred to PM research to increase 

harmonization and comparability between test methods and results. 

There is, however, a major obstacle for PM research, in that much smaller amounts of PM (i.e 

from collections) are normally available compared to NM research where direct synthesis is 

often possible. For ambient PM, it is necessary to collect and extract PM from the collector 

(e.g. scraping, sonicating or chemical extraction from a filter), which may alter the state of 

the PM prior to its use in toxicology studies. Transformation and loss of toxicologically 

important semi-volatile compounds during sampling is also an issue that must be taken into 

account when testing collected PM. 

Lesson 7:  This need to extract PM from filters can be avoided by moving the laboratory to 

the field, for example using in vivo or air-liquid interface (ALI) systems. In addition, systems 
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such as particle concentrators (Gupta et al. 2004; Kim et al. 2001) have been developed 

which help to ensure sufficient dose over the period of the experiment. However, such 

toxicological studies in the field can be expensive and additionally complicated. 

Inhalation exposure and deposited dose 

The experimental data for total lung deposition of particles are highly consolidated (ICRP-66 

1994)), however, the regional deposition of NM is weakly supported by direct experimental 

data to validate the models.  

 

The deposition of NMs depends on three sets of parameters: particle dynamics, lung 

geometry and gas flow dynamics. Due to their size, the primary region for the deposition of 

NM is the alveolar region of the human lung, which means that the first biological matrix 

encountered is lung surfactant (Gasser et al. 2010). The interaction with NM may alter the 

structure and function of the surfactant proteins t (Beck-Broichsitter et al. 2014; Valle et al. 

2015), and subsequently influence the specific mammalian cell interaction (Schleh et al. 

2013).  

 

Lesson 8:  NM and parallel UFP inhalation studies can provide important information on 

pulmonary deposition and surfactant interactions and would facilitate the investigation of 

comparability between both types of particles. 

For PM and NM toxicology studies, consideration of relevant particle doses is required. A 

daily inhalation mass dose for PM that relates to maximal air-quality standards has been 

suggested (WHO Global Air Quality Guidelines: 10 µg/m³ for PM2.5). A daily inhaled 

volume for a moderately active adult human (75 kg) is typically 20 m³/day.  If the mean 

deposited fraction is 0.3 (Price et al. 2001), the suggested daily mass dose would be 60 
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µg/day. However, PM mass is often dominated by coarse particles, so only a fraction of the 

60 µg/day would actually represent UFP. 

Therefore dose might better be expressed as particle number for such small particles, due to 

their low mass.  There is a large variability in ambient UFP numbers, ranging from 500-

10,000 in rural areas, to 7500- 25,000 particles/cm³ in urban background (Putaud et al. 2010), 

and with a European mean concentration at 31,500 particles/cm³ at hot spots (busy streets). 

To estimate in vivo exposure conditions based on particle number concentrations, a healthy 

adult breathing at moderate exercise in ambient air with an assumed moderate number 

concentration of 30,000 particles/cm³ (of which 80-90% of the particle count is assumed to be 

UFP) will inhale 6×1011 particles/cm³. Assuming a mean deposition probability for UFP of 

0.5, this corresponds to a particle number dose of 3×1011 particles deposited per day or 1.2 × 

1010 particles deposited per hour (Geiser and Kreyling 2010).  

To obtain a more relevant assessment of health effects in vitro, the UFP and NM dose per cell 

number or area should reflect real inhalation. The initial use of high UFP or NM doses may 

be justified by the need to be able to detect effects of exposure, but such high doses need to 

be accompanied or followed up studies using realistic doses in relation to current knowledge 

concerning the occupational and ambient exposures of UFP or specific NM types.  

The respiratory zone of the lung represents by far the largest compartment for NM 

deposition. Estimates of lung physiological data (Stone et al. 1992), together with the above 

mentioned European mean ambient exposure concentration at 31,500 particles/cm³, suggest 

that on average 8 nano-scale particles deposit per day per cell of the alveolar epithelial 

surface (Geiser and Kreyling 2010). According to limits caused by thermodynamic 

conditions, the highest possible NM aerosol number concentration is around 106/cm3, which 

relates to 700 particles/d/cell or 30 particles/h/cell of the alveolar epithelium. As mass is a 
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more frequently used metric, these numbers have to be converted using the effective density 

of the particles. This information is useful when verifying relevant in vitro doses. Models 

have now been published (including experimental verification) which can estimate particle 

deposition onto a monolayer of cells in vitro (Cohen et al. 2013; Hinderliter et al. 2010; 

Teeguarden et al. 2007). These studies identify NM, and the effective density of NM, as 

important factors in the modelling of cellular dose. In essence, only sub-micrometer and 

larger NM agglomerates will deposit within one hour, while NM less than 100 nm may 

remain suspended for more than 24 hours.  

Lesson 9:  The models of in vitro NM deposition should be more widely used for estimation 

of NM dose in cultured cells in order to refine models so that they better reflect anticipated 

airborne exposures. Their application to PM would be more difficult due to the size and 

density diversity of such a mixed particle sample.   However, such dosimetry models (eg., 

DeLoid et al 2015) can in principle deal with size distribution data as well as mean size data, 

in cases where such distribution data is measured.  Thus the lack of a narrow size distribution 

for PM should not preclude the more effective use of such modeling advances to improve 

dosimetry in both the NM and PM fields. 

Uptake, clearance and fate following pulmonary exposure 

Using rodent models, within 1-2 days of exposure, NM clearance is relatively low compared 

to micrometer-sized particles, and is associated with a more rapid and extensive uptake into 

epithelial cells (Kreyling et al. 2002; Semmler-Behnke et al. 2007; Semmler et al. 2004). 

However, the rodent model does not reflect well clearance in humans.  For humans, there is 

evidence that both NM and micrometer-sized particle clearance from the conducting airways 

is less extensive leading to long-term particle retention (Möller et al. 2008). Interestingly, in 

dogs (Kreyling et al. 1999) and monkeys (Nikula et al. 1997), long-term retention increases 
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substantially in conducting airways with decreasing particle size.  Considering long-term 

clearance predominantly from the alveolar region in these species macrophage-mediated 

clearance occurs at a rate that is one order of magnitude lower than that of rodents (Kreyling 

2013). For the human distal regions of the lungs, neither macrophage-mediated long-term 

clearance kinetics data nor translocation data of NM into the circulation are currently 

available.  

 

Particle clearance from the lungs can also occur via transport towards lymph nodes and 

translocation into the blood circulation leading potentially to accumulation in secondary 

organs and tissues. These pathways will have a limited or lesser relevance for the clearance of 

rapidly or moderately soluble particles, respectively (Oberdörster et al. 2005).  

 

Lesson 10:  NM inhalation studies provide details of the potential for UFP biopersistence and 

transport based upon their solubility. 

 

Early pioneering studies in the 1990’s first demonstrated detectable translocation of NM TiO2 

particles into the lung interstitium, while translocation is lower for larger particles (e.g. 21 nm 

vs. 250 nm diameter) (Ferin et al. 1991; Oberdorster et al. 1994). More recently, a 

comprehensive list of inhalation studies and instillation studies using various NMs has  

provided consensus that, in rodents, relatively small fractions (approximately 1%) of inhaled 

NM are translocated across the air–blood–barrier, leading to accumulation in secondary 

organs, including the liver and spleen (Balasubramanian et al. 2013). Notably, this rat 

inhalation study used gold NM of different primary particle sizes, but agglomerated to give 

the same diameter in air of 45 nm. The authors demonstrated size related translocation, with 

the smaller, primary 7 nm gold particles translocating more than the primary 20 nm gold 
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particles, suggesting deagglomeration of the 45 nm agglomerates in the lung. Based on the 

observations described in the previous section, that in humans NM retention in the lung is 

likely to be longer than for rodents, it is necessary to consider whether the relatively small 

translocation proportions identified in rodents might be greater in humans. 

NM research has facilitated understanding of the biokinetics and biodistribution of particles, 

such that there is now clear evidence that inhaled NM can reach and accumulate in secondary 

organs (Geiser and Kreyling 2010; Kreyling 2013). Quantitative biokinetics analysis of NM 

applied via the lungs of rodents, demonstrated small fractions of NM (iridium, carbon, gold, 

TiO2) in all secondary organs studied, including the brain, heart, and even in the foetus 

(Kreyling et al. 2002; Semmler-Behnke et al. 2007; Semmler-Behnke et al. 2014).  An 

inhalation study using 20 nm iridium NM was extended to six months after a single 1h 

inhalation, and yielded significant retention in the liver, spleen, kidneys, heart, and brain 

(Semmler-Behnke et al. 2007; Semmler et al. 2004). Although the fractions of total dose that 

reach such tissues are very small in rodents, the studies have highlighted the importance of 

epithelial barrier health (Heckel et al. 2004) and that the particle’s protein corona impacts 

biodistribution (Kreyling et al. 2014). As a corollary to biodistribution studies, in vitro studies 

with NM have helped to define the ability of particles to breach cellular membranes (Bachler 

et al. 2015), interactions with subcellular structures, and, therefore, toxicological mechanisms 

related to particle uptake. 

Lesson 11:  NM translocation studies provide clear evidence of the potential for UFP to 

translocate from the lung surface into blood and to distribute around the body, accumulating 

in a range of secondary organs. The knowledge gained from NM biokinetics and 

biodistribution studies provides an evidence base to predict the fate and health effects of UFP 

in the body. 



Environ Health Perspect DOI: 10.1289/EHP424 
Advance Publication: Not Copyedited 

	

27	
	

In addition to translocation, rodent studies also suggest that NM can relocate from the 

interstitium and epithelium back onto the epithelial surface via an unknown mechanism (e.g. 

via macrophages) (Semmler-Behnke et al. 2007). The fraction removed via the lymphatic or 

cardiovascular system is relatively small in contrast. Studies using NMs (sometimes at doses 

higher than a few hundred µg per lung) such as titanium dioxide, carbon black, gold, 

quantum dots, silver nanowires and CNT have identified accumulation of NMs in the lung-

associated lymph nodes (Schinwald et al. 2012). The development of this research area using 

different types of NM and different investigative protocols will be useful in determining the 

importance of this potential route of uptake and hence potential translocation within the 

body. Pathways of relocation of inhaled NP in rodent lungs are schematically sketched in 

Figure 5. 

 

Lesson 12: The differential clearance and uptake by NM and micron-sized particles could 

also apply to the varied size fractions of PM, adding to the plausibility of a difference in their 

toxicity. 

Toxicological Mechanisms 

There are a number of mechanisms by which UFP and NM may have an impact on cells, and 

these mechanistic studies provide a great opportunity for comparison or alignment of our 

understanding of NM and UFP toxicity. Mechanisms including reactive oxidant species 

(ROS), oxidative stress (Miller 2014; Nel et al. 2006; Stone et al. 2007) feature widely in the 

literature for both NM and UFP (see below).  Endothelial cells and epithelial cells may also 

generate nitric oxide in response to NM and UFP via stimulation of NOX4 (e.g.  In addition 

to the respiratory burst generated by inflammatory cells exposed to particles, it appears that 

particles can also generate ROS directly, including PM10 (Gilmour et al. 1996), DEP (Miller 

et al. 2009) and many different NM including carbon black (Stone et al. 1998; Wilson et al. 
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2002), polystyrene beads (Brown et al. 2001) and a range of metal/metal oxide particles 

(Dick et al. 2003; Rushton et al. 2010). Different material compositions vary in their potential 

to induce ROS production, ranging from copper (Rushton et al. 2010) with an inherent ability 

to generate ROS, to amorphous nanosilica which exhibits no intrinsic capacity to generate 

oxidants (Napierska et al. 2012). Some NM do not exhibit intrinsic oxidant generating 

capacity but will generate ROS upon interaction with cellular targets causing changes in the 

intracellular redox status (Hussain et al. 2009).  

However, studies with NM suggest that the mechanisms of toxicity may be more diverse than 

via oxidants, including direct physical NM cell interaction, receptor-mediated or other 

unknown mechanisms (Thomassen et al. 2011). Increased epidermal growth factor receptor 

expression and phosphorylation have also been observed for DEP (Pourazar et al. 2008). 

Lesson 13.  The ability of PM, UFP and NM to generate reactive oxygen species (ROS) and 

to induce oxidative stress, intrinsically or via cellular sources, has been well documented and 

is frequently associated with mechanisms of toxicity. In addition, both NM and DEP studies 

demonstrate receptor activation, while NM research also identifies other potential 

mechanisms such as direct physical cell interaction, and unknown mechanisms which require 

further investigation. 

Lesson 14. For NM and UFP which generate ROS, the amount of ROS production is likely to 

be associated with their physical and chemical properties. For UFP this is important, as it 

could result in different toxicity as the composition varies with time and location.  

 

The induction of oxidative stress by NM and by PM has been linked to pro-inflammatory 

intracellular signalling responses and cytokine production (Baulig et al. 2009; Brown et al. 
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2004a and b) as well as cytoprotective intracellular molecules such as heat shock protein 70 

(HSP70) (Xin et al. 2015) and Nuclear factor (erythroid-derived 2)-like 2 transcription factor 

(Nrf2) (Brown et al. 2010b).  Inflammatory cells are crucial to clearance, however, excessive 

inflammation can lead to exacerbation of pre-existing diseases (e.g. asthma, cardiovascular 

disease) (Donaldson et al. 2000), or increases in the incidence of autoimmune, allergic and 

other immune related diseases (Hussain et al. 2012). Evidence exists that environmental PM 

and DEP can interact with allergens to act as an adjuvant, leading to allergic sensitization 

(Alessandrini et al. 2009; Hussain et al. 2011; Li et al. 2008). While such observations have 

also been made with some NMs (e.g. TiO2) (Larsen et al. 2010). The mechanism of NM 

allergen interaction cannot be related to the particle size alone; instead, other physical and 

chemical factors such as surface reactivity and chemistry play a role (Smulders et al. 2015).   

Lesson 15. The pro-inflammatory effects of UFP and NM may exacerbate existing disease 

and increase the incidence of other immune related diseases. These effects are likely to relate 

to multiple physicochemical characteristics of the particles. 

 

The relationship between the NM physicochemical characteristics and the observed responses 

is a key research endeavour in Nanotoxicology. Quantitative Structure Activity Relationship 

(QSAR) models have been developed to identify these key characteristics (e.g Puzin et al). 

The role of some dose metrics such as particle surface area, solubility (and the ability to 

release ions) and aspect ratio have already been confirmed (Brown et al. 2001; Duffin et al. 

2002; Duffin et al. 2007; Johnston et al. 2013; Kermanizadeh et al. 2016; Oberdorster et al. 

1994; Poland et al. 2008; Prach et al. 2013; Schinwald et al. 2012).		QSAR research is an 

important component of Nanotoxicology (www.modena-cost.eu). Since PM is a complex 

mixture, a comprehensive characterisation of PM samples is needed and QSAR methods can 
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be used to determine which physicochemical characteristics of PM drive the observed 

adverse responses. Thus, the QSAR modelling approach currently being developed for 

Nanotoxicology can also be relevant to Air Pollution research. 

 

Lesson 16. There is now an opportunity to review in detail this rather large mechanistic body 

of research to look for synergies and differences between NM and UFP modes of action and 

to relate these to physicochemical characteristics. The relationship between these mechanistic 

endpoint and the physicochemical characteristics of the NM or UFP will be essential in the 

further development of QSAR and modelling type approaches. 

In the last decade NM surface-biomolecule (proteins, lipids, etc.) corona interactions have 

been characterised in different media and body fluids to investigate their actions/fate of NM 

should they enter the circulation. These interactions, when concerning intracellular proteins, 

can alter the effects of NM as already shown for xenobiotic metabolizing enzymes (Sanfins et 

al. 2011). In addition, results suggest that the NM properties can influence the composition of 

the corona and that its composition changes over time and with passage through different 

tissue and subcellular compartments (Wang et al. 2013).   

Lesson 17:  Understanding of the composition of the molecular corona for NMs can be 

applied to UFP as this is likely to influence their uptake, fate and effects within the body. 

The acute phase response has been proposed as a mechanism of particle-induced 

cardiovascular disease. The acute phase response is a general alarm response of the body to 

various assaults including bacteria and virus infections, trauma, etc.. The most widely studied 

acute phase protein is C-reactive protein (CRP), the serum levels of which are associated with 

risk of cardiovascular disease in prospective epidemiological studies (Ridker et al. 2000). 
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Serum Amyloid A (SAA) may also play a causal role in cardiovascular risk by promoting 

plaque progression and atherosclerosis.  

Inhalation of TiO2 nanoparticles has been shown to cause the upregulation of the gene Serum 

Amyloid A3 (Saa3) in the lung (Halappanavar et al. 2011). Similarly, inhalation and 

intratracheal instillation of NM and carbon nanotubes also increased expression of Saa3 

(Saber et al. 2013; Saber et al. 2014). Lung Saa3 mRNA levels were shown to correlate with 

deposited surface area of carbon black and TiO2 NM and to neutrophil influx into the 

bronchioalveolar lavage fluid (Saber et al. 2013; Saber et al. 2014), consistent with SAA 

being a neutrophil chemoattractant (Badolato et al. 1994). Moreover, Saa3 mRNA levels in 

lung tissue were shown to correlate with SAA3 levels in plasma following pulmonary 

exposure to carbon nanotubes (Poulsen et al. 2015). Diesel exhaust particles have also been 

shown to induce a pulmonary acute phase response such as C-reactive protein and serum 

amyloid A (Saber et al. 2014). Both PM and NM research studies need to consider a wider 

array of biological mediators, e.g. acute phase proteins or new ‘carriers of the oxidative 

signal’. 

Methodological considerations 

NM research also offers methodological refinements for biological assessment of ambient 

PM, including means to account for particle-related interference (e.g. light absorbance, 

fluorescence quenching, protein-binding), which may occur in some cellular (Pulskamp et al. 

2007; Worle-Knirsch et al. 2006) and mutagenicity assays (Clift et al. 2013).   

Lesson 18:  Evidence for the ability of NM to interfere in various assays means that study 

designs for NM and UFP require consideration of control procedures to limit the potential to 

confound result interpretation. 
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Over the past decade, there has been a progressive approach towards standardized protocols 

to provide a better understanding of the biological impact of NM (e.g. International Alliance 

towards NanoEHS Harmonisation, EU FP7 projects ENPRA and NanoTest). These projects 

have helped in understanding the pitfalls and advantages of the different biochemical test 

systems used within nanotoxicology (e.g. (Guadagnini et al. 2015)).  

Lesson 19:  Standardised protocols for assessing biological responses to NMs, once wholly 

available, could be applied to both UFP and PM. 

Conclusions and recommendations 

A comparison of the UFP and NM literature has identified at least 19 immediate unifying 

lessons, as well as a number of areas where further research is needed in order to better 

understand both fields of research. In fact, this review identifies that UFP and NM toxicology 

are not two distinct fields, but they overlap extensively with the potential to extrapolate from 

one to the other in many respects.  Firstly, ambient PM research provided evidence of 

potential health impacts for UFP, whilst NM toxicology has largely provided essential 

evidence of the mechanistic plausibility of these health effects. PM research provides 

indications of, at least in part, the potential disease effects to consider, and early initial human 

health studies involving workers suggest this may also be true and other materials, however 

more work is required to confirm that. It seems safe to conclude that UFP and NM share the 

same general biological mechanisms of adverse effects, such as oxidative stress and 

inflammation. However, NM toxicology has also provided a significantly better 

understanding of the role of physicochemical characteristics of particles regarding their 

toxicity, including factors in addition to size and surface area, such as solubility, charge, 

composition, coating and agglomeration/aggregation. This is important because this means 

that not all NM are created equal in terms of their toxic potential and, likewise, not all 
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ambient PM or UFP have the same potential to induce health effects.  While more work could 

be conducted to compare the mechanism of toxicity of UFP with NMs, a more effective use of 

resources might be to translate the techniques for physicochemical characterization into the 

PM field in order to better enable identification of PM sources that are responsible for health 

effects, allowing their more effective management. Integration of both fields of research will 

provide greater potential for justification, interpretation and application of the wealth of 

important knowledge that has been gathered over the last few decades.  
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Appendix I.  Ambient UFP and engineered NM physicochemical characteristics 

Ambient UFP 

• Ambient air PM composition is complex, including coarse (2.5-10 um), fine (<2.5 
um) and UF (<100 nm) particles. 

• Urban UFP derive mainly from combustion processes (e.g. traffic) and subsequent 
particle nucleation, coagulation and vapour condensation. 

• Urban UFP often contain transition metals or organic chemicals, i.e. complex 
composition (See Figure 2). 

• Mixture of insoluble to soluble particles and droplets, possibly leading to the release 
of several constituents from one particle in lungs. 

• Vary over time and place in size distribution, particle morphology, chemical 
composition and concentration. 

• Although relatively large in terms of number, UFP contribute relatively little to the 
mass of PM compared to coarse particles. 

• Controlled exposures are impeded by the temporal variability, which complicates 
mechanistic studies. 

• Are always surrounded by gaseous pollutants. 

 

Nanomaterials 

• A number of definitions exist which usually stipulate that at least one dimension is in 
the nano-scale (1-100 nm). Many NM have three dimensions in the nano-sclae, 
making them nanoparticles. 

• Often referred to as engineered or manufactured as they are designed and generated 
for a specific purpose. 

• Made in a wide variety of chemistries, consisting of single elements (e.g. carbon or 
metal), compounds (e.g. metal oxides or salts) or complex composites (e.g. core plus 
shell structure). 

• Can vary significantly in particle morphology and chemical composition but are well 
defined at production and close to production levels. 

• Spatial and temporal variance in airborne concentration may vary significantly. 
• Controlled exposures are possible, enabling detailed mechanistic studies. 
• Can be handled in a standardised manner, facilitating studies of defined properties. 
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Figure Legends 

Figure 1. Time line showing the increased interest in PM and NM over the last three decades, 

highlighting key studies and research trends in both areas.  ‘Number of references’ per year 

(non-cumulative) based on Pubmed.gov search, without further limits applied. 

Figure 2. Schematic providing an example of the complex composition of UFP (e.g. urban 

PM or particles in vehicle exhaust), which in urban air often have a carbon core coated with a 

diverse range of chemical species including reactive transition metals and organic 

hydrocarbons. Detail is not to scale. 

Figure 3. Schematic demonstrating some of the key mechanisms through which inhaled UFP 

may influence secondary organs and systemic tissues, with emphasis on the means through 

which inhaled particles may cause cardiovascular events. Note that there are three main 

pathways linking the pulmonary and cardiovascular systems (grey arrows, left to right): 

‘autonomic regulation’, ‘passage of inflammatory mediators’ and ‘particle translocation’. The 

arrows between these three pathways highlights the degree of interaction between 

mechanistic pathways and the challenges involved in broad categorisation of the wide-

ranging biological actions of inhaled UFP.  Added to these pathways is the potential for 

desorbed components to exert effects. 

Figure 4: A range of health effects and biological indicators of disease that can be used to 

identify relevant endpoints for study design. 

Figure 5. Exposure to NM via the lungs results in rapid transport into the epithelium and 

interstitial spaces and long-term retention as a result of substantial endocytosis by epithelial 

cells (Type I and II) and limited initial phagocytosis by alveolar macrophages. Pathways exist 

for transport of inhaled NM into the alveolar epithelium and interstitium of the rodent lungs 
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and further across the endothelial vascular membrane of blood circulation as well as into the 

lymphatic drainage system. Some evidence suggests that a predominant route of clearance 

from the lung tissue is then via re-entrainment back onto the alveolar epithelial surface (via 

an unknown mechanism) for long-term macrophage-mediated transport toward ciliated 

airways and the larynx. Nano-sized NM may cross the epithelium, while larger 

aggregates/agglomerates are likely to be phagocytosed by alveolar macrophages. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

 


