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ABSTRACT Preterm delivery (PTD) is the leading cause of neonatal mortality worldwide, yet its etiology
remains largely unexplained. We propose that the genetic factors controlling this trait could act in a
nonuniform manner during pregnancy, with each factor having a unique “window of sensitivity.” We test
this hypothesis by modeling the distribution of gestational ages (GAs) observed in maternal cousins from
the Swedish Medical Birth Register (MBR) (n = 35,541 pairs). The models were built using a time-to-event
framework, with simulated genetic factors that increase the hazard of birth either uniformly across the
pregnancy (constant effect) or only in particular windows (varying effect). By including various combinations
of these factors, we obtained four models that were then optimized and compared. Best fit to the clinical
data was observed when most of the factors had time-variant effects, independently of the number of loci
simulated. Finally, power simulations were performed to assess the ability to discover varying-effect loci by
usual methods for genome-wide association testing. We believe that the tools and concepts presented here
should prove useful for the design of future studies of PTD and provide new insights into the genetic
architecture determining human GA.
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PTDisamajorburdenonpublichealthworldwide,definedby theWorld
HealthOrganizationasbirthbefore37completedweeksof gestation. It is
the leading cause of neonatal mortality in the world, with an estimated
14% (1.1 million as of 2010) of deaths in newborns attributed to this
syndrome (Liu et al. 2012). In addition, surviving preterm-born chil-

dren are at increased risk for a wide range of adverse outcomes, ranging
from a subtle decrease in school performance to severe neurological
disabilities (Mwaniki et al. 2012; Chan et al. 2016). Despite such im-
pacts and the amount of resources devoted to the problem, neither
prevention nor prediction of PTD has had major success so far.

It is known that the tendency to deliver preterm is, in part, heritable.
Ahandfulof studieshaveanalyzed theheritabilityofGAin large cohorts,
estimating the broad-sense genetic effects to be between 25 and 50%
(Clausson et al. 2000; Treloar et al. 2000; Lunde et al. 2007; York et al.
2009, 2010, 2013; Boyd et al. 2009; Svensson et al. 2009;Wu et al. 2015).
However, such analysis is particularly complicated because of the in-
terplay between the maternal and fetal genomes, and estimates of their
relative contributions vary widely. Both maternal and fetal genomes
have been investigated in genome-wide association studies (GWAS) of
PTD, but no significant hits were obtained (Uzun et al. 2013; Zhang
et al. 2015; Bacelis et al. 2016). While some candidate gene studies
reported significant discoveries, these results generally fail replication
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attempts. Usual suspects in these studies include genes encodingmatrix
metalloproteinases, the progesterone receptor, and various cytokines
(Bezold et al. 2013; Geng et al. 2016).

Anobviousbut often overlooked fact inmedical epidemiology is that
GAis indeed a time-to-event variable.As such, it lends itselfwell to time-
to-event statistical models, also referred to as survival analysis [an
overview is presented in many statistical textbooks and reviews, such
as Zwiener et al. (2011)]. In the simplest formulation, survival models
consist of predictors that multiply the baseline hazard of an event by a
constant factor across the entire period of observation. This approach
has been utilized in several epidemiologic and two genetic studies of
PTD (Hatch et al. 1998; Smith 2001; Hernandez et al. 2010; Harper
et al. 2011; Auger et al. 2014; Park et al. 2014; Mitchell et al. 2015).

However, it is likely an oversimplification to assume that factors
influencing neonatal outcomes act uniformly across the duration of
pregnancy. Indeed, “windows of sensitivity”—periods when a certain
structure or trait is particularly affected by a given exposure—are a
well-known concept in developmental toxicology (Kapp and Tyl
2010). The possibility of time-varying effects in PTD epidemiology
has been explored in several studies concerning exposure to particulate
matter in air (Chang et al. 2012, 2015; DeFranco et al. 2016; Nachman
et al. 2016) or phthalates (Adibi et al. 2009; Meeker et al. 2009; Huang
et al. 2014; Ferguson et al. 2014a,b). Ferguson et al. (2014a) also pro-
posed that different subtypes of PTD could have different windows of
sensitivity; in their study, spontaneous PTD was mostly correlated to
third trimester phthalate exposure, while “placental” PTD was most
sensitive to phthalate exposure early in pregnancy. Undoubtedly, iden-
tifying further differences in susceptibility timing could lead to insights
about the mechanisms controlling human pregnancy and PTD.

In this study, we propose that genetic factors could influence the risk
of PTD in a time-dependent manner. Building on the framework of
heritability studies,weobtainaconditionaldistributionofGAs inrelated
individuals from a Swedish population register. This distribution can be
modeled as a time-to-event trait, determined by simulated susceptibility
loci. We proceed to test our hypothesis by comparing the fit of models
with and without time-varying genetic effects.

METHODS

Correlation patterns in the Swedish MBR
Clinical data for this study was obtained from the Swedish MBR,
collected on all deliveries nationwide. We included all singleton live
births with spontaneous onset of delivery from 1992 to 2012. Phenotype
of interest (GA) was obtained by ultrasound measurement in.90% of
pregnancies. To account for known environmental covariates, a mul-
tivariable regression model was fitted to this sample, using known
maternal and fetal predictors of GA (listed in Supplemental Material,
Table S1 in File S1). At this stage, we use basic linear regression to avoid
any assumptions about time dependency of the covariate effects. In
total, the study population comprised 1,384,130 deliveries with full
information on all predictors. All further analyses use residuals
obtained from this model (added to the population mean) as the ad-
justed GA.

We then proceeded to identify all pairs of full nontwin sisters whose
pregnancies were included in our study population. For mothers who
delivered more than once, we retained only the pregnancy of lowest
parity available in the data, resulting in 35,541 pairs of individuals. To
inspect patternsof correlation in their pregnancies (=GAof cousins),we
plotted the conditional distribution of the first cousin’s phenotype in
each pair, given the phenotype of the second cousin in that pair (cous-
ins assigned to “first” and “second” randomly). Furthermore, to quan-

tify this distribution, GA2 was binned into 7-d windows, and 5th, 25th,
50th, 75th, and 95th percentiles of GA1were calculated for each bin. For
example, the 50th percentile of the 280-d bin can be interpreted as the
median pregnancy length for a woman whose sister delivered between
280 and 286 d (after adjusting for environmental factors). Only bins
with .100 individuals were retained and used for model fitting. For
comparison purposes, height correlation patterns were obtained from
pairs of sisters in the sameway, except that 5-cmwindows were used for
binning and no adjustment for environmental factors was made.

Simulation models

Baseline model structure: We built simulation models in a survival
analysis framework, designed to investigate how introduction of various
typesof genetic risk factorscouldaffect the correlationpatterns in related
individuals.

Initially, we selected the most appropriate baseline hazard function
based on overall fit to the Swedish MBR using R package “flexsurv,”
version 0.7.1 (Jackson 2016). Three models were tested: exponential,
Weibull, and Gompertz. At this stage, all .1.3 million regression-
adjusted GAs were used, excluding the previously identified set of cousins.
We consider GA, 150 d as unviable, hence day 150 was set as the time
when pregnancies enter the population “at risk” for a live birth (i.e., day
150 corresponds to t = 0 and day 151 to t = 1 and so on). Based on the
lowest AIC value, Gompertz function was chosen for further model
building, with the baseline hazard function (corresponding to the in-
stantaneous rate of births) l0ðtÞ ¼ leat : Basic dynamics of such a
model are presented in Figure S1 in File S1. We continue to use the
optimal l (rate) and a (shape) values obtained at this stage in all
further simulations.

Simulation of genetic risk factors: Conceptually, genetic effects are
entered into themodel as simulated diploid diallelic loci of themother’s
genome, with the minor allele conferring either susceptibility to or
protection from PTD. The two allele copies in each locus are assumed
to act independently of each other and of other loci (linkage disequi-
librium is not modeled). In order to explore the effects caused by higher
numbers of susceptibility loci, while at the same time maintaining a
limited number of parameters to allow an exhaustive search, we con-
strained each model to a predetermined number of different classes of
loci. The parameters for loci within each class are identical (i.e., when
n = 3, all three loci have equal effect size). In constant-effect classes, three
parameters can be varied: minor allele frequency (MAF) p, number of
loci n, and effect size g. These loci act as classical time-invariant cova-
riates, i.e., increase the hazard function proportionally across the entire
range of GA. However, we emphasize that g does not correspond to the
common meaning of effect size in genetics and cannot be directly
translated into a shift of mean trait value. In varying-effect classes, five
parameters can be varied: the three parameters for the constant-effect
classes and also time of peak effect m and spread of effect s (both
measured in days of gestation).

The genetic effect (Ei) contributed by one varying-effect allele at
locus i and time t is defined using a Gaussian function:

EiðtÞ ¼ gi

s
ffiffiffiffiffiffi
2p
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21

2

�
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This function was chosen as a simple way to generate smoothly
appearing and disappearing effects, and to allow intuitive explanation
of thepeak effect and spreadparameters. Effects for constant-effect loci
are simply EiðtÞ ¼ gi: Overall, the hazard function implementing
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shared genetic (from N total loci) and unique environmental contri-
butions is:

lðtÞ ¼ leate

P
i2N

GiEiðtÞ

Here, Gi is the individual’s genotype at this locus (0/1/2), and other
parameters are as described above.

As we are interested in the maternal genetic effects determining GA
of cousins, or, equivalently, pregnancy length of full sisters, we simulate
the N genotypes for pairs of full siblings. Genotypes are drawn ran-
domly assuming Hardy–Weinberg equilibrium. For instance, the prob-
ability for two siblings to have zero and two copies of the minor allele
requires two heterozygous parents (frequency 2pq), and the production
of desired homozygotes at each cross (frequency 1/4 for each sibling).
The product 2pq�2pq�1/4�1/4 is then the joint probability of obtaining
such a pair of siblings. The full joint distribution used to generate
correlated draws is presented in Table 1.

Implementation of the models: In total, five models were constructed,
presented in Table 2. In models consisting of constant-effect risk factors,
analytical expressions were used to generate survival times, as described in
File S1. In models consisting of varying-effect risk factors or a mixture of
constant- and varying-effect factors, survival timeswere generated iteratively.
In that case, the genotypes, effect sizes, and baseline parameters were used to
calculate the hazard for each individual at each day of gestation, starting at
day 150. This hazard was then compared against U � Unif ð0; 1Þ; and
events (births) were assignedwhen e2lðtÞ .U: R code used for this process
is available online at https://github.com/PerinatalLab/SE_MFR_FAMILIES/
blob/master/simulate_time-to-event_clean.R. To ensure that different
computer implementation was not contributing to observed differ-
ences between models, final evaluation of 20 best parameter combi-
nations for each model was done using the iterative simulator.
Additionally, 20 best parameter combinations for model M2 were
analyzed in 20 replications with each simulator, in order to evaluate
differences between the resulting costs. All simulations and analyses
were implemented in R (version 3.3.0) and C++ (R integration pro-
vided by packages “Rcpp” and “RcppArmadillo”).

Parameter estimation: Best-fit parameter combinations were identified
using meta-modeling, followed by exhaustive random search. Input pa-
rameters for the constant-effect factors were generated by independently
drawing g � Unif ð25; 5Þ; p � Unif ð0; 0:5Þ; n � Poisð1Þ þ 1 for
each factor class. To evaluate the resulting fit, sum of squares was chosen
as the cost function, equal to squared distances between simulated
and observed values of five quantiles (5th, 25th, 50th, 75th, and
95th percentiles) at each bin of GA. Based on the SE of sample
quantiles (Cheung and Lee 2005), the sum of squares for each bin
was also weighted by the square root of the number of individuals
in the bin.

We noticed that
P

i2Ngipini (further denoted
P

gpn) is a strong
predictor of the overall cost, hence we used a meta-modeling approach;
initially, a narrow interval of

P
gpn associated with the smallest costs

is determined, then parameter space is constrained with these
P

gpn
values and searched exhaustively. More details on the parameter esti-
mation are presented in File S1.

Calculating power and type I error rate: Power and type I error rate
were calculated empirically, using simulated data frommodelM3. First,
a sample of genotypes and corresponding phenotypes for 100–50,000
individuals was generated using the best-fit parameters for this model.
Genotypes were encoded assuming additive effects (0/1/2). Besides the
causal loci, two control loci with MAFs 0.015 and 0.3, but no effect,
were included to calculate the type I error rate. Linear and Cox re-
gression models were then applied to test each locus. In the former
model, the univariate linear regression p-value was reported. Survival
test p-values representWald statistics, generated by fitting a Coxmodel
with one locus as a covariate using R package “survival.” The entire
procedure was repeated 5000 times with each sample size. The fraction
of p-values generated for each causal locus that were below the genome-
wide significance threshold of 5 · 1028 was reported as the power for
the given sample size.

Data availability
Swedish MBR data used in this study is available upon request from the
National Board of Health andWelfare (Socialstyrelsen; http://www.social-
styrelsen.se/register/halsodataregister/medicinskafodelseregistret). R code
developed for the analyses is available in a public repository (https://
github.com/PerinatalLab/SE_MFR_FAMILIES/) and upon request.

RESULTS

GA of maternal cousins shows a nonuniform
correlation pattern
Using information present in the Swedish MBR, we obtained a condi-
tional distribution of GA in maternal cousins, showing a clear and
unique pattern of correlation (Figure 1A). The bottom quantiles
for GA have a steeper slope than the median or top quantiles: as
the GA of the first cousin in each pair increases from 33 to 41 wk,
the 95th percentile of second cousin’s GA climbs by 5 d, while that
of the 5th percentile increases by almost three wk. This pattern
persists almost unchanged after adjustment for known environ-
mental covariates (Figure 1B). Full details of the regression model
used to obtain GA residuals are presented in Table S1 in File S1. In
contrast, maternal height, obtained from the same cousin pairs (i.
e., sisters’ height) does not show such a pattern (Figure 1C). All
height quantiles ascend at approximately similar slope, without
distortions even at the extremes of the range, where bins contain
much fewer individuals.

Establishing a model with time-invariant genetic effects
To testwhether the observedGAcorrelationpatterns couldbe explained
by shared genetic factors, we have built and explored a stochastic model
of in utero survival time in cousins. We started by comparing models
M0, containing no genetic effects, and M1, containing one class of loci

n Table 1 Joint probabilities for simulating genotypes of sibling pairs

Genotype of Sibling 1 p(Sibling 2 = 0) p(Sibling 2 = 1) p(Sibling 2 = 2)

0 q2(q + p2/4) pq2(1 2 p/2) (pq/2)2

1 pq2(1 2 p/2) pq(1 + pq) p2q(1 2 q/2)
2 (pq/2)2 p2q(1 2 q/2) p2(p + q2/4)

Frequency of the minor allele is set by the parameter p, then q = 1 2 p.
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with time-invariant effects on the hazard of birth. Mean sum-of-
squares associated with model M0 was 1829 (SD 58.6), and the result-
ing fit is shown in Figure 2A. As expected, phenotypes created in this
way show no correlation among relatives.

Clearly, model M1 fits the observed data better than M0, with the
lowest observed sum-of-squares of 796 (SD 51.2). Ten input combina-
tions resulting in the lowest costs are presented in Table S3 in File S1 (it
should also be noted that all of the best combinations correspond to one
or more rare mutations with high effect sizes, rather than common
variants with smaller effects.) However, even though the best fit of this
model has less than half the cost of M0, model M1 does not fully
reproduce the quantile pattern observed in the register data, as can
be seen in Figure 2B. The strongest deviations between simulated
and observed quantiles are seen in the lowest and highest GA1 bins.

Model M2 was used to test whether introducing more classes of
genetic factors could have an effect on the fit. This model contains one
class of loci with three parameters, as in model M1, and an additional
class with two parameters, g2 and p2 (n2 is set to 1). The 10 best input
combinations for this model are presented in Table S4 in File S1. Re-
markably, almost all of the best combinations have an effect size be-
tween 2.4 and 2.8 for one class, and a small negative effect for the other
class. To put this in context, a g in the interval (2.4; 2.8) is observed
in,7% tested inputs. Compared to model M1, addition of parameters
led to some improvement in the best-fit cost (from 796 to 655, SD 19.9),
but only minimal change in overall quantile patterns (Figure 2C).

Introduction of time-variant effects leads to a marked
improvement in model fit
We then proceeded to test our hypothesis that the observed correlation
patterns could be explained by genetic factors with time-variant effects.
Besides the parameters used for constant-effect loci, classes of time-
variant factors in our model require two additional inputs (time of the
largest effect and size of the sensitivitywindow).Given.1 such class, an
exhaustive search of the parameter space becomes infeasible. Hence, for
time-variant factors we used predefined inputs that were selected based
on responses observed in simpler models, and estimated only the pa-
rameters for constant-effect loci. Model M3 contains one class of the
latter type and four classes of varying-effect genetic factors. Ten best
combinations of the estimated inputs are presented in Table S5 in File
S1. Optimal fit found in this model has a much lower cost than in
previous models (338 vs. 655, SD 30.0); furthermore, the simulated
quantilesmatch the observed patterns throughout all GA1 bins up from
�250 d (Figure 3A). As the parameters for varying-effect loci were
selected manually, we performed sensitivity analysis to investigate
whether small perturbations in the parameter values could lead to
significantly different results (File S1). The model appears to be stable
across the tested range of p and g values, although shift in timing,

especially for the late-acting loci, can cause more pronounced differ-
ences in simulation results (Figure S5 in File S1).

One could argue that an increased number of time-invariant pa-
rameters could achieve equal or better improvement. To test this, model
M4 was created. In this model, parameters for the first class are fixed at
the optimum values of the constant-effect class parameters obtained in
M3. The remaining four classes were also replaced with constant-effect
factors, keeping p and n values from M3, thus leaving g2. . .g5 to be
estimated. Ten estimates with the lowest costs are presented in Table S6
in File S1. This model clearly performs worse than previous models, as
can be seen from both high optimum cost (1010) and visual inspection
of the best fit (Figure 3B).

Different analysis methods have different power to
detect constant- and varying-effect single nucleotide
polymorphisms (SNPs)
Finally, we evaluated the power of different regression models to detect
time-variant and time-invariant genetic effects. Genotypes were simu-
lated using model M3 with best-fit parameters, and either linear re-
gressionor survival analysiswas used toobtainp-values for each locus. If
these loci were interpreted as causal SNPs in a GWAS, significance
threshold for detection would be 5 · 1028; Figure 4 shows how fre-
quently the simulations produced p-values below this threshold, given
various sample sizes. When the Cox model assumptions are met, as is
the case for constant-effect loci, survival analysis had higher power. On
the other hand, we note that varying-effect SNPs were better detected
by linear regression. This can be expected under certain combinations
of parameters, when a SNP dramatically changes the phenotype distri-
bution in contradiction to the Cox model. Even though these SNPs
violate the assumptions of linear regression as well, expected type I
error rate is maintained in all conditions for both Cox and linear
models, except when the minor allele count is 1–2 and the power
to detect true effects is negligible regardless (Table S7 in File S1).
Note that one of the SNPs, acting late in gestation with large effect
size and MAF, shows a much higher detection power than other
varying-effect loci.

DISCUSSION
Little is known about the genetic architecture underlyingGA.Our study
expands on the previous heritability studies by introducing and explor-
ing the possibility of genetic determinants with time-variant effects.
Previous studies on the same register, butusingmore advancedmethods
and different pedigrees, have estimated maternal effects at between
21 and 25% (York et al. 2014). However, we observe that this familial
correlation does not manifest uniformly across GA, and this nonuni-
formity is clearly seen in plots of conditional GA distribution (Figure 1)
(one possible interpretation would be to treat this distribution as a

n Table 2 Details on the five models constructed in this study

Model Constraints Optimized Inputs MM ED Notes

M0 — — No 0 No genetic factors
M1 gpn g, p, n Yes 2 One constant-effect factor
M2

P
gpn; n2 = 1 g1, p1, n1, g2, p2 Yes 4 Two constant-effect factors

M3
P

gpn; n2. . .5 = 1; s2. . .5 = 10; m2. . .5 = {230, 237,
244, 258}; g2. . .5 = {100, 80, 60, 2100};

p2. . .5 = {0.005, 0.01, 0.015, 0.3}

g1, p1, n1 Yes 2 One constant- and four
varying-effect factors

M4 g1, p1, n1 from best fit of M3; p2. . .5 and n2. . .5 as
in M3

g2. . .5 No 4 Five constant-effect factors,
fixed p and n

“ED” is the equivalent number of free input parameters, taking into account the constraints and metamodeling. “MM” indicates whether MM was used to fit the
model. MM, metamodeling; ED, effective dimensionality.

1352 | J. Juodakis et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf


mixture of “PTD-susceptible” and “normal” populations; as the GA of
one cousin increases, proportion of the “susceptible” population in the
mixture decreases and the conditional distribution becomes narrower).
In contrast, the same procedure applied to another phenotype, height,

produces a uniform correlation pattern. Such a pattern agrees with
the current understanding of height as a very polygenic trait, with
thousands of SNPs contributing to the observed variation (Wood
et al. 2014).

Figure 2 Best-fit simulation re-
sults for models M0 (A), M1 (B),
and M2 (C). Red lines show
simulated 5th, 25th, 50th, 75th,
and 95th percentiles of GA2,
conditioned on GA1 bin. Results
from 10 iterations are overlapped.
Black dashed lines are the corre-
sponding quantiles observed in
Swedish MBR. GA1, gestational
age of cousin 1; GA2, gestational
age of cousin 2.

Figure 1 Correlation patterns
observed in maternal cousin
pairs in the Swedish Medical
Birth Register. (A and B) Key
quantiles of GA of cousin 2,
conditioned on GA bin of cousin
1 [(A) unadjusted for known cova-
riates and (B) adjusted]. (C)
Quantiles of maternal height of
cousin 2, conditioned on mater-
nal height bin of cousin 1 (i.e.,
distribution of sisters’ heights).
Cousin assignments within each
pair (one or two) arbitrary. While
height quantiles ascend uni-
formly across the x-axis bins, it
is not the case for gestational
age, even after adjustment for
known environmental effects.
GA, gestational age; GA1, GA
of cousin 1; GA2, GA of cousin
2; MH, maternal height; MH1;
MH of cousin 1; MH2, MH of
cousin 2.
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We attempted to replicate the GA quantile patterns by several models
incorporating simulated GA loci. A model without any hereditary
factors (M0), of course, does not produce correlated outcomes. In-
troducing one or two classes of genetic factors (models M1 and M2)
produces a reasonably good fit (Figure 2). However, none of these
models fully replicates the observed sloped quantiles. By incorporat-
ing mutations with time-varying effects (model M3), we were able to
obtain better results, as indicated by the cost function and a better
visual fit. In particular, this model replicates the observed divergence
of lower quantiles seen on the left side of the correlation plots (Figure
3). This provides support for our hypothesis that factors determining
GA are likely to act only in particular windows of intrauterine
development.

Admittedly,modelM3 could have a betterfit simply because the cost
function used here did not penalize for the number of new parameters
introduced. Therefore, we have used several strategies to ensure com-
parability between the different models. First, the same parameter
optimization strategy was applied to each model. Since the number
of joint values over a grid grows exponentially with the number of

parameters (“curse of dimensionality”), we exponentially increased the
number of simulations to maintain equal sampling density. It is clear
that an exhaustive search for a model with six classes of loci and three
parameters per class is computationally infeasible. However, by fixing
the n and p parameters at their optimum values from model M3 and
enforcing time-invariant effects, we obtainmodelM4with only five free
parameters. High costs seen in this model (Table S6 in File S1) suggest
that simply replacing the varying-effect loci in M3 with constant-effect
loci will not lead to improved fit (in other words, that time-variant
effects are necessary to replicate the observed quantile pattern).

Someof thedesignchoices require additional explanation.Post-term
deliverieswerenot investigated: all simulated survival timeswere capped
at 300 d to replicate the clinical practice of post-termdelivery induction.
Asouraimwasanexhaustive scanof theparameter space, boundarieson
effect size had to be imposed. We believe that expanding this window
would not lead to more useful models: most of the top parameter
combinations have effect sizes well below the preset limit of five (Tables
S3 and S5 in File S1). Furthermore, higher effect sizes would impose
MAFs , 0.5%. It has been suggested that these rare variants

Figure 3 Best-fit simulation results for
models M3 (A) and M4 (B). Red lines
show simulated 5th, 25th, 50th, 75th,
and 95th percentiles of GA2, condi-
tioned on GA1 bin. Results from 10 iter-
ations are overlapped. Black dashed
lines are the corresponding quantiles
observed in the Swedish Medical Birth
Register. GA1, gestational age of cousin
1; GA2, gestational age of cousin 2.

Figure 4 Estimates of power to detect true suscep-
tibility loci in a genome-wide association study using
Cox (above) or linear (below) regression. Five causal
single nucleotide polymorphisms are modeled, us-
ing the setup and optimal parameters from M3.
Numbers correspond to the alleles’ acting order dur-
ing gestation, from earliest (1) to latest (4). Survival
analysis had more power to detect the locus acting
under proportional hazards, but loci with time-
variant effects were easier to detect by linear regression.
eff., effect.
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significantly contribute to the heritability of complex traits (Zhang
et al. 2016), but such frequencies are beyond the target range of
common GWAS. We also chose to use random search instead of grid
search; random search is generally more efficient in high dimen-
sionality optimization problems or when parameters have unequal
importance (Bergstra and Bengio 2012). Settings for the loci with time-
variant effects in M3 were picked manually, reasoning that SNPs with
higher effect size (or acting earlier in gestation) should have lower risk
allele frequency because of selective pressure. This relationship has
been observed in real GWAS data for many traits (Park et al. 2011).
Time of peak effect for these mutations was distributed between
230 and 258 d, i.e., in the third trimester, because our models do
not concern the possibility of early miscarriage. Data from other
studies, although scarce, agrees with this timing. For example, the
Kaplan–Meier curves generated in Harper et al. (2011) show that a
polymorphism of IL-6 seems to act after week 33, similar to the
second varying-effect mutation that we introduced in model M3.
All in all, post hoc analyses show that the model is not particularly
sensitive to these parameter values (Figure S5 in File S1).

It should be noted that the models presented here simulate a low
number of causal SNPs, both in manually selected and automatically
optimized parameter combinations. The reader should not make con-
clusions about the true number of causal factors from this: each
simulated locus could be readily replaced with several factors of smaller
frequency without decreasing the fit. For example, the top results for
model M1 include combinations of 1 SNP with MAF 2–3% and com-
binations of 2–3 SNPs with MAF�1% (Table S3 in File S1). The same
reasoning should hold if the MAF were replaced with effect size, i.e., a
larger number of “weaker” SNPs should be equivalent to a few “strong”
ones; however, our parameter estimation consistently preferred large
effect sizes for at least one of the loci. Furthermore, our power simu-
lations show that some of the SNPs in model M3 should be easy to
detect with a sample size of 1000. Previous GWA studies of PTD had
even larger sample sizes, and yet did not find any significant associa-
tions, indicating that multiple rare SNPs are indeed more likely (Uzun
et al. 2013; Zhang et al. 2015; Bacelis et al. 2016). The present models
also do not account for incomplete penetrance; it would reduce the
correlation caused by each SNP, requiring a larger number of loci to
produce the same effect. Similar changes could be also caused by gene–
gene or gene–environment interactions, which are not accounted for in
this study. However, our aim was not to infer the optimal values of
parameters but rather compare different models, so we believe that
such omissions are acceptable.

How do these results affect design and interpretation of future PTD
studies?First,weurge the obstetrics community tokeep inmind thatGA
andPTDare time-to-eventphenotypes, andtoembrace survival analysis
in their investigations. It can be more powerful when the proportional
hazards assumption is met (Figure 4), and reanalyzing seemingly neg-
ative datasets with this approach could lead to new discoveries. Hy-
pothesis testing under nonproportional hazards is complicated, but
appropriate tools are available even for omics data (Dunkler et al.
2010). Time-variant genetic effects could also explain the lack of results
in the GWAS of PTD so far; most of the SNPs that were used in our
models are not detected at the sample sizes employed in those studies
(Figure 4). It follows that researchers responsible for sample selection in
such studies should consider targeting particular phenotypes or win-
dows of GA. Finally, we welcome the use and modification of the
simulation tool created in this study; the phenotype simulation is effi-
cient, easily extendable to different functions for baseline hazards or
time-variant effects, and could be used to calculate power for any
statistical test of the user’s choice.

In general, while it is difficult to objectively prove that a time-variant
model fits the observed data better than a model with only constant
effects, this hypothesis has solid basis in biology. The presence of
susceptibility windows and critical periods in human development is
well-established.Uptill now, this concepthadnotbeenapplied togenetic
studies of GA, but it would be unreasonable to believe that such a
nonuniform process as human gestation could be controlled by uni-
formly acting determinants. In this study, we show that genetic varying-
effect factors provide a simple and rational explanation of the GA
heritability patterns seen in the Swedish MBR. The tools and ideas
presented here should prove useful for the design of future studies, give
new insights into the overall genetic architecture underlying human
pregnancy, andbydoingsohelp reduce the global healthburdenofPTD.

ACKNOWLEDGMENTS
This work was supported in part by research grant no. 21-FY16-4341
from the March of Dimes Foundation (http://www.marchofdimes.
org), research grant no. VR-02559 from the Swedish Research Council
(http://www.vr.se), and a research grant from the Jane and Dan Olsson
Foundations (http://www.jodfoundations.com). The funders had no role
in study design, data analysis, decision to publish, or preparation of the
manuscript.

LITERATURE CITED
Adibi, J. J., R. Hauser, P. L. Williams, R. M. Whyatt, A. M. Calafat et al.,

2009 Maternal urinary metabolites of di-(2-ethylhexyl) phthalate in
relation to the timing of labor in a US multicenter pregnancy cohort
study. Am. J. Epidemiol. 169: 1015–1024.

Auger, N., M. Abrahamowicz, W. Wynant, and E. Lo, 2014 Gestational age-
dependent risk factors for preterm birth: associations with maternal ed-
ucation and age early in gestation. Eur. J. Obstet. Gynecol. Reprod. Biol.
176: 132–136.

Bacelis, J., J. Juodakis, V. Sengpiel, G. Zhang, R. Myhre et al., 2016 Literature-
informed analysis of a genome-wide association study of gestational age in
Norwegian women and children suggests involvement of inflammatory
pathways. PLoS One 11: e0160335.

Bergstra, J., and Y. Bengio, 2012 Random search for hyper-parameter op-
timization. J. Mach. Learn. Res. 13: 281–305.

Bezold, K. Y., M. K. Karjalainen, M. Hallman, K. Teramo, and L. J. Muglia,
2013 The genomics of preterm birth: from animal models to human
studies. Genome Med. 5: 34.

Boyd, H. A., G. Poulsen, J. Wohlfahrt, J. C. Murray, B. Feenstra et al.,
2009 Maternal contributions to preterm delivery. Am. J. Epidemiol.
170: 1358–1364.

Chan, E., P. Leong, R. Malouf, and M. A. Quigley, 2016 Long-term cog-
nitive and school outcomes of late-preterm and early-term births: a sys-
tematic review. Child Care Health Dev. 42: 297–312.

Chang, H. H., B. J. Reich, and M. L. Miranda, 2012 Time-to-event analysis
of fine particle air pollution and preterm birth: results from North Car-
olina, 2001–2005. Am. J. Epidemiol. 175: 91–98.

Chang, H. H., J. L. Warren, L. A. Darrow, B. J. Reich, and L. A. Waller,
2015 Assessment of critical exposure and outcome windows in time-to-
event analysis with application to air pollution and preterm birth study.
Biostatistics 16: 509–521.

Cheung, K. Y., and S. M. S. Lee, 2005 Variance estimation for sample
quantiles using the m out of n bootstrap. Ann. Inst. Stat. Math. 57: 279–
290.

Clausson, B., P. Lichtenstein, and S. Cnattingius, 2000 Genetic influence on
birthweight and gestational length determined by studies in offspring of
twins. BJOG Int. J. Obstet. Gynaecol. 107: 375–381.

DeFranco, E., W. Moravec, F. Xu, E. Hall, M. Hossain et al., 2016 Exposure
to airborne particulate matter during pregnancy is associated
with preterm birth: a population-based cohort study. Environ.
Health 15: 6.

Volume 7 April 2017 | Time-Variant Genetics in Preterm Birth | 1355

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.038612/-/DC1/FileS1.pdf
http://www.marchofdimes.org
http://www.marchofdimes.org
http://www.vr.se
http://www.jodfoundations.com


Dunkler, D., M. Schemper, and G. Heinze, 2010 Gene selection in micro-
array survival studies under possibly non-proportional hazards. Bioin-
formatics 26: 784–790.

Ferguson, K. K., T. F. McElrath, Y.-A. Ko, B. Mukherjee, and J. D. Meeker,
2014a Variability in urinary phthalate metabolite levels across preg-
nancy and sensitive windows of exposure for the risk of preterm birth.
Environ. Int. 70: 118–124.

Ferguson, K. K., T. F. McElrath, and J. D. Meeker, 2014b Environmental
phthalate exposure and preterm birth. JAMA Pediatr. 168: 61–67.

Geng, J., C. Huang, and S. Jiang, 2016 Roles and regulation of the matrix
metalloproteinase system in parturition. Mol. Reprod. Dev. 83: 276–286.

Harper, M., S. L. Zheng, M. A. Thom, J. Klebanoff, Thorp, Jnr. et al.,
2011 Cytokine gene polymorphisms and length of gestation. Obstet.
Gynecol. 117: 125–130.

Hatch, M., B. Levin, X. O. Shu, and M. Susser, 1998 Maternal leisure-time
exercise and timely delivery. Am. J. Public Health 88: 1528–1533.

Hernandez, R. K., A. A. Mitchell, and M. M. Werler, 2010 Decongestant use
during pregnancy and its association with preterm delivery. Birth Defects
Res. A Clin. Mol. Teratol. 88: 715–721.

Huang, Y., J. Li, J. M. Garcia, H. Lin, Y. Wang et al., 2014 Phthalate levels in
cord blood are associated with preterm delivery and fetal growth pa-
rameters in Chinese women. PLoS One 9: e87430.

Jackson, C., 2016 flexsurv: a platform for parametric survival modeling in R.
J. Stat. Softw. 70. Available at: https://www.jstatsoft.org/article/view/v070i08.

Kapp, R. W., and R. W. Tyl, 2010 Reproductive Toxicology, Taylor &
Francis, New York.

Liu, L., H. L. Johnson, S. Cousens, J. Perin, S. Scott et al., 2012 Global,
regional, and national causes of child mortality: an updated systematic
analysis for 2010 with time trends since 2000. Lancet 379: 2151–2161.

Lunde, A., K. K. Melve, H. K. Gjessing, R. Skjaerven, and L. M. Irgens,
2007 Genetic and environmental influences on birth weight, birth
length, head circumference, and gestational age by use of population-
based parent-offspring data. Am. J. Epidemiol. 165: 734–741.

Meeker, J. D., H. Hu, D. E. Cantonwine, H. Lamadrid-Figueroa, A. M. Calafat
et al., 2009 Urinary phthalate metabolites in relation to preterm birth in
Mexico City. Environ. Health Perspect. 117: 1587–1592.

Mitchell, E. M., S. N. Hinkle, and E. F. Schisterman, 2016 It’s about time: a
survival approach to gestational weight gain and preterm delivery. Epi-
demiology 27: 182–187.

Mwaniki, M. K., M. Atieno, J. E. Lawn, and C. R. Newton, 2012 Long-term
neurodevelopmental outcomes after intrauterine and neonatal insults: a
systematic review. Lancet 379: 445–452.

Nachman, R. M., G. Mao, X. Zhang, X. Hong, Z. Chen et al., 2016 Intrauterine
inflammation and maternal exposure to ambient PM2.5 during preconcep-
tion and specific periods of pregnancy: the Boston Birth Cohort. Environ.
Health Perspect. 124: 1608–1615.

Park, J.-H., M. H. Gail, C. R. Weinberg, R. J. Carroll, C. C. Chung et al.,
2011 Distribution of allele frequencies and effect sizes and their inter-

relationships for common genetic susceptibility variants. Proc. Natl.
Acad. Sci. USA 108: 18026–18031.

Park, J. Y., N. R. Lee, K. E. Lee, S. Park, Y. J. Kim et al., 2014 Effects of b2-
adrenergic receptor gene polymorphisms on ritodrine therapy in preg-
nant women with preterm labor: prospective follow-up study. Int. J. Mol.
Sci. 15: 12885–12894.

Smith, G. C., 2001 Use of time to event analysis to estimate the normal
duration of human pregnancy. Hum. Reprod. 16: 1497–1500.

Svensson, A. C., S. Sandin, S. Cnattingius, M. Reilly, Y. Pawitan et al.,
2009 Maternal effects for preterm birth: a genetic epidemiologic study
of 630,000 families. Am. J. Epidemiol. 170: 1365–1372.

Treloar, S. A., G. A. Macones, L. E. Mitchell, and N. G. Martin, 2000 Genetic
influences on premature parturition in an Australian twin sample. Twin
Res. Off. J. Int. Soc. Twin Stud. 3: 80–82.

Uzun, A., A. T. Dewan, S. Istrail, and J. F. Padbury, 2013 Pathway-based
genetic analysis of preterm birth. Genomics 101: 163–170.

Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers et al., 2014 Defining
the role of common variation in the genomic and biological architecture
of adult human height. Nat. Genet. 46: 1173–1186.

Wu, W., D. J. Witherspoon, A. Fraser, E. A. S. Clark, A. Rogers et al.,
2015 The heritability of gestational age in a two-million member co-
hort: implications for spontaneous preterm birth. Hum. Genet. 134: 803–
808.

York, T. P., J. F. Strauss, M. C. Neale, and L. J. Eaves, 2009 Estimating fetal
and maternal genetic contributions to premature birth from multiparous
pregnancy histories of twins using MCMC and maximum-likelihood
approaches. Twin Res. Hum. Genet. Off. J. Int. Soc. Twin Stud. 12: 333–
342.

York, T. P., J. F. Strauss, M. C. Neale, and L. J. Eaves, 2010 Racial differ-
ences in genetic and environmental risk to preterm birth. PLoS One 5:
e12391.

York, T. P., L. J. Eaves, P. Lichtenstein, M. C. Neale, A. Svensson et al.,
2013 Fetal and maternal genes’ influence on gestational age in a
quantitative genetic analysis of 244,000 Swedish births. Am. J. Epidemiol.
178: 543–550.

York, T. P., L. J. Eaves, M. C. Neale, and J. F. Strauss, 2014 The contribution
of genetic and environmental factors to the duration of pregnancy. Am.
J. Obstet. Gynecol. 210: 398–405.

Zhang, H., D. A. Baldwin, R. K. Bukowski, S. Parry, Y. Xu et al., 2015 A
genome-wide association study of early spontaneous preterm delivery.
Genet. Epidemiol. 39: 217–226.

Zhang, L., Y.-P. Shen, W.-Z. Hu, S. Ran, Y. Lin et al., 2016 A new method
for estimating effect size distribution and heritability from genome-wide
association summary results. Hum. Genet. 135: 171–184.

Zwiener, I., M. Blettner, and G. Hommel, 2011 Survival analysis. Dtsch.
Arztebl. Int. 108: 163–169.

Communicating editor: B. J. Andrews

1356 | J. Juodakis et al.

https://www.jstatsoft.org/article/view/v070i08

