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could come from sharing the same risk environment as mothers, whereas stronger associations seen in moth-
ers might come from the additional contribution of experiencing pregnancy. But it could also come through 
gender-specific roles in parenting, where offspring sex may influence lifestyle or other concomitants of parenting. 
One would expect that in the latter case, risk factors or smoking related causes of death, are more prevalent in 
mothers having more boys. Sex specific cancers, like breast and ovarian cancer are related to parity probably more 
directly through hormonal and other biological changes in pregnancy, and we would expect greater risk associ-
ated with having boys if this mechanism is important24, 25. Maternal exposure to male antigens during pregnancy 
through the feto-placental unit could increase risk of immune-related disorders26. And finally, by using alternative 
approaches in addition to merely counting number of boys and girls, sex of first offspring and proportion of off-
spring boys, we would be able disentangle the impact parity may have on the observed associations from offspring 
sex composition.

We investigated whether offspring sex is related to parental risk factors, cancer risk and cause-specific mortal-
ity using a large population sample.

Methods
Population. The data were organized into trios. We included only those groups where we had information on 
the full reproductive age of mothers from 15 to 50 years and with follow-up of death afterwards. Fathers were also 
required to survive to age 50. Identity of offspring and fathers was available from Norwegian multigenerational 
data27. This gave 1,936,257 offspring with 784,325 mothers and 786,262 fathers. We analysed those with complete 
data on covariates giving 661,013 women and 691,124 men. 15% women and 12% men were excluded because 
they lacked information on covariates. Associations were largely similar when analysing the full sample and with 
the exclusions. The parents were linked to their offspring and to the Cause of Death Registry, the Cancer Registry, 
Statistics Norway and from the Cohort of Norway (CONOR)28. The CONOR participants comprised a sub cohort 
of the 661,013 mothers and 691,124 fathers with 50,736 women and 44,794 men who participated in one of ten 
regional, population-based health surveys in the period 1994–2003.

Exposure, covariates and outcomes. Number of boys, girls and total offspring was calculated for each 
individual. Length of education was retrieved for each individual from the national educational database as high-
est achieved by age 30 and categorized into five categories. Length of education was categorized into the following 
five ordered groups: 7–9 years (representing completion of primary school education only), 10–11 years (middle 
school), 12 years (secondary school), 12–16 years (college) and >16 years (usually indicating completion of a 
university degree).

Outcome variables were death by cause (Cause of death registry) and by incident cases of cancer (Cancer 
registry). Causes of death (ICD-10 codes) were: all causes, cardiovascular causes (I00-I99) and pulmonary cancer 
and COPD combined (C32-C34 and J40-J47). The following codes were used for cancer coming both from the 
Cancer Registry and the Cause of Death Registry: breast cancer (C50), ovarian cancer (C56), prostate cancer 
(C61) and testicular cancer (C62). The cancer analysis was done separately so that cancer events were incident 
cases and did not include cancer deaths. Autoimmune diseases were retrieved from the Disability Register: rheu-
matoid arthritis (ICD-10: M05), coeliac disease (ICD-10: K90), Crohn’s disease (ICD-10 K50) and ulcerative 
colitis (ICD-10: K51).

CONOR assessments on risk factors included information on and measurement of height and weight, fasting 
lipids, arterial pulse, systolic blood pressure, diabetes, mental distress, current smoking, alcohol consumption 
frequency past year and physical activity. Diabetes was recorded by the following question: “Do you have or have 
you had diabetes?” Physical activity assessment included two questions regarding the number of hours per week 
in the past year spent in light and vigorous (resulting in shortness of breath and or sweating) physical activity. 

N
Year of birth (mean and 
standard deviation)

Deaths 
(n)

Year of birth 
offspring (mean and 
standard deviation)

Primary 
education 
only (%)

Total N° 
offspring 
(mean)

Mothers

Main sample

 At least one offspring 661,013 1941 (9.0) 88,620 1968 (9.2) 67 2.5

 At least two offspring 562,693 1941 (8.9) 71,869 1968 (9.0) 67 2.8

Sub-cohort

 At least one offspring 50,736 1945 (10.3) 2,926 1972 (10.8) 60 2.6

 At least two offspring 43,860 1945 (10.2) 2,476 1972 (10.6) 60 2.8

Fathers

Main sample

 At least one offspring 691,124 1939 (10.5) 186,416 1969 (9.6) 55 2.5

 At least two offspring 584,515 1939 (10.3) 153,915 1969 (9.3) 55 2.8

 Sub-cohort

 At least one offspring 44,794 1941 (11.1) 5,873 1971 (10.6) 51 2.5

 At least two offspring 37,816 1941 (11.0) 4,977 1971 (10.4) 51 2.8

Table 1. Some characteristics according to number of boys and girls in the study population.
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Past-year alcohol consumption frequency was categorized into three groups (≥1 week, 1–3 times a month, and 
less than monthly which included abstainers). Lipids were measured by an enzymatic method (Roche Diagnostic, 
Swizterland). The average of the last two of three systolic blood pressure readings taken after a 2 min rest by an 
automatic device (DINAMAP, Criticon, Tampa, FL, USA) was used in analyses.

Analytical approach and statistical methods. Disentangling the effect of offspring sex from the effect 
of parity is difficult. When using number of boys or girls as exposures, this will pick up some of the effect that goes 
through parity. For this reason we used three strategies and investigated whether these gave coherent findings: 
Firstly, we estimated the relation between number of boys and girls and parental mortality. Secondly, we estimated 
the relation between parental mortality and sex of �rst o�spring and the sex of �rst and second o�spring. For the 
first two offspring the combination was coded as: girl-girl (reference), girl-boy or boy-girl into a “mixed” category 
and boy-boy and included those with at least two children (n = 562,677 women and n = 584,515 men). Thirdly, 
we analysed the proportion of boys (number of boys divided by total number of offspring). For the presentation 
of the results, estimates from the second and third strategy are presented in the main tables and from the first in 
supplementary tables.

Mortality and morbidity data were analyzed using Cox proportional hazards regression. The proportional haz-
ards assumption was assessed by visual inspection of plots and by testing Schoenfeld residuals. No indication of a 
violation of the proportional hazard assumption was found. Time was entered as age. The models were adjusted 
for year of birth. Difference in the parameter estimates between the variables number of boys and number of girls 
was tested using the command test in STATA 12 after the Cox regression model was run with both parameters 
included in the model. Difference in estimates between mothers and fathers for number of boys and number of 
girls investigated separately, was tested by pooling mothers and fathers together and fitting interaction terms 
for sex of the parent and number of boys and number of girls respectively. For the analysis of risk factors in the 
sub-cohort of CONOR, linear and logistic regression models were used.

We conducted several additional analysis by linking to data from Social Security Registry and the Medical 
Birth Registry (births after 1967), see Supplementary Tables 9 and 10. We also investigated CVD and all-cause 
mortality in mothers having offspring with twins, perinatal deaths, pre-eclampsia and with different length of 
inter-pregnancy intervals, and we investigated CVD mortality in the CONOR sub-cohort.

Ethics. The study is part of the study “Inter- and intra-generational transmission of risk” was approved by the 
Norwegian Regional Ethics Committee, No. 2010/260.

Results
The sub-cohort was slightly younger than the main cohort (Table 1). Number of boys and number of girls were each 
related to earlier year of birth in offspring and parents higher proportion with primary education. High propor-
tion of boys was related to these covariates to a much lesser degree with slightly lower proportion with primary 
education only. Sex of �rst o�spring and sex of �rst two o�spring did not vary substantially by these covariates 
(Supplementary Table 1).

Figure 1. Age adjusted hazard ratio of cardiovascular mortality by number of offspring boys and girls among 
women (n = 661,013) and men (n = 691,124).
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In mothers, there was a U-shaped relation (quadratic term p-value < 0.001) between number of boys and girls and 
all-cause mortality with lowest risk with two and three boys or girls (Supplementary Table 2). Cardiovascular causes 
also showed a U-shaped pattern by number of boys in mothers, with increased risk for more than three boys (Fig. 1). 
Such a pattern was also seen for number of girls, though to a lesser degree, and there was a smaller relationship with 
many girls. For lung cancer and COPD there was a small inverse relationship for both number of boys or girls.

In fathers the U-shaped pattern was less pronounced, there was little increased risk of all cause death and an 
increased risk in cardiovascular death by both number of boys and girls which was largely attenuated when includ-
ing number of other sex offspring and length of education (Supplementary Table 3). For lung cancer and COPD 
there was a small positive relation with number of boys and girls.

Sex of the �rst o�spring was associated with higher risk of all cause and cardiovascular cause mortality in 
women (Table 2). The sex composition of �rst two offspring was associated with hazard ratio of 1.06 (95% CI: 

Hazard ratio (95% CI)

At least one offspringa Sex of first 
offspring At least two offspringb Sex of first and second offspring

Girl 
(ref) boy

p-value 
(trend)

girl-girl 
(ref) boy-girl/girl-boy boy-boy

p-value 
(trend)

Mothers

 All causes (n = 93,518) 1.00 1.02 (1.01–1.03) 0.007 1.00 1.01 (0.99–1.03) 1.02 (1.00–1.05) 0.066

 Cardiovascular (n = 22,072) 1.00 1.04 (1.01–1.07) 0.008 1.00 1.00 (0.96–1.04) 1.06 (1.01–1.10) 0.011

 Lung cancer and COPD (n = 11,503) 1.00 1.01 (0.97–1.04) 0.780 1.00 0.96 (0.91–1.01) 0.99 (0.94–1.05) 0.907

 Breast cancer (n = 30,649) 1.00 1.00 (0.98–1.03) 0.991 1.00 1.00 (0.96–1.03) 0.99 (0.95–1.03) 0.626

 Ovarian cancer (n = 6935) 1.00 1.00 (0.95–1.06) 0.925 1.00 1.04 (0.96–1.13) 1.02 (0.93–1.11) 0.783

Fathers

 All causes (n = 196,867) 1.00 1.00 (0.99–1.01) 0.917 1.00 0.99 (0.97–1.00) 1.00 (0.99–1.02) 0.819

 Cardiovascular (n = 75,557) 1.00 1.00 (0.99–1.02) 0.624 1.00 0.99 (0.97–1.01) 1.00 (0.98–1.03) 0.738

 Lung cancer and COPD (n = 21,994) 1.00 1.00 (0.97–1.02) 0.763 1.00 1.01 (0.98–1.05) 1.01 (0.96–1.05) 0.726

 Testicular cancer (n = 1948) 1.00 0.97 (0.89–1.06) 0.487 1.00 1.06 (0.93–1.20) 1.08 (0.94–1.24) 0.285

 Prostate cancer (n = 31,827) 1.00 1.00 (0.97–1.02) 0.920 1.00 1.00 (0.97–1.03) 0.98 (0.95–1.02) 0.340

Table 2. Age adjusted hazard ratio of cause specific mortality from the Cause of Death Registry (all cause, 
circulatory and lung cancer) and incident cancer from the Norwegian Cancer Registry (breast cancer and 
ovarian cancer) if the first and second offspring sex was boy among fathers and mothers born 1925–54 with 
follow up of from age 50. an = 661,013 for women and n = 691,124 for men. Adjusted for year of birth, education 
and parity. bn = 562,677 for women and n = 584,515 for men. Adjusted for year of birth, education and parity.

Hazard ratio (95% CI)

Mothers (n = 661,013) Fathers (n = 691,124)

All cause CVD
Lung cancer 
and COPD All cause CVD

Lung cancer 
and COPD

Total 1.03 (1.01–1.05) 1.07 (1.03–1.12) 1.02 (0.97–1.08) 1.00 (0.99–1.01) 1.01 (0.99–1.03) 0.99 (0.95–1.03)

Total adjusteda 1.03 (1.01–1.05) 1.07 (1.03–1.11) 1.02 (0.97–1.08) 1.00 (0.99–1.02) 1.01 (0.99–1.03) 0.99 (0.96–1.04)

By N° offspring:

 1 1.03 (1.00–1.07) 1.06 (1.00–1.14) 1.07 (0.97–1.17) 0.99 (0.97–1.02) 1.02 (0.99–1.06) 0.97 (0.91–1.04)

 2 1.01 (0.97–1.04) 1.06 (0.99–1.13) 0.98 (0.89–1.07) 0.99 (0.97–1.02) 0.98 (0.94–1.02) 1.02 (0.96–1.10)

 3 1.04 (0.99–1.10) 1.10 (1.00–1.21) 1.02 (0.90–1.16) 1.02 (0.99–1.06) 1.05 (1.00–1.11) 0.99 (0.90–1.08)

 4 1.04 (0.96–1.12) 1.01 (0.87–1.18) 0.92 (0.74–1.14) 1.01 (0.96–1.07) 1.03 (0.95–1.11) 0.97 (0.84–1.12)

 5 1.10 (0.95–1.27) 1.20 (0.92–1.56) 1.35 (0.91–2.00) 1.10 (1.00–1.20) 0.96 (0.83–1.11) 1.24 (0.96–1.60)

 6 or more 1.21 (0.98–1.50) 1.11 (0.77–1.60) 1.31 (0.71–2.44) 0.92 (0.80–1.05) 1.01 (0.82–1.24) 0.70 (0.47–1.03)

 P-value (interaction) 0.375 0.885 0.730 0.196 0.910 0.854

By year of birth

 1925–1929 1.04 (1.01–1.07) 1.08 (1.02–1.14) 1.10 (1.00–1.20) 1.00 (0.99–1.02) 1.01 (0.96–1.05) 0.96 (0.89–1.04)

 1930–1939 1.04 (1.00–1.07) 1.06 (0.99–1.14) 0.95 (0.87–1.04) 1.02 (0.99–1.05) 1.02 (0.97–1.06) 0.99 (0.99–1.07)

 1940–1949 0.99 (0.94–1.04) 1.08 (0.95–1.24) 1.01 (0.89–1.14) 0.98 (0.94–1.02) 0.99 (0.92–1.07) 1.02 (0.91–1.14)

 1950–1958 1.03 (0.92–1.15) 1.01 (0.72–1.40) 1.21 (0.91–1.61) 0.95 (0.86–1.05) 0.95 (0.78–1.16) 0.94 (0.70–1.27)

 P-value (interaction) 0.255 0.469 0.997 0.002 0.166 0.025

Table 3. Age adjusted hazard ratio of death among mothers and fathers by proportion of boys among all and 
stratified by number of offspring. aFixed effect analysis adjusting for the effect of belonging to any of the parity 
group strata.
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1.01–1.10) higher risk of cardiovascular mortality among mothers when having two boys compared to having two 
girls. No comparable associations were seen in fathers or for other outcomes when using this approach.

Both number of boys and girls were inversely related to risk of breast and ovarian cancer in mothers 
(Supplementary Table 6). Adjusting for covariates had minimal impact on the estimates, and the estimates were 
similar for number of boys and number of girls. The proportion of boys was related to all-cause mortality and cardi-
ovascular mortality in mothers and not in fathers (Table 3).

We found no association with offspring sex in the following autoimmune diseases: rheumatoid arthritis, coe-
liac disease, Crohn’s disease and ulcerative colitis (Table 4). In mothers in the sub-cohort of CONOR most risk 
factors were related to unfavorable levels for both number of boys and number of girls (Supplementary Tables 4 
and 5). Percent daily smokers and percent drinking more than 2 units of alcohol per week decreased with number 
of boys and girls. In fathers the same pattern was seen, except for triglycerides and cholesterol (boys), and mental 
distress and daily smoking (boys and girls). Neither sex of �rst o�spring nor sex of �rst two o�spring was related to 
any of these risk factors in both fathers and mothers (Tables 5 and 6). ‘Proportion boys� was also not related to any 
of these except for physical inactivity in fathers.

For the additional analysis we found no increased risk for CVD and all-cause mortality in mothers having 
offspring experiencing perinatal death, experiencing pre-eclampsia or having different inter-pregnancy intervals. 
Women with twin births had increased CVD risk (proportion boys gave of 1.51 (1.13–2.03) and sex of first off-
spring 1.20 (0.99–1.47)) (Supplementary Table 6). In the CONOR sub-cohort CVD hazard ratios were for women 
1.07 0.92–1.26) adjusting for year of birth and parity, and 1.07 (0.92–1.26) after adjusting also for smoking, cho-
lesterol, triglycerides, physical inactivity and systolic blood pressure.

Discussion
Mothers with more male offspring had increased cardiovascular mortality. This was not seen in fathers. For other 
disease outcomes there was no differential association of offspring sex in mothers and fathers. Interesting patterns 
of association with risk factors was seen for mothers and fathers, in which both number of boys and girls were 
related to unfavorable levels but not with sex of �rst and �rst and second o�spring.

Strengths and limitations. The comprehensive data linkage, size, follow-up, details on causes of death and risk 
factors in the data are clear advantages. Mortality follow-up took place over many years, and we did not have informa-
tion on emigration. But we do not consider this to cause bias as only 3–5 per 1000 inhabits emigrated from Norway 
in this period. The study benefits from triangulating analytical approaches to produce more robust conclusions. It is 
unlikely that parents having a first offspring boy differ systematically from those who have a first offspring girl. The 
strength of this triangulation is further supported by the distribution of covariates and risk factors, in which the clear 
pattern when using number of boys disappears when using sex of �rst and sex of �rst and second o�spring. But we 
would caution against interpreting that there is a further increase of CVD risk in women having more than two boys.

In Nordic registry data it has previously been shown that sex of the first two pregnancies is related to odds for 
having a third offspring29. If the first two offspring are boys, the odds for having a third pregnancy is larger than if 
the first two pregnancies were girls or mixed. However, this trend started around 1990, and is not likely to influ-
ence this cohort. Since parity is a confounder, and if having two boys increases odds of having a third offspring 
we would expect parity to decrease rather than increase the association with having boys since having mostly girls 
would be related to increased parity and increased mortality. Sensitivity analyses restricting to those with exactly 
one and two offspring showed similar estimates. We also looked at risk of having first offspring boy in different 
birth cohorts: The risks for CVD of having first offspring boy in the different birth cohorts were largely similar: 1.03 
(0.99–1.07) 1925–1929, 1.06 (1.01–1.11) 1930–1939, 1.04 (0.95–1.14) 1940–1949 and 0.86 (0.69–1.08) 1950–1955.

The covariates and risk factors appeared more strongly related to number of boys or girls than to proportion of 
boys or sex of �rst o�spring and sex of �rst two o�spring. This probably reflects that the exposure variables number 
of boys and girls are more directly confounded by family size. Composition of sex in the first and sex of first and 
second offspring were unrelated to almost any of the covariates or risk factors. In addition to indicating that sex 

Odds ratio (95% CI)

Mothers (n = 661,013)a Fathers (n = 691,124)a

Reumatoid 
arthritis

Coliac 
disease

Ulcerous 
colitis Mb Crohn

Reumatoid 
arthritis

Coliac 
disease

Ulcerous 
colitis Mb Crohn

Per boy 0.91 
(0.82–1.00)

0.96 
(0.81–1.13)

1.15 
(0.85–1.55)

0.98 
(0.60–1.61)

0.95 
(0.78–1.16)

0.84 
(0.67–1.06)

0.76 
(0.57–1.01)

1.16 
(0.59–2.27)

Mothers vs fathersa 0.674 0.379 0.049 0.693 — — — —

First two offspring

 Girl-girl 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

 Girl-boy or 
boy-girl

0.98 
(0.89–1.08)

1.01 
(0.86–1.19)

0.87 
(0.64–1.18)

0.98 
(0.60–1.61)

0.98 
(0.82–1.19)

0.99 
(0.80–1.22)

0.99 
(0.75–1.30)

0.75 
(0.40–1.43)

 Boy-boy 0.95 
(0.85–1.06)

0.97 
(0.81–1.16)

1.20 
(0.87–1.66)

0.97 
(0.55–1.72)

0.96 
(0.77–1.19)

0.84 
(0.66–1.08)

0.92 
(0.67–1.27)

0.84 
(0.40–1.73)

 Trend (p-value) 0.379 0.710 0.207 0.928 0.694 0.164 0.608 0.633

 Mothers vs fathersa 0.962 0.371 0.204 0.742 — — — —

Table 4. Age adjusted odds ratio by some common autoimmune diseases among mothers and fathers by 
offspring birth composition. p-valuea.
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of the first offspring(s) seems to be random, at least when number of offspring is low, it suggests that having boys 
does not impact much on risk factor profile in parents.

In some countries sex-selective abortion is known to affect offspring sex composition. In Norway voluntary 
pregnancy termination in most cases takes place before 12 weeks of pregnancy, a time point when sex of the fetus 
is not known to the parents30. Proportion of stillbirths in Norway is comparatively low, 5.9 per 1000 deliveries31. 
Women who experienced offspring death perinatally did not have differential risk. Paternal misclassification could 
have attenuated the estimate in fathers compared to mothers, but is not likely to differ according to sex of offspring.

Determinants of sex composition. Biological mechanisms underlying offspring sex is not settled32. High 
caloric intake is known to skew offspring sex ratio towards males in mice, cows and horses33–35. Observational 
studies among humans have shown some variations in sex ratio with conditions of war or poor nutrition but this 
has not been seen in data from the Dutch famine study rendering little support for a claim that environmental 
changes will have large impact on the sex ratio36, 37. There might be a “selective loss” of males due to susceptibility 
to environmental insults or nutritional deficiencies consistent with the Trivers-Willard hypothesis that good con-
ditions during pregnancy will promote investment in male fetuses38. This mechanism would go in the opposite 
direction of higher mortality for mothers who have more boys since women in harsh environmental conditions 
potentially lose male foetuses and these conditions would also be expected to increase their mortality.

High sex specific parental levels of oestrogen and testosterone are associated with having male offspring, whereas 
high levels of progesterone and gonadotropins are associated with having female offspring24. High levels of testoster-
one are known to have immunosuppressive effects, which may be an advantage since the maternal immune system 
then is exposed to male-specific antigens25. Observations from studies of humans are, however, not unequivocally in 
concordance with the testosterone theory. Whether the high sex specific parental levels of oestrogen and testoster-
one at the time of conception remain after birth, and subsequently may trigger maternal risk of CVD, is not known.

Family factors and causal inference on fertility and health. Given the physiological changes during 
pregnancy, birth and lactation, women carry the highest direct biological burden in regard to reproduction1. 
Effects seen in fathers may be due to shared family factors both related to number of offspring and later health39. 
The U-shape pattern seen when number of boys and girls were analyzed probably reflects the influence of parity. 
Father’s health is used as a comparator because a stronger effect in mothers would suggest that factors during preg-
nancy may be of importance. A review from 2007 concluded that in natural fertility conditions, i.e. when fertility is 
near its biological maximum, longevity does not decrease when the number of children increases but, in modern 
populations, mortality could increase when women have more than 5 children3. In a Norwegian study covering a 
similar period, odds of death relative to those for subjects with two children were highest for the childless in both 
women and men and next highest for those with only one child40. The similarity of results for women and men 
suggests social pathways underlying these associations between reproductive history and health. They also found 
for 11 causes of death, fertility was related to increased risk, supporting a general explanation for the relationship5.

Explanations for offspring sex and parental health. Our study suggested increased risk of CVD in moth-
ers with boys but not with increased levels of CVD related risk factors. This could suggest risk factors are not involved 

Age at 
examination 
(sd) BMI (kg/m 2)

Chol- sterol 
(mmol/l)

Systolic Blood 
pressure 
(mmHg)

Diabetes 
(%)

Mental 
distress 
(%)

Daily 
smoker 
(%)

Alcohol 
(<2units 
per week)

Physical 
Inactivity 
(%)

Family 
history of 
CHD (%)

Previous 
CVD (%) N

Mothers

Sex of �rst o�springa

 Girl 52 (10.6) 26.0 (4.5) 5.99 (1.2) 133 (21.1) 2.5 5.3 34.1 8.8 6.2 50.1 4.5 24,658

 Boy 52 (10.5) 26.0 (4.5) 5.98 (1.2) 133 (21.0) 2.4 5.5 34.1 8.9 6.5 50.1 4.7 26,078

 P-value 0.828 0.821 0.392 0.962 0.358 0.487 0.897 0.320 0.143 0.978 0.198

Sex of �rst two o�springb

 Girl-girl 52 (10.4) 26.0 (4.5) 5.97 (1.2) 133 (21.0) 2.5 5.1 33.5 8.2 6.3 50.0 4.5 10,376

 Girl-boy or 
boy-girl 52 (10.5) 26.0 (4.4) 5.99 (1.2) 133 (21.0) 2.4 5.3 33.3 8.8 6.0 50.0 4.5 21,953

 Boy-boy 53 (10.5) 26.0 (4.4) 6.00 (1.2) 133 (21.0) 2.4 5.1 33.4 8.5 6.4 49.7 4.8 11,531

 P-value 0.387 0.939 0.121 0.722 0.497 0.863 0.924 0.565 0.828 0.503 0.319

Proportion boys

 <0.5 52 (10.6) 26.0 (4.5) 6.00 (1.2) 132.9 (21.1) 2.5 5.4 34.1 8.4 6.6 50.4 4.9 19,527

 >=0.5 52 (10.5) 26.0 (4.4) 6.00 (1.2) 132.5 (21.1) 2.4 5.4 34.2 9.2 6.2 50.0 4.4 31,209

 P-value 0.082 0.645 0.194 0.614 0.846 0.931 0.503 0.781 0.786 0.829 0.257 —

 Missing 0 137 61 16 631 8,469 253 1839 2829 2991 537 —

Table 5. Mean values (sd) or percentages with test of differences (linear or logistic regression) of some risk 
factors among mothers in a linked sub cohort being part of the Cohort of Norway (CONOR) according to sex 
of first offspring, sex of first two offspring and proportion boys. aThese 50,736 women from the full cohort were 
identified as participating in CONOR with at least one offspring. bThese 43,860 women from the full cohort 
were identified as participating in CONOR with at least two offspring.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 5285  | DOI:10.1038/s41598-017-05161-y

which is supported by findings in the CONOR sub-cohort where the (imprecisely estimated) greater association in 
women for CVD was not attenuated after adjusting for important risk factors. In general differential associations of 
offspring sex with parental health may mechanisms that are biologically or socially informative, even if effect sizes 
are small. Sons and daughters may provide emotional, interpersonal, financial and material support to the parents, 
which may be gendered41. Studies in societies with strong preference towards sons, such as China and Bangladesh, 
are at odds with this, suggesting a context specific association: In Bangladesh there was an increased survival accord-
ing to number of sons, possibly due to improved parental socioeconomic circumstances consequent on this.

Maternal-fetal exchange of genetic material (fetal microchimerism) has been suggested to have health impli-
cations for both the fetus and the mother42. Half of the fetal tissue antigens have paternal origin and maternal 
immune reactions must be suppressed or tolerated to continue the pregnancy43. With a male fetus, the maternal 
immune system is exposed to male antigens that may give rise to long-lasting immunity against male-specific 
antigens. Such male-specific antigens have been found to give higher risk of graft-versus-host disease in stem-cell 
transplantation with female donors to male recipients44. Such changes affect immune tolerance, energy metabo-
lism and cardio-respiratory function, all triggered by the feto-placental unit26. Our study found no reflection of 
this in rheumatoid arthritis, coeliac disease, crohn’s disease or ulcerative colitis, however.

Micro-vascular vasodilatation is enhanced in women with a male fetus45. In preeclampsia, this vasodilatation 
is reduced in women with a male but not a female fetus, compared to a normal pregnancy. There is also growing 
evidence that the physiological adjustments do not return to the pre-pregnancy state when pregnancies are com-
plicated by certain diseases, such as preeclampsia and gestational diabetes46. These conditions may occur due to 
pre-existing subclinical disease, later manifest in CVD, autoimmune disease or early maternal mortality, creating 
an additional burden of disease for the mother. Our sub-analysis on perinatal death, pre-eclampsia, perinatal 
deaths did not support this.

Conclusion
Mothers, not fathers, have increased risk of cardiovascular disease when having boys compared to girls. The dif-
ference is not reflected in the pattern of conventional cardiovascular risk factors, suggesting that other biological 
or social pathways may play a role.

References
 1. Hurt, L. S., Ronsmans, C. & Thomas, S. L. The effect of number of births on women’s mortality: systematic review of the evidence for 

women who have completed their childbearing. Popul.Stud.(Camb.). 60, 55–71 (2006).
 2. Jasienska, G. Reproduction and lifespan: Trade-offs, overall energy budgets, intergenerational costs, and costs neglected by research. 

Am.J.Hum.Biol. 21, 524–532 (2009).
 3. Le, B. E. Does reproduction decrease longevity in human beings? Ageing �es.�ev. 6, 141–149 (2007).
 4. Westendorp, R. G. & Kirkwood, T. B. Human longevity at the cost of reproductive success. Nature. 396, 743–746 (1998).
 5. Grundy, E. & Kravdal, O. Fertility history and cause-specific mortality: a register-based analysis of complete cohorts of Norwegian 

women and men. Soc. Sci. Med. 70, 1847–1857 (2010).
 6. Helle, S., Lummaa, V. & Jokela, J. Sons reduced maternal longevity in preindustrial humans. Science. 296, 1085 (2002).
 7. Beise, J. & Voland, E. Effect of producing sons on maternal longevity in premodern populations. Science. 298, 317 (2002).

Age at 
examination 
(sd) BMI (kg/m 2)

Chol- sterol 
(mmol/l)

Systolic Blood 
pressure 
(mmHg)

Diabetes 
(%)

Mental 
distress 
(%)

Daily 
smoker 
(%)

Alcohol 
(<2units 
per week)

Physical 
Inactivity 
(%)

Family 
history of 
CHD (%)

Previous 
CVD (%) N

Fathers

Sex of �rst o�springa

 Girl 56 (11.4) 26.6 (3.4) 6.00 (1.1) 139.2 (19.3) 3.6 3.5 30.1 19.4 6.7 46.2 12.5 21,828

 Boy 56 (11.5) 26.6 (3.4) 6.00 (1.1) 139.5 (19.0) 3.7 3.6 30.1 19.7 6.4 46.2 12.5 22,966

 P-value 0.689 0.682 0.725 0.196 0.620 0.372 0.849 0.232 0.221 0.980 0.986

Sex of �rst two o�springb

 Girl-girl 56 (11.2) 26.7 (3.4) 6.02 (1.1) 139.4 (19.5) 3.6 3.3 29.8 19.3 6.8 46.6 12.6 8,900

 Girl-boy or 
boy-girl 56 (11.3) 26.6 (3.4) 6.00 (1.1) 139.3 (19.1) 3.8 3.3 30.6 19.6 6.5 46.2 12.9 19,109

 Boy-boy 55.9 (11.4) 26.6 (3.4) 6.00 (1.1) 139.6 (19.1) 3.6 3.6 29.9 19.4 6.2 46.5 12.6 9,807

 P-value 0.612 0.497 0.317 0.359 0.620 0.263 0.976 0.849 0.099 0.871 0.951

Proportion boys

 <0.5 56 (11–5) 26.6 (3.4) 6.00 (1.1) 139.0 (19.3) 3.8 3.7 30.8 19.0 6.4 45.9 12.7 17,130

 >=0.5 56 (11.4) 26.0 (3.4) 6.00 (1.1) 139.2 (19.1) 3.6 3.5 30.9 19.9 6.6 46.3 12.4 27,664

 P-value 0.366 0.456 0.320 0.523 0.241 0.762 0.871 0.934 0.040 0.954 0.213

 Missing 90 47 32 443 11,022 124 1237 1621 3380 284

Table 6. Mean values and standard deviations with test of differences (linear or logistic regression) of some risk 
factors among fathers in a linked sub cohort being part of the Cohort of Norway (CONOR) according to sex 
of first offspring, sex of first two offspring and proportion boys. aThese 44,794 fathers from the full cohort were 
identified as participating in CONOR with at least one offspring. bThese 38,816 fathers from the full cohort were 
identified as participating in CONOR with at least two offspring.



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 5285  | DOI:10.1038/s41598-017-05161-y

 8. Cesarini, D., Lindqvist, E. & Wallace, B. Maternal longevity and the sex of offspring in pre-industrial Sweden. Ann.Hum.Biol. 34, 
535–546 (2007).

 9. Cesarini, D., Lindqvist, E. & Wallace, B. Is there an adverse effect of sons on maternal longevity? Proc. Biol. Sci. 276, 2081–2084 
(2009).

 10. Van de Putte, B., Matthijs, K. & Vlietinck, R. A social component in the negative effect of sons on maternal longevity in pre-
industrial humans. J. Biosoc. Sci. 36, 289–297 (2004).

 11. Harrell, C. J., Smith, K. R. & Mineau, G. P. Are girls good and boys bad for parental longevity? Hum. Nat. 19, 56–69 (2008).
 12. Helle, S. & Lummaa, V. A trade-off between having many sons and shorter maternal post-reproductive survival in pre-industrial 

Finland. Biol. Lett. 9, 20130034 (2013).
 13. Pham-Kanter, G. & Goldman, N. Do sons reduce parental mortality? J. Epidemiol. Community Health. 66, 710–715 (2012).
 14. Torssander, J. From child to parent? The significance of children’s education for their parents’ longevity. Demography. 50, 637–59 

(2013).
 15. Christiansen, S. G. The association between grandparenthood and mortality. Soc. Sci. Med. 118, 89–96 (2014).
 16. McMichael, A. J., Mckee, M., Shkolnikov, V. & Valkonen, T. Mortality trends and setbacks: global convergence or divergence? Lancet. 

363, 1155–1159 (2014).
 17. Clutton-Brock, T. Sexual selection in males and females. Science. 318, 1882–1885 (2007).
 18. Loos, R. J., Derom, C., Eeckels, R., Derom, R. & Vlietinck, R. Length of gestation and birthweight in dizygotic twins. Lancet. 358, 

560–561 (2001).
 19. Hinde, K. First-time macaque mothers bias milk composition in favor of sons. Curr. Biol. 17, R958–R959 (2007).
 20. Nielsen, H. S. et al. Brothers and reduction of the birth weight of later-born siblings. Am. J. Epidemiol. 167, 480–484 (2008).
 21. Nielsen, H. S. et al. Sex of prior children and risk of stillbirth in subsequent pregnancies. Epidemiology. 21, 114–117 (2010).
 22. Rickard, I. J., Russell, A. F. & Lummaa, V. Producing sons reduces lifetime reproductive success of subsequent offspring in pre-

industrial Finns. Proc. Biol. Sci. 274, 2981–2988 (2007).
 23. Rickard, I. J. Offspring are lighter at birth and smaller in adulthood when born after a brother versus a sister in humans. Evol Hum 

Behav. 29, 196–200 (2008).
 24. James, W. H. Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels at the time of 

conception. J �eor. Biol. 180, 271–286 (1996).
 25. Grant, V. J. & Chamley, L. W. Can mammalian mothers influence the sex of their offspring peri-conceptually? �eproduction. 140, 

425–433 (2010).
 26. Clifton, V. L., Stark, M. J., Osei-Kumah, A. & Hodyl, N. A. Review: The feto-placental unit, pregnancy pathology and impact on long 

term maternal health. Placenta. 33, S37–S41 (2012).
 27. Naess, O. & Hoff, D. A. The Norwegian Family Based Life Course (NFLC) study: data structure and potential for public health 

research. Int. J. Public Health. 58, 57–64 (2013).
 28. Naess, O. et al. Cohort Profile: Cohort of Norway. Int. J. Epidemiol. 37, 481–485 (2008).
 29. Andersson, G., Hank, K., Ronsen, M. & Vikat, A. Gendering family composition: sex preferences for children and childbearing 

behavior in the Nordic countries. Demography. 43, 255–267 (2006).
 30. National Institute for Health and Welfare. Induced abortions in the Nordic countries. https://www.thl.fi/en/web/thlfi-en/statistics/

statistics-by-topic/sexual-and-reproductive-health/abortions (2011)
 31. Stanton, C., Lawn, J. E., Rahman, H., Wilczynska-Ketende, K. & Hill, K. Stillbirth rates: delivering estimates in 190 countries. Lancet. 

367, 1487–1494 (2006).
 32. Rosenfeld, C. S. Periconceptional influences on offspring sex ratio and placental responses. �eprod. Fertil. Dev. 24, 45–58 (2011).
 33. Rosenfeld, C. S. et al. Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or 

carbohydrate. Proc. Natl. Acad. Sci. USA 100, 4628–4632 (2003).
 34. Roche, J. R., Lee, J. M. & Berry, D. P. Pre-conception energy balance and secondary sex ratio–partial support for the Trivers-Willard 

hypothesis in dairy cows. J. Dairy. Sci. 89, 2119–2125 (2006).
 35. Skjervold, H. & James, W. H. Causes of variation in the sex ratio in dairy cattle. J. Anim. Breed. Genet. 95, 293–305 (1979).
 36. Lumey, L. H., Stein, A. D. & Susser, E. Prenatal Famine and Adult Health. Annu. �ev. Public. Health. 32, 237–62 (2011).
 37. Wilcox, A. J. Sex ratio in Fertility and Pregnancy. An Epidemiologic Perspective. (ed. Wilcox, A. J.) 246–254 (Oxford University 

Press, 2010).
 38. Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science. 179, 90–92 (1973).
 39. Lawlor, D. A., Leary, S. & Davey Smith, G. Theoretical underpinning for the use of intergenerational studies in Family Matters: 

Designing, Analysing and Understanding Family-based Studies in Life Course Epidemiology (eds. Lawlor, D. A., Mishra, G.) 13–38 
(Oxford University Press, 2009).

 40. Grundy, E. & Kravdal, O. Reproductive history and mortality in late middle age among Norwegian men and women. Am J Epidemiol. 
167, 271–9 (2008).

 41. Raley, S. & Bianchi, S. Sons, Daughters, and Family Processes: Does Gender of Children Matter? Annual �eview of Sociology. 32, 
401–421 (2006).

 42. Fugazzola, L., Cirello, V. & Beck-Peccoz, P. Fetal microchimerism as an explanation of disease. Nat. �ev. Endocrinol 7, 89–97 (2011).
 43. Verdijk, R. M. et al. Pregnancy induces minor histocompatibility antigen-specific cytotoxic T cells: implications for stem cell 

transplantation and immunotherapy. Blood. 103, 1961–1964 (2004).
 44. Miklos, D. B. et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease 

and disease remission. Blood 105, 2973–2978 (2005).
 45. Gabory, A., Roseboom, T. J., Moore, T., Moore, L. G. & Junien, C. Placental contribution to the origins of sexual dimorphism in 

health and diseases: sex chromosomes and epigenetics. Biol Sex Di�er 4, 5 (2013).
 46. Mace, R. & Sear, R. Birth interval and the sex of children in a traditional African population: an evolutionary analysis. J. Biosoc. Sci. 

29, 499–507 (1997).

Acknowledgements
We acknowledge to contributions of the CONOR Steering Committee and the Regional Health Surveys 
which contributed to the sub-analyses. We also acknowledge Statistics Norway for linking the data, and to the 
Norwegian Cancer Registry for providing data on cancer. The study was funded by our own research institutions.

Author Contributions
G.D.S. conceived the idea. Ø.N. and G.D.S. designed the study. Ø.N. and L.M. analysed the data. Ø.N. drafted the 
paper. L.M., Å.V. and G.D.S. commented on subsequent drafts.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05161-y
Competing Interests: The authors declare that they have no competing interests.

https://www.thl.fi/en/web/thlfi-en/statistics/statistics-by-topic/sexual-and-reproductive-health/abortions
https://www.thl.fi/en/web/thlfi-en/statistics/statistics-by-topic/sexual-and-reproductive-health/abortions
http://dx.doi.org/10.1038/s41598-017-05161-y


www.nature.com/scientificreports/

9Scientific RepoRts | 7: 5285  | DOI:10.1038/s41598-017-05161-y

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/



