Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015

GBD 2015 LRI Collaborators*

Summary

Background The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2015 provides an up-to-date analysis of the burden of lower respiratory tract infections (LRIs) in 195 countries. This study assesses cases, deaths, and aetiologies spanning the past 25 years and shows how the burden of LRI has changed in people of all ages.

Methods We estimated LRI mortality by age, sex, geography, and year using a modelling platform shared across most causes of death in the GBD 2015 study called the Cause of Death Ensemble model. We modelled LRI morbidity, including incidence and prevalence, using a meta-regression platform called DisMod-MR. We estimated aetiologies for LRI using two different counterfactual approaches, the first for viral pathogens, which incorporates the aetiologyspecific risk of LRI and the prevalence of the aetiology in LRI episodes, and the second for bacterial pathogens, which uses a vaccine-probe approach. We used the Socio-demographic Index, which is a summary indicator derived from measures of income per capita, educational attainment, and fertility, to assess trends in LRI-related mortality. The two leading risk factors for LRI disability-adjusted life-years (DALYs), childhood undernutrition and air pollution, were used in a decomposition analysis to establish the relative contribution of changes in LRI DALYs.

Abstract

Findings In 2015, we estimated that LRIs caused 2.74 million deaths (95% uncertainty interval [UI] 2.50 million to 2.86 million) and 103.0 million DALYs (95% UI 96.1 million to 109.1 million). LRIs have a disproportionate effect on children younger than 5 years, responsible for 704000 deaths (95% UI $651000-763000$) and 60.6 million DALYs (95 ÙI $56 \cdot 0-65 \cdot 6$). Between 2005 and 2015, the number of deaths due to LRI decreased by $36 \cdot 9 \%$ (95% UI $31 \cdot 6$ to $42 \cdot 0$) in children younger than 5 years, and by $3.2 \%(95 \%$ UI -0.4 to 6.9$)$ in all ages. Pneumococcal pneumonia caused 55.4% of LRI deaths in all ages, totalling 1517388 deaths (95% UI $857940-2183791$). Between 2005 and 2015, improvements in air pollution exposure were responsible for a 4.3% reduction in LRI DALYs and improvements in childhood undernutrition were responsible for an 8.9% reduction.

Interpretation LRIs are the leading infectious cause of death and the fifth-leading cause of death overall; they are the second-leading cause of DALYs. At the global level, the burden of LRIs has decreased dramatically in the last 10 years in children younger than 5 years, although the burden in people older than 70 years has increased in many regions. LRI remains a largely preventable disease and cause of death, and continued efforts to decrease indoor and ambient air pollution, improve childhood nutrition, and scale up the use of the pneumococcal conjugate vaccine in children and adults will be essential in reducing the global burden of LRI.

Funding Bill \& Melinda Gates Foundation.
Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction

Lower respiratory tract infections (LRIs) are a substantial public health problem and a leading cause of illness and death in people of all ages. Previous estimates found that in 2013, LRIs caused more than $2 \cdot 6$ million deaths worldwide, making them the fifth leading cause of death overall and the leading infectious cause of death in children younger than 5 years. ${ }^{1}$ The burden of LRIs is highest in areas of low sociodemographic status, populations that depend on solid fuels for cooking and heating, and in malnourished and immunoimpaired populations. ${ }^{2}$ Global efforts to reduce the burden of LRIs
using different preventive and treatment strategies require timely information about the burden of LRIs, their risk factors, and associated pathogens.
Estimates of the burden of LRIs and their aetiologies are being produced annually as part of the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study, which provides a unique source for tracking trends in LRI-related morbidity and mortality. Results from the GBD study that quantify the burden of LRI will help to measure progress towards the Sustainable Development Goals, including Goal 3, which is to ensure healthy lives and wellbeing for people of all ages. ${ }^{3}$

Oa

Lancet Infect Dis 2017; 17: 1133-61 Published Online

Research in context

Evidence before this study
Lower respiratory tract infections are a leading cause of morbidity and mortality, particularly in children younger than 5 years, and the global burden has been estimated by several groups, including the Global Burden of Disease study (GBD). We build on previous GBD studies with updated data and methods. Updated cause-of-death data came from additional years of vital registration systems (2012-14; data from Jan 1, 1980, to Dec 31, 2015) and by searching PubMed and Google Scholar for "verbal autopsy" on March 3, 2015. Updated non-fatal and aetiology data came from a PubMed search on June 1, 2015, for "lower respiratory infections", "bronchiolitis", and "pneumonia". Articles published between Jan 1, 2012, and Dec 31, 2015, were selected without language restrictions.

Added value of this study

This manuscript provides a comprehensive assessment of LRI burden based on GBD 2015, including newer and more robust evidence on the mortality, morbidity, and risk factors associated with LRIs, including four aetiologies, and is the first
cause-specific description of LRI in a GBD study. In addition to descriptions of trends in morbidity and mortality, we use the Socio-demographic Index to relate changes in LRI burden to demographic transitions and assess the effect of changing population characteristics and risk factor exposure to decompose the trends in LRI burden.

Implications of all the available evidence

We show a decreasing burden of LRI in children younger than 5 years, but an increase in the burden in adults. Furthermore, we show the change in risk factor exposure globally, providing health professionals with valuable information needed to design and implement effective programmes and policies to reduce the burden of LRI. We also identify high-burden LRI regions that need more attention. Expanded use of the pneumococcal conjugate vaccine, interventions to improve under-5 nutrition, and a focus on appropriate case management could reduce the burden of LRI. Comprehensive and reliable data on LRI morbidity and mortality globally are still needed.

Here, we present results from the GBD study 2015, describing the burden of LRIs and four aetiologies (Haemophilus influenzae type B [Hib], Streptococcus pneumoniae [pneumococcal pneumonia], influenza, and respiratory syncytial virus [RSV]), covering deaths, episodes, disability-adjusted life-years (DALYs), risk factors contributing to the burden of LRIs, and the relationship between LRIs and social development for 195 countries from 1990 to 2015 for both sexes and by age.

Methods

Modelling overview

Details on the methods for GBD 2015 are available elsewhere. ${ }^{4,5}$ Here, we give a brief description of the methods and estimation strategy for LRIs, defined as acute-onset physician-diagnosed pneumonia or bronchiolitis. We measure LRI burden using three metrics: deaths, episodes, and DALYs. DALYs are the sum of years of life lost (YLLs) because of premature death and years lived with disability (YLDs). We estimated mortality and morbidity separately. Flowcharts and a detailed description for each step of the estimation process are provided in the appendix pp 2-3. Input data, including information on sources used, and code for each step of the estimation process are available on the Global Health Data Exchange. All estimates are produced by year and by age, for both sexes, and for all 195 countries. Each step of the GBD 2015 LRI estimation process, including data sources, is documented in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting. ${ }^{6}$

We saved 1000 draws from a posterior distribution of each parameter, and we repeated each analysis 1000 times using these draws to retain uncertainty of every step and input parameters. The results are given as mean values with 95% uncertainty intervals (UIs) showing the 2.5 and 97.5 percentiles of the distribution.

Mortality

The GBD Cause of Death database contains all available data from vital registration systems, surveillance systems, and verbal autopsies (summary in appendix p 4). We processed raw data to reconcile disparate coding schemes (such as the International Classification of Diseases 9 and 10), to redistribute poorly coded causes of death, and separate data by age and sex from tabulated cause lists. ${ }^{7}$
We estimated LRI mortality in the Cause of Death Ensemble model (CODEm) framework. ${ }^{5.8}$ CODEm is a spatiotemporal modelling platform that produces a wide range of submodels from cause of death data and spacetime covariates. Covariates were selected independently for each submodel using an algorithm that captures the relationships between the covariates and LRI mortality and provides a variety of plausible models (for full list of covariates, see appendix p 5). We assessed our LRI cause of death models using in-sample and out-of-sample predictive performance.
The sum of all cause-specific mortality models must be equal to the all-cause mortality estimate. ${ }^{5}$ We corrected LRI mortality estimates and estimates for other causes of mortality by rescaling them according to the uncertainty around the cause-specific mortality rate. This process is called CoDCorrect and ensures internal consistency
between causes of death and respects the all-cause mortality envelope.5

Morbidity

LRIs were defined as clinician-confirmed or radiologically confirmed pneumonia or bronchiolitis and were divided into moderate and severe or very severe episodes on the basis of WHO case definitions for pneumonia. ${ }^{9}$ Input data were derived from a systematic literature review of cross-sectional and cohort studies, hospital inpatient and outpatient data, health-care utilisation data (USA only), population-representative surveys, and excess mortality from the GBD 2015 cause of death estimates for LRI (appendix pp 6-7).
LRI morbidity (incidence, prevalence, and remission) was modelled using DisMod-MR version 2.1 (DisMod), a Bayesian, hierarchical, mixed-effects meta-regression platform. ${ }^{410,11}$ DisMod adjusts for variations in study methods between data sources and enforces consistency between data for the different parameters such as incidence and prevalence. Incidence, prevalence, remission, and excess mortality were related in a compartmental model of disease progression. Epidemiological data on LRI burden were analysed through a geographical cascade from a global level, at which fixed effects for covariates are established, to the most detailed geographic estimation level, which was either the national or subnational level. Model estimates from higher levels of the cascade were used as priors in analyses of lower levels. Random effects exist for each geographic estimation level. Geospatial priors, spacetime covariates, random effects, and input data predicted incidence and prevalence of LRI episodes. Input data were adjusted in DisMod during the modelling process to meet our standard case definition using study-level binary covariates. These covariates described the source of the data and accounted for hospital-based, inpatient, and self-reported sources (appendix p 8).
DALYs are the sum of YLLs and YLDs and represent the cumulative burden of disease due to LRI. ${ }^{12}$ To estimate the YLDs from LRIs, we used a disability weight for each severity level (moderate and severe or very severe) and the proportion of cases that fall into each severity level (appendix p 7).

Aetiologies

We estimated LRI aetiologies separately from overall LRI mortality and morbidity using two distinct counterfactual modelling strategies to calculate population attributable fractions (PAFs) for influenza, RSV, Hib, and pneumococcal pneumonia. The PAF is the proportional reduction in LRI morbidity or mortality that would be observed if the exposure to the pathogen were zero. We did not attribute aetiologies to neonatal pneumonia cases or deaths because of an absence of reliable data in this age group, and we did not consider Hib in age groups older than 5 years for the same reason.

We used a vaccine probe design to estimate the PAF for pneumococcal pneumonia and Hib by first calculating the ratio of vaccine effectiveness against non-specific pneumonia to pathogen-specific pneumonia at the study level. ${ }^{13-15}$ We then adjusted this estimate by vaccine coverage and vaccine effectiveness to estimate countryspecific and year-specific PAF values. ${ }^{16,17}$ We did not account for herd immunity in our estimates. Equations and more about these calculations are provided in the appendix (pp 9-10).
For Hib, we assumed that the vaccine efficacy against invasive Hib disease is the same as against Hib pneumonia. However, we did not make the same assumption for pneumococcal pneumonia because a study of pneumococcal conjugate vaccine (PCV) found that the vaccine efficacy against invasive pneumococcal disease might be significantly higher than against pneumococcal pneumonia. ${ }^{18}$ We used a ratio of efficacy against pneumococcal pneumonia to invasive pneumococcal disease from this study to adjust estimates of vaccine efficacy against invasive pneumococcal disease from the other studies. We used separate pneumococcal pneumonia and Hib age distributions, modelled in DisMod, to establish the PAF by age. Finally, geography and year PAFs were estimated using vaccine coverage modelled estimates.
Influenza and RSV were estimated by calculating an attributable fraction that relates the odds ratio (OR) of LRI given pathogen detection ${ }^{19}$ and proportion of LRI episodes that test positive for influenza or RSV. ${ }^{20}$

PAF $=$ Proportion * $\left(1-\frac{1}{\mathrm{OR}}\right)$

We conducted a systematic literature review of the proportion of LRI cases that test positive for influenza and RSV and used the meta-regression tool DisMod to estimate the proportion of people with LRI who are positive for influenza and RSV, separately, by location, year, age, and sex.
Different PAFs were measured for non-fatal and fatal LRI episodes. Fatal PAFs were adjusted using a scalar from the DisMod proportion models that represents the relative frequency of detection in inpatient versus non-inpatient sample populations. In the absence of aetiological data from fatal cases of LRI after death, we assumed that episodes of LRI requiring hospital admission were a reasonable proxy of severe and fatal episodes. Mortality is lower in patients with viral pneumonia than in those with pneumonia with bacterial causes. Therefore, we adjusted the fatal PAF estimates by establishing the ratio of case fatality in viral to bacterial causes of pneumonia from hospital data coded specifically to these causes, representing the relative fatality in people who were treated (appendix p 13).

Changes in burden with development

On the basis of methods used to construct the Human Development Index, GBD 2015 used the Sociodemographic Index (SDI), a summary measure of a country's development based on lag-distributed income per capita, average educational attainment, and total fertility rate. ${ }^{5,21}$ We used the SDI to show how changes in under-5 LRI mortality and incidence are related to changes in development. We fitted a least-squares regression using a cubic spline of the relationship of SDI to LRI mortality and incidence for each year at the most detailed geographic locations.

Risk factor decomposition

Methods for risk factor attribution to LRI are described in detail elsewhere. ${ }^{22,23}$ Briefly, risk factors followed a PAF counterfactual approach in which the prevalence of exposure was modelled from scientific literature and population-representative surveys, and the relative risk of LRI given a risk exposure was from published metaanalyses. We used the two leading risk groups for LRI DALYs from GBD 2015: ${ }^{22}$ air pollution (composed of household air pollution and ambient particulate matter ${ }^{24,25}$) and childhood undernutrition (composed of underweight, wasted, and stunted ${ }^{26}$), in a decomposition analysis of the change in LRI DALYs from 2005 to 2015. This period was chosen to show recent changes. The decomposition had four factors that contribute interdependently to LRI burden: undernutrition exposure, air pollution, population growth, and population ageing. The remaining changes were considered part of the unexplained causes of LRIs. A combinatorial process established the relative contribution of each of these four factors to the change in LRI DALYs. ${ }^{22,27}$

Role of the funding source

The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

At the global level, under-5 LRI mortality occurred in $104 \cdot 8$ children per $100000(95 \%$ UI $97 \cdot 0-113 \cdot 6)$ and varied by region and country (table 1, figure 1A). According to our estimates, the highest under-5 LRI mortalities were in sub-Saharan Africa, in Somalia ($546 \cdot 8$ deaths per 100000 , 95% UI $404 \cdot 5-716 \cdot 4$) and Chad ($511 \cdot 3$ deaths per 100000, 361•9-693•1; table 1), and the lowest were in Finland in western Europe ($0 \cdot 65$ deaths per $100000,0.43-0.88$; figure 1A). The greatest overall number of under-5 LRI deaths occurred in India (140649 deaths, 95% UI 122930-160758) because of its large population (table 1). The under-5 LRI mortality was nearly the same in males and females at the global level, but in south Asia, it was 1-2-times higher in girls than in boys (1.22 times in India and 1.24 times in Pakistan).

We calculated that, in 2015, LRIs caused $103 \cdot 0$ million DALYs (95% UI $96 \cdot 1$ million to $109 \cdot 1$ million) in all ages and 60.6 million DALYs (95% UI 56.0 million to 65.6 million) in children younger than 5 years (59% of LRI DALYs in all ages; table 1). We estimated that in 2015, 291.8 million episodes of LRI occurred (95% UI 276.3 million to 307.0 million), of which 101.8 million episodes were in children aged younger than 5 years (95% UI $90 \cdot 0$ million to 114.4 million; table 1).
Although nearly 60% of LRI DALYs were from children younger than 5 years, our findings suggest that LRI mortality was substantial across all ages, and in elderly people in particular. In adults aged 70 years or older, 1.27 million deaths (95% UI $1.15-1.34$ million) were estimated to be caused by LRIs in 2015. In some countries, we estimated a much larger number of deaths due to LRIs in older adults (≥ 70 years) than in children younger than 5 years-eg, in China ($172 \cdot 3$ per 100000 [95\% UI 150.3-196.4] in older adults vs 29.2 per 100000 [25.7-34.7] in children aged <5 years), the USA (235.2 per 100000 [224.0-247.0] vs 2.7 per 100000 [2.4-3.0]), and Japan (613.7 per 100000 [588.4-639.2] vs $2 \cdot 8$ per 100000 [2•4-3•2]).
The estimated global burden of LRIs decreased greatly between 2005 and 2015, particularly in children younger than 5 years (table 1, figure 1, 2). During this period, the global number of under- 5 deaths due to LRI decreased by $36 \cdot 9 \%$ (95% UI 31.6 to $42 \cdot 0$) from $1 \cdot 11$ million (95% UI 1.03 million to 1.20 million) to 703918 (651385 to 763039), with variation by region and SDI (table 1, figure 1C). However, the total number of LRI deaths decreased by $3.2 \% ~(95 \%$ UI -0.45 to $6 \cdot 9$; table 1, figure 1D) from 2.83 million (95% UI 2.63 million to 2.97 million) to 2.74 million (2.50 million to 2.86 million) because of a slower decrease in the LRI mortality rate in all ages (14.3% decrease) and population growth and ageing. The LRI mortality rate in all ages increased in many geographies, notably in high-SDI countries, where it increased 9.6% between 2005 and 2015, from $36 \cdot 2$ per $100000(95 \%$ UI $35 \cdot 4-37 \cdot 1)$ to $39 \cdot 7$ per 100000 (37.9-41.0).

Between 2005 and 2015, the fastest reduction in under-5 LRI mortality rate occurred in east and southeast Asia, central Europe, and tropical Latin America according to our estimates ($>50 \%$ reduction; figure 1C). The fastest rate of improvement in under-5 LRI mortality occurred in Turkey (14\% average annual decrease; figure 1C). The slowest decreases in under-5 mortality occurred in subSaharan Africa ($2 \cdot 1 \%$ annual decrease), and mortality increased in South Sudan (0.7% annual increase; figure 1C). We detected a relationship between LRI mortality and incidence and the SDI (figure 2). The LRI mortality rate decreased rapidly when transitioning from low to middle SDI, but the mortality rate in central Asia was much higher than expected on the basis of SDI (figure 2A). The relationship between incidence and SDI appeared to be more linear than for mortality and

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
Global	$\begin{aligned} & 703917 \cdot 9 \\ & (651385 \cdot 4 \text { to } \\ & 763038 \cdot 7) \end{aligned}$	104.8 $(97.0$ to $113.6)$	$\begin{aligned} & -36 \cdot 9 \\ & (-42.0 \text { to }-31.6) \end{aligned}$	$\begin{aligned} & 1017.59 \\ & \text { (900.03to } \\ & 1144.66 \text {) } \end{aligned}$	$\begin{aligned} & 605 \cdot 53 \\ & (560 \cdot 2 \text { to } \\ & 656 \cdot 12) \end{aligned}$	-36.8 $(-41.9$ to -31.6)	$\begin{aligned} & 2736714 \cdot 2 \\ & (2500318 \cdot 4 \text { to } \\ & 2860842 \cdot 8) \end{aligned}$	$\begin{aligned} & 37.1 \\ & \text { (33.9 to } 38.8 \text {) } \end{aligned}$	$\begin{aligned} & -3 \cdot 2 \\ & (-6 \cdot 9 \text { to } 0.4) \end{aligned}$	$\begin{aligned} & 2917.68 \\ & (2762.52 \text { to } \\ & 3070.13) \end{aligned}$	$\begin{aligned} & 1030 \cdot 49 \\ & (961 \cdot 28 \text { to } \\ & 1090 \cdot 79 \text {) } \end{aligned}$	$\begin{aligned} & -23 \cdot 8 \\ & (-28 \cdot 2 \text { to }-19 \cdot 4) \end{aligned}$
Central Europe, eastern Europe, and central Asia	$\begin{aligned} & 15935 \cdot 5 \\ & (13771 \cdot 1 \text { to } \\ & 18307 \cdot 4) \end{aligned}$	$\begin{aligned} & 57.6 \\ & (49.8 \text { to } \\ & 66 \cdot 2) \end{aligned}$	$\begin{aligned} & -42 \cdot 0 \\ & (-50 \cdot 7 \text { to }-32 \cdot 4) \end{aligned}$	$\begin{aligned} & \quad 39 \cdot 11 \\ & (34 \cdot 30 \text { to } \\ & 44 \cdot 52) \end{aligned}$	$\begin{aligned} & 13 \cdot 74 \\ & (11 \cdot 9 \text { to } \\ & 15 \cdot 76) \end{aligned}$	$\begin{aligned} & -41 \cdot 9 \\ & (-50 \cdot 6 \text { to } \\ & -32 \cdot 3) \end{aligned}$	$\begin{aligned} & 103530 \cdot 3 \\ & (98694 \cdot 4 \text { to } \\ & 108661 \cdot 1) \end{aligned}$	$\begin{aligned} & 24.7 \\ & \text { (23.6 to 26.0) } \end{aligned}$	$\begin{aligned} & -15 \cdot 6 \\ & (-21 \cdot 2 \text { to }-9 \cdot 4) \end{aligned}$	$\begin{aligned} & 139.02 \\ & (132.15 \text { to } \\ & 146 \cdot 25) \end{aligned}$	$\begin{aligned} & \quad 36 \cdot 21 \\ & (34.13 \text { to } \\ & 38.63) \end{aligned}$	$\begin{aligned} & -30 \cdot 3 \\ & (-35 \cdot 5 \text { to }-24 \cdot 3) \end{aligned}$
Albania	$\begin{gathered} 85 \cdot 0 \\ \text { (55.9 to 121.3) } \end{gathered}$	$\begin{aligned} & 45 \cdot 9 \\ & (30 \cdot 2 \text { to } \\ & 65 \cdot 6) \end{aligned}$	$\begin{aligned} & -60 \cdot 8 \\ & (-76 \cdot 2 \text { to }-39 \cdot 8) \end{aligned}$	$\begin{gathered} 0.36 \\ (0.31 \text { to } 0.42) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.05 \text { to } 0.1) \end{gathered}$	$\begin{aligned} & -60 \cdot 7 \\ & (-76.0 \text { to }-39 \cdot 7) \end{aligned}$	$\begin{gathered} 423 \cdot 6 \\ (336 \cdot 3 \text { to } 562 \cdot 9) \end{gathered}$	$\begin{aligned} & 14 \cdot 6 \\ & (11 \cdot 6 \text { to } 19 \cdot 4) \end{aligned}$	$\begin{aligned} & -19.7 \\ & (-36 \cdot 1 \text { to } 0.2) \end{aligned}$	$\begin{gathered} 0.91 \\ (0.85 \text { to } 0.97) \end{gathered}$	$\begin{gathered} 0.13 \\ (0.1 \text { to } 0.17) \end{gathered}$	$\begin{aligned} & -49 \cdot 4 \\ & (-62 \cdot 7 \text { to }-32 \cdot 9) \end{aligned}$
Armenia	$\begin{gathered} 101 \cdot 4 \\ (76 \cdot 5 \text { to } 136 \cdot 7) \end{gathered}$	$\begin{aligned} & 51 \cdot 3 \\ & (38 \cdot 7 \text { to } \\ & 69 \cdot 1) \end{aligned}$	$\begin{aligned} & -51 \cdot 4 \\ & (-64 \cdot 6 \text { to }-33 \cdot 9) \end{aligned}$	$\begin{gathered} 0.30 \\ (0.26 \text { to } 0.35) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.07 \text { to } 0.12) \end{gathered}$	$\begin{aligned} & -51 \cdot 3 \\ & (-64 \cdot 4 \text { to } \\ & -33 \cdot 9) \end{aligned}$	$\begin{gathered} 436 \cdot 7 \\ \text { (316.3 to } 512.5 \text {) } \end{gathered}$	$\begin{aligned} & 14.5 \\ & (10.5 \text { to } 17.0) \end{aligned}$	$\begin{aligned} & -16 \cdot 2 \\ & (-30 \cdot 5 \text { to }-2 \cdot 7) \end{aligned}$	$\begin{gathered} 0.97 \\ (0.88 \text { to } 1.00) \end{gathered}$	$\begin{gathered} 0.16 \\ (0.13 \text { to } 0.19) \end{gathered}$	$\begin{aligned} & -39 \cdot 3 \\ & (-50 \cdot 8 \text { to }-26 \cdot 1) \end{aligned}$
Azerbaijan	$\begin{aligned} & 1642 \cdot 4 \\ & (1166 \cdot 4 \text { to } \\ & 2242 \cdot 2) \end{aligned}$	$\begin{aligned} & 171 \cdot 3 \\ & (121 \cdot 7 \text { to } \\ & 233 \cdot 9) \end{aligned}$	$\begin{aligned} & -48 \cdot 9 \\ & (-64 \cdot 2 \text { to }-27 \cdot 7) \end{aligned}$	$\begin{aligned} & 2.18 \\ & \text { (1.88 to } \\ & 2.49) \end{aligned}$	$\begin{gathered} 1.42 \\ (1.01 \text { to } 1.93) \end{gathered}$	$\begin{aligned} & -48 \cdot 8 \\ & (-64 \cdot 2 \text { to }-27 \cdot 6) \end{aligned}$	$\begin{gathered} 2641 \cdot 8 \\ (2187 \cdot 1 \text { to } 3208 \cdot 4) \end{gathered}$	$\begin{aligned} & 27.0 \\ & (22.4 \text { to } 32.8) \end{aligned}$	$\begin{aligned} & -39 \cdot 1 \\ & (-51 \cdot 5 \text { to } \\ & -23 \cdot 4) \end{aligned}$	$\begin{gathered} 4.63 \\ (4.24 \text { to } 5.01) \end{gathered}$	$\begin{gathered} 1.74 \\ (1.35 \text { to } 2.25) \end{gathered}$	$\begin{aligned} & -46 \cdot 3 \\ & (-59 \cdot 7 \text { to }-28 \cdot 4) \end{aligned}$
Belarus	$\begin{gathered} 25 \cdot 5 \\ \text { (17.6 to } 37 \cdot 5 \text {) } \end{gathered}$	$\begin{gathered} 4.6 \\ (3.2 \text { to } 6.8) \end{gathered}$	$\begin{aligned} & -65 \cdot 7 \\ & (-76 \cdot 0 \text { to }-51 \cdot 0) \end{aligned}$	$\quad 0.68$ $(0.58$ to $0.78)$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{aligned} & -64 \cdot 4 \\ & (-74 \cdot 9 \text { to }-50 \cdot 0) \end{aligned}$	$\begin{gathered} 1246 \cdot 5 \\ (1020 \cdot 5 \text { to } 1454 \cdot 2) \end{gathered}$	$\begin{aligned} & 13 \cdot 0 \\ & (10 \cdot 6 \text { to } 15 \cdot 1) \end{aligned}$	$\begin{gathered} -8 \cdot 4 \\ (-22 \cdot 3 \text { to } 4 \cdot 4) \end{gathered}$	$\begin{gathered} 3.09 \\ (2.93 \text { to } 3 \cdot 25) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.28 \text { to } 0.4) \end{gathered}$	$\begin{aligned} & -22 \cdot 6 \\ & (-34 \cdot 4 \text { to }-11 \cdot 3) \end{aligned}$
Bosnia and Herzegovina	$\begin{gathered} 7.5 \\ \text { (5.1 to } 10 \cdot 8 \text {) } \end{gathered}$	$\begin{gathered} 4 \cdot 3 \\ (2 \cdot 9 \text { to } 6 \cdot 3) \end{gathered}$	$\begin{aligned} & -65 \cdot 7 \\ & (-76 \cdot 0 \text { to }-51 \cdot 0) \end{aligned}$	$\begin{gathered} 0.23 \\ (0.20 \text { to } 0.27) \end{gathered}$	$\begin{gathered} 0.01 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -53 \cdot 5 \\ & (-68.7 \text { to } \\ & -28.4) \end{aligned}$	$\begin{gathered} 377.0 \\ (278.5 \text { to } 590 \cdot 6) \end{gathered}$	$\begin{aligned} & 9 \cdot 9 \\ & (7 \cdot 3 \text { to } 15 \cdot 5) \end{aligned}$	$\begin{gathered} 9 \cdot 8 \\ (-13.6 \text { to } 30 \cdot 9) \end{gathered}$	$\begin{gathered} 0.93 \\ (0.88 \text { to } 0.98) \end{gathered}$	$\begin{aligned} & \quad 0.06 \\ & (0.05 \text { to } \\ & 0.09) \end{aligned}$	$\begin{aligned} & -19 \cdot 1 \\ & (-30 \cdot 8 \text { to }-7 \cdot 6) \end{aligned}$
Bulgaria	$\begin{gathered} 86.5 \\ (58.6 \text { to } 128 \cdot 1) \end{gathered}$	$\begin{aligned} & 25 \cdot 0 \\ & (16 \cdot 9 \text { to } \\ & 37 \cdot 0) \end{aligned}$	$\begin{aligned} & -49 \cdot 5 \\ & (-65 \cdot 6 \text { to }-27 \cdot 7) \end{aligned}$	$\begin{gathered} 0.54 \\ (0.47 \text { to } 0.61) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.05 \text { to } 0.11) \end{gathered}$	$\begin{aligned} & -49 \cdot 2 \\ & (-65 \cdot 3 \text { to }-27 \cdot 7) \end{aligned}$	$\begin{gathered} 1794.5 \\ (1628.2 \text { to } 1979.2) \end{gathered}$	$\begin{aligned} & 24 \cdot 7 \\ & \text { (22.4 to } 27 \cdot 2 \text {) } \end{aligned}$	$\begin{gathered} -9 \cdot 9 \\ (-19 \cdot 2 \text { to } 0.0) \end{gathered}$	$\begin{gathered} 2 \cdot 20 \\ (2 \cdot 10 \text { to } 2 \cdot 32) \end{gathered}$	$\begin{gathered} 0.37 \\ (0.33 \text { to } 0.41) \end{gathered}$	$\begin{aligned} & -25 \cdot 4 \\ & (-32 \cdot 9 \text { to }-17 \cdot 1) \end{aligned}$
Croatia	$\begin{gathered} 4 \cdot 6 \\ (3.6 \text { to } 5 \cdot 9) \end{gathered}$	$\begin{gathered} 2.2 \\ (1.7 \text { to } 2.8) \end{gathered}$	$\begin{aligned} & -55 \cdot 5 \\ & (-65 \cdot 4 \text { to }-43 \cdot 4) \end{aligned}$	$\begin{gathered} 0.16 \\ (0.14 \text { to } 0.18) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -53 \cdot 9 \\ & (-63 \cdot 6 \text { to }-42 \cdot 2) \end{aligned}$	$\begin{gathered} 764 \cdot 8 \\ (681 \cdot 5 \text { to } 866 \cdot 4) \end{gathered}$	$\begin{aligned} & 18 \cdot 0 \\ & (16 \cdot 1 \text { to } 20 \cdot 4) \end{aligned}$	$\begin{aligned} & -29 \cdot 6 \\ & (-37 \cdot 7 \text { to } \\ & -19.6) \end{aligned}$	$\begin{gathered} 0.83 \\ (0.80 \text { to } 0.87) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.09 \text { to } 0.11) \end{gathered}$	$\begin{aligned} & -39 \cdot 3 \\ & (-44 \cdot 7 \text { to }-32 \cdot 6) \end{aligned}$
Czech Republic	$\begin{gathered} 13 \cdot 1 \\ \text { (9.8 to } 16 \cdot 9) \end{gathered}$	$\begin{gathered} 2.4 \\ (1.8 \text { to } 3 \cdot 1) \end{gathered}$	$\begin{aligned} & -44 \cdot 6 \\ & (-58 \cdot 4 \text { to }-27 \cdot 3) \end{aligned}$	$\begin{gathered} 0.45 \\ (0.40 \text { to } 0.51) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -42 \cdot 9 \\ & (-56 \cdot 1 \text { to }-26 \cdot 2) \end{aligned}$	$\begin{gathered} 3442 \cdot 9 \\ (3080 \cdot 6 \text { to } 3841 \cdot 0) \end{gathered}$	$\begin{aligned} & 32 \cdot 2 \\ & (28.8 \text { to } 35 \cdot 9) \end{aligned}$	$\begin{gathered} 11.4 \\ (-1.8 \text { to } 26 \cdot 1) \end{gathered}$	$\begin{gathered} 2.56 \\ (2.45 \text { to } 2.68) \end{gathered}$	$\begin{gathered} 0.48 \\ (0.44 \text { to } 0.52) \end{gathered}$	$\begin{aligned} & -1.7 \\ & (-10.4 \text { to } 7.9) \end{aligned}$
Estonia	$\begin{array}{r} 2.9 \\ (2.0 \text { to } 4.0) \end{array}$	$\begin{gathered} 4.1 \\ (2.8 \text { to } 5.6) \end{gathered}$	$\begin{aligned} & -67 \cdot 5 \\ & (-77 \cdot 4 \text { to }-54 \cdot 4) \end{aligned}$		$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -66 \cdot 4 \\ & (-76 \cdot 2 \text { to }-53 \cdot 6) \end{aligned}$	$\begin{gathered} 177 \cdot 3 \\ (154 \cdot 8 \text { to } 203 \cdot 2) \end{gathered}$	$\begin{aligned} & 13 \cdot 1 \\ & (11 \cdot 4 \text { to } 15 \cdot 0) \end{aligned}$	$\begin{aligned} & -26 \cdot 1 \\ & (-36 \cdot 3 \text { to } \\ & -13 \cdot 8) \end{aligned}$	$\begin{gathered} 0.42 \\ (0.40 \text { to } 0.44) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.03 \text { to } 0.05) \end{gathered}$	$\begin{aligned} & -42.0 \\ & (-51.0 \text { to }-31 \cdot 5) \end{aligned}$
Georgia	$\begin{gathered} 73 \cdot 2 \\ \text { (} 54 \cdot 5 \text { to } 95 \cdot 4 \text {) } \end{gathered}$	$\begin{gathered} 26 \cdot 2 \\ (19 \cdot 5 \text { to } \\ 34 \cdot 2) \end{gathered}$	$\begin{aligned} & -70 \cdot 3 \\ & (-78 \cdot 1 \text { to }-59 \cdot 9) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.29 \text { to } \\ & 0.39) \end{aligned}$	$\begin{gathered} 0.06 \\ (0.05 \text { to 0.08) } \end{gathered}$	$\begin{aligned} & -70 \cdot 2 \\ & (-78.0 \text { to }-59.8) \end{aligned}$	$\begin{gathered} 650 \cdot 7 \\ \text { (547.9 to } 745 \cdot 2 \text {) } \end{gathered}$	$\begin{aligned} & 16.2 \\ & (13.7 \text { to } 18.6) \end{aligned}$	$\begin{aligned} & -16 \cdot 4 \\ & (-26.8 \mathrm{to}-1.9) \end{aligned}$	$\begin{gathered} 1.12 \\ (1.05 \text { to } 1.19) \end{gathered}$	$\begin{gathered} 0.18 \\ (0.16 \text { to } 0.22) \end{gathered}$	$\begin{aligned} & -47 \cdot 0 \\ & (-55 \cdot 3 \text { to }-37 \cdot 1) \end{aligned}$
Hungary	$\begin{gathered} 19 \cdot 7 \\ (12.8 \text { to } 27 \cdot 8) \end{gathered}$	$\begin{gathered} 4.2 \\ (2 \cdot 8 \text { to } 6 \cdot 0) \end{gathered}$	$\begin{aligned} & -45 \cdot 5 \\ & (-62 \cdot 6 \text { to }-23 \cdot 9) \end{aligned}$	$\begin{aligned} & \quad 0.48 \\ & (0.42 \text { to } \\ & 0.56) \end{aligned}$	$\begin{gathered} 0.02 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -44 \cdot 3 \\ & (-60 \cdot 7 \text { to }-23 \cdot 2) \end{aligned}$	$\begin{gathered} 1025 \cdot 0 \\ \text { (} 913 \cdot 2 \text { to } 1155 \cdot 5 \text {) } \end{gathered}$	$\begin{aligned} & 10.1 \\ & (9.0 \text { to 11.4) } \end{aligned}$	$\begin{gathered} -4 \cdot 3 \\ (-16 \cdot 4 \text { to } 9.8) \end{gathered}$	$\begin{gathered} 2.16 \\ \text { (2.04 to } 2.27 \text {) } \end{gathered}$	$\begin{gathered} 0.18 \\ (0.16 \text { to } 0.2) \end{gathered}$	$\begin{aligned} & -19 \cdot 5 \\ & (-28 \cdot 1 \text { to }-9 \cdot 3) \end{aligned}$
Kazakhstan	$\begin{aligned} & \quad 800 \cdot 9 \\ & (617 \cdot 7 \text { to } \\ & 1048 \cdot 3) \end{aligned}$	$\begin{aligned} & 43 \cdot 1 \\ & (33 \cdot 2 \text { to } \\ & 56 \cdot 4) \end{aligned}$	$\begin{aligned} & -43 \cdot 1 \\ & (-59 \cdot 2 \text { to }-19 \cdot 5) \end{aligned}$	$\begin{gathered} 2.43 \\ (2.13 \text { to } 2.76) \end{gathered}$	$\begin{gathered} 0.69 \\ (0.53 \text { to 0.9) } \end{gathered}$	$\begin{aligned} & -43 \cdot 0 \\ & (-59 \cdot 1 \text { to }-19 \cdot 5) \end{aligned}$	$\begin{gathered} 3152 \cdot 4 \\ (2827 \cdot 7 \text { to } 3519 \cdot 7) \end{gathered}$	$\begin{aligned} & 18 \cdot 0 \\ & (16 \cdot 1 \text { to 20.1) } \end{aligned}$	$\begin{aligned} & -22 \cdot 9 \\ & (-33 \cdot 4 \text { to } \\ & -10 \cdot 6) \end{aligned}$	$\begin{gathered} 5.62 \\ (5.26 \text { to } 6.02) \end{gathered}$	$\begin{gathered} 1.48 \\ \text { (1.3 to } 1.71 \text {) } \end{gathered}$	$\begin{aligned} & -32.0 \\ & (-43 \cdot 9 \text { to }-17 \cdot 8) \end{aligned}$
Kyrgyzstan	$\begin{aligned} & \quad 966 \cdot 1 \\ & (807 \cdot 0 \text { to } \\ & 1154 \cdot 3) \end{aligned}$	$131 \cdot 6$ $(109 \cdot 9$ to 157.2)	$\begin{aligned} & -26 \cdot 5 \\ & (-38 \cdot 2 \text { to }-12 \cdot 5) \end{aligned}$	$\begin{gathered} 1.35 \\ (1.18 \text { to } 1.56) \end{gathered}$	$\begin{gathered} 0.83 \\ (0.69 \text { to } 0.99) \end{gathered}$	$\begin{aligned} & -26 \cdot 5 \\ & (-38 \cdot 1 \text { to }-12 \cdot 5) \end{aligned}$	$\begin{gathered} 1456 \cdot 9 \\ (1280 \cdot 9 \text { to } 1680 \cdot 2) \end{gathered}$	$\begin{aligned} & 24.7 \\ & (21.7 \text { to } 28.5) \end{aligned}$	$\begin{aligned} & -21 \cdot 5 \\ & (-30 \cdot 7 \text { to }-11 \cdot 1) \end{aligned}$	$\begin{gathered} 2.65 \\ (2.44 \text { to } 2.88) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.87 \text { to } 1.17) \end{gathered}$	$\begin{aligned} & -24 \cdot 2 \\ & (-34 \cdot 6 \text { to }-12 \cdot 3) \end{aligned}$
Latvia	$\begin{array}{r} 5 \cdot 2 \\ (3 \cdot 3 \text { to } 7 \cdot 6) \end{array}$	$\begin{gathered} 5 \cdot 1 \\ (3 \cdot 3 \text { to } 7 \cdot 4) \end{gathered}$	$\begin{aligned} & -64 \cdot 7 \\ & (-76 \cdot 4 \text { to }-47 \cdot 9) \end{aligned}$	$\begin{gathered} 0.13 \\ (0.11 \text { to } 0.15) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -63 \cdot 6 \\ & (-75 \cdot 3 \text { to }-47 \cdot 0) \end{aligned}$	$\begin{gathered} 368 \cdot 2 \\ \text { (332.9 to 406.3) } \end{gathered}$	$\begin{aligned} & 16 \cdot 6 \\ & (15 \cdot 1 \text { to } 18 \cdot 4) \end{aligned}$	$\begin{aligned} & -21 \cdot 8 \\ & (-30 \cdot 5 \text { to }-11 \cdot 1) \end{aligned}$	$\begin{gathered} 0.70 \\ (0.67 \text { to } 0.73) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.08 \text { to } 0.1) \end{gathered}$	$\begin{aligned} & -32 \cdot 6 \\ & (-41 \cdot 2 \text { to }-23 \cdot 1) \end{aligned}$
(Table 1 continues on next page)												

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Andorra	$\begin{gathered} 0.0 \\ (0.0 \text { to } 0.0) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.4 \text { to 1.2) } \end{gathered}$	$\begin{aligned} & -50 \cdot 1 \\ & (-68 \cdot 1 \text { to }-23 \cdot 7) \end{aligned}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -47 \cdot 8 \\ & (-65 \cdot 2 \text { to }-22 \cdot 8) \end{aligned}$	$\begin{gathered} 33 \cdot 5 \\ \text { (23.6 to } 46 \cdot 5 \text {) } \end{gathered}$	$\begin{aligned} & 42 \cdot 1 \\ & (29.8 \text { to } 58.6) \end{aligned}$	$\begin{aligned} & 36 \cdot 0 \\ & (-3 \cdot 2 \text { to } 86 \cdot 9) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & 21 \cdot 2 \\ & (-4 \cdot 6 \text { to } 50 \cdot 9) \end{aligned}$
Argentina	$\begin{aligned} & 584.8 \\ & \text { (490.8 to } \\ & 686.3) \end{aligned}$	$\begin{aligned} & 15 \cdot 7 \\ & (13 \cdot 2 \text { to } \\ & 18 \cdot 5) \end{aligned}$	$\begin{aligned} & -32.0 \\ & (-44.0 \text { to }-19.0) \end{aligned}$	$\begin{gathered} 3 \cdot 17 \\ (2 \cdot 77 \text { to } 3 \cdot 60) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.43 \text { to } 0.59) \end{gathered}$	$\begin{aligned} & -31 \cdot 7 \\ & (-43 \cdot 7 \text { to }-18 \cdot 7) \end{aligned}$	$\begin{aligned} & 31200 \cdot 9 \\ & (28313 \cdot 1 \text { to } \\ & 34118 \cdot 7) \end{aligned}$	$\begin{aligned} & 71 \cdot 9 \\ & (65 \cdot 2 \text { to } 78 \cdot 6) \end{aligned}$	$\begin{aligned} & 25 \cdot 4 \\ & (12 \cdot 2 \text { to } 39 \cdot 0) \end{aligned}$	$13 \cdot 35$ (12.72 to 13.99)	$\begin{gathered} 4.59 \\ (4.3 \text { to } 4.89) \end{gathered}$	$\begin{aligned} & 9.7 \\ & \text { (1.9 to 17.9) } \end{aligned}$
Australia	$\begin{gathered} 34 \cdot 1 \\ \text { (27.4 to } 41 \cdot 9) \end{gathered}$	$\begin{gathered} 2.2 \\ (1.8 \text { to } 2.7) \end{gathered}$	$\begin{aligned} & -30 \cdot 8 \\ & (-45 \cdot 2 \text { to }-10 \cdot 7) \end{aligned}$	$\begin{gathered} 0.44 \\ (0.38 \text { to } 0.51) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{aligned} & -29 \cdot 9 \\ & (-44 \cdot 4 \text { to }-9 \cdot 9) \end{aligned}$	$\begin{gathered} 4505 \cdot 5 \\ (3906 \cdot 5 \text { to } 5209 \cdot 4) \end{gathered}$	$\begin{aligned} & 18 \cdot 5 \\ & (16 \cdot 1 \text { to } 21 \cdot 4) \end{aligned}$	$\begin{aligned} & 18 \cdot 2 \\ & (-0 \cdot 1 \text { to } 41 \cdot 0) \end{aligned}$	$\begin{gathered} 2.87 \\ (2.75 \text { to } 2.99) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.42 \text { to } 0.5) \end{gathered}$	$\begin{gathered} 5 \cdot 7 \\ (-4 \cdot 5 \text { to } 18 \cdot 3) \end{gathered}$
Austria	$\begin{array}{r} 6.7 \\ \text { (} 5 \cdot 3 \text { to } 8 \cdot 4 \text {) } \end{array}$	$\begin{gathered} 1.7 \\ \text { (1.3to } 2.1 \text {) } \end{gathered}$	$\begin{aligned} & -35 \cdot 4 \\ & (-48 \cdot 9 \text { to }-18 \cdot 1) \end{aligned}$	$\begin{gathered} 0.14 \\ (0.12 \text { to } 0.16) \end{gathered}$	$\begin{gathered} 0.01 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -34 \cdot 4 \\ & (-47 \cdot 4 \text { to }-17 \cdot 6) \end{aligned}$	$\begin{gathered} 1316 \cdot 7 \\ \text { (1161.9 to 1501.8) } \end{gathered}$	$\begin{aligned} & 15 \cdot 2 \\ & (13 \cdot 4 \text { to } 17 \cdot 3) \end{aligned}$	$\begin{gathered} -5 \cdot 3 \\ (-19 \cdot 2 \text { to } 10 \cdot 8) \end{gathered}$	$\begin{gathered} 1 \cdot 17 \\ (1.12 \text { to } 1 \cdot 22) \end{gathered}$	$\begin{gathered} 0.13 \\ (0.12 \text { to } 0.15) \end{gathered}$	$\begin{aligned} & -14 \cdot 1 \\ & (-22 \cdot 4 \text { to }-4 \cdot 8) \end{aligned}$
Belgium	$\begin{gathered} 12 \cdot 4 \\ (10 \cdot 1 \text { to } 15 \cdot 1) \end{gathered}$	$\begin{gathered} 1.9 \\ (1.6 \text { to } 2 \cdot 3) \end{gathered}$	$\begin{aligned} & -24 \cdot 0 \\ & (-39 \cdot 9 \text { to }-4 \cdot 5) \end{aligned}$	$\begin{gathered} 0.23 \\ (0.20 \text { to } 0.27) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -23 \cdot 5 \\ & (-38 \cdot 7 \text { to }-4 \cdot 7) \end{aligned}$	$\begin{gathered} 6397 \cdot 3 \\ (5615 \cdot 6 \text { to } 7218 \cdot 4) \end{gathered}$	$\begin{aligned} & 56 \cdot 4 \\ & (49 \cdot 6 \text { to } 63.7) \end{aligned}$	$\begin{aligned} & 12 \cdot 0 \\ & (-2 \cdot 6 \text { to } 27.4) \end{aligned}$	$\begin{gathered} 2 \cdot 22 \\ (2 \cdot 12 \text { to } 2 \cdot 32) \end{gathered}$	$\begin{gathered} 0.63 \\ (0.57 \text { to } 0.69) \end{gathered}$	$\begin{gathered} 1.7 \\ (-8 \cdot 3 \text { to } 12 \cdot 6) \end{gathered}$
Brunei	$\begin{array}{r} 5 \cdot 1 \\ (4 \cdot 1 \text { to } 6 \cdot 2) \end{array}$	$\begin{aligned} & 15 \cdot 3 \\ & (12 \cdot 2 \text { to } \\ & 18.6) \end{aligned}$	$\begin{gathered} 0.4 \\ (-20.9 \text { to } 25 \cdot 1) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.02) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0.5 \\ (-20.7 \text { to } 25.0) \end{gathered}$	$\begin{gathered} 65 \cdot 4 \\ (56.7 \text { to } 84 \cdot 6) \end{gathered}$	$\begin{aligned} & 15 \cdot 4 \\ & (13 \cdot 4 \text { to } 20 \cdot 0) \end{aligned}$	$\begin{aligned} & 57 \cdot 8 \\ & (42 \cdot 0 \text { to } 77 \cdot 3) \end{aligned}$	$\begin{gathered} 0.08 \\ (0.08 \text { to } 0.08) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & 29 \cdot 6 \\ & (16 \cdot 7 \text { to } 43 \cdot 3) \end{aligned}$
Canada	$\begin{gathered} 47 \cdot 1 \\ \text { (38.1 to } 57.0 \text {) } \end{gathered}$	$\begin{gathered} 2.5 \\ (2.0 \text { to } 3.0) \end{gathered}$	$\begin{aligned} & -13 \cdot 6 \\ & (-30 \cdot 5 \text { to } 6 \cdot 3) \end{aligned}$	$\begin{gathered} 0.47 \\ (0.41 \text { to } 0.55) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.03 \text { to } 0.05) \end{gathered}$	$\begin{aligned} & -12 \cdot 9 \\ & (-29.6 \text { to } 6.9) \end{aligned}$	$\begin{gathered} 8742 \cdot 5 \\ (7676 \cdot 1 \text { to } 9963 \cdot 1) \end{gathered}$	$\begin{aligned} & 24 \cdot 2 \\ & (21 \cdot 2 \text { to } 27 \cdot 6) \end{aligned}$	$\begin{aligned} & 22 \cdot 8 \\ & (6 \cdot 3 \text { to } 41 \cdot 0) \end{aligned}$	$\begin{gathered} 4.36 \\ (4 \cdot 18 \text { to } 4 \cdot 54) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.87 \text { to } 1.03) \end{gathered}$	$\begin{gathered} 12 \cdot 8 \\ (3 \cdot 1 \text { to } 23 \cdot 8) \end{gathered}$
Chile	$\begin{gathered} 94 \cdot 5 \\ \text { (78.4 to } 114.5 \text {) } \end{gathered}$	$\begin{gathered} 8.1 \\ (6.7 \text { to } 9.8) \end{gathered}$	$\begin{aligned} & -41 \cdot 4 \\ & (-51 \cdot 9 \text { to }-27 \cdot 7) \end{aligned}$	$\begin{gathered} 0.89 \\ (0.78 \text { to } 1.02) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.07 \text { to } 0.1) \end{gathered}$	$\begin{aligned} & -40 \cdot 9 \\ & (-51 \cdot 5 \text { to }-27 \cdot 4) \end{aligned}$	$\begin{gathered} 6339 \cdot 6 \\ (5594 \cdot 9 \text { to } 7094 \cdot 5) \end{gathered}$	$\begin{aligned} & 35 \cdot 3 \\ & (31 \cdot 2 \text { to } 39 \cdot 5) \end{aligned}$	$\begin{aligned} & 36 \cdot 3 \\ & (18 \cdot 2 \text { to } 55 \cdot 6) \end{aligned}$	$\begin{gathered} 4.23 \\ (4.03 \text { to } 4 \cdot 41) \end{gathered}$	$\begin{gathered} 0.73 \\ (0.68 \text { to } 0.8) \end{gathered}$	$\begin{gathered} 9 \cdot 4 \\ (-0.4 \text { to 19.9) } \end{gathered}$
Cyprus	$\begin{array}{r} 1.5 \\ (1.2 \text { to } 1.9) \end{array}$	$\begin{gathered} 4 \cdot 1 \\ (3 \cdot 2 \text { to } 5 \cdot 2) \end{gathered}$	$\begin{aligned} & -47 \cdot 1 \\ & (-59 \cdot 1 \text { to }-30 \cdot 3) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -46 \cdot 9 \\ & (-58 \cdot 9 \text { to }-30 \cdot 3) \end{aligned}$	$\begin{gathered} 147 \cdot 9 \\ (121 \cdot 1 \text { to } 194 \cdot 8) \end{gathered}$	$\begin{aligned} & 16.6 \\ & (13 \cdot 6 \text { to } 21.8) \end{aligned}$	$\begin{gathered} -3 \cdot 3 \\ (-19 \cdot 6 \text { to } 11 \cdot 7) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.08 \text { to } 0.09) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -13 \cdot 6 \\ & (-23 \cdot 2 \text { to }-4 \cdot 8) \end{aligned}$
Denmark	$\begin{gathered} 5 \cdot 1 \\ \text { (4.0 to } 6.6 \text {) } \end{gathered}$	$\begin{gathered} 1.7 \\ (1.3 \text { to } 2 \cdot 2) \end{gathered}$	$\begin{aligned} & -35 \cdot 5 \\ & (-50 \cdot 8 \text { to }-17 \cdot 8) \end{aligned}$	$\begin{gathered} 0.11 \\ (0.09 \text { to } 0.13) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -34 \cdot 7 \\ & (-49 \cdot 6 \text { to }-17 \cdot 8) \end{aligned}$	$\begin{gathered} 2380 \cdot 2 \\ (2086 \cdot 8 \text { to } 2707 \cdot 2) \end{gathered}$	$\begin{aligned} & 41 \cdot 7 \\ & (36 \cdot 5 \text { to } 47 \cdot 4) \end{aligned}$	$\begin{gathered} 7 \cdot 4 \\ (-7 \cdot 2 \text { to } 23 \cdot 1) \end{gathered}$	$\begin{gathered} 0.99 \\ (0.95 \text { to } 1.04) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.21 \text { to } 0.26) \end{gathered}$	$\begin{gathered} 2.7 \\ (-7.9 \text { to 13.9) } \end{gathered}$
Finland	$\begin{array}{r} 1.9 \\ (1.3 \text { to } 2.6 \text {) } \end{array}$	$\begin{gathered} 0.7 \\ (0.4 \text { to } 0.9) \end{gathered}$	$\begin{aligned} & -60 \cdot 4 \\ & (-72 \cdot 3 \text { to }-43 \cdot 9) \end{aligned}$	$\quad 0.09$ 0.08 to 0.10	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -58 \cdot 2 \\ & (-69 \cdot 7 \text { to }-42 \cdot 1) \end{aligned}$	$\begin{gathered} 916 \cdot 2 \\ \text { (794•4 to } 1055 \cdot 5 \text {) } \end{gathered}$	$\begin{aligned} & 16 \cdot 5 \\ & (14 \cdot 3 \text { to } 19 \cdot 0) \end{aligned}$	$\begin{aligned} & -27 \cdot 6 \\ & (-37 \cdot 7 \text { to }-15 \cdot 4) \end{aligned}$	$\begin{gathered} 0.80 \\ (0.76 \text { to } 0.84) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.09 \text { to } 0.1) \end{gathered}$	$\begin{aligned} & -34 \cdot 7 \\ & (-41 \cdot 2 \text { to }-27 \cdot 2) \end{aligned}$
France	$\begin{gathered} 45 \cdot 5 \\ (33 \cdot 2 \text { to } 60 \cdot 0) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.8 \text { to } 1.5) \end{gathered}$	$\begin{aligned} & -31 \cdot 9 \\ & (-51.0 \text { to }-6.7) \end{aligned}$	$\begin{gathered} 1.74 \\ (1.51 \text { to } 2.02) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.03 \text { to } 0.06) \end{gathered}$	$\begin{aligned} & -29 \cdot 2 \\ & (-47 \cdot 7 \text { to }-4 \cdot 8) \end{aligned}$	$\begin{aligned} & 25009 \cdot 3 \\ & (21466 \cdot 4 \text { to } \\ & 29059 \cdot 2) \end{aligned}$	$\begin{aligned} & 38 \cdot 3 \\ & \text { (32.9 to } 44 \cdot 5 \text {) } \end{aligned}$	$\begin{aligned} & 20.0 \\ & (2.9 \text { to } 41.8) \end{aligned}$	$\begin{aligned} & 14 \cdot 82 \\ & (14 \cdot 11 \text { to } \\ & 15 \cdot 55) \end{aligned}$	$\begin{gathered} 2.28 \\ (2.05 \text { to } 2.51) \end{gathered}$	$\begin{gathered} 7 \cdot 3 \\ (-3 \cdot 1 \text { to 19.9) } \end{gathered}$
Germany	$\begin{gathered} 42 \cdot 6 \\ \text { (33.3 to } 53 \cdot 5 \text {) } \end{gathered}$	$\begin{gathered} 1.3 \\ (1.0 \text { to } 1.6) \end{gathered}$	$\begin{aligned} & -28 \cdot 7 \\ & (-44.8 \text { to }-7.5) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (0.94 \text { to } \\ & 1.26) \end{aligned}$	$\begin{gathered} 0.04 \\ (0.03 \text { to } 0.05) \end{gathered}$	$\begin{aligned} & -27 \cdot 7 \\ & (-43 \cdot 3 \text { to }-7 \cdot 4) \end{aligned}$	$\begin{aligned} & 31582 \cdot 8 \\ & (27970 \cdot 5 \text { to } \\ & 35596 \cdot 7) \end{aligned}$	$\begin{aligned} & 37.8 \\ & \text { (33.4 to 42.6) } \end{aligned}$	$\begin{aligned} & 20.8 \\ & (5.0 \text { to } 38.9) \end{aligned}$	$\begin{aligned} & 15 \cdot 33 \\ & (14.55 \text { to } \\ & 16 \cdot 11) \end{aligned}$	$\begin{gathered} 3 \cdot 41 \\ (3 \cdot 11 \text { to } 3 \cdot 72) \end{gathered}$	$\begin{gathered} 9.8 \\ (-0.4 \text { to } 21.0) \end{gathered}$
Greece	$\begin{gathered} 12 \cdot 6 \\ (9.6 \text { to } 20 \cdot 2) \end{gathered}$	$\begin{gathered} 2.5 \\ (1.9 \text { to } 4.0) \end{gathered}$	$\begin{aligned} & -52 \cdot 2 \\ & (-63 \cdot 2 \text { to }-38 \cdot 5) \end{aligned}$	$\begin{gathered} 0.18 \\ (0.16 \text { to } 0.21) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -51 \cdot 5 \\ & (-62 \cdot 3 \text { to }-38 \cdot 1) \end{aligned}$	$\begin{gathered} 3153 \cdot 0 \\ (2741 \cdot 3 \text { to } 3574 \cdot 9) \end{gathered}$	$\begin{aligned} & 28.9 \\ & (25 \cdot 1 \text { to } 32 \cdot 7) \end{aligned}$	$\begin{gathered} 4.8 \\ (-10 \cdot 1 \text { to } 20 \cdot 6) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.73 \text { to } 1.90) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.3 \text { to } 0.36) \end{gathered}$	$\begin{aligned} & -12 \cdot 4 \\ & (-21 \cdot 2 \text { to }-3 \cdot 0) \end{aligned}$
Greenland	$\begin{array}{r} 0.8 \\ (0.6 \text { to } 1.1 \text {) } \end{array}$	$\begin{aligned} & 10.8 \\ & (8.0 \text { to } 14.2) \end{aligned}$	$\begin{aligned} & -30 \cdot 4 \\ & (-49 \cdot 1 \text { to }-5 \cdot 3) \end{aligned}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -30 \cdot 4 \\ & (-49 \cdot 0 \text { to }-5 \cdot 3) \end{aligned}$	$\begin{array}{r} 8.9 \\ \text { (5.1 to } 10.6 \text {) } \end{array}$	$\begin{aligned} & 16 \cdot 4 \\ & (9.4 \text { to } 19.7) \end{aligned}$	$\begin{gathered} -4 \cdot 4 \\ (-15 \cdot 5 \text { to } 8 \cdot 9) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -13 \cdot 7 \\ & (-27 \cdot 1 \text { to } 0 \cdot 3) \end{aligned}$
Iceland	$\begin{array}{r} 0.6 \\ (0.5 \text { to } 0.8) \end{array}$	$\begin{gathered} 2 \cdot 9 \\ (2 \cdot 3 \text { to } 3 \cdot 8) \end{gathered}$	$\begin{aligned} & -47 \cdot 9 \\ & (-58 \cdot 6 \text { to }-33 \cdot 7) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -47 \cdot 2 \\ & (-57 \cdot 5 \text { to }-33 \cdot 5) \end{aligned}$	$\begin{gathered} 93 \cdot 4 \\ (81 \cdot 0 \text { to } 107 \cdot 1) \end{gathered}$	$\begin{aligned} & 28.6 \\ & (24.8 \text { to } 32.8) \end{aligned}$	$\begin{gathered} 7 \cdot 2 \\ (-8 \cdot 5 \text { to } 24 \cdot 9) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.05 \text { to } 0.05) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -5 \cdot 9 \\ & (-14.9 \text { to } 4 \cdot 4) \end{aligned}$
Ireland	$\begin{gathered} 8.5 \\ (6.9 \text { to } 10 \cdot 5) \end{gathered}$	$\begin{gathered} 2.4 \\ (1 \cdot 9 \text { to } 2 \cdot 9) \end{gathered}$	$\begin{aligned} & -36 \cdot 9 \\ & (-49 \cdot 9 \text { to }-20 \cdot 2) \end{aligned}$	$\begin{gathered} 0.13 \\ (0.11 \text { to } 0.15) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	-36.1 $(-48.8$ to $-19.9)$	$\begin{gathered} 1653 \cdot 2 \\ (1435 \cdot 4 \text { to } 1891 \cdot 2) \end{gathered}$	$\begin{aligned} & 34.5 \\ & \text { (30.0 to 39.5) } \end{aligned}$	$\begin{gathered} -3.7 \\ (-18.6 \text { to } 11.6) \end{gathered}$	$\begin{gathered} 0.73 \\ (0.69 \text { to } 0.76) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.15 \text { to } 0.18) \end{gathered}$	$\begin{aligned} & -13 \cdot 4 \\ & (-23 \cdot 0 \text { to }-3 \cdot 1) \end{aligned}$
Israel	$\begin{gathered} 18 \cdot 3 \\ \text { (14.8 to } 23 \cdot 1 \text {) } \end{gathered}$	$\begin{gathered} 2.2 \\ (1.8 \text { to } 2.8) \end{gathered}$	$\begin{aligned} & -29 \cdot 2 \\ & (-43 \cdot 6 \text { to }-9 \cdot 6) \end{aligned}$	$\begin{gathered} 0.29 \\ (0.25 \text { to } 0.33) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -28 \cdot 3 \\ & (-42 \cdot 5 \text { to }-9 \cdot 2) \end{aligned}$	$\begin{gathered} 2140 \cdot 2 \\ (1888 \cdot 3 \text { to } 2413 \cdot 1) \end{gathered}$	$\begin{aligned} & 26.6 \\ & (23 \cdot 5 \text { to } 30.0) \end{aligned}$	$\begin{aligned} & 44 \cdot 8 \\ & (27 \cdot 0 \text { to } 65 \cdot 5) \end{aligned}$	$\begin{gathered} 1 \cdot 22 \\ (1.16 \text { to } 1 \cdot 28) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.22 \text { to } 0.26) \end{gathered}$	$\begin{aligned} & 22 \cdot 3 \\ & (12 \cdot 4 \text { to } 34 \cdot 4) \end{aligned}$
Italy	$\begin{gathered} 30 \cdot 7 \\ \text { (22.9 to } 39 \cdot 1 \text {) } \end{gathered}$	$\begin{gathered} 1.2 \\ (0.9 \text { to } 1.5) \end{gathered}$	$\begin{aligned} & -42 \cdot 5 \\ & (-57 \cdot 7 \text { to }-23 \cdot 5) \end{aligned}$	$\begin{gathered} 0.62 \\ (0.53 \text { to } 0.71) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{aligned} & -41 \cdot 5 \\ & (-56 \cdot 2 \text { to }-23 \cdot 0) \end{aligned}$	$\begin{aligned} & 15172 \cdot 6 \\ & (13132 \cdot 5 \text { to } \\ & 17635 \cdot 5) \end{aligned}$	$\begin{aligned} & 24 \cdot 2 \\ & (20 \cdot 9 \text { to } 28 \cdot 1) \end{aligned}$	$\begin{aligned} & 30 \cdot 9 \\ & (11.0 \text { to } 54 \cdot 8) \end{aligned}$	$\begin{gathered} 7.20 \\ (6.86 \text { to } 7.55) \end{gathered}$	$\begin{gathered} 1.43 \\ \text { (1.3 to } 1.59 \text {) } \end{gathered}$	$\begin{gathered} 14 \cdot 4 \\ (2.4 \text { to } 28.0) \end{gathered}$
(Table 1 continues on next page)												

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Japan	$\begin{aligned} & 149 \cdot 7 \\ & (127 \cdot 1 \text { to } \\ & 169 \cdot 7) \end{aligned}$	$\begin{gathered} 2 \cdot 8 \\ (2 \cdot 4 \text { to } 3 \cdot 2) \end{gathered}$	$\begin{aligned} & -38 \cdot 2 \\ & (-44 \cdot 8 \text { to }-30 \cdot 5) \end{aligned}$	$\begin{gathered} 2.26 \\ \text { (1.98 to 2.57) } \end{gathered}$	$\begin{gathered} 0.13 \\ (0.11 \text { to } 0.15) \end{gathered}$	$\begin{aligned} & -37 \cdot 6 \\ & (-44 \cdot 2 \text { to }-30 \cdot 2) \end{aligned}$	$\begin{aligned} & 156576 \cdot 6 \\ & (150156 \cdot 7 \text { to } \\ & 162966 \cdot 9) \end{aligned}$	$\begin{aligned} & 122.0 \\ & \text { (117.0 to 127.0) } \end{aligned}$	$\begin{aligned} & 40 \cdot 1 \\ & (34 \cdot 3 \text { to } 46 \cdot 0) \end{aligned}$	$46 \cdot 27$ (44.37 to 48.08)	$\begin{aligned} & 13.29 \\ & (12.77 \text { to } \\ & 13.86) \end{aligned}$	$\begin{aligned} & 22.4 \\ & (17.0 \text { to } 28.1) \end{aligned}$
Luxembourg	$\begin{gathered} 0.7 \\ \text { (} 0.6 \text { to } 0.9 \text {) } \end{gathered}$	$\begin{gathered} 2.5 \\ \text { (1.9 to 3.1) } \end{gathered}$	$\begin{aligned} & -22 \cdot 1 \\ & (-40 \cdot 5 \text { to } 1 \cdot 4) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -21 \cdot 6 \\ & (-39 \cdot 7 \text { to } 1 \cdot 3) \end{aligned}$	$\begin{gathered} 131 \cdot 6 \\ (113 \cdot 0 \text { to } 151 \cdot 1) \end{gathered}$	$\begin{aligned} & 23 \cdot 6 \\ & (20 \cdot 3 \text { to } 27 \cdot 2) \end{aligned}$	$\begin{gathered} 12 \cdot 9 \\ (-4 \cdot 4 \text { to } 33 \cdot 6) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.07 \text { to } 0.08) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} -0.8 \\ (-12.0 \text { to 11.1) } \end{gathered}$
Malta	$\begin{array}{r} 0.9 \\ (0.8 \text { to } 1.1) \end{array}$	$\begin{gathered} 5 \cdot 0 \\ (4 \cdot 1 \text { to } 6 \cdot 1) \end{gathered}$	$\begin{aligned} & -30 \cdot 8 \\ & (-45 \cdot 3 \text { to }-11 \cdot 9) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -30 \cdot 5 \\ & (-44 \cdot 9 \text { to }-11 \cdot 8) \end{aligned}$	$\begin{gathered} 126 \cdot 1 \\ (110 \cdot 7 \text { to } 141 \cdot 5) \end{gathered}$	$\begin{aligned} & 30 \cdot 1 \\ & (26 \cdot 5 \text { to } 33 \cdot 8) \end{aligned}$	$\begin{gathered} 12.7 \\ (-2 \cdot 5 \text { to } 29 \cdot 2) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.06 \text { to } 0.07) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} -0.6 \\ (-10 \cdot 1 \text { to } 9.6) \end{gathered}$
Netherlands	$\begin{gathered} 17 \cdot 3 \\ (13 \cdot 8 \text { to } 21 \cdot 1) \end{gathered}$	$\begin{gathered} 2.0 \\ (1.6 \text { to } 2.4) \end{gathered}$	$\begin{aligned} & -38 \cdot 8 \\ & (-51 \cdot 3 \text { to }-23 \cdot 3) \end{aligned}$	$\begin{gathered} 0.45 \\ (0.39 \text { to } 0.51) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -37 \cdot 7 \\ & (-49 \cdot 7 \text { to }-22 \cdot 4) \end{aligned}$	$\begin{gathered} 7780 \cdot 6 \\ (6878.9 \text { to } 8714.0) \end{gathered}$	$\begin{aligned} & 45 \cdot 3 \\ & (40.0 \text { to } 50 \cdot 7) \end{aligned}$	$\begin{gathered} 5.6 \\ (-8.0 \text { to } 21.5) \end{gathered}$	$\begin{gathered} 3.71 \\ (3.71 \text { to } 4.06) \end{gathered}$	$\begin{gathered} 0.78 \\ (0.71 \text { to } 0.85) \end{gathered}$	$\begin{gathered} -2.1 \\ (-11.6 \text { to } 7.9) \end{gathered}$
New Zealand	$\begin{gathered} 12 \cdot 4 \\ (9.8 \text { to } 15 \cdot 3) \end{gathered}$	$\begin{gathered} 4 \cdot 1 \\ (3 \cdot 2 \text { to } 5 \cdot 0) \end{gathered}$	$\begin{aligned} & -18 \cdot 1 \\ & (-36 \cdot 4 \text { to } 4 \cdot 4) \end{aligned}$	$\begin{gathered} 0.12 \\ (0.11 \text { to } 0.14) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -17.7 \\ & (-36.0 \text { to } 4.5) \end{aligned}$	$\begin{gathered} 729 \cdot 3 \\ (621 \cdot 1 \text { to } 841 \cdot 8) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (13.6 \text { to } 18.4) \end{aligned}$	$\begin{gathered} 24 \cdot 5 \\ (4 \cdot 3 \text { to } 46 \cdot 1) \end{gathered}$	$\begin{gathered} 0.64 \\ (0.61 \text { to } 0.67) \end{gathered}$	$\quad 0.07$ $(0.06$ to $0.08)$	$\begin{gathered} 8.3 \\ (-4.0 \text { to } 21.3) \end{gathered}$
Norway	$\begin{gathered} 4.7 \\ (3.4 \text { to } 5 \cdot 9) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.1 \text { to } 2.0) \end{gathered}$	$\begin{aligned} & -33 \cdot 1 \\ & (-49 \cdot 2 \text { to }-13 \cdot 2) \end{aligned}$	$\quad 0.08$ $(0.07$ to $0.09)$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -32 \cdot 4 \\ & (-47 \cdot 9 \text { to }-12 \cdot 9) \end{aligned}$	$\begin{gathered} 2195 \cdot 3 \\ (1910 \cdot 1 \text { to } 2512 \cdot 9) \end{gathered}$	$\begin{aligned} & 42 \cdot 5 \\ & (37 \cdot 0 \text { to } 48 \cdot 7) \end{aligned}$	$\begin{gathered} -2 \cdot 7 \\ (-16 \cdot 5 \text { to } 14 \cdot 2) \end{gathered}$	$\begin{gathered} 0.64 \\ (0.61 \text { to } 0.64) \end{gathered}$	$\begin{gathered} 0.18 \\ (0.16 \text { to } 0.2) \end{gathered}$	$\begin{gathered} -8.0 \\ (-18 \cdot 6 \text { to } 3 \cdot 8) \end{gathered}$
Portugal	$\begin{gathered} 11 \cdot 3 \\ (9 \cdot 1 \text { to } 13 \cdot 8) \end{gathered}$	$\begin{gathered} 2.5 \\ (2 \cdot 1 \text { to } 3 \cdot 1) \end{gathered}$	$\begin{aligned} & -63 \cdot 8 \\ & (-71 \cdot 5 \text { to }-55 \cdot 7) \end{aligned}$	$\begin{gathered} 0.15 \\ (0.13 \text { to } 0.17) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -63 \cdot 3 \\ & (-70 \cdot 9 \text { to }-55 \cdot 2) \end{aligned}$	$7053 \cdot 4$ (6269.6 to 7908.2)	$\begin{aligned} & 65 \cdot 3 \\ & (58 \cdot 1 \text { to } 73 \cdot 2) \end{aligned}$	$\begin{aligned} & 15.6 \\ & (1.5 \text { to } 31 \cdot 9) \end{aligned}$	$\begin{gathered} 2 \cdot 12 \\ (2 \cdot 02 \text { to } 2 \cdot 22) \end{gathered}$	$\begin{gathered} 0.74 \\ (0.68 \text { to } 0.8) \end{gathered}$	$\begin{gathered} -1 \cdot 4 \\ (-10 \cdot 0 \text { to } 8 \cdot 4) \end{gathered}$
Singapore	$\begin{gathered} 11 \cdot 1 \\ (8 \cdot 3 \text { to } 13 \cdot 4) \end{gathered}$	$\begin{gathered} 5 \cdot 8 \\ (4 \cdot 3 \text { to } 7 \cdot 0) \end{gathered}$	$\begin{aligned} & -32 \cdot 5 \\ & (-43 \cdot 6 \text { to }-18 \cdot 1) \end{aligned}$	$\begin{gathered} 0.10 \\ (0.09 \text { to } 0.11) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -32 \cdot 2 \\ & (-43 \cdot 2 \text { to }-18 \cdot 1) \end{aligned}$	$\begin{gathered} 4253 \cdot 2 \\ (3899 \cdot 8 \text { to } 4618 \cdot 1) \end{gathered}$	$\begin{aligned} & 108 \cdot 4 \\ & \text { (99.4 to 117.7) } \end{aligned}$	$\begin{aligned} & 63 \cdot 1 \\ & (47 \cdot 3 \text { to } 81 \cdot 5) \end{aligned}$	$\begin{gathered} 1.19 \\ (1.14 \text { to } 1.25) \end{gathered}$	$\begin{aligned} & \quad 0.44 \\ & (0.41 \text { to } \\ & 0.48) \end{aligned}$	$\begin{aligned} & 32 \cdot 3 \\ & (21 \cdot 9 \text { to } 43 \cdot 6) \end{aligned}$
South Korea	$\begin{gathered} 39 \cdot 5 \\ \text { (30.9 to } 50 \cdot 5 \text {) } \end{gathered}$	$\begin{gathered} 1.7 \\ \text { (1.4 to } 2 \cdot 2) \end{gathered}$	$\begin{aligned} & -53 \cdot 3 \\ & (-63 \cdot 7 \text { to }-38 \cdot 9) \end{aligned}$	$\begin{gathered} 0.82 \\ (0.72 \text { to } 0.95) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.03 \text { to } 0.04) \end{gathered}$	$-52 \cdot 4$ $(-62 \cdot 8$ to -38.4)	$\begin{aligned} & 13583 \cdot 1 \\ & \text { (11974.6 to } \\ & 15291 \cdot 9) \end{aligned}$	$\begin{aligned} & 27.0 \\ & (23.8 \text { to } 30.4) \end{aligned}$	$\begin{aligned} & 97 \cdot 1 \\ & \text { (71.1 to 125•5) } \end{aligned}$	$\begin{gathered} 8.56 \\ (8.19 \text { to } 8.93) \end{gathered}$	$\begin{gathered} 1.48 \\ \text { (1.34 to } 1.62) \end{gathered}$	$\begin{aligned} & 50 \cdot 9 \\ & (35 \cdot 7 \text { to } 67 \cdot 2) \end{aligned}$
Spain	$\begin{gathered} 28 \cdot 3 \\ \text { (22.9 to } 35 \cdot 2 \text {) } \end{gathered}$	$\begin{gathered} 1.3 \\ (1.1 \text { to } 1.6) \end{gathered}$	$\begin{aligned} & -48 \cdot 8 \\ & (-59 \cdot 3 \text { to }-34 \cdot 8) \end{aligned}$		$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{aligned} & -47 \cdot 9 \\ & (-58 \cdot 4 \text { to }-34 \cdot 2) \end{aligned}$	$\begin{aligned} & 14027 \cdot 1 \\ & (12316 \cdot 2 \text { to } \\ & 15910 \cdot 7) \end{aligned}$	$\begin{aligned} & 28 \cdot 8 \\ & (25 \cdot 3 \text { to } 32 \cdot 6) \end{aligned}$	$\begin{gathered} 9.6 \\ (-4.8 \text { to } 27 \cdot 7) \end{gathered}$	$\begin{gathered} 5 \cdot 98 \\ (5 \cdot 71 \text { to } 6 \cdot 25) \end{gathered}$	$\begin{gathered} 1 \cdot 37 \\ (1.24 \text { to } 1 \cdot 5) \end{gathered}$	$\begin{gathered} -4 \cdot 8 \\ (-13 \cdot 4 \text { to } 6 \cdot 4) \end{gathered}$
Sweden	$\begin{gathered} 7.5 \\ (4.5 \text { to } 9.7) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.8 \text { to } 1.7) \end{gathered}$	$\begin{aligned} & -23 \cdot 0 \\ & (-38 \cdot 8 \text { to }-2 \cdot 4) \end{aligned}$	$\begin{gathered} 0.13 \\ (0.11 \text { to } 0.15) \end{gathered}$	$\begin{gathered} 0.01 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -22 \cdot 1 \\ & (-37 \cdot 6 \text { to }-1 \cdot 7) \end{aligned}$	$\begin{gathered} 3290 \cdot 2 \\ (2905 \cdot 5 \text { to } 3753 \cdot 9) \end{gathered}$	$\begin{aligned} & 33 \cdot 5 \\ & (29 \cdot 6 \text { to } 38 \cdot 3) \end{aligned}$	$\begin{gathered} -2 \cdot 9 \\ (-16 \cdot 1 \text { to } 10 \cdot 8) \end{gathered}$	$\begin{gathered} 1.13 \\ (1.07 \text { to } 1 \cdot 18) \end{gathered}$	$\begin{gathered} 0.3 \\ (0.27 \text { to } 0.33) \end{gathered}$	$\begin{gathered} -6 \cdot 8 \\ (-16 \cdot 4 \text { to } 3 \cdot 9) \end{gathered}$
Switzerland	$\begin{gathered} 9 \cdot 0 \\ \text { (7.2 to } 11 \cdot 3 \text {) } \end{gathered}$	$\begin{gathered} 2.2 \\ (1.7 \text { to } 2.7) \end{gathered}$	$\begin{aligned} & -14 \cdot 3 \\ & (-33 \cdot 8 \text { to } 9 \cdot 2) \end{aligned}$	$\begin{gathered} 0.14 \\ (0.12 \text { to } 0.16) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -13 \cdot 9 \\ & (-32 \cdot 8 \text { to } 9 \cdot 2) \end{aligned}$	$\begin{gathered} 1858 \cdot 6 \\ (1613 \cdot 9 \text { to } 2138 \cdot 5) \end{gathered}$	$\begin{aligned} & 22 \cdot 5 \\ & (19 \cdot 5 \text { to } 25 \cdot 8) \end{aligned}$	$\begin{gathered} 1 \cdot 7 \\ (-13 \cdot 5 \text { to } 18 \cdot 2) \end{gathered}$	$\begin{gathered} 1.08 \\ (1.03 \text { to } 1.13) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.16 \text { to } 0.19) \end{gathered}$	$\begin{gathered} -5 \cdot 1 \\ (-15 \cdot 1 \text { to } 5 \cdot 9) \end{gathered}$
UK	$\begin{aligned} & 151 \cdot 2 \\ & \text { (129.9 to } \\ & 168 \cdot 5 \text {) } \end{aligned}$	$\begin{gathered} 3.8 \\ (3 \cdot 2 \text { to } 4 \cdot 2) \end{gathered}$	$\begin{aligned} & -19 \cdot 0 \\ & (-27.9 \text { to }-9.0) \end{aligned}$	$\begin{gathered} 1.68 \\ \text { (1.47to } 1.91) \end{gathered}$	$\begin{gathered} 0.13 \\ (0.11 \text { to } 0.15) \end{gathered}$	$\begin{aligned} & -18 \cdot 7 \\ & (-27 \cdot 3 \text { to }-9 \cdot 0) \end{aligned}$	$\begin{aligned} & 39930 \cdot 4 \\ & (37967 \cdot 4 \text { to } \\ & 41942 \cdot 9) \end{aligned}$	$\begin{aligned} & 62 \cdot 2 \\ & (59 \cdot 1 \text { to } 65 \cdot 3) \end{aligned}$	$\begin{gathered} -3 \cdot 4 \\ (-8.2 \text { to } 1 \cdot 3) \end{gathered}$	13.56 (13.03 to 14.09)	$\begin{gathered} 3.79 \\ \text { (3.61 to } 3.96 \text {) } \end{gathered}$	$\begin{aligned} & -10.5 \\ & (-14.5 \text { to }-6.4) \end{aligned}$
USA	$\begin{aligned} & 538 \cdot 5 \\ & (480 \cdot 9 \text { to } \\ & 604 \cdot 8) \end{aligned}$	$\begin{gathered} 2.7 \\ (2.4 \text { to } 3.0) \end{gathered}$	$\begin{aligned} & -36 \cdot 8 \\ & (-43 \cdot 8 \text { to }-28 \cdot 6) \end{aligned}$	$\begin{gathered} 6.03 \\ (5.40 \text { to } 6.71) \end{gathered}$	$\begin{gathered} 0.47 \\ (0.42 \text { to } 0.53) \end{gathered}$	$\begin{aligned} & -36 \cdot 5 \\ & (-43 \cdot 3 \text { to }-28 \cdot 5) \end{aligned}$	$\begin{aligned} & 91996 \cdot 2 \\ & (88094 \cdot 3 \text { to } \\ & 96175 \cdot 8) \end{aligned}$	$\begin{aligned} & 28 \cdot 4 \\ & (27.2 \text { to } 29.7) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6 \text { to } 12.6) \end{gathered}$	$\begin{aligned} & 53 \cdot 35 \\ & \text { (51.61 to } \\ & 55.02) \end{aligned}$	$12 \cdot 47$ (12.01 to 13.02)	$\begin{gathered} 5 \cdot 1 \\ (0.9 \text { to } 9.6) \end{gathered}$
Uruguay	$\begin{gathered} 36 \cdot 4 \\ (25 \cdot 7 \text { to } 50 \cdot 0) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (10.6 \text { to } \\ & 20 \cdot 5) \end{aligned}$	$\begin{aligned} & -45 \cdot 2 \\ & (-62 \cdot 3 \text { to }-23 \cdot 6) \end{aligned}$	$\begin{gathered} 0.37 \\ (0.24 \text { to } 0.31) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{aligned} & -44 \cdot 7 \\ & (-61 \cdot 6 \text { to }-23 \cdot 3) \end{aligned}$	$\begin{gathered} 1844 \cdot 2 \\ (1625 \cdot 2 \text { to } 2075 \cdot 8) \end{gathered}$	$\begin{aligned} & 53 \cdot 7 \\ & (47 \cdot 3 \text { to } 60 \cdot 4) \end{aligned}$	$\begin{gathered} 18 \cdot 9 \\ (3.0 \text { to } 36 \cdot 9) \end{gathered}$	$\begin{gathered} 1 \cdot 26 \\ (1 \cdot 20 \text { to } 1 \cdot 31) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.22 \text { to } 0.26) \end{gathered}$	$\begin{gathered} -5 \cdot 0 \\ (-14 \cdot 3 \text { to } 4 \cdot 6) \end{gathered}$
Latin America and Caribbean	$\begin{aligned} & \quad 21423 \cdot 8 \\ & (19529 \cdot 9 \text { to } \\ & 23622 \cdot 2) \end{aligned}$	44.1 (40.2 to 48.6)	$\begin{aligned} & -45 \cdot 3 \\ & (-49 \cdot 9 \text { to } \\ & -40 \cdot 6) \end{aligned}$	$\begin{aligned} & 63.84 \\ & (56.83 \text { to } \\ & 71.72) \end{aligned}$	$\begin{aligned} & 18.51 \\ & (16.87 \text { to } \\ & 20.37) \end{aligned}$	$\begin{aligned} & -45 \cdot 2 \\ & (-49 \cdot 7 \text { to } \\ & -40 \cdot 5) \end{aligned}$	$\begin{aligned} & 186860 \cdot 6 \\ & (160496 \cdot 9 \text { to } \\ & 199589 \cdot 1) \end{aligned}$	$\begin{aligned} & 32.8 \\ & (28.2 \text { to } 35.0) \end{aligned}$	$\begin{aligned} & 17.0 \\ & \text { (11.2 to 23.5) } \end{aligned}$	$\begin{aligned} & 191.43 \\ & (182 \cdot 52 \text { to } \\ & 200 \cdot 70) \end{aligned}$	$47 \cdot 12$ (42.5 to 49.71)	$\begin{aligned} & -18.9 \\ & (-23.0 \text { to }-14.8) \end{aligned}$
Antigua and Barbuda	$\begin{gathered} 2.1 \\ (1.4 \text { to } 3.0) \end{gathered}$	$\begin{aligned} & 28.5 \\ & (19 \cdot 2 \text { to } \\ & 41 \cdot 0) \end{aligned}$	$\begin{aligned} & -24.8 \\ & (-44.7 \text { to }-0.9) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -24 \cdot 5 \\ & (-44 \cdot 2 \text { to }-0 \cdot 7) \end{aligned}$	$\begin{gathered} 30 \cdot 4 \\ (26 \cdot 5 \text { to } 34 \cdot 5) \end{gathered}$	$\begin{aligned} & 33 \cdot 1 \\ & \text { (28.8 to } 37.5 \text {) } \end{aligned}$	$\begin{gathered} 1 \cdot 3 \\ (-13 \cdot 2 \text { to } 16 \cdot 7) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.04 \text { to } 0.04) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} -6 \cdot 3 \\ (-16 \cdot 6 \text { to } 6 \cdot 0) \end{gathered}$
(Table 1 continues on next page)												

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Barbados	$\begin{array}{r} 4.8 \\ (2.8 \text { to } 8.1) \end{array}$	$\begin{aligned} & 28.0 \\ & (16 \cdot 4 \text { to } \\ & 47.7) \end{aligned}$	$\begin{aligned} & -29 \cdot 3 \\ & (-61 \cdot 8 \text { to 30.1) } \end{aligned}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -29.0 \\ & (-61 \cdot 3 \text { to } 29.8) \end{aligned}$	$\begin{gathered} 200 \cdot 0 \\ \text { (173.4 to } 228 \cdot 7 \text {) } \end{gathered}$	$\begin{aligned} & 70 \cdot 5 \\ & (61 \cdot 1 \text { to } 80 \cdot 6) \end{aligned}$	$\begin{gathered} 13 \cdot 4 \\ (-3 \cdot 3 \text { to } 33 \cdot 9) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.14 \text { to } 0.16) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.03 \text { to } 0.03) \end{gathered}$	$\begin{gathered} 3.6 \\ (-10.0 \text { to } 19.6) \end{gathered}$
Belize	$\begin{gathered} 15 \cdot 6 \\ \text { (9.9 to } 24.9 \text {) } \end{gathered}$	$\begin{aligned} & 40 \cdot 1 \\ & (25 \cdot 4 \text { to } \\ & 64 \cdot 0) \end{aligned}$	$\begin{aligned} & -19 \cdot 3 \\ & (-52 \cdot 8 \text { to } 38 \cdot 3) \end{aligned}$	$\begin{aligned} & 0.07 \\ & (0.06 \text { to } \\ & 0.08) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -19 \cdot 1 \\ & (-52 \cdot 4 \text { to } 38 \cdot 0) \end{aligned}$	$\begin{gathered} 107.0 \\ (92.4 \text { to } 123.0) \end{gathered}$	$\begin{aligned} & 29 \cdot 8 \\ & (25 \cdot 8 \text { to } 34 \cdot 3) \end{aligned}$	$\begin{gathered} 20 \cdot 3 \\ (4 \cdot 3 \text { to } 38 \cdot 8) \end{gathered}$	$\begin{gathered} 0.16 \\ (0.15 \text { to } 0.18) \end{gathered}$	$\begin{aligned} & \quad 0.03 \\ & \text { (0.03 to } \\ & 0.04) \end{aligned}$	$\begin{gathered} 2.7 \\ (-19.6 \text { to } 31 \cdot 3) \end{gathered}$
Bermuda	$\begin{array}{r} 0.2 \\ (0.1 \text { to } 0.3) \end{array}$	$\begin{gathered} 5 \cdot 5 \\ (3.5 \text { to } 8.2) \end{gathered}$	$\begin{aligned} & -45 \cdot 0 \\ & (-67.5 \text { to }-10.8) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -43 \cdot 3 \\ & (-64 \cdot 9 \text { to }-9 \cdot 9) \end{aligned}$	$\begin{gathered} 16 \cdot 1 \\ \text { (13.9 to } 18 \cdot 5 \text {) } \end{gathered}$	$\begin{aligned} & 24.1 \\ & (20.8 \text { to } 27.7) \end{aligned}$	$\begin{aligned} & 15 \cdot 6 \\ & (-1 \cdot 3 \text { to } 35 \cdot 1) \end{aligned}$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -2 \cdot 4 \\ & (-15 \cdot 0 \text { to } 12 \cdot 4) \end{aligned}$
Bolivia	$\begin{aligned} & \quad 930 \cdot 6 \\ & (630 \cdot 8 \text { to } \\ & 1326 \cdot 1) \end{aligned}$	75.8 (51.4 to 108.0)	$\begin{aligned} & -59 \cdot 4 \\ & (-71 \cdot 3 \text { to }-43 \cdot 3) \end{aligned}$	$\begin{gathered} 2.79 \\ (2.40 \text { to } 3 \cdot 20) \end{gathered}$	$\begin{gathered} 0.81 \\ (0.55 \text { to } 1.15) \end{gathered}$	$\begin{aligned} & -59 \cdot 2 \\ & (-71 \cdot 1 \text { to }-43 \cdot 2) \end{aligned}$	$\begin{gathered} 7021 \cdot 0 \\ \text { (} 5516 \cdot 1 \text { to } 8656 \cdot 8 \text {) } \end{gathered}$	$\begin{aligned} & 65 \cdot 2 \\ & (51 \cdot 2 \text { to } 80 \cdot 4) \end{aligned}$	$\begin{gathered} 3 \cdot 8 \\ (-14 \cdot 9 \text { to } 25 \cdot 3) \end{gathered}$	$\begin{gathered} 7.40 \\ (6.92 \text { to } 7.87) \end{gathered}$	$\begin{gathered} 1.81 \\ \text { (1.49 to } 2.22 \text {) } \end{gathered}$	$\begin{aligned} & -36 \cdot 9 \\ & (-47 \cdot 3 \text { to }-24 \cdot 3) \end{aligned}$
Brazil	$\begin{aligned} & 4677 \cdot 3 \\ & (4125 \cdot 4 \text { to } \\ & 5300 \cdot 3) \end{aligned}$	$\begin{aligned} & 31 \cdot 1 \\ & (27 \cdot 4 \text { to } \\ & 35 \cdot 3) \end{aligned}$	$\begin{aligned} & -51 \cdot 3 \\ & (-57 \cdot 1 \text { to }-45 \cdot 4) \end{aligned}$	$\begin{aligned} & 23 \cdot 31 \\ & (20.63 \text { to } \\ & 26.30) \end{aligned}$	$\begin{gathered} 4.06 \\ (3.58 \text { to } 4.6) \end{gathered}$	$\begin{aligned} & -51 \cdot 1 \\ & (-56 \cdot 9 \text { to }-45 \cdot 2) \end{aligned}$	$\begin{aligned} & 75602 \cdot 0 \\ & \text { (55632.8 to } \\ & 84415 \cdot 7) \end{aligned}$	$\begin{aligned} & 36 \cdot 4 \\ & (26.8 \text { to } 40.6) \end{aligned}$	$\begin{aligned} & 31 \cdot 6 \\ & (19 \cdot 0 \text { to } 43 \cdot 1) \end{aligned}$	89.83 (85.98 to 93.76)	$\begin{aligned} & 16 \cdot 45 \\ & (13 \cdot 2 \text { to } \\ & 17 \cdot 91) \end{aligned}$	$\begin{aligned} & -10 \cdot 1 \\ & (-19 \cdot 7 \text { to }-2 \cdot 9) \end{aligned}$
Colombia	$\begin{aligned} & \quad 1234 \cdot 9 \\ & (905.0 \text { to } \\ & 1683.7) \end{aligned}$	$\begin{aligned} & 32.7 \\ & (24.0 \text { to } \\ & 44.6) \end{aligned}$	$\begin{aligned} & -43 \cdot 6 \\ & (-59 \cdot 0 \text { to }-22 \cdot 7) \end{aligned}$	$\begin{gathered} 4.57 \\ \text { (} 4.02 \text { to } 5 \cdot 17 \text {) } \end{gathered}$	$\begin{gathered} 1.07 \\ (0.79 \text { to } 1.46) \end{gathered}$	$\begin{aligned} & -43 \cdot 4 \\ & (-58 \cdot 7 \text { to }-22 \cdot 6) \end{aligned}$	$\begin{gathered} 8230 \cdot 5 \\ (7531 \cdot 4 \text { to } 9056 \cdot 1) \end{gathered}$	$\begin{aligned} & 17.1 \\ & \text { (15.6 to 18.8) } \end{aligned}$	$\begin{gathered} 3.3 \\ (-7.0 \text { to 14.9) } \end{gathered}$	$\begin{gathered} 10.60 \\ (9.95 \text { to } 11.29) \end{gathered}$	$\begin{gathered} 2.33 \\ \text { (2.04 to } 2.71 \text {) } \end{gathered}$	$\begin{aligned} & -24 \cdot 2 \\ & (-35 \cdot 1 \text { to }-10 \cdot 3) \end{aligned}$
Costa Rica	$\begin{gathered} 36 \cdot 5 \\ (24 \cdot 2 \text { to } 53 \cdot 8) \end{gathered}$	$\begin{aligned} & 10.4 \\ & (6.9 \text { to } 15.3) \end{aligned}$	$\begin{aligned} & -46 \cdot 0 \\ & (-62 \cdot 4 \text { to }-23 \cdot 2) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (0.38 \text { to } \\ & 0.49) \end{aligned}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.05) \end{gathered}$	$\begin{aligned} & -45 \cdot 2 \\ & (-61 \cdot 5 \text { to }-22 \cdot 9) \end{aligned}$	$\begin{gathered} 607 \cdot 1 \\ (541.7 \text { to } 681 \cdot 4) \end{gathered}$	$\begin{aligned} & 12 \cdot 6 \\ & (11 \cdot 3 \text { to } 14 \cdot 2) \end{aligned}$	$\begin{aligned} & 21.5 \\ & (6.9 \text { to } 36.8) \end{aligned}$	$\begin{gathered} 1.06 \\ (0.99 \text { to } 1.13) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.1 \text { to } 0.13) \end{gathered}$	$\begin{gathered} -9 \cdot 8 \\ (-21 \cdot 3 \text { to } 2 \cdot 6) \end{gathered}$
Cuba	$\begin{gathered} 66 \cdot 8 \\ \text { (55.1 to } 78 \cdot 5 \text {) } \end{gathered}$	$\begin{gathered} 11 \cdot 3 \\ (9 \cdot 3 \text { to } 13 \cdot 3) \end{gathered}$	$\begin{aligned} & -33 \cdot 3 \\ & (-44 \cdot 5 \text { to }-20 \cdot 6) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (0.65 \text { to } \\ & 0.86) \end{aligned}$	$\begin{gathered} 0.06 \\ (0.05 \text { to } 0.07) \end{gathered}$	$\begin{aligned} & -32.8 \\ & (-43.9 \text { to }-20.4) \end{aligned}$	$\begin{gathered} 7016 \cdot 0 \\ (6239 \cdot 0 \text { to } 7855 \cdot 3) \end{gathered}$	$\begin{aligned} & 61 \cdot 6 \\ & (54 \cdot 8 \text { to } 69 \cdot 0) \end{aligned}$	$\begin{gathered} 13 \cdot 3 \\ (-0.2 \text { to } 27 \cdot 8) \end{gathered}$	$\begin{gathered} 4.72 \\ (4.51 \text { to } 4.93) \end{gathered}$	$\begin{gathered} 0.83 \\ (0.77 \text { to } 0.91) \end{gathered}$	$\begin{gathered} 0.5 \\ (-8.3 \text { to 10.0 }) \end{gathered}$
Dominica	$\begin{array}{r} 3.0 \\ \text { (1.8 to } 4.8 \text {) } \end{array}$	$53 \cdot 8$ (32.5 to 85.8)	$\begin{gathered} 2 \cdot 5 \\ (-33 \cdot 1 \text { to } 55 \cdot 2) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{gathered} 2.5 \\ (-32 \cdot 9 \text { to } 54.8) \end{gathered}$	$\begin{gathered} 28.4 \\ (23 \cdot 4 \text { to } 34 \cdot 6) \end{gathered}$	$\begin{aligned} & 39 \cdot 6 \\ & (32 \cdot 7 \text { to } 48 \cdot 3) \end{aligned}$	$\begin{aligned} & 21 \cdot 9 \\ & (-1 \cdot 4 \text { to } 43 \cdot 9) \end{aligned}$	$\begin{gathered} 0.03 \\ (0.03 \text { to } 0.04) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{gathered} 11 \cdot 4 \\ (-8.0 \text { to } 35.6) \end{gathered}$
Dominican Republic	$\begin{aligned} & 536 \cdot 6 \\ & (404 \cdot 1 \text { to } \\ & 708 \cdot 3) \end{aligned}$	$\begin{aligned} & 50 \cdot 5 \\ & \text { (38.0 to } \\ & 66.6 \text {) } \end{aligned}$	$\begin{aligned} & -37 \cdot 8 \\ & (-54 \cdot 4 \text { to }-13 \cdot 0) \end{aligned}$	$\begin{gathered} 2.04 \\ (1.78 \text { to } 2 \cdot 33) \end{gathered}$	$\begin{gathered} 0.46 \\ (0.35 \text { to } 0.61) \end{gathered}$	$\begin{aligned} & -37 \cdot 6 \\ & (-54 \cdot 1 \text { to }-12 \cdot 9) \end{aligned}$	$\begin{gathered} 2532 \cdot 7 \\ (2090 \cdot 6 \text { to } 2928 \cdot 0) \end{gathered}$	$\begin{aligned} & 24 \cdot 1 \\ & (19 \cdot 9 \text { to } 27 \cdot 8) \end{aligned}$	$\begin{gathered} 12.3 \\ (-2.9 \text { to } 30 \cdot 9) \end{gathered}$	$\begin{gathered} 4.71 \\ (4.40 \text { to } 5.05) \end{gathered}$	0.81 (0.67 to 0.96)	$\begin{aligned} & -21 \cdot 1 \\ & (-35 \cdot 0 \text { to }-1 \cdot 8) \end{aligned}$
Ecuador	$\begin{aligned} & 1099 \cdot 1 \\ & (892 \cdot 2 \text { to } \\ & 1360 \cdot 0) \end{aligned}$	$\begin{aligned} & 67 \cdot 8 \\ & \text { (55.1 to } \\ & 83 \cdot 9) \end{aligned}$	$\begin{aligned} & -43 \cdot 6 \\ & (-54 \cdot 0 \text { to }-30 \cdot 9) \end{aligned}$	$\begin{gathered} 1.75 \\ \text { (1.54 to } 1.96) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.77 \text { to } 1.17) \end{gathered}$	$\begin{aligned} & -43 \cdot 6 \\ & (-54 \cdot 0 \text { to }-30 \cdot 9) \end{aligned}$	$\begin{gathered} 6569 \cdot 5 \\ (5763 \cdot 2 \text { to } 7768 \cdot 5) \end{gathered}$	$\begin{aligned} & 40 \cdot 7 \\ & (35 \cdot 7 \text { to } 48 \cdot 1) \end{aligned}$	$\begin{gathered} 5 \cdot 2 \\ (-7 \cdot 2 \text { to } 17 \cdot 2) \end{gathered}$	$\begin{gathered} 4.75 \\ (4.51 \text { to } 5.00) \end{gathered}$	$\begin{gathered} 1.84 \\ (1.63 \text { to } 2 \cdot 14) \end{gathered}$	$\begin{aligned} & -25 \cdot 3 \\ & (-34 \cdot 5 \text { to }-15 \cdot 4) \end{aligned}$
El Salvador	$\begin{aligned} & \quad 156 \cdot 2 \\ & (104 \cdot 3 \text { to } \\ & 223 \cdot 9) \end{aligned}$	$\begin{gathered} 29 \cdot 4 \\ (19.7 \text { to } \\ 42 \cdot 2) \end{gathered}$	$\begin{aligned} & -60 \cdot 0 \\ & (-74 \cdot 1 \text { to }-41 \cdot 0) \end{aligned}$	$\begin{gathered} 0.64 \\ (0.56 \text { to } 0.74) \end{gathered}$	$\begin{gathered} 0.14 \\ (0.09 \text { to } 0.19) \end{gathered}$	$\begin{aligned} & -59.8 \\ & (-73 \cdot 9 \text { to }-40 \cdot 8) \end{aligned}$	$\begin{gathered} 2474 \cdot 8 \\ \text { (1797.9 to } 2895 \cdot 6 \text {) } \end{gathered}$	$\begin{aligned} & 40 \cdot 3 \\ & (29 \cdot 3 \text { to } 47 \cdot 2) \end{aligned}$	$\begin{gathered} 6.4 \\ (-8.2 \text { to } 20.0) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.61 \text { to } 1.82) \end{gathered}$	$\quad 0.54$ (0.44 to 0.63)	$\begin{aligned} & -27 \cdot 4 \\ & (-38 \cdot 2 \text { to }-15 \cdot 1) \end{aligned}$
Grenada	$\begin{array}{r} 4 \cdot 6 \\ (2.5 \text { to } 7 \cdot 9) \end{array}$	$\begin{aligned} & 45 \cdot 5 \\ & (24.7 \text { to } \\ & 77 \cdot 9) \end{aligned}$	$\begin{aligned} & -7.6 \\ & (-50.6 \text { to } 74.5) \end{aligned}$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.02) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -7 \cdot 4 \\ & (-50 \cdot 1 \text { to } 74 \cdot 2) \end{aligned}$	$\begin{gathered} 63 \cdot 5 \\ \text { (} 55 \cdot 3 \text { to } 74 \cdot 7 \text {) } \end{gathered}$	$\begin{aligned} & 59 \cdot 4 \\ & (51 \cdot 7 \text { to } 69 \cdot 9) \end{aligned}$	$\begin{gathered} -1 \cdot 4 \\ (-15 \cdot 4 \text { to } 12 \cdot 7) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.05 \text { to } 0.06) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{gathered} -3 \cdot 1 \\ (-19 \cdot 2 \text { to } 17 \cdot 9) \end{gathered}$
Guatemala	$\begin{aligned} & 2994 \cdot 0 \\ & (2348 \cdot 2 \text { to } \\ & 3765 \cdot 9) \end{aligned}$	$\begin{aligned} & 142 \cdot 5 \\ & (111 \cdot 7 \text { to } \\ & 179 \cdot 2) \end{aligned}$	$\begin{aligned} & -46 \cdot 8 \\ & (-56 \cdot 2 \text { to }-35 \cdot 0) \end{aligned}$	$\begin{gathered} 3.89 \\ (3.41 \text { to } 4 \cdot 40) \end{gathered}$	$\begin{gathered} 2.57 \\ (2.02 \text { to } 3.23) \end{gathered}$	$\begin{aligned} & -46 \cdot 7 \\ & (-56 \cdot 1 \text { to }-35 \cdot 0) \end{aligned}$	$\begin{aligned} & 9940 \cdot 8 \\ & (8746 \cdot 0 \text { to } 11 \\ & 163 \cdot 9) \end{aligned}$	$\begin{aligned} & 60 \cdot 8 \\ & (53 \cdot 5 \text { to } 68 \cdot 3) \end{aligned}$	$\begin{aligned} & -17.1 \\ & (-26.8 \text { to }-8.0) \end{aligned}$	$\begin{gathered} 6 \cdot 61 \\ (6.10 \text { to } 7 \cdot 13) \end{gathered}$	$\begin{array}{r} 4.1 \\ (3 \cdot 48 \text { to } \\ 4.79) \end{array}$	$\begin{aligned} & -37 \cdot 3 \\ & (-45 \cdot 5 \text { to }-28 \cdot 2) \end{aligned}$
Guyana	$\begin{gathered} 33 \cdot 6 \\ \text { (24.0 to } 47.0) \end{gathered}$	$\begin{aligned} & 48.0 \\ & (34.3 \text { to } \\ & 67.0) \end{aligned}$	$\begin{aligned} & -44 \cdot 6 \\ & (-60 \cdot 0 \text { to }-24 \cdot 1) \end{aligned}$	$\begin{gathered} 0.12 \\ (0.10 \text { to } 0.14) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{aligned} & -44 \cdot 5 \\ & (-59 \cdot 8 \text { to }-23 \cdot 9) \end{aligned}$	$\begin{gathered} 248 \cdot 5 \\ (209 \cdot 7 \text { to } 285 \cdot 7) \end{gathered}$	$\begin{aligned} & 32 \cdot 3 \\ & (27 \cdot 2 \text { to } 37 \cdot 1) \end{aligned}$	$\begin{aligned} & -14 \cdot 3 \\ & (-25 \cdot 9 \text { to }-2 \cdot 9) \end{aligned}$	$\begin{gathered} 0.31 \\ (0.29 \text { to } 0.33) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.07 \text { to } 0.1) \end{gathered}$	$\begin{aligned} & -24 \cdot 6 \\ & (-35 \cdot 7 \text { to }-12 \cdot 1) \end{aligned}$
Haiti	$\begin{aligned} & 2384 \cdot 2 \\ & (1485 \cdot 2 \text { to } \\ & 3643 \cdot 7) \end{aligned}$	191.1 (119.0to 292.0)	$\begin{aligned} & -39 \cdot 7 \\ & (-63 \cdot 6 \text { to }-3 \cdot 5) \end{aligned}$	$\begin{gathered} 3.28 \\ (2.81 \text { to } 3.75) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.28 \text { to } 3.13) \end{gathered}$	$\begin{aligned} & -39 \cdot 6 \\ & (-63 \cdot 4 \text { to }-3 \cdot 5) \end{aligned}$	$\begin{gathered} 6015 \cdot 6 \\ (4657.6 \text { to } 7710 \cdot 6) \end{gathered}$	$\begin{aligned} & 56 \cdot 1 \\ & (43 \cdot 4 \text { to } 71 \cdot 9) \end{aligned}$	$\begin{aligned} & -12 \cdot 1 \\ & (-31 \cdot 5 \text { to } 12 \cdot 0) \end{aligned}$	$\begin{gathered} 6 \cdot 28 \\ (5.79 \text { to } 6.79) \end{gathered}$	$\begin{aligned} & \quad 2.93 \\ & \text { (2.09 to } \\ & 4.03) \end{aligned}$	$\begin{aligned} & -29 \cdot 5 \\ & (-51 \cdot 1 \text { to } 0 \cdot 1) \end{aligned}$
(Table 1 continues on next page)												

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Afghanistan	$\begin{aligned} & 19116 \cdot 3 \\ & (12797 \cdot 7 \mathrm{to} \\ & 26098 \cdot 6) \end{aligned}$		$\begin{aligned} & -37 \cdot 7 \\ & (-55 \cdot 4 \text { to }-16 \cdot 2) \end{aligned}$	$\begin{aligned} & 9.27 \\ & (7.96 \text { to } \\ & 10.82) \end{aligned}$	16.4 (10.99 to 22.35)	$\begin{aligned} & -37 \cdot 6 \\ & (-55 \cdot 3 \text { to }-16 \cdot 1) \end{aligned}$	$\begin{aligned} & 25847 \cdot 5 \\ & (18986 \cdot 5 \text { to } 33 \\ & 169 \cdot 1) \end{aligned}$	$\begin{aligned} & 79 \cdot 3 \\ & (58 \cdot 2 \text { to 101.7) } \end{aligned}$	$\begin{aligned} & -28 \cdot 9 \\ & (-44 \cdot 7 \text { to }-9 \cdot 3) \end{aligned}$	18.32 (16.59 to 20.18)	18.98 (13.31 to 25.02)	$\begin{aligned} & -33 \cdot 6 \\ & (-50 \cdot 5 \text { to }-12 \cdot 8) \end{aligned}$
Algeria	$\begin{aligned} & 949 \cdot 4 \\ & (602 \cdot 9 \text { to } \\ & 1374 \cdot 3) \end{aligned}$	$\begin{aligned} & 20.8 \\ & (13 \cdot 2 \text { to } \\ & 30 \cdot 2) \end{aligned}$	$\begin{aligned} & -19 \cdot 5 \\ & (-49 \cdot 2 \text { to } 25 \cdot 0) \end{aligned}$	$\begin{aligned} & 7.24 \\ & (6 \cdot 16 \text { to } \\ & 8 \cdot 49) \end{aligned}$	$\begin{gathered} 0.83 \\ (0.53 \text { to } 1.19) \end{gathered}$	$\begin{aligned} & -19 \cdot 0 \\ & (-48 \cdot 7 \text { to } 25 \cdot 3) \end{aligned}$	$\begin{gathered} 7772 \cdot 3 \\ (6488 \cdot 4 \text { to } 9162 \cdot 8) \end{gathered}$	$\begin{aligned} & 19 \cdot 6 \\ & (16 \cdot 4 \text { to } 23 \cdot 1) \end{aligned}$	$\begin{aligned} & 32 \cdot 5 \\ & (11 \cdot 4 \text { to } 58 \cdot 1) \end{aligned}$	18.36 (16.98 to 19.80)	$\begin{gathered} 2.22 \\ (1.83 \text { to } 2.64) \end{gathered}$	$\begin{gathered} 2.1 \\ (-15.6 \text { to } 24 \cdot 3) \end{gathered}$
Bahrain	$\begin{gathered} 8 \cdot 5 \\ \text { (5.9 to } 11 \cdot 1 \text {) } \end{gathered}$	$\begin{gathered} 8.6 \\ (6.0 \text { to 11.2) } \end{gathered}$	$\begin{aligned} & -29 \cdot 6 \\ & (-47 \cdot 0 \text { to }-5 \cdot 2) \end{aligned}$	$\begin{gathered} 0.13 \\ (0.11 \text { to } 0.15) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -28.7 \\ & (-46.0 \text { to }-4 \cdot 4) \end{aligned}$	$\begin{gathered} 86 \cdot 1 \\ \text { (69.6 to } 101 \cdot 8) \end{gathered}$	$\begin{gathered} 6 \cdot 3 \\ (5 \cdot 1 \text { to } 7 \cdot 4) \end{gathered}$	$\begin{aligned} & 21 \cdot 1 \\ & (1 \cdot 1 \text { to } 43 \cdot 8) \end{aligned}$	$\begin{gathered} 0.41 \\ (0.39 \text { to } 0.44) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{gathered} 4 \cdot 3 \\ (-12 \cdot 1 \text { to } 23 \cdot 6) \end{gathered}$
Egypt	$\begin{aligned} & 9759 \cdot 7 \\ & \text { (7022.8 to } \\ & 13347 \cdot 1 \text {) } \end{aligned}$	$\begin{aligned} & 83 \cdot 0 \\ & (59 \cdot 7 \text { to } \\ & 113 \cdot 5) \end{aligned}$	$\begin{aligned} & -32 \cdot 7 \\ & (-53 \cdot 3 \text { to }-4 \cdot 4) \end{aligned}$	$\begin{aligned} & 18.84 \\ & (16.53 \text { to } \\ & 21.22) \end{aligned}$	$\begin{aligned} & 8.43 \\ & (6.07 \text { to } \\ & 11.51) \end{aligned}$	$\begin{aligned} & -32 \cdot 6 \\ & (-53 \cdot 1 \text { to }-4 \cdot 3) \end{aligned}$	$\begin{aligned} & 23381 \cdot 7 \\ & (19935 \cdot 1 \text { to } \\ & 28468 \cdot 5) \end{aligned}$	$\begin{aligned} & 25 \cdot 7 \\ & (21 \cdot 9 \text { to } 31 \cdot 2) \end{aligned}$	$\begin{gathered} -6 \cdot 1 \\ (-20 \cdot 3 \text { to } 11.7) \end{gathered}$	$\begin{aligned} & 41.72 \\ & \text { (38.99 to } \\ & 44.81 \text {) } \end{aligned}$	11.74 (9.36 to 14.81)	$\begin{aligned} & -23 \cdot 0 \\ & (-40 \cdot 8 \text { to } 0 \cdot 4) \end{aligned}$
Iran	$\begin{aligned} & \quad 1161 \cdot 4 \\ & \text { (} 754 \cdot 2 \text { to } \\ & 1737 \cdot 4 \text {) } \end{aligned}$	$\begin{aligned} & 17 \cdot 1 \\ & (11 \cdot 1 \text { to } \\ & 25 \cdot 6) \end{aligned}$	$\begin{aligned} & -54 \cdot 1 \\ & (-72 \cdot 9 \text { to }-26 \cdot 5) \end{aligned}$	$\begin{aligned} & 10 \cdot 14 \\ & (8.79 \text { to } \\ & 11 \cdot 70) \end{aligned}$	$\begin{gathered} 1.02 \\ (0.67 \text { to } 1.51) \end{gathered}$	$\begin{aligned} & -53 \cdot 6 \\ & (-72 \cdot 1 \text { to }-26 \cdot 3) \end{aligned}$	$\begin{aligned} & 9733 \cdot 7 \\ & \text { (7234.5 to } \\ & 12030 \cdot 6 \text {) } \end{aligned}$	$\begin{aligned} & 12 \cdot 3 \\ & (9 \cdot 2 \text { to 15.2) } \end{aligned}$	$\begin{gathered} 9 \cdot 4 \\ (-19 \cdot 1 \text { to } 42 \cdot 5) \end{gathered}$	$\begin{aligned} & 30.39 \\ & (28.53 \text { to } \\ & 32.40) \end{aligned}$	$\begin{gathered} 2.82 \\ (2.25 \text { to } 3.41) \end{gathered}$	$\begin{aligned} & -23 \cdot 3 \\ & (-44 \cdot 2 \text { to } 1 \cdot 7) \end{aligned}$
Iraq	$\begin{aligned} & 2696 \cdot 3 \\ & (1872.4 \text { to } \\ & 3648.5) \end{aligned}$	$\begin{aligned} & 47 \cdot 1 \\ & (32.7 \text { to } \\ & 63 \cdot 7) \end{aligned}$	$\begin{aligned} & -33 \cdot 5 \\ & (-52 \cdot 0 \text { to }-9 \cdot 7) \end{aligned}$	$\begin{aligned} & 10 \cdot 35 \\ & \text { (8.88 to } \\ & 11.99) \end{aligned}$	$\begin{gathered} 2.34 \\ (1.63 \text { to } 3.16) \end{gathered}$	$\begin{aligned} & -33 \cdot 2 \\ & (-51 \cdot 6 \text { to }-9 \cdot 5) \end{aligned}$	$\begin{gathered} 5965 \cdot 8 \\ (4832.5 \text { to } 7134 \cdot 3) \end{gathered}$	$\begin{aligned} & 16 \cdot 4 \\ & (13 \cdot 3 \text { to } 19 \cdot 6) \end{aligned}$	$\begin{aligned} & -14 \cdot 1 \\ & (-30 \cdot 8 \text { to } 3 \cdot 3) \end{aligned}$	20.64 (18.85to 22.61)	$\begin{gathered} 3 \cdot 38 \\ (2 \cdot 59 \text { to } 4 \cdot 2) \end{gathered}$	$\begin{aligned} & -23 \cdot 7 \\ & (-40 \cdot 6 \text { to }-3 \cdot 8) \end{aligned}$
Jordan	$\begin{aligned} & 269 \cdot 7 \\ & (208.8 \text { to } \\ & 348 \cdot 3) \end{aligned}$	$\begin{gathered} 28 \cdot 2 \\ (21 \cdot 8 \text { to } \\ 36 \cdot 4) \end{gathered}$	$\begin{aligned} & -13 \cdot 6 \\ & (-35 \cdot 2 \text { to 14.9) } \end{aligned}$	$\begin{gathered} 1.53 \\ (1.32 \text { to } 1.75) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.18 \text { to } 0.3) \end{gathered}$	$\begin{aligned} & -13 \cdot 3 \\ & (-34 \cdot 8 \text { to 15.0) } \end{aligned}$	$\begin{gathered} 807 \cdot 3 \\ (687.8 \text { to } 933 \cdot 9) \end{gathered}$	$\begin{aligned} & 10 \cdot 7 \\ & (9 \cdot 1 \text { to 12•3) } \end{aligned}$	$\begin{gathered} 9 \cdot 3 \\ (-7.8 \text { to } 30 \cdot 6) \end{gathered}$	$\begin{gathered} 3.28 \\ (3.03 \text { to } 3.54) \end{gathered}$	$\begin{gathered} 0.36 \\ (0.31 \text { to } 0.43) \end{gathered}$	$\begin{aligned} & -4 \cdot 5 \\ & (-21.5 \text { to } 16 \cdot 8) \end{aligned}$
Kuwait	$\begin{gathered} 36 \cdot 2 \\ (27 \cdot 3 \text { to } 48 \cdot 7) \end{gathered}$	$\begin{gathered} 10 \cdot 1 \\ (7 \cdot 6 \text { to } 13 \cdot 7) \end{gathered}$	$\begin{aligned} & 6.0 \\ & (-23.0 \text { to } 44.5) \end{aligned}$	$\begin{gathered} 0.45 \\ (0.40 \text { to } 0.52) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{gathered} 6.8 \\ (-21 \cdot 6 \text { to } 44.8) \end{gathered}$	$\begin{gathered} 305 \cdot 3 \\ (268.0 \text { to } 350 \cdot 0) \end{gathered}$	$\begin{gathered} 7.8 \\ (6.9 \text { to } 9.0) \end{gathered}$	$\begin{aligned} & 56 \cdot 5 \\ & \text { (35.4 to 79.9) } \end{aligned}$	$\begin{gathered} 1.28 \\ (1.21 \text { to } 1.36) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.08 \text { to } 0.11) \end{gathered}$	$\begin{aligned} & 34.3 \\ & (15.5 \text { to } 57.9) \end{aligned}$
Lebanon	$\begin{gathered} 25 \cdot 3 \\ (14 \cdot 4 \text { to } 41 \cdot 4) \end{gathered}$	$\begin{gathered} 6.8 \\ \text { (3.9 to 11.1) } \end{gathered}$	$\begin{aligned} & -44 \cdot 4 \\ & (-67 \cdot 4 \text { to }-4 \cdot 0) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.58 \text { to } \\ & 0.78) \end{aligned}$	$\begin{gathered} 0.02 \\ (0.01 \text { to } 0.04) \end{gathered}$	$\begin{aligned} & -42 \cdot 8 \\ & (-65 \cdot 4 \text { to }-2 \cdot 9) \end{aligned}$	$\begin{gathered} 334 \cdot 8 \\ (243 \cdot 4 \text { to } 439 \cdot 5) \end{gathered}$	$\begin{gathered} 5 \cdot 8 \\ (4 \cdot 2 \text { to } 7 \cdot 6) \end{gathered}$	$\begin{aligned} & 38 \cdot 6 \\ & (6 \cdot 1 \text { to } 78 \cdot 1) \end{aligned}$	$\begin{gathered} 2.27 \\ (2.14 \text { to } 2 \cdot 41) \end{gathered}$	$\begin{aligned} & 0.08 \\ & \text { (0.06 to } \\ & 0.09) \end{aligned}$	$\begin{aligned} & -5 \cdot 1 \\ & (-26 \cdot 2 \text { to } 24 \cdot 7) \end{aligned}$
Libya	$\begin{aligned} & \quad 100 \cdot 8 \\ & (66.6 \text { to } \\ & 146.6) \end{aligned}$	$\begin{aligned} & 15 \cdot 1 \\ & (10.0 \text { to } \\ & 22.0) \end{aligned}$	$\begin{aligned} & -43 \cdot 6 \\ & (-61 \cdot 9 \text { to }-14 \cdot 9) \end{aligned}$	$\begin{gathered} 1.00 \\ (0.85 \text { to } 1.19) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.06 \text { to 0.13) } \end{gathered}$	$\begin{aligned} & -43 \cdot 2 \\ & (-61 \cdot 3 \text { to }-14 \cdot 9) \end{aligned}$	$\begin{gathered} 1006 \cdot 3 \\ (785 \cdot 4 \text { to } 1242 \cdot 5) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (12.5 \text { to } 19.7) \end{aligned}$	$\begin{aligned} & 15 \cdot 2 \\ & (-8.7 \text { to } 42 \cdot 0) \end{aligned}$	$\begin{gathered} 2.81 \\ (2.60 \text { to } 3.04) \end{gathered}$	$\begin{gathered} 0.29 \\ (0.23 \text { to } 0.34) \end{gathered}$	$\begin{aligned} & -12 \cdot 1 \\ & (-28.7 \text { to } 6 \cdot 5) \end{aligned}$
Morocco	$\begin{aligned} & 991 \cdot 7 \\ & (676 \cdot 8 \text { to } \\ & 1417 \cdot 2) \end{aligned}$	$\begin{aligned} & 29.0 \\ & (19.8 \text { to } \\ & 41.5) \end{aligned}$	$\begin{aligned} & -47 \cdot 8 \\ & (-64 \cdot 1 \text { to }-25 \cdot 8) \end{aligned}$		$\begin{gathered} 0.86 \\ (0.59 \text { to } 1.22) \end{gathered}$	$\begin{aligned} & -47 \cdot 6 \\ & (-63 \cdot 8 \text { to }-25 \cdot 9) \end{aligned}$	$\begin{aligned} & \quad 8631 \cdot 4 \\ & (6650 \cdot 8 \text { to } 11 \\ & 279 \cdot 2) \end{aligned}$	$\begin{aligned} & 25 \cdot 1 \\ & (19 \cdot 3 \text { to } 32 \cdot 8) \end{aligned}$	$\begin{aligned} & 10 \cdot 8 \\ & (-12 \cdot 9 \text { to } 37 \cdot 4) \end{aligned}$	17.26 (16.22 to 18.29)	$\begin{gathered} 2.55 \\ \text { (1.99 to } 3.2 \text {) } \end{gathered}$	$\begin{aligned} & -17 \cdot 8 \\ & (-35 \cdot 1 \text { to } 2 \cdot 3) \end{aligned}$
Oman	$\begin{gathered} 35 \cdot 9 \\ (26 \cdot 0 \text { to } 49 \cdot 4) \end{gathered}$	$\begin{gathered} 9 \cdot 6 \\ (6 \cdot 9 \text { to } 13 \cdot 1) \end{gathered}$	$\begin{aligned} & 10 \cdot 5 \\ & (-25 \cdot 7 \text { to } 59 \cdot 7) \end{aligned}$	$\begin{gathered} 0.43 \\ (0.36 \text { to } 0.50) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{gathered} 11 \cdot 1 \\ (-24 \cdot 6 \text { to } 59 \cdot 4) \end{gathered}$	$\begin{gathered} 663 \cdot 8 \\ (493 \cdot 3 \text { to } 805 \cdot 0) \end{gathered}$	$\begin{aligned} & 14 \cdot 8 \\ & (11 \cdot 0 \text { to } 18 \cdot 0) \end{aligned}$	$\begin{aligned} & 67.5 \\ & (36.3 \text { to } 102 \cdot 6) \end{aligned}$	$\begin{gathered} 1.45 \\ (1.35 \text { to } 1.55) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.14 \text { to } 0.21) \end{gathered}$	$\begin{gathered} 55 \cdot 3 \\ (29 \cdot 2 \text { to } 85 \cdot 7) \end{gathered}$
Palestine	$\begin{gathered} 100 \cdot 7 \\ (67 \cdot 9 \text { to } 144 \cdot 1) \end{gathered}$	$\begin{array}{r} 14 \cdot 2 \\ \text { (9.6to } \\ 20.4) \end{array}$	$\begin{aligned} & -33 \cdot 7 \\ & (-55 \cdot 7 \text { to }-1 \cdot 5) \end{aligned}$	$\begin{gathered} 1.07 \\ (0.92 \text { to } 1.25) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.06 \text { to } 0.13) \end{gathered}$	$\begin{aligned} & -33 \cdot 1 \\ & (-55 \cdot 0 \text { to }-1 \cdot 3) \end{aligned}$	$\begin{gathered} 659.8 \\ (526.9 \text { to } 844 \cdot 0) \end{gathered}$	$\begin{aligned} & 14 \cdot 1 \\ & (11 \cdot 3 \text { to } 18 \cdot 1) \end{aligned}$	$\begin{aligned} & 17 \cdot 4 \\ & (-8 \cdot 9 \text { to } 45 \cdot 1) \end{aligned}$	$\begin{gathered} 2.54 \\ (2.31 \text { to } 2.77) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.23 \text { to } 0.35) \end{gathered}$	$\begin{aligned} & -2.2 \\ & (-22.5 \text { to } 20.2) \end{aligned}$
Qatar	$\begin{array}{r} 4.6 \\ (2.8 \text { to } 7.4) \end{array}$	$\begin{gathered} 3 \cdot 9 \\ (2 \cdot 3 \text { to } 6 \cdot 3) \end{gathered}$	$\begin{gathered} 5 \cdot 6 \\ (-38 \cdot 9 \text { to } 80 \cdot 7) \end{gathered}$	$\begin{gathered} 0.16 \\ (0.14 \text { to } 0.19) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to 0.01) } \end{gathered}$	$\begin{gathered} 9 \cdot 1 \\ (-34 \cdot 3 \text { to } 81 \cdot 7) \end{gathered}$	$\begin{gathered} 59 \cdot 4 \\ \text { (42.2 to } 76 \cdot 7 \text {) } \end{gathered}$	$\begin{aligned} & 2.7 \\ & (1.9 \text { to } 3.5) \end{aligned}$	$\begin{aligned} & 76 \cdot 5 \\ & \text { (32.1 to 134.8) } \end{aligned}$	$\begin{gathered} 0.52 \\ (0.49 \text { to } 0.55) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{aligned} & 67.7 \\ & \text { (27.3 to 118.5) } \end{aligned}$
Saudi Arabia	$\begin{aligned} & 132.0 \\ & (106.6 \text { to } \\ & 161 \cdot 3) \end{aligned}$	$\begin{gathered} 4 \cdot 3 \\ (3 \cdot 5 \text { to } 5 \cdot 3) \end{gathered}$	$\begin{aligned} & -43 \cdot 1 \\ & (-54 \cdot 3 \text { to }-30 \cdot 6) \end{aligned}$	$\begin{gathered} 2.40 \\ \text { (2.08 to } 2.75 \text {) } \end{gathered}$	$\begin{gathered} 0.12 \\ (0.09 \text { to } 0.14) \end{gathered}$	$\begin{aligned} & -42 \cdot 2 \\ & (-53 \cdot 3 \text { to }-30 \cdot 0) \end{aligned}$	$\begin{gathered} 4065 \cdot 6 \\ \text { (2971.9 to } 4697 \cdot 9) \end{gathered}$	$\begin{aligned} & 12 \cdot 9 \\ & (9 \cdot 5 \text { to } 14 \cdot 9) \end{aligned}$	$\begin{aligned} & 22 \cdot 6 \\ & (9 \cdot 2 \text { to } 38 \cdot 2) \end{aligned}$		$\begin{gathered} 0.96 \\ (0.78 \text { to } 1.08) \end{gathered}$	$\begin{gathered} 7.7 \\ (-6 \cdot 3 \text { to } 21 \cdot 0) \end{gathered}$
Sudan	$\begin{aligned} & 8684 \cdot 1 \\ & (5480 \cdot 7 \text { to } 13 \\ & 365 \cdot 3) \end{aligned}$	$\begin{aligned} & 142 \cdot 2 \\ & \text { (89.8 to } \\ & 218 \cdot 9) \end{aligned}$	$\begin{aligned} & -35 \cdot 9 \\ & (-58.3 \text { to } 0.8) \end{aligned}$	$\begin{aligned} & 15 \cdot 41 \\ & (13.00 \text { to } \\ & 18.00) \end{aligned}$	$\begin{aligned} & 7.45 \\ & (4.72 \text { to } \\ & 11.43) \end{aligned}$	$\begin{aligned} & -35 \cdot 8 \\ & (-58.1 \text { to } 0.6) \end{aligned}$	$\begin{aligned} & 15005 \cdot 5 \\ & (10928 \cdot 5 \text { to } 20 \\ & 078 \cdot 3) \end{aligned}$	$\begin{aligned} & 37 \cdot 2 \\ & (27 \cdot 1 \text { to } 49 \cdot 7) \end{aligned}$	$\begin{aligned} & -20 \cdot 1 \\ & (-41 \cdot 1 \text { to } 8 \cdot 3) \end{aligned}$	$\begin{aligned} & 28.95 \\ & (26.10 \text { to } \\ & 31.82) \end{aligned}$	$\begin{aligned} & 9.26 \\ & (6 \cdot 53 \text { to } \\ & 13 \cdot 26) \end{aligned}$	$\begin{aligned} & -29 \cdot 9 \\ & (-50 \cdot 6 \text { to } 3 \cdot 1) \end{aligned}$
Syria	$\begin{aligned} & 750 \cdot 5 \\ & \text { (527.2 to } \\ & 980.0) \end{aligned}$	$\begin{aligned} & 32.5 \\ & (22.8 \text { to } \\ & 42.4) \end{aligned}$	$\begin{gathered} 0.1 \\ (-35 \cdot 6 \text { to } 83 \cdot 3) \end{gathered}$	$\quad 3.94$ (3.38 to $4.62)$	$\begin{gathered} 0.65 \\ (0.46 \text { to } 0.84) \end{gathered}$	$\begin{gathered} -0 \cdot 2 \\ (-35 \cdot 3 \text { to } 80 \cdot 6) \end{gathered}$	$\begin{gathered} 2670 \cdot 8 \\ (2041 \cdot 5 \text { to } 4203 \cdot 1) \end{gathered}$	$\begin{aligned} & 14 \cdot 3 \\ & (11 \cdot 0 \text { to 22.6) } \end{aligned}$	$\begin{aligned} & 15 \cdot 1 \\ & (-5 \cdot 7 \text { to } 46 \cdot 1) \end{aligned}$	$\begin{gathered} 9.64 \\ \text { (8.81 to } 10.59 \text {) } \end{gathered}$		$\begin{gathered} 3 \cdot 9 \\ (-20 \cdot 1 \text { to } 51 \cdot 6) \end{gathered}$
(Table 1 continues on next page)												

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Tunisia	$\begin{gathered} 110 \cdot 7 \\ (79.4 \text { to } 149 \cdot 0) \end{gathered}$	$\begin{gathered} 11 \cdot 3 \\ (8 \cdot 1 \text { to } 15 \cdot 2) \end{gathered}$	$\begin{aligned} & -37.6 \\ & (-56.0 \text { to }-10 \cdot 5) \end{aligned}$	$\begin{gathered} 0.95 \\ (0.81 \text { to } 1.12) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.07 \text { to } 0.13) \end{gathered}$	$\begin{aligned} & -37 \cdot 2 \\ & (-55 \cdot 5 \text { to }-10 \cdot 5) \end{aligned}$	$\begin{gathered} 2485 \cdot 2 \\ (1907 \cdot 5 \text { to } 3242 \cdot 5) \end{gathered}$	$\begin{aligned} & 22.1 \\ & (17.0 \text { to } 28.8) \end{aligned}$	$\begin{gathered} 18 \cdot 1 \\ (-4 \cdot 2 \text { to } 41 \cdot 8) \end{gathered}$	$\begin{gathered} 3 \cdot 58 \\ (3 \cdot 37 \text { to } 3 \cdot 78) \end{gathered}$	$\begin{aligned} & \quad 0.54 \\ & (0.44 \text { to } \\ & 0.66) \end{aligned}$	$\begin{aligned} & -4 \cdot 6 \\ & (-19 \cdot 3 \text { to } 11 \cdot 4) \end{aligned}$
Turkey	$\begin{aligned} & \quad 984.5 \\ & \text { (624.4 to } \\ & 1512.8) \end{aligned}$	$\begin{gathered} 15 \cdot 4 \\ (9 \cdot 8 \text { to } 23 \cdot 7) \end{gathered}$	$\begin{aligned} & -76 \cdot 4 \\ & (-84 \cdot 7 \text { to }-64 \cdot 5) \end{aligned}$	$\begin{aligned} & 11 \cdot 69 \\ & (10.11 \text { to } \\ & 13.52) \end{aligned}$	$\begin{gathered} 0.87 \\ (0.56 \text { to 1.32) } \end{gathered}$	$\begin{aligned} & -76 \cdot 0 \\ & (-84 \cdot 3 \text { to }-64 \cdot 1) \end{aligned}$	$\begin{gathered} 7991 \cdot 6 \\ \text { (6759.6 to } 9798 \cdot 4) \end{gathered}$	$\begin{aligned} & 10.2 \\ & (8.6 \text { to } 12.5) \end{aligned}$	$\begin{aligned} & -21 \cdot 8 \\ & (-35 \cdot 3 \text { to }-3 \cdot 4) \end{aligned}$	$35 \cdot 26$ (33.04 to 37.54)	$\begin{gathered} 2.24 \\ (1.91 \text { to } 2.71) \end{gathered}$	$\begin{aligned} & -56 \cdot 3 \\ & (-65 \cdot 3 \text { to }-45 \cdot 4) \end{aligned}$
United Arab Emirates	$\begin{gathered} 10 \cdot 2 \\ (5 \cdot 1 \text { to } 18 \cdot 8) \end{gathered}$	$\begin{gathered} 2.1 \\ (1.1 \text { to } 3 \cdot 9) \end{gathered}$	$\begin{aligned} & -24 \cdot 4 \\ & (-62 \cdot 7 \text { to } 54 \cdot 2) \end{aligned}$	$\begin{aligned} & 0.41 \\ & (0.35 \text { to } \\ & 0.49) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -21 \cdot 2 \\ & (-58 \cdot 9 \text { to } 54 \cdot 7) \end{aligned}$	$\begin{gathered} 471 \cdot 0 \\ (328 \cdot 4 \text { to } 620 \cdot 1) \end{gathered}$	$\begin{gathered} 5 \cdot 1 \\ (3.6 \text { to } 6 \cdot 8) \end{gathered}$	$\begin{aligned} & 98 \cdot 7 \\ & \text { (52.3 to 154.2) } \end{aligned}$	$\begin{gathered} 1.63 \\ (1.52 \text { to } 1.74) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.11 \text { to } 0.2) \end{gathered}$	$\begin{aligned} & 88 \cdot 2 \\ & (41 \cdot 8 \text { to } 140 \cdot 5) \end{aligned}$
Yemen	$\begin{aligned} & \quad 4012 \cdot 9 \\ & (2765 \cdot 2 \text { to } \\ & 5560 \cdot 7) \end{aligned}$	$\begin{aligned} & 100 \cdot 2 \\ & (69 \cdot 1 \text { to } \\ & 138.9) \end{aligned}$	$\begin{aligned} & -34 \cdot 4 \\ & (-58 \cdot 7 \text { to } 51 \cdot 0) \end{aligned}$	$\begin{aligned} & 13 \cdot 28 \\ & (11 \cdot 52 \text { to } \\ & 15 \cdot 09) \end{aligned}$	$\begin{gathered} 3.47 \\ (2.41 \text { to } 4.8) \end{gathered}$	$\begin{aligned} & -34 \cdot 1 \\ & (-58 \cdot 4 \text { to } 50 \cdot 1) \end{aligned}$	$\begin{aligned} & \quad 8019 \cdot 2 \\ & (5851 \cdot 7 \text { to } 10 \\ & 684 \cdot 7) \end{aligned}$	$\begin{aligned} & 29.8 \\ & (21 \cdot 7 \text { to } 39 \cdot 7) \end{aligned}$	$\begin{aligned} & -15 \cdot 9 \\ & (-40 \cdot 1 \text { to } 43 \cdot 4) \end{aligned}$	$\begin{aligned} & 24 \cdot 40 \\ & (22 \cdot 39 \text { to } \\ & 26 \cdot 60) \end{aligned}$	$\begin{gathered} 4.72 \\ (3.45 \text { to } 6.13) \end{gathered}$	$\begin{aligned} & -25 \cdot 3 \\ & (-49 \cdot 5 \text { to } 50 \cdot 4) \end{aligned}$
South Asia	$\begin{aligned} & 205488.6 \\ & (183136.1 \text { to } \\ & 230519.5) \end{aligned}$	$\begin{aligned} & 122 \cdot 9 \\ & (109 \cdot 5 \text { to } \\ & 137 \cdot 8) \end{aligned}$	$\begin{aligned} & -45 \cdot 0 \\ & (-51 \cdot 5 \text { to }-37 \cdot 4) \end{aligned}$	$\begin{aligned} & 384 \cdot 32 \\ & (341 \cdot 28 \text { to } \\ & 429 \cdot 39) \end{aligned}$		$-44 \cdot 9$ $(-51 \cdot 4$ to $-37 \cdot 4)$	$\begin{aligned} & 642560 \cdot 9 \\ & (568623.7 \text { to } \\ & 695400 \cdot 7) \end{aligned}$	$\begin{aligned} & 38.0 \\ & \text { (33.6 to 41.1) } \end{aligned}$	$\begin{aligned} & -14 \cdot 7 \\ & (-20 \cdot 4 \text { to }-8 \cdot 4) \end{aligned}$	$\begin{aligned} & 1027 \cdot 10 \\ & (975 \cdot 23 \text { to } \\ & 1080 \cdot 80 \text {) } \end{aligned}$	$\begin{aligned} & 296.51 \\ & (267 \cdot 39 \text { to } \\ & 322 \cdot 51) \end{aligned}$	$\begin{aligned} & -31 \cdot 9 \\ & (-37 \cdot 8 \text { to }-25 \cdot 4) \end{aligned}$
Bangladesh	$\begin{aligned} & 21274 \cdot 9 \\ & (17071 \cdot 7 \mathrm{to} \\ & 25804 \cdot 0) \end{aligned}$	$139 \cdot 1$ 168.7)	$\begin{aligned} & -56 \cdot 6 \\ & (-65 \cdot 3 \text { to }-47 \cdot 3) \end{aligned}$	27.22 (23.80 to 31.09)	$\quad 18.36$ $(14.74$ to $22 \cdot 25)$	$\begin{aligned} & -56 \cdot 5 \\ & (-65 \cdot 2 \text { to }-47 \cdot 3) \end{aligned}$	$\begin{aligned} & 38666 \cdot 3 \\ & (32506 \cdot 1 \text { to } \\ & 47679 \cdot 7) \end{aligned}$	$\begin{aligned} & 24 \cdot 0 \\ & (20 \cdot 2 \text { to } 29 \cdot 6) \end{aligned}$	$\begin{aligned} & -43 \cdot 5 \\ & (-52 \cdot 8 \text { to } \\ & -32 \cdot 8) \end{aligned}$	69.63 ($65 \cdot 38$ to 74.29)	$\begin{aligned} & 22.89 \\ & (19.23 \text { to } \\ & 26.76) \end{aligned}$	$\begin{aligned} & -52 \cdot 5 \\ & (-60 \cdot 8 \text { to }-44 \cdot 0) \end{aligned}$
Bhutan	$\begin{gathered} 43 \cdot 6 \\ (27 \cdot 1 \text { to } 63 \cdot 9) \end{gathered}$	$\begin{aligned} & 66 \cdot 0 \\ & (40 \cdot 9 \text { to } \\ & 96 \cdot 6) \end{aligned}$	$\begin{aligned} & -56 \cdot 0 \\ & (-70 \cdot 2 \text { to }-36 \cdot 4) \end{aligned}$	$\begin{gathered} 0.13 \\ (0.12 \text { to } 0.16) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.02 \text { to } 0.06) \end{gathered}$	$\begin{aligned} & -55 \cdot 8 \\ & (-70 \cdot 1 \text { to }-36 \cdot 3) \end{aligned}$	$\begin{gathered} 200 \cdot 8 \\ (146 \cdot 4 \text { to } 264 \cdot 6) \end{gathered}$	$\begin{aligned} & 25 \cdot 9 \\ & (18 \cdot 9 \text { to } 34 \cdot 1) \end{aligned}$	$\begin{aligned} & -7 \cdot 0 \\ & (-26 \cdot 2 \text { to } 16 \cdot 2) \end{aligned}$	$\begin{gathered} 0.39 \\ (0.37 \text { to } 0.42) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.06 \text { to } 0.1) \end{gathered}$	$\begin{aligned} & -35 \cdot 6 \\ & (-50 \cdot 4 \text { to }-18 \cdot 2) \end{aligned}$
India	$\begin{aligned} & 140649 \cdot 3 \\ & (122929 \cdot 9 \text { to } \\ & 160757 \cdot 9) \end{aligned}$	113.2 (99.0 to 129.4)	$\begin{aligned} & -46 \cdot 5 \\ & (-53 \cdot 8 \text { to }-37 \cdot 9) \end{aligned}$	$\begin{aligned} & 297 \cdot 56 \\ & (264 \cdot 96 \text { to } \\ & 332 \cdot 97) \end{aligned}$	$\begin{aligned} & 121 \cdot 15 \\ & (105 \cdot 92 \text { to } \\ & 138 \cdot 3) \end{aligned}$	$\begin{aligned} & -46 \cdot 3 \\ & (-53 \cdot 6 \text { to }-37 \cdot 8) \end{aligned}$	$\begin{aligned} & 529381 \cdot 1 \\ & (456398 \cdot 6 \text { to } \\ & 578182 \cdot 8) \end{aligned}$	$\begin{aligned} & 40 \cdot 4 \\ & \text { (} 34 \cdot 8 \text { to } 44 \cdot 1 \text {) } \end{aligned}$	$\begin{aligned} & -11 \cdot 3 \\ & (-17 \cdot 5 \text { to }-3 \cdot 9) \end{aligned}$	$\begin{aligned} & 834 \cdot 91 \\ & \text { (794.19 to } \\ & 877 \cdot 12 \text {) } \end{aligned}$	$\begin{aligned} & 226 \cdot 35 \\ & (198 \cdot 54 \text { to } \\ & 248 \cdot 35) \end{aligned}$	$\begin{aligned} & -30 \cdot 4 \\ & (-37 \cdot 0 \text { to }-23 \cdot 2) \end{aligned}$
Nepal	$\begin{aligned} & 4362 \cdot 7 \\ & (3486 \cdot 1 \text { to } \\ & 5342 \cdot 2) \end{aligned}$	$153 \cdot 4$ (122.6 to 187.8)	$\begin{aligned} & -62 \cdot 9 \\ & (-70 \cdot 4 \text { to }-53 \cdot 7) \end{aligned}$	$\begin{gathered} 5 \cdot 49 \\ (4.73 \text { to } 6 \cdot 32) \end{gathered}$	$\begin{gathered} 3.76 \\ (3.01 \text { to } 4.6) \end{gathered}$	$\begin{aligned} & -62 \cdot 9 \\ & (-70 \cdot 3 \text { to }-53 \cdot 6) \end{aligned}$	$\begin{aligned} & 11088 \cdot 1 \\ & \text { (8134.1 to } \\ & 14310 \cdot 1 \text {) } \end{aligned}$	$\begin{aligned} & 38.8 \\ & \text { (28.5 to 50.1) } \end{aligned}$	$\begin{aligned} & -35 \cdot 5 \\ & (-48 \cdot 2 \text { to } \\ & -23 \cdot 0) \end{aligned}$	14.67 (13.69 to 15.68)	$\begin{gathered} 5 \cdot 55 \\ (4 \cdot 5 \text { to } 6 \cdot 72) \end{gathered}$	$\begin{aligned} & -52 \cdot 7 \\ & (-61 \cdot 2 \text { to }-43 \cdot 5) \end{aligned}$
Pakistan	$\begin{aligned} & 39158.0 \\ & (29521.5 \text { to } \\ & 49842.8) \end{aligned}$		$\begin{aligned} & -22 \cdot 0 \\ & (-42 \cdot 4 \text { to } 5 \cdot 0) \end{aligned}$	53.90 (46.94 to 61.43)		$\begin{aligned} & -21 \cdot 9 \\ & (-42 \cdot 2 \text { to } 5 \cdot 0) \end{aligned}$	$\begin{aligned} & 63224 \cdot 6 \\ & (51828 \cdot 1 \text { to } \\ & 74822 \cdot 4) \end{aligned}$	$\begin{aligned} & 33 \cdot 4 \\ & (27 \cdot 4 \text { to } 39 \cdot 6) \end{aligned}$	$\begin{aligned} & -10 \cdot 6 \\ & (-27 \cdot 5 \text { to 10.4) } \end{aligned}$	$107 \cdot 49$ (99.53 to 115.86)	41.65 ($33 \cdot 11$ to 50.89)	$\begin{aligned} & -17 \cdot 0 \\ & (-34 \cdot 9 \text { to } 7 \cdot 1) \end{aligned}$
Southeast Asia, east Asia, and Oceania	$\begin{aligned} & 68893 \cdot 1 \\ & (61004 \cdot 9 \text { to } \\ & 77022 \cdot 9) \end{aligned}$	$\begin{aligned} & 46 \cdot 9 \\ & (41 \cdot 6 \text { to } \\ & 52 \cdot 5) \end{aligned}$	$\begin{aligned} & -56 \cdot 3 \\ & (-61 \cdot 7 \text { to }-49 \cdot 9) \end{aligned}$	$\begin{aligned} & 118.59 \\ & (103.43 \text { to } \\ & 135.04) \end{aligned}$	$\begin{aligned} & \quad 59.38 \\ & (52.62 \text { to } \\ & 66.35) \end{aligned}$	$\begin{aligned} & -56 \cdot 2 \\ & (-61 \cdot 6 \text { to } \\ & -49 \cdot 9) \end{aligned}$	$\begin{aligned} & 459114 \cdot 4 \\ & (407453 \cdot 4 \text { to } \\ & 494274 \cdot 7) \end{aligned}$	$\begin{aligned} & 21 \cdot 9 \\ & (19 \cdot 4 \text { to } 23 \cdot 6) \end{aligned}$	$\begin{gathered} -5 \cdot 2 \\ (-10 \cdot 9 \text { to } 0.2) \end{gathered}$	$\begin{aligned} & 454 \cdot 59 \\ & (433 \cdot 76 \text { to } \\ & 475 \cdot 58) \end{aligned}$	$\begin{aligned} & 127.36 \\ & (116.96 \text { to } \\ & 137.32) \end{aligned}$	$\begin{aligned} & -36 \cdot 6 \\ & (-41 \cdot 5 \text { to }-31 \cdot 4) \end{aligned}$
American Samoa	$\begin{array}{r} 1 \cdot 5 \\ (1 \cdot 1 \text { to } 2 \cdot 1) \end{array}$	$\begin{gathered} 13 \cdot 3 \\ (9 \cdot 6 \text { to } 17 \cdot 9) \end{gathered}$	$\begin{aligned} & -39 \cdot 4 \\ & (-55 \cdot 6 \text { to }-18 \cdot 8) \end{aligned}$	$\begin{gathered} 0.02 \\ (0.02 \text { to } 0.02) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -38 \cdot 5 \\ & (-54.5 \text { to }-18 \cdot 0) \end{aligned}$	$\begin{gathered} 14 \cdot 6 \\ \text { (12.3 to } 17.8 \text {) } \end{gathered}$	$\begin{aligned} & 17 \cdot 7 \\ & \text { (14.8 to 21.5) } \end{aligned}$	$\begin{gathered} 3 \cdot 1 \\ (-14 \cdot 1 \text { to } 23 \cdot 4) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.05 \text { to } 0.06) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{gathered} -7.6 \\ (-22.7 \text { to } 9.8) \end{gathered}$
Cambodia	$\begin{aligned} & 2135 \cdot 9 \\ & \text { (1578.4 to } \\ & 2724.7) \end{aligned}$	119.6 (88.4 to 152.5)	$\begin{aligned} & -63 \cdot 5 \\ & (-73 \cdot 0 \text { to }-51 \cdot 2) \end{aligned}$	$\begin{gathered} 2.79 \\ (2.39 \text { to } 3 \cdot 21) \end{gathered}$	$\begin{gathered} 1.84 \\ (1.36 \text { to } 2 \cdot 35) \end{gathered}$	$\begin{aligned} & -63 \cdot 4 \\ & (-72 \cdot 9 \text { to }-51 \cdot 1) \end{aligned}$	$\begin{gathered} 6440 \cdot 4 \\ \text { (5190.7 to } 7598 \cdot 9 \text {) } \end{gathered}$	$\begin{aligned} & 41 \cdot 3 \\ & \text { (33•3 to 48.7) } \end{aligned}$	$\begin{aligned} & -33 \cdot 3 \\ & (-45 \cdot 2 \text { to } \\ & -20 \cdot 0) \end{aligned}$	$\begin{gathered} 7 \cdot 17 \\ (6 \cdot 72 \text { to } 7 \cdot 67) \end{gathered}$	$\begin{gathered} 2.88 \\ (2.34 \text { to } 3.45) \end{gathered}$	$\begin{aligned} & -52 \cdot 7 \\ & (-61 \cdot 8 \text { to }-41 \cdot 0) \end{aligned}$
China	$\begin{aligned} & 24247 \cdot 0 \\ & (21333 \cdot 8 \text { to } \\ & 28877 \cdot 5) \end{aligned}$	$\begin{aligned} & 29 \cdot 2 \\ & (25 \cdot 7 \text { to } \\ & 34.7) \end{aligned}$	$\begin{aligned} & -61 \cdot 2 \\ & (-66 \cdot 1 \text { to }-54 \cdot 4) \end{aligned}$	$\begin{aligned} & \quad 36 \cdot 98 \\ & (32 \cdot 43 \text { to } \\ & 42 \cdot 14) \end{aligned}$	$\begin{aligned} & 20.92 \\ & \text { (18.41 to } \\ & 24.89) \end{aligned}$	$\begin{aligned} & -61 \cdot 2 \\ & (-66 \cdot 1 \text { to }-54 \cdot 3) \end{aligned}$	$\begin{aligned} & \quad 205088 \cdot 4 \\ & (182533 \cdot 2 \text { to } \\ & 234201 \cdot 2) \end{aligned}$	$\begin{aligned} & 14 \cdot 8 \\ & (13 \cdot 2 \text { to } 16 \cdot 9) \end{aligned}$	$\begin{gathered} -9 \cdot 7 \\ (-16 \cdot 2 \text { to }-2 \cdot 7) \end{gathered}$	$\begin{aligned} & 187 \cdot 22 \\ & (179 \cdot 60 \text { to } \\ & 194 \cdot 51) \end{aligned}$	$\begin{aligned} & 48.06 \\ & (44.06 \text { to } \\ & 54.54) \end{aligned}$	$\begin{aligned} & -42 \cdot 3 \\ & (-47 \cdot 0 \text { to }-37 \cdot 2) \end{aligned}$
Federated States of Micronesia	$\begin{array}{r} 3.5 \\ (2.0 \text { to } 5 \cdot 6) \end{array}$	$\begin{aligned} & 29 \cdot 0 \\ & (16 \cdot 6 \text { to } \\ & 45 \cdot 9) \end{aligned}$	$\begin{aligned} & -48 \cdot 6 \\ & (-69 \cdot 9 \text { to }-14 \cdot 1) \end{aligned}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0) \end{gathered}$	$\begin{aligned} & -48 \cdot 3 \\ & (-69 \cdot 4 \text { to }-14 \cdot 1) \end{aligned}$	$\begin{gathered} 34 \cdot 0 \\ (23 \cdot 1 \text { to } 51 \cdot 4) \end{gathered}$	$\begin{aligned} & 32.4 \\ & (22.0 \text { to } 49.0) \end{aligned}$	$\begin{aligned} & -14 \cdot 5 \\ & (-34.8 \text { to 11.0 }) \end{aligned}$	$\begin{gathered} 0.08 \\ (0.08 \text { to } 0.09) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -23 \cdot 7 \\ & (-42 \cdot 7 \text { to }-0.0) \end{aligned}$
Fiji	$\begin{gathered} 94 \cdot 5 \\ (49 \cdot 5 \text { to } 167 \cdot 4) \end{gathered}$		$\begin{aligned} & -24 \cdot 5 \\ & (-60 \cdot 1 \text { to } 33 \cdot 5) \end{aligned}$	$\begin{gathered} 0.21 \\ (0.17 \text { to } 0.25) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.04 \text { to } 0.14) \end{gathered}$	$\begin{aligned} & -24 \cdot 4 \\ & (-59 \cdot 9 \text { to } 33 \cdot 4) \end{aligned}$	$\begin{gathered} 417 \cdot 3 \\ (338 \cdot 9 \text { to } 544 \cdot 0) \end{gathered}$	$\begin{aligned} & 46.8 \\ & (38.0 \text { to } 61.0) \end{aligned}$	$\begin{gathered} 0.6 \\ (-21.6 \text { to } 28.5) \end{gathered}$	$\begin{gathered} 0.67 \\ (0.63 \text { to } 0.72) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.13 \text { to } 0.24) \end{gathered}$	$\begin{aligned} & -13 \cdot 5 \\ & (-38 \cdot 9 \text { to } 19 \cdot 8) \end{aligned}$
											(Table 1 conti	nues on next page)

Children younger than 5y		
	Deaths	
	Total number	Number per 100000
(Continued from previous page)		
Guam	$\begin{array}{r} 5.4 \\ (4.0 \text { to } 7 \cdot 3) \end{array}$	$\begin{aligned} & 38 \cdot 4 \\ & (28 \cdot 3 \text { to } \\ & 51 \cdot 6) \end{aligned}$
Indonesia	$\begin{aligned} & 15250 \cdot 3 \\ & (9900 \cdot 3 \text { to } \\ & 20124 \cdot 9) \end{aligned}$	$\begin{aligned} & 61 \cdot 5 \\ & \text { (39.9 to } \\ & 81 \cdot 1) \end{aligned}$
Kiribati	$\begin{gathered} 16 \cdot 3 \\ (7 \cdot 1 \text { to } 31 \cdot 0) \end{gathered}$	$\begin{aligned} & 108 \cdot 9 \\ & (47 \cdot 4 \text { to } \\ & 207.8) \end{aligned}$
Laos	$\begin{aligned} & 2384 \cdot 5 \\ & (1464 \cdot 1 \text { to } \\ & 3692 \cdot 6) \end{aligned}$	$\begin{aligned} & 285 \cdot 2 \\ & (175 \cdot 1 \text { to } \end{aligned}$ 441.7)
Malaysia	$\begin{aligned} & \quad 241 \cdot 3 \\ & (171 \cdot 1 \text { to } \\ & 337 \cdot 9) \end{aligned}$	$\begin{gathered} 9.9 \\ (7.0 \text { to } 13.8) \end{gathered}$
Maldives	$\begin{array}{r} 5.6 \\ (3.8 \text { to } 7.5) \end{array}$	$\begin{aligned} & 15 \cdot 2 \\ & (10 \cdot 3 \text { to } \\ & 20 \cdot 4) \end{aligned}$
Marshall Islands	$\begin{array}{r} 5.1 \\ (2.7 \text { to } 9.0) \end{array}$	$\begin{aligned} & 53.9 \\ & (28.6 \text { to } \\ & 96.0) \end{aligned}$
Mauritius	$\begin{gathered} 11 \cdot 5 \\ (7.5 \text { to } 14 \cdot 4) \end{gathered}$	$\begin{gathered} 16 \cdot 1 \\ (10 \cdot 5 \text { to } \\ 20 \cdot 3) \end{gathered}$
Myanmar	$\begin{aligned} & \quad 7711 \cdot 0 \\ & (5428 \cdot 4 \text { to } 11 \\ & 216 \cdot 4) \end{aligned}$	$\begin{aligned} & 164 \cdot 3 \\ & (115 \cdot 6 \text { to } \\ & 238 \cdot 9) \end{aligned}$
North Korea	$\begin{aligned} & \quad 1111 \cdot 7 \\ & (527 \cdot 0 \text { to } \\ & 2266 \cdot 1) \end{aligned}$	$\begin{gathered} 63 \cdot 5 \\ (30 \cdot 1 \text { to } \\ 129 \cdot 4) \end{gathered}$
Northern Mariana Islands	$\begin{array}{r} 0.9 \\ (0.5 \text { to } 1.6) \end{array}$	$\begin{aligned} & 11.5 \\ & (6.3 \text { to } \\ & 19.6) \end{aligned}$
Papua New Guinea	$\begin{aligned} & 2171 \cdot 2 \\ & (1182 \cdot 6 \text { to } \\ & 3576 \cdot 7) \end{aligned}$	$\begin{aligned} & 215 \cdot 0 \\ & (117 \cdot 1 \text { to } \\ & 354 \cdot 2) \end{aligned}$
Philippines	$\begin{aligned} & \quad 9241 \cdot 2 \\ & (7631 \cdot 2 \text { to } 11 \\ & 024 \cdot 5) \end{aligned}$	$\begin{aligned} & 81 \cdot 4 \\ & (67 \cdot 2 \text { to } \\ & 97 \cdot 1) \end{aligned}$
Samoa	$\begin{gathered} 4.3 \\ \text { (1.8 to } 8.6 \text {) } \end{gathered}$	$\begin{gathered} 17 \cdot 4 \\ (7 \cdot 3 \text { to } 34 \cdot 4) \end{gathered}$
Seychelles	$\begin{array}{r} 3.1 \\ \text { (2.3 to } 4.0 \text {) } \end{array}$	$\begin{aligned} & 37.4 \\ & (27.5 \text { to } \\ & 47.8) \end{aligned}$
Solomon Islands	$\begin{gathered} 51 \cdot 4 \\ (31 \cdot 6 \text { to } 82 \cdot 6) \end{gathered}$	$\begin{aligned} & 61 \cdot 2 \\ & (37.6 \text { to } \\ & 98 \cdot 3) \end{aligned}$

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Sri Lanka	$\begin{aligned} & \quad 156 \cdot 9 \\ & (112 \cdot 5 \text { to } \\ & 226.7) \end{aligned}$	$\begin{gathered} 9.4 \\ (6.7 \text { to } 13.5) \end{gathered}$	$\begin{aligned} & -71 \cdot 0 \\ & (-78.9 \text { to }-58.7) \end{aligned}$	$\begin{gathered} 1.14 \\ (0.97 \text { to } 1 \cdot 34) \end{gathered}$	$\begin{gathered} 0.14 \\ (0.1 \text { to } 0.2) \end{gathered}$	$\begin{aligned} & -70 \cdot 7 \\ & (-78 \cdot 7 \text { to }-58 \cdot 5) \end{aligned}$	$\begin{gathered} 4424 \cdot 3 \\ (3597 \cdot 2 \text { to } 5342 \cdot 5) \end{gathered}$	$\begin{aligned} & 21 \cdot 3 \\ & (17 \cdot 3 \text { to } 25 \cdot 7) \end{aligned}$	$\begin{aligned} & -14 \cdot 5 \\ & (-30 \cdot 8 \text { to } 4 \cdot 1) \end{aligned}$	$\begin{gathered} 5 \cdot 91 \\ \text { (5.61 to } 6 \cdot 23 \text {) } \end{gathered}$	$\begin{gathered} 1 \\ (0.82 \text { to } 1.2) \end{gathered}$	$\begin{aligned} & -31 \cdot 9 \\ & (-44 \cdot 3 \text { to }-17 \cdot 4) \end{aligned}$
Taiwan (province of China)	$\begin{gathered} 30 \cdot 9 \\ \text { (18.0 to } 49 \cdot 1 \text {) } \end{gathered}$	$\begin{gathered} 3.0 \\ (1.8 \text { to } 4.8) \end{gathered}$	$\begin{aligned} & -20.8 \\ & (-51.9 \text { to } 31.0) \end{aligned}$	$\begin{gathered} 0.23 \\ (0.20 \text { to } 0.27) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{aligned} & -20 \cdot 3 \\ & (-51 \cdot 2 \text { to } 30 \cdot 9) \end{aligned}$	$\begin{aligned} & \quad 11218 \cdot 4 \\ & (5666 \cdot 3 \text { to } 14 \\ & 514 \cdot 4) \end{aligned}$	$\begin{aligned} & 46 \cdot 3 \\ & \text { (23.4 to } 59 \cdot 9) \end{aligned}$	$\begin{aligned} & 68.6 \\ & (29 \cdot 4 \text { to } 104 \cdot 3) \end{aligned}$	$\begin{gathered} 2 \cdot 50 \\ (2.40 \text { to } 2 \cdot 62) \end{gathered}$	$\begin{gathered} 1.26 \\ (0.65 \text { to } 1.6) \end{gathered}$	$\begin{aligned} & 38.9 \\ & (2.5 \text { to } 67.5) \end{aligned}$
Thailand	$\begin{aligned} & 292 \cdot 1 \\ & (202 \cdot 7 \text { to } \\ & 411 \cdot 8) \end{aligned}$	$\begin{gathered} 7.8 \\ \text { (5.4 to 11.0) } \end{gathered}$	$\begin{aligned} & -70 \cdot 3 \\ & (-79 \cdot 1 \text { to }-58 \cdot 4) \end{aligned}$	$\begin{gathered} 3.83 \\ \text { (3.31 to } 4.41 \text {) } \end{gathered}$	$\begin{gathered} 0.26 \\ (0.18 \text { to } 0.36) \end{gathered}$	$\begin{aligned} & -69 \cdot 9 \\ & (-78 \cdot 5 \text { to }-58 \cdot 1) \end{aligned}$	$\begin{aligned} & 59313 \cdot 2 \\ & (39833 \cdot 0 \text { to } \\ & 74843 \cdot 2) \end{aligned}$	$\begin{aligned} & 87.4 \\ & (58.7 \text { to 110.2) } \end{aligned}$	$\begin{aligned} & 36 \cdot 5 \\ & (9 \cdot 3 \text { to } 64 \cdot 1) \end{aligned}$	27.85 (26.59 to 29.13)	$\begin{aligned} & 9 \cdot 47 \\ & (6 \cdot 3 \text { to } 11 \cdot 57) \end{aligned}$	$\begin{gathered} 9 \cdot 1 \\ (-9.8 \text { to } 29 \cdot 0) \end{gathered}$
Timor-Leste	$\begin{aligned} & \quad 304 \cdot 8 \\ & (136 \cdot 5 \text { to } \\ & 555 \cdot 4) \end{aligned}$	$\begin{aligned} & 146 \cdot 1 \\ & (65 \cdot 4 \text { to } \\ & 266 \cdot 3) \end{aligned}$	$\begin{aligned} & -48 \cdot 9 \\ & (-77.7 \text { to } 8.8) \end{aligned}$	$\begin{gathered} 0.22 \\ (0.19 \text { to } 0.26) \end{gathered}$	$\begin{gathered} 0.26 \\ (0.12 \text { to } 0.48) \end{gathered}$	$\begin{aligned} & -48.8 \\ & (-77.6 \text { to } 8.8) \end{aligned}$	$\begin{gathered} 578.8 \\ \text { (377.4 to } 856 \cdot 6) \end{gathered}$	$\begin{aligned} & 48.7 \\ & (31.7 \text { to } 72 \cdot 0) \end{aligned}$	$\begin{aligned} & -26 \cdot 4 \\ & (-52.0 \text { to } 22 \cdot 7) \end{aligned}$	$\begin{gathered} 0.48 \\ (0.44 \text { to } 0.52) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.18 \text { to } 0.54) \end{gathered}$	$\begin{aligned} & -43 \cdot 0 \\ & (-69 \cdot 7 \text { to 11.2) } \end{aligned}$
Tonga	$\begin{array}{r} 4.8 \\ (2.7 \text { to } 8 \cdot 1) \end{array}$	$35 \cdot 8$ 20.6 to 61.3)	$\begin{aligned} & -36 \cdot 2 \\ & (-59 \cdot 9 \text { to } 1 \cdot 2) \end{aligned}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{gathered} 0 \\ (0 \text { to } 0.01) \end{gathered}$	$\begin{aligned} & -36 \cdot 0 \\ & (-59 \cdot 6 \text { to } 1 \cdot 1) \end{aligned}$	$\begin{gathered} 47 \cdot 4 \\ \text { (} 37 \cdot 1 \text { to } 59 \cdot 3 \text {) } \end{gathered}$	$\begin{aligned} & 44 \cdot 5 \\ & (34 \cdot 8 \text { to } 55 \cdot 6) \end{aligned}$	$\begin{gathered} 1.7 \\ (-16.8 \text { to } 25 \cdot 6) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.07 \text { to } 0.09) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01 \text { to } 0.02) \end{gathered}$	$\begin{aligned} & -16 \cdot 1 \\ & (-32 \cdot 2 \text { to } 3 \cdot 8) \end{aligned}$
Vanuatu	$\begin{gathered} 34.8 \\ \text { (20.9 to } 54.6 \text {) } \end{gathered}$	$\begin{aligned} & 106 \cdot 3 \\ & (63 \cdot 8 \text { to } \\ & 166 \cdot 5) \end{aligned}$	$\begin{aligned} & -31 \cdot 0 \\ & (-59 \cdot 5 \text { to } 25 \cdot 7) \end{aligned}$	$\begin{aligned} & \quad 0.08 \\ & (0.07 \text { to } \\ & 0.09) \end{aligned}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.05) \end{gathered}$	$\begin{aligned} & -30 \cdot 9 \\ & (-59 \cdot 3 \text { to } 25 \cdot 2) \end{aligned}$	$\begin{gathered} 129 \cdot 5 \\ (93 \cdot 5 \text { to } 180 \cdot 0) \end{gathered}$	$\begin{aligned} & 49 \cdot 3 \\ & \text { (35.6 to 68.5) } \end{aligned}$	$\begin{gathered} 2.5 \\ (-20 \cdot 9 \text { to } 36 \cdot 1) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.20 \text { to } 0.23) \end{gathered}$	$\begin{aligned} & 0.06 \\ & (0.04 \text { to } \\ & 0.08) \end{aligned}$	$\begin{aligned} & -13 \cdot 2 \\ & (-37 \cdot 9 \text { to } 28 \cdot 6) \end{aligned}$
Vietnam	$\begin{array}{r} 3231 \cdot 8 \\ (2474 \cdot 6 \text { to } \\ 4210 \cdot 4) \end{array}$	$\begin{aligned} & 41 \cdot 6 \\ & (31 \cdot 9 \text { to } \\ & 54 \cdot 2) \end{aligned}$	$\begin{aligned} & -38 \cdot 4 \\ & (-52 \cdot 3 \text { to }-17 \cdot 9) \end{aligned}$	$\begin{aligned} & 10.94 \\ & (9.41 \text { to } \\ & 12.51) \end{aligned}$	$\begin{gathered} 2.8 \\ (2.14 \text { to } 3.64) \end{gathered}$	$\begin{aligned} & -38 \cdot 3 \\ & (-52 \cdot 2 \text { to }-17 \cdot 9) \end{aligned}$	$\begin{aligned} & 22795 \cdot 3 \\ & (17090 \cdot 9 \text { to } \\ & 30499 \cdot 6) \end{aligned}$	$\begin{aligned} & 24 \cdot 4 \\ & (18 \cdot 3 \text { to } 32 \cdot 6) \end{aligned}$	$\begin{gathered} 6.4 \\ (-19.6 \text { to } 37.7) \end{gathered}$	37.93 (35.91 to 40.01)	(4.66 to 6.98)	$\begin{aligned} & -20 \cdot 6 \\ & (-35 \cdot 1 \text { to }-2 \cdot 5) \end{aligned}$
Sub-Saharan Africa	$\begin{aligned} & 340225 \cdot 0 \\ & (302298 \cdot 2 \text { to } \\ & 384616 \cdot 7) \end{aligned}$	$215 \cdot 1$ (191.2 to 243.2)	$\begin{aligned} & -21 \cdot 4 \\ & (-30 \cdot 8 \text { to }-11 \cdot 0) \end{aligned}$	$\begin{aligned} & 273.92 \\ & (240 \cdot 37 \text { to } \\ & 310 \cdot 52) \end{aligned}$	$\begin{aligned} & 292.1 \\ & (259.7 \text { to } \\ & 329.86) \end{aligned}$	$\begin{aligned} & -21.4 \\ & (-30.7 \text { to } \\ & -11.0) \end{aligned}$	$\begin{aligned} & 732180 \cdot 4 \\ & (658747 \cdot 7 \text { to } \\ & 803661 \cdot 1) \end{aligned}$	$\begin{aligned} & 76 \cdot 2 \\ & \text { (} 68 \cdot 6 \text { to } 83 \cdot 7 \text {) } \end{aligned}$	$\begin{aligned} & -4 \cdot 7 \\ & (-12 \cdot 4 \text { to } 4 \cdot 7) \end{aligned}$	$\begin{aligned} & \quad 619 \cdot 57 \\ & (576.11 \text { to } \\ & 662.79) \end{aligned}$	$\begin{aligned} & 410.09 \\ & (372.07 \text { to } \\ & 452.23) \end{aligned}$	$\begin{aligned} & -13 \cdot 4 \\ & (-21 \cdot 7 \text { to }-3 \cdot 8) \end{aligned}$
Angola	$\begin{aligned} & 11621 \cdot 2 \\ & (7439 \cdot 3 \text { to } \\ & 17076 \cdot 9) \end{aligned}$	$\begin{aligned} & 234 \cdot 9 \\ & (150 \cdot 4 \text { to } \\ & 345 \cdot 2) \end{aligned}$	$\begin{aligned} & -17.5 \\ & (-48.0 \text { to } 24 \cdot 1) \end{aligned}$	$\begin{aligned} & 9.83 \\ & \text { (8.29 to } \\ & 11.59) \end{aligned}$	$\begin{gathered} 9.97 \\ (6.4 \text { to } 14.63) \end{gathered}$	$\begin{aligned} & -17.4 \\ & (-47.8 \text { to } 24 \cdot 2) \end{aligned}$	$\begin{aligned} & 21837 \cdot 3 \\ & (13535 \cdot 6 \text { to } \\ & 36689 \cdot 0) \end{aligned}$	$\begin{aligned} & 86 \cdot 5 \\ & \text { (53.6 to 145•3) } \end{aligned}$	$\begin{aligned} & -0.8 \\ & (-36.0 \text { to } 45.0) \end{aligned}$	20.77 (19.03 to 22.82)	$\begin{aligned} & 13 \cdot 31 \\ & (8.69 \text { to } \\ & 19.6) \end{aligned}$	$\begin{aligned} & -9 \cdot 3 \\ & (-38 \cdot 9 \text { to } 32 \cdot 6) \end{aligned}$
Benin	$\begin{aligned} & 4026 \cdot 1 \\ & (2902 \cdot 7 \text { to } \\ & 5328 \cdot 2) \end{aligned}$	$231 \cdot 1$ ($166 \cdot 6$ to 305.8)	$\begin{aligned} & -21 \cdot 8 \\ & (-43 \cdot 0 \text { to } 9 \cdot 1) \end{aligned}$	$\begin{gathered} 2.63 \\ (2.29 \text { to } 3.00) \end{gathered}$	$\begin{gathered} 3.46 \\ (2.5 \text { to } 4.57) \end{gathered}$	$\begin{aligned} & -21 \cdot 7 \\ & (-42 \cdot 9 \text { to } 9 \cdot 1) \end{aligned}$	$\begin{aligned} & \quad 8993 \cdot 1 \\ & (6325 \cdot 5 \text { to } 12 \\ & 248.5) \end{aligned}$	$\begin{aligned} & 82.4 \\ & \text { (58.0 to 112.2) } \end{aligned}$	$\begin{gathered} 0 \cdot 4 \\ (-26 \cdot 4 \text { to } 37 \cdot 6) \end{gathered}$	$\begin{gathered} 6.28 \\ (5.83 \text { to } 6.77) \end{gathered}$	$\begin{gathered} 4 \cdot 97 \\ (3 \cdot 74 \text { to } 6 \cdot 38) \end{gathered}$	$\begin{aligned} & -11.0 \\ & (-32.7 \text { to } 17.9) \end{aligned}$
Botswana	$\begin{gathered} 114 \cdot 6 \\ (64 \cdot 4 \text { to } 182 \cdot 1) \end{gathered}$	$\begin{gathered} 43 \cdot 6 \\ (24 \cdot 5 \text { to } \\ 69 \cdot 2) \end{gathered}$	$\begin{aligned} & -36 \cdot 5 \\ & (-59 \cdot 3 \text { to } 2 \cdot 8) \end{aligned}$	$\begin{gathered} 0.36 \\ (0.31 \text { to } 0.41) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.06 \text { to } 0.16) \end{gathered}$	$\begin{aligned} & -36 \cdot 3 \\ & (-59 \cdot 1 \text { to } 3 \cdot 0) \end{aligned}$	$\begin{gathered} 1344 \cdot 0 \\ \text { (581.9 to } 3751 \cdot 4 \text {) } \end{gathered}$	$\begin{aligned} & 59 \cdot 5 \\ & (25 \cdot 8 \text { to } 166 \cdot 0) \end{aligned}$	$4 \cdot 4$ (-58.2 to 182.5)	$\begin{gathered} 1 \cdot 26 \\ (1 \cdot 19 \text { to } 1 \cdot 35) \end{gathered}$	$\begin{gathered} 0.48 \\ (0.21 \text { to } 1 \cdot 39) \end{gathered}$	$\begin{gathered} -8 \cdot 3 \\ (-59 \cdot 1 \text { to 114•8) } \end{gathered}$
Burkina Faso	$\begin{aligned} & 10071 \cdot 3 \\ & (7400 \cdot 8 \text { to } \\ & 13499 \cdot 9) \end{aligned}$	$\begin{aligned} & 321 \cdot 5 \\ & (236 \cdot 3 \text { to } \\ & 431 \cdot 0) \end{aligned}$	$\begin{aligned} & -14.0 \\ & (-39.2 \text { to } 20.0) \end{aligned}$	$\begin{aligned} & \quad 4.00 \\ & (3.47 \text { to } \\ & 4.66) \end{aligned}$	8.64 $(6.35$ to $11.57)$	$\begin{aligned} & -13 \cdot 9 \\ & (-39 \cdot 1 \text { to 20.1) } \end{aligned}$	$\begin{aligned} & 16363 \cdot 2 \\ & (12432 \cdot 8 \text { to } \\ & 20752 \cdot 0) \end{aligned}$	$\begin{aligned} & 90 \cdot 4 \\ & (68.7 \text { to } 114.7) \end{aligned}$	$\begin{gathered} -2 \cdot 4 \\ (-27 \cdot 2 \text { to } 28 \cdot 8) \end{gathered}$	$\begin{gathered} 8.87 \\ (8.18 \text { to } 9.63) \end{gathered}$	$\begin{gathered} 10.75 \\ \text { (8.19 to } 13.9 \text {) } \end{gathered}$	$\begin{aligned} & -7.8 \\ & (-31.7 \text { to } 22 \cdot 3) \end{aligned}$
Burundi	$\begin{aligned} & 5261 \cdot 2 \\ & (3329 \cdot 3 \text { to } \\ & 8017 \cdot 6) \end{aligned}$	$\begin{aligned} & 247 \cdot 0 \\ & (156 \cdot 3 \text { to } \\ & 376 \cdot 4) \end{aligned}$	$\begin{gathered} 0.9 \\ (-37.5 \text { to } 58.6) \end{gathered}$	$5 \cdot 18$ (4.39 to 6.03)	$\begin{gathered} 4.52 \\ (2.86 \text { to } 6.87) \end{gathered}$	$\begin{gathered} 1 \cdot 0 \\ (-37 \cdot 3 \text { to } 58 \cdot 2) \end{gathered}$	$\begin{aligned} & \quad 9826 \cdot 4 \\ & (6999 \cdot 3 \text { to } 13 \\ & 314 \cdot 4) \end{aligned}$	$\begin{aligned} & 87.4 \\ & (62.2 \text { to } 118.4) \end{aligned}$	$\begin{gathered} 9.4 \\ (-21.0 \text { to } 49 \cdot 2) \end{gathered}$	$\begin{gathered} 10 \cdot 34 \\ (9 \cdot 47 \text { to } 11 \cdot 32) \end{gathered}$	$5 \cdot 95$ ($4 \cdot 18$ to 8.44)	$\begin{gathered} 5 \cdot 6 \\ (-25 \cdot 5 \text { to } 50 \cdot 3) \end{gathered}$
Cameroon	$\begin{aligned} & 9541 \cdot 0 \\ & (6734 \cdot 7 \text { to } 13 \\ & 325 \cdot 4) \end{aligned}$		$\begin{gathered} -7.8 \\ (-35.5 \text { to } 31 \cdot 6) \end{gathered}$	5.28 (4.58 to 6.04)	$\begin{gathered} 8.19 \\ \text { (} 5 \cdot 8 \text { to } 11 \cdot 44 \text {) } \end{gathered}$	$\begin{gathered} -7 \cdot 8 \\ (-35 \cdot 3 \text { to } 31 \cdot 3) \end{gathered}$	$\begin{aligned} & 20101 \cdot 2 \\ & (14706 \cdot 5 \text { to } \\ & 26891 \cdot 9) \end{aligned}$	$\begin{aligned} & 85 \cdot 9 \\ & (62.8 \text { to 114.9) } \end{aligned}$	$\begin{gathered} 1 \cdot 5 \\ (-26 \cdot 2 \text { to } 37 \cdot 4) \end{gathered}$	12.23 (11.30 to 13.20)	11.19 (8.29 to 14.71)	$\begin{gathered} -2.9 \\ (-28.8 \text { to } 29.7) \end{gathered}$
Cape Verde	$\begin{gathered} 30 \cdot 1 \\ (22 \cdot 1 \text { to } 40 \cdot 0) \end{gathered}$	$\begin{aligned} & 56 \cdot 2 \\ & (41 \cdot 3 \text { to } \\ & 74 \cdot 9) \end{aligned}$	$\begin{aligned} & -42 \cdot 1 \\ & (-59 \cdot 5 \text { to }-14 \cdot 6) \end{aligned}$	$\begin{aligned} & \quad 0.08 \\ & (0.07 \text { to } \\ & 0.09) \end{aligned}$	$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.03) \end{gathered}$	$\begin{aligned} & -42 \cdot 0 \\ & (-59 \cdot 3 \text { to }-14 \cdot 7) \end{aligned}$	$\begin{gathered} 251 \cdot 1 \\ (198 \cdot 8 \text { to } 310 \cdot 9) \end{gathered}$	$\begin{aligned} & 48 \cdot 3 \\ & (38 \cdot 2 \text { to } 59 \cdot 7) \end{aligned}$	$\begin{gathered} -4 \cdot 0 \\ (-28 \cdot 1 \text { to } 33 \cdot 1) \end{gathered}$	$\begin{gathered} 0.27 \\ (0.25 \text { to } 0.29) \end{gathered}$	(0.06 to 0.08)	$\begin{aligned} & -25 \cdot 3 \\ & (-42 \cdot 1 \text { to }-1 \cdot 7) \end{aligned}$
Central African Republic	$\begin{aligned} & 3222 \cdot 2 \\ & (2084 \cdot 7 \text { to } \\ & 4755 \cdot 2) \end{aligned}$	$453 \cdot 1$ (293.1 to 668.6)	$\begin{gathered} 9.8 \\ (-31 \cdot 1 \text { to } 79 \cdot 6) \end{gathered}$	$\begin{gathered} 1.79 \\ \text { (1.51 to 2.10) } \end{gathered}$	$\begin{gathered} 2.77 \\ (1.79 \text { to } 4.08) \end{gathered}$	$\begin{gathered} 9.7 \\ (-30 \cdot 9 \text { to } 79.7) \end{gathered}$	$\begin{gathered} 7082 \cdot 6 \\ (4798.9 \text { to } 9918 \cdot 4) \end{gathered}$	$\begin{aligned} & 144 \cdot 4 \\ & \text { (97.9 to 202•3) } \end{aligned}$	$\begin{aligned} & 16 \cdot 0 \\ & (-18 \cdot 2 \text { to } 63 \cdot 1) \end{aligned}$	$\begin{gathered} 4 \cdot 52 \\ (4 \cdot 18 \text { to } 4 \cdot 87) \end{gathered}$	$\begin{gathered} 3.86 \\ (2 \cdot 72 \text { to } 5 \cdot 38) \end{gathered}$	$\begin{gathered} 13 \cdot 7 \\ (-22 \cdot 7 \text { to } 65 \cdot 2) \end{gathered}$
(Table 1 continues on next page)												

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Chad	$\begin{aligned} & 13589 \cdot 9 \\ & (9620 \cdot 8 \text { to } \\ & 18424 \cdot 0) \end{aligned}$	$\begin{aligned} & 511 \cdot 3 \\ & (361 \cdot 9 \text { to } \\ & 693 \cdot 1) \end{aligned}$	$\begin{aligned} & 11 \cdot 9 \\ & (-20.8 \text { to } 59.6) \end{aligned}$	$\begin{aligned} & 7.17 \\ & (6.18 \text { to } \\ & 8.24) \end{aligned}$	$\begin{aligned} & 11.64 \\ & (8.25 \text { to } \\ & 15 \cdot 78) \end{aligned}$	$\begin{gathered} 11.8 \\ (-20.7 \text { to } 59.5) \end{gathered}$	$\begin{aligned} & 19668 \cdot 5 \\ & (14439 \cdot 0 \text { to } \\ & 25521.5) \end{aligned}$	$\begin{aligned} & 139 \cdot 9 \\ & (102 \cdot 7 \text { to } 181 \cdot 5) \end{aligned}$	$\begin{aligned} & 15 \cdot 6 \\ & (-14 \cdot 9 \text { to } 54 \cdot 7) \end{aligned}$	$\begin{aligned} & 13.04 \\ & (11.93 \text { to } \\ & 14.18) \end{aligned}$	$13 \cdot 57$ (9.97 to 17.61)	$\begin{aligned} & 14 \cdot 5 \\ & (-16 \cdot 4 \text { to } 57 \cdot 5) \end{aligned}$
Comoros	$\begin{gathered} 163.7 \\ \text { (97.5 to } 261 \cdot 4) \end{gathered}$	$\begin{aligned} & 133 \cdot 3 \\ & (79 \cdot 4 \text { to } \\ & 212 \cdot 9) \end{aligned}$	$\begin{aligned} & -35 \cdot 3 \\ & (-58 \cdot 9 \text { to } 7 \cdot 3) \end{aligned}$	$\begin{gathered} 0.22 \\ (0.19 \text { to } 0.26) \end{gathered}$	$\begin{gathered} 0.14 \\ (0.08 \text { to } 0.23) \end{gathered}$	$\begin{aligned} & -35 \cdot 2 \\ & (-58 \cdot 7 \text { to } 7 \cdot 1) \end{aligned}$	$\begin{gathered} 446 \cdot 0 \\ (326 \cdot 2 \text { to } 602 \cdot 4) \end{gathered}$	$\begin{aligned} & 56 \cdot 3 \\ & (41 \cdot 2 \text { to } 76 \cdot 1) \end{aligned}$	$\begin{gathered} -5 \cdot 7 \\ (-33 \cdot 3 \text { to } 34 \cdot 2) \end{gathered}$	$\begin{gathered} 0.55 \\ (0.50 \text { to } 0.60) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.16 \text { to } 0.32) \end{gathered}$	$\begin{aligned} & -20.7 \\ & (-44.7 \text { to } 19.2) \end{aligned}$
Congo (Brazzaville)	$\begin{aligned} & \quad 932 \cdot 8 \\ & \text { (576.1 to } \\ & 1398 \cdot 1) \end{aligned}$	$\begin{gathered} 121 \cdot 5 \\ (75 \cdot 1 \text { to } \\ 182 \cdot 2) \end{gathered}$	$\begin{aligned} & -27 \cdot 2 \\ & (-54 \cdot 4 \text { to } 13 \cdot 1) \end{aligned}$	$\begin{gathered} 1.03 \\ (0.90 \text { to } 1.18) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.5 \text { to } 1.2) \end{gathered}$	$\begin{aligned} & -27 \cdot 1 \\ & (-54 \cdot 3 \text { to } 13 \cdot 1) \end{aligned}$	$\begin{gathered} 3250 \cdot 8 \\ (2317 \cdot 1 \text { to } 4502 \cdot 7) \end{gathered}$	$\begin{aligned} & 70 \cdot 2 \\ & \text { (50.1 to } 97 \cdot 3 \text {) } \end{aligned}$	$\begin{gathered} 3 \cdot 5 \\ (-26 \cdot 1 \text { to } 48 \cdot 3) \end{gathered}$	$\begin{gathered} 2.53 \\ (2.36 \text { to } 2 \cdot 69) \end{gathered}$	$\begin{gathered} 1.41 \\ (1.02 \text { to } 1.92) \end{gathered}$	$\begin{aligned} & -11 \cdot 7 \\ & (-37 \cdot 9 \text { to } 27 \cdot 1) \end{aligned}$
Côte d'Ivoire	$\begin{aligned} & 9363 \cdot 6 \\ & \text { (6821.8 to } \\ & \text { 12702.1) } \end{aligned}$	$\begin{aligned} & 256 \cdot 3 \\ & (186.7 \text { to } \\ & 347 \cdot 7) \end{aligned}$	$\begin{gathered} -7 \cdot 4 \\ (-33 \cdot 2 \text { to } 31 \cdot 2) \end{gathered}$	$\begin{gathered} 5.07 \\ (4 \cdot 41 \text { to } 5 \cdot 87) \end{gathered}$	$\begin{aligned} & 8.06 \\ & (5.87 \mathrm{to} \\ & 10.93) \end{aligned}$	$\begin{gathered} -7 \cdot 4 \\ (-33 \cdot 1 \text { to } 31 \cdot 0) \end{gathered}$	$\begin{aligned} & 20428 \cdot 5 \\ & (15324 \cdot 1 \text { to } \\ & 27870 \cdot 1) \end{aligned}$	$\begin{aligned} & 90 \cdot 0 \\ & (67 \cdot 5 \text { to } 122 \cdot 8) \end{aligned}$	$\begin{gathered} 4 \cdot 4 \\ (-22 \cdot 9 \text { to } 44 \cdot 2) \end{gathered}$	12.26 (11.35 to 13.20)		$\begin{gathered} -1 \cdot 6 \\ (-26 \cdot 0 \text { to } 31 \cdot 6) \end{gathered}$
Democratic Republic of the Congo	$\begin{aligned} & 38357 \cdot 4 \\ & (25735 \cdot 0 \text { to } \\ & 53739 \cdot 2) \end{aligned}$	$\begin{aligned} & 273 \cdot 5 \\ & (183 \cdot 5 \text { to } \\ & 383 \cdot 2) \end{aligned}$	$\begin{aligned} & -8 \cdot 2 \\ & (-40.7 \text { to } 36 \cdot 1) \end{aligned}$	$\begin{aligned} & 38 \cdot 20 \\ & (24.25 \text { to } \\ & 32 \cdot 24) \end{aligned}$	$\begin{aligned} & 32 \cdot 95 \\ & (22 \cdot 14 \text { to } \\ & 46 \cdot 13) \end{aligned}$	$\begin{gathered} -8.1 \\ (-40.7 \text { to 35.9) } \end{gathered}$	$\begin{aligned} & 72827 \cdot 3 \\ & (53663 \cdot 3 \text { to } \\ & 95077 \cdot 9) \end{aligned}$	$\begin{aligned} & 94 \cdot 1 \\ & (69 \cdot 3 \text { to } 122 \cdot 8) \end{aligned}$	$\begin{gathered} 8.6 \\ (-16.8 \text { to } 45.8) \end{gathered}$	$\begin{aligned} & 60.75 \\ & (55.93 \text { to } \\ & 65.54) \end{aligned}$	$\begin{aligned} & 42 \cdot 91 \\ & (31.65 \text { to } \\ & 56.67) \end{aligned}$	$\begin{gathered} -0.8 \\ (-28.5 \text { to } 38.2) \end{gathered}$
Djibouti	$\begin{aligned} & \quad 225 \cdot 1 \\ & (140 \cdot 4 \text { to } \\ & 314 \cdot 9) \end{aligned}$	$\begin{aligned} & 215 \cdot 8 \\ & \text { (134.6 to } \\ & 301 \cdot 9) \end{aligned}$	$\begin{aligned} & -38 \cdot 9 \\ & (-61 \cdot 6 \text { to }-9 \cdot 3) \end{aligned}$	$\begin{gathered} 0.20 \\ (0.17 \text { to } 0.24) \end{gathered}$	$\begin{gathered} 0.19 \\ (0.12 \text { to } 0.27) \end{gathered}$	$\begin{aligned} & -38.8 \\ & (-61 \cdot 5 \text { to }-9 \cdot 3) \end{aligned}$	$\begin{gathered} 668 \cdot 1 \\ \text { (437.2 to } 1008 \cdot 9 \text {) } \end{gathered}$	$\begin{aligned} & 75 \cdot 1 \\ & \text { (49•1 to } 113 \cdot 3 \text {) } \end{aligned}$	$\begin{aligned} & -8.6 \\ & (-41.6 \text { to } 51.4) \end{aligned}$	$\begin{gathered} 0.61 \\ (0.57 \text { to } 0.66) \end{gathered}$	$\begin{gathered} 0.32 \\ (0.22 \text { to } 0.45) \end{gathered}$	$\begin{aligned} & -25 \cdot 5 \\ & (-49 \cdot 4 \text { to } 10 \cdot 5) \end{aligned}$
Equatorial Guinea	$\begin{aligned} & 233 \cdot 7 \\ & \text { (121.8 to } \\ & 416 \cdot 5) \end{aligned}$	$182 \cdot 3$ (95.0 to 325.0)	$\begin{aligned} & -16.0 \\ & (-48.0 \text { to } 32 \cdot 4) \end{aligned}$	$\begin{gathered} 0.24 \\ (0.20 \text { to } 0.28) \end{gathered}$	$\begin{gathered} 0.2 \\ (0.1 \text { to } 0.36) \end{gathered}$	$\begin{aligned} & -15 \cdot 8 \\ & (-47 \cdot 8 \text { to } 32 \cdot 4) \end{aligned}$	$\begin{gathered} 598 \cdot 3 \\ (344 \cdot 6 \text { to } 1165 \cdot 9) \end{gathered}$	$\begin{aligned} & 70.8 \\ & (40.8 \text { to } 138.0) \end{aligned}$	$\begin{gathered} 2.4 \\ (-38.0 \text { to } 63.7) \end{gathered}$	$\begin{gathered} 0.61 \\ (0.57 \text { to } 0.66) \end{gathered}$	$\begin{gathered} 0.31 \\ (0.18 \text { to } 0.52) \end{gathered}$	$\begin{aligned} & -6 \cdot 2 \\ & (-37 \cdot 1 \text { to } 42 \cdot 7) \end{aligned}$
Eritrea	$\begin{aligned} & 1996 \cdot 5 \\ & \text { (1331.0 to } \\ & 2837 \cdot 9) \end{aligned}$	$\begin{aligned} & 240 \cdot 7 \\ & (160 \cdot 5 \text { to } \\ & 342 \cdot 2) \end{aligned}$	$\begin{aligned} & -12 \cdot 5 \\ & (-40 \cdot 9 \text { to } 20 \cdot 7) \end{aligned}$	$\begin{gathered} 2.46 \\ \text { (2.11 to } 2.86 \text {) } \end{gathered}$	$\begin{gathered} 1.71 \\ (1.14 \text { to } 2.43) \end{gathered}$	$\begin{aligned} & -12 \cdot 5 \\ & (-40.7 \text { to 20.1) } \end{aligned}$	$\begin{gathered} 4192 \cdot 0 \\ (2752 \cdot 6 \text { to } 5955 \cdot 7) \end{gathered}$	$\begin{aligned} & 80 \cdot 0 \\ & (52.5 \text { to 113.6) } \end{aligned}$	$\begin{gathered} 9.4 \\ (-21 \cdot 3 \text { to } 48.5) \end{gathered}$	$\begin{gathered} 5 \cdot 65 \\ (5 \cdot 19 \text { to } 6 \cdot 10) \end{gathered}$	$\begin{gathered} 2.44 \\ (1.66 \text { to } 3.31) \end{gathered}$	$\begin{aligned} & -2 \cdot 6 \\ & (-30 \cdot 2 \text { to } 30 \cdot 5) \end{aligned}$
Ethiopia	$\begin{aligned} & 25970 \cdot 5 \\ & (17970 \cdot 8 \text { to } \\ & 34477 \cdot 7) \end{aligned}$	$\quad 177.4$ $(122.7 \mathrm{to}$ $235.5)$	$\begin{aligned} & -54 \cdot 1 \\ & (-70 \cdot 1 \text { to }-31 \cdot 8) \end{aligned}$	$\begin{aligned} & 25 \cdot 38 \\ & (22 \cdot 27 \text { to } \\ & 28 \cdot 52) \end{aligned}$	22.31 15.47 to 29.62)	$\begin{aligned} & -54.0 \\ & (-70.0 \text { to }-31 \cdot 7) \end{aligned}$	$\begin{aligned} & 58231 \cdot 2 \\ & (42874 \cdot 1 \text { to } \\ & 77649 \cdot 7) \end{aligned}$	$\begin{aligned} & 58 \cdot 6 \\ & (43 \cdot 1 \text { to } 78 \cdot 1) \end{aligned}$	$\begin{aligned} & -32 \cdot 4 \\ & (-52 \cdot 5 \text { to }-4 \cdot 5) \end{aligned}$		$\begin{aligned} & 31.81 \\ & (23 \cdot 35 \text { to } \\ & 40 \cdot 99) \end{aligned}$	$\begin{aligned} & -45 \cdot 0 \\ & (-61 \cdot 6 \text { to }-21 \cdot 3) \end{aligned}$
Gabon	$\begin{aligned} & \quad 211 \cdot 0 \\ & (136 \cdot 1 \text { to } \\ & 306 \cdot 8) \end{aligned}$		$\begin{aligned} & -29.6 \\ & (-51 \cdot 9 \text { to } 4.0) \end{aligned}$	0.40 (0.34 to 0.46)	$\begin{gathered} 0.18 \\ (0.12 \text { to } 0.26) \end{gathered}$	$\begin{aligned} & -29 \cdot 4 \\ & (-51 \cdot 7 \text { to 3.9) } \end{aligned}$	$\begin{gathered} 1193 \cdot 9 \\ (820.6 \text { to } 1730.0) \end{gathered}$	$\begin{aligned} & 69 \cdot 2 \\ & (47 \cdot 5 \text { to } 100 \cdot 2) \end{aligned}$	$\begin{gathered} -4 \cdot 6 \\ (-32 \cdot 7 \text { to } 39 \cdot 6) \end{gathered}$	$\begin{gathered} 1 \cdot 18 \\ (1 \cdot 11 \text { to } 1 \cdot 26) \end{gathered}$	$\begin{aligned} & 0.4 \\ & (0.29 \text { to } \\ & 0.54) \end{aligned}$	$\begin{aligned} & -14.8 \\ & (-37.0 \text { to 18.9) } \end{aligned}$
Ghana	$\begin{aligned} & 4682 \cdot 3 \\ & (3268 \cdot 3 \text { to } \\ & 6359 \cdot 1) \end{aligned}$	$\begin{aligned} & 115 \cdot 2 \\ & (80 \cdot 4 \text { to } \\ & 156 \cdot 5) \end{aligned}$	$\begin{aligned} & -23 \cdot 8 \\ & (-45 \cdot 9 \text { to } 5 \cdot 7) \end{aligned}$	$\begin{gathered} 6 \cdot 35 \\ (5.41 \text { to } 7 \cdot 39) \end{gathered}$	$\begin{gathered} 4.02 \\ (2.81 \text { to } 5.46) \end{gathered}$	$\begin{aligned} & -23 \cdot 7 \\ & (-45 \cdot 8 \text { to } 5 \cdot 6) \end{aligned}$	$\begin{aligned} & 19051 \cdot 7 \\ & (12499 \cdot 4 \text { to } \\ & 28341 \cdot 1) \end{aligned}$	$\begin{aligned} & 69 \cdot 5 \\ & (45 \cdot 6 \text { to 103.4) } \end{aligned}$	$\begin{gathered} 3 \cdot 7 \\ (-29 \cdot 2 \text { to } 54 \cdot 7) \end{gathered}$	$\begin{aligned} & 15.68 \\ & (14.51 \text { to } \\ & 16.81) \end{aligned}$	8.13 ($5 \cdot 85$ to 11.32)	$\begin{aligned} & -7 \cdot 5 \\ & (-33 \cdot 1 \text { to 27.9) } \end{aligned}$
Guinea	$\begin{aligned} & 7135 \cdot 2 \\ & \text { (5258.5 to } \\ & 9358.8) \end{aligned}$	$\begin{aligned} & 354 \cdot 9 \\ & (261 \cdot 5 \text { to } \\ & 465 \cdot 4) \end{aligned}$	$\begin{aligned} & -20 \cdot 2 \\ & (-42 \cdot 4 \text { to } 7 \cdot 6) \end{aligned}$	3.48 (2.98 to 4.04)	$\begin{gathered} 6.12 \\ (4.51 \text { to } 8.02) \end{gathered}$	$\begin{aligned} & -20 \cdot 2 \\ & (-42 \cdot 3 \text { to } 7 \cdot 8) \end{aligned}$	$\begin{array}{r} 13571 \cdot 0 \\ (10473 \cdot 1 \text { to } \\ 17346 \cdot 0) \end{array}$	$\begin{aligned} & 107 \cdot 9 \\ & (83 \cdot 3 \text { to } 138 \cdot 0) \end{aligned}$	$\begin{gathered} -2 \cdot 5 \\ (-25 \cdot 5 \text { to } 27 \cdot 9) \end{gathered}$	$\begin{gathered} 8.09 \\ (7.46 \text { to } 8.74) \end{gathered}$	$\begin{gathered} 8.0 \\ (6.28 \text { to 10.1) } \end{gathered}$	$\begin{aligned} & -12 \cdot 2 \\ & (-33 \cdot 4 \text { to } 13 \cdot 9) \end{aligned}$
Guinea- Bissau	$\begin{aligned} & 1150 \cdot 3 \\ & \text { (798.5 to } \\ & 1605 \cdot 7 \text {) } \end{aligned}$	$\begin{aligned} & 392 \cdot 6 \\ & (272 \cdot 6 \text { to } \\ & 548 \cdot 1) \end{aligned}$	$\begin{aligned} & -13 \cdot 8 \\ & (-40 \cdot 2 \text { to } 25 \cdot 6) \end{aligned}$	$\begin{gathered} 0.45 \\ (0.38 \text { to } 0.53) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.68 \text { to } 1.37) \end{gathered}$	$\begin{aligned} & -13 \cdot 7 \\ & (-40 \cdot 0 \text { to } 25 \cdot 4) \end{aligned}$	$\begin{gathered} 2223 \cdot 4 \\ (1370 \cdot 9 \text { to } 3917 \cdot 0) \end{gathered}$	$\begin{aligned} & 120 \cdot 3 \\ & \text { (74.2 to 211.9) } \end{aligned}$	$\begin{gathered} -1 \cdot 3 \\ (-37 \cdot 4 \text { to } 45 \cdot 6) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.96 \text { to } 1.15) \end{gathered}$	$\begin{gathered} 1.32 \\ (0.91 \text { to } 1.98) \end{gathered}$	$\begin{aligned} & -7 \cdot 2 \\ & (-35 \cdot 0 \text { to } 27 \cdot 9) \end{aligned}$
Kenya	$\begin{aligned} & 11999 \cdot 1 \\ & (10010.8 \text { to } \\ & 14286 \cdot 0) \end{aligned}$	164.2 (137.0 to 195.5)	$\begin{aligned} & -15 \cdot 9 \\ & (-26 \cdot 9 \text { to }-3 \cdot 2) \end{aligned}$	$\begin{aligned} & 12.68 \\ & (11.03 \text { to } \\ & 14.55) \end{aligned}$	$\begin{aligned} & 10 \cdot 33 \\ & (8.62 \text { to } \\ & 12 \cdot 29) \end{aligned}$	$\begin{aligned} & -15 \cdot 8 \\ & (-26 \cdot 7 \text { to }-3 \cdot 2) \end{aligned}$	$\begin{aligned} & 26842 \cdot 8 \\ & (22886.8 \text { to } \\ & 30326.6) \end{aligned}$	$\begin{aligned} & 58 \cdot 1 \\ & (49 \cdot 5 \text { to } 65 \cdot 7) \end{aligned}$	$\begin{gathered} 3.6 \\ (-7.0 \text { to 14.7) } \end{gathered}$	$\begin{aligned} & 31.08 \\ & (28.64 \text { to } \\ & 33.43) \end{aligned}$	$\begin{aligned} & 14 \cdot 52 \\ & (12 \cdot 47 \text { to } \\ & 16 \cdot 73) \end{aligned}$	$\begin{aligned} & -7 \cdot 0 \\ & (-16 \cdot 3 \text { to } 4 \cdot 2) \end{aligned}$
Lesotho	$\begin{aligned} & \quad 680.6 \\ & (471 \cdot 5 \text { to } \\ & 942 \cdot 7) \end{aligned}$	$\begin{aligned} & 249 \cdot 8 \\ & (173 \cdot 0 \text { to } \\ & 345 \cdot 9) \end{aligned}$	$\begin{aligned} & -26.9 \\ & (-48.5 \text { to } 2.8) \end{aligned}$	$\begin{gathered} 0.41 \\ (0.36 \text { to } 0.47) \end{gathered}$	$\begin{gathered} 0.59 \\ (0.41 \text { to } 0.81) \end{gathered}$	$\begin{aligned} & -26.8 \\ & (-48.4 \text { to } 2 \cdot 9) \end{aligned}$	$\begin{gathered} 2194 \cdot 0 \\ (1493 \cdot 8 \text { to } 3165 \cdot 8) \end{gathered}$	$\begin{aligned} & 103 \cdot 0 \\ & \text { (70.2 to 148.7) } \end{aligned}$	$\begin{gathered} -8.6 \\ (-35.0 \text { to } 26 \cdot 8) \end{gathered}$	$\begin{gathered} 1.28 \\ (1.20 \text { to } 1.37) \end{gathered}$	$\begin{gathered} 1.04 \\ (0.75 \text { to } 1.42) \end{gathered}$	$\begin{aligned} & -15 \cdot 0 \\ & (-37 \cdot 5 \text { to } 14 \cdot 6) \end{aligned}$
Liberia	$\begin{aligned} & 1499 \cdot 6 \\ & (1051 \cdot 2 \text { to } \\ & 2016 \cdot 2) \end{aligned}$	$\begin{gathered} 212 \cdot 4 \\ (148 \cdot 9 \text { to } \end{gathered}$ 285.5)	$\begin{aligned} & -30 \cdot 5 \\ & (-52 \cdot 4 \text { to }-2 \cdot 3) \end{aligned}$	$\begin{gathered} 1.21 \\ (1.02 \text { to } 1.40) \end{gathered}$	$\begin{gathered} 1.29 \\ (0.91 \text { to } 1.73) \end{gathered}$	$\begin{aligned} & -30 \cdot 5 \\ & (-52 \cdot 3 \text { to }-2 \cdot 2) \end{aligned}$	$\begin{gathered} 3223 \cdot 6 \\ (2404.7 \text { to } 4177.0) \end{gathered}$	$\begin{aligned} & 71 \cdot 5 \\ & \text { (} 53 \cdot 3 \text { to } 92 \cdot 6 \text {) } \end{aligned}$	$\begin{gathered} -6 \cdot 9 \\ (-30 \cdot 1 \text { to } 26 \cdot 1) \end{gathered}$	$\begin{gathered} 2.87 \\ \text { (2.63 to 3.11) } \end{gathered}$	$\begin{gathered} 1.8 \\ (1.32 \text { to } 2.3) \end{gathered}$	$\begin{aligned} & -20 \cdot 1 \\ & (-41 \cdot 1 \text { to } 6 \cdot 4) \end{aligned}$
											(Table 1 cont	nues on next page)

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Madagascar	$\begin{aligned} & \quad 7804 \cdot 0 \\ & \text { (5361.9 to } 11 \\ & 103 \cdot 9) \end{aligned}$	$\begin{aligned} & 209 \cdot 4 \\ & (143 \cdot 9 \text { to } \\ & 297 \cdot 9) \end{aligned}$	$\begin{aligned} & -10 \cdot 1 \\ & (-40 \cdot 5 \text { to } 34 \cdot 7) \end{aligned}$	$\begin{gathered} 7.57 \\ (6.50 \text { to } 8.77) \end{gathered}$	$\begin{gathered} 6.71 \\ (4.63 \text { to } 9.55) \end{gathered}$	$\begin{aligned} & -10 \cdot 1 \\ & (-40 \cdot 3 \text { to } 34 \cdot 7) \end{aligned}$	$\begin{aligned} & 17759 \cdot 4 \\ & (12659 \cdot 9 \text { to } \\ & 23847 \cdot 2) \end{aligned}$	$\begin{aligned} & 73.4 \\ & \text { (52.3 to 98.6) } \end{aligned}$	$\begin{gathered} 8.9 \\ (-20.7 \text { to } 46 \cdot 2) \end{gathered}$	17.53 $(16.08$ to $18.96)$	$\begin{gathered} 9.89 \\ (7 \cdot 17 \text { to } 13 \cdot 2) \end{gathered}$	$\begin{gathered} -0.4 \\ (-28.5 \text { to } 35 \cdot 9) \end{gathered}$
Malawi	$\quad 8105 \cdot 2$ $(5711.7$ to 11 $070 \cdot 3)$	$\begin{aligned} & 274 \cdot 5 \\ & (193 \cdot 4 \text { to } \\ & 374 \cdot 9) \end{aligned}$	$\begin{aligned} & -10 \cdot 0 \\ & (-37 \cdot 7 \text { to } 24 \cdot 3) \end{aligned}$	6.10 (5.26 to 6.98)	$\begin{gathered} 6.96 \\ (4.91 \text { to } 9.5) \end{gathered}$	$\begin{aligned} & -10 \cdot 0 \\ & (-37 \cdot 6 \text { to } 24 \cdot 4) \end{aligned}$	$\begin{aligned} & 14233 \cdot 9 \\ & (10768 \cdot 6 \text { to } \\ & 18529 \cdot 2) \end{aligned}$	$\begin{aligned} & 82.7 \\ & (62.6 \text { to } 107.6) \end{aligned}$	$\begin{aligned} & -0.6 \\ & (-25 \cdot 4 \text { to } 32 \cdot 8) \end{aligned}$	$\begin{aligned} & 12.85 \\ & (11.78 \text { to } \\ & 13.93) \end{aligned}$	8.74 (6.66 to 11.24)	$\begin{gathered} -6 \cdot 4 \\ (-29.7 \text { to } 24 \cdot 5) \end{gathered}$
Mali	$\begin{aligned} & 6155 \cdot 6 \\ & (4284 \cdot 8 \text { to } \\ & 8654 \cdot 0) \end{aligned}$	$\begin{aligned} & 190 \cdot 0 \\ & (132 \cdot 3 \text { to } \\ & 267 \cdot 1) \end{aligned}$	$\begin{aligned} & -12 \cdot 6 \\ & (-40.0 \text { to } 26 \cdot 1) \end{aligned}$		$\begin{gathered} 5.28 \\ (3.69 \text { to } 7.41) \end{gathered}$	$\begin{aligned} & -12 \cdot 6 \\ & (-39.7 \text { to } 26 \cdot 2) \end{aligned}$	$\begin{aligned} & \quad 8654 \cdot 7 \\ & \text { (} 6578.1 \text { to } \\ & 11460 \cdot 2 \text {) } \end{aligned}$	$\begin{aligned} & 49 \cdot 3 \\ & (37 \cdot 4 \text { to } 65 \cdot 2) \end{aligned}$	$\begin{gathered} -5.0 \\ (-28.4 \text { to } 26.5) \end{gathered}$	$\begin{gathered} 9.33 \\ (8.52 \text { to } 10.20) \end{gathered}$	$\begin{aligned} & \quad 6.17 \\ & \text { (4.56 to } \\ & 8.39) \end{aligned}$	$\begin{aligned} & -8 \cdot 4 \\ & (-33 \cdot 7 \text { to } 27 \cdot 9) \end{aligned}$
Mauritania	$\begin{aligned} & \quad 890 \cdot 1 \\ & (654 \cdot 8 \text { to } \\ & 1161 \cdot 0) \end{aligned}$	$\begin{aligned} & 144 \cdot 0 \\ & (105 \cdot 9 \text { to } \end{aligned}$ 187.8)	$\begin{aligned} & -33 \cdot 2 \\ & (-51 \cdot 4 \text { to }-6 \cdot 2) \end{aligned}$	$\begin{gathered} 1.05 \\ (0.90 \text { to 1.23) } \end{gathered}$	$\begin{gathered} 0.76 \\ (0.56 \text { to } 0.99) \end{gathered}$	$\begin{aligned} & -33 \cdot 2 \\ & (-51 \cdot 2 \text { to }-6 \cdot 2) \end{aligned}$	$\begin{gathered} 2301 \cdot 8 \\ (1683 \cdot 4 \text { to } 3127 \cdot 0) \end{gathered}$	$\begin{aligned} & 56 \cdot 4 \\ & (41 \cdot 2 \text { to } 76 \cdot 6) \end{aligned}$	$\begin{aligned} & -8 \cdot 2 \\ & (-32 \cdot 1 \text { to } 25 \cdot 4) \end{aligned}$	$\begin{gathered} 2.58 \\ (2.39 \text { to } 2.79) \end{gathered}$	$\begin{gathered} 1.16 \\ (0.88 \text { to } 1.47) \end{gathered}$	$\begin{aligned} & -21 \cdot 9 \\ & (-41 \cdot 2 \text { to } 3 \cdot 7) \end{aligned}$
Mozambique	$\begin{aligned} & 6557 \cdot 9 \\ & (4615 \cdot 6 \text { to } \\ & 9098.8) \end{aligned}$	$135 \cdot 8$ (95.6 to 188.4)	$\begin{aligned} & -35 \cdot 2 \\ & (-55 \cdot 0 \text { to }-9 \cdot 8) \end{aligned}$	$\begin{gathered} 6 \cdot 36 \\ (5 \cdot 51 \text { to } 7 \cdot 28) \end{gathered}$	$\begin{gathered} 5.64 \\ \text { (3.97 to } 7.82 \text {) } \end{gathered}$	$\begin{aligned} & -35 \cdot 2 \\ & (-55 \cdot 0 \text { to }-9 \cdot 7) \end{aligned}$	$\begin{aligned} & 16219 \cdot 4 \\ & (11530 \cdot 9 \text { to } \\ & 22061 \cdot 5) \end{aligned}$	$\begin{aligned} & 57 \cdot 9 \\ & (41 \cdot 2 \text { to } 78 \cdot 8) \end{aligned}$	$\begin{gathered} -6 \cdot 8 \\ (-35.8 \text { to } 32 \cdot 6) \end{gathered}$	$15 \cdot 30$ (14.17 to $16.49)$	$\begin{aligned} & 8.51 \\ & \text { (6.32 to } \\ & 11.06) \end{aligned}$	$\begin{aligned} & -22 \cdot 1 \\ & (-42 \cdot 5 \text { to } 4 \cdot 4) \end{aligned}$
Namibia	$\begin{aligned} & 301 \cdot 7 \\ & (187 \cdot 1 \text { to } \\ & 449 \cdot 0) \end{aligned}$	90.8 (56.3 to 135•1)	$\begin{aligned} & -11.0 \\ & (-47.6 \text { to } 42.9) \end{aligned}$	$\begin{aligned} & 0.47 \\ & \text { (0.40 to } \\ & 0.54) \end{aligned}$	$\begin{gathered} 0.26 \\ (0.16 \text { to } 0.39) \end{gathered}$	$\begin{aligned} & -10 \cdot 9 \\ & (-47.4 \text { to } 42 \cdot 7) \end{aligned}$	$\begin{gathered} 1323 \cdot 8 \\ (889 \cdot 3 \text { to } 1953 \cdot 5) \end{gathered}$	$\begin{aligned} & 54 \cdot 0 \\ & \text { (36.3 to } 79 \cdot 6 \text {) } \end{aligned}$	$\begin{aligned} & -10 \cdot 5 \\ & (-40 \cdot 1 \text { to } 40 \cdot 1) \end{aligned}$	$\begin{gathered} 1.37 \\ (1.27 \text { to } 1.46) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.38 \text { to } 0.78) \end{gathered}$	$\begin{aligned} & -12.5 \\ & (-40.8 \text { to } 28.0) \end{aligned}$
Niger	$\begin{aligned} & 14121 \cdot 8 \\ & (10022 \cdot 4 \text { to } \\ & 19340 \cdot 4) \end{aligned}$	$\begin{aligned} & 344 \cdot 5 \\ & (244 \cdot 5 \text { to } \\ & 471 \cdot 7) \end{aligned}$	$\begin{aligned} & -16 \cdot 9 \\ & (-43 \cdot 3 \text { to } 16 \cdot 7) \end{aligned}$	$\begin{gathered} 6 \cdot 43 \\ (5 \cdot 53 \text { to } 7 \cdot 40) \end{gathered}$	$\begin{aligned} & 12.07 \\ & (8.57 \text { to } \\ & 16.53) \end{aligned}$	$\begin{aligned} & -16 \cdot 8 \\ & (-43 \cdot 2 \text { to } 16 \cdot 5) \end{aligned}$	$\begin{aligned} & 22000 \cdot 2 \\ & (16957 \cdot 4 \text { to } \\ & 28386 \cdot 2) \end{aligned}$	$\begin{aligned} & 110 \cdot 8 \\ & (85 \cdot 4 \text { to } 143 \cdot 0) \end{aligned}$	$\begin{gathered} -2 \cdot 1 \\ (-27 \cdot 1 \text { to } 29 \cdot 7) \end{gathered}$	$\begin{aligned} & 12.79 \\ & (11.72 \text { to } \\ & 13.92) \end{aligned}$	$\begin{gathered} 14 \cdot 54 \\ \text { (11 to } 19 \cdot 3 \text {) } \end{gathered}$	$\begin{aligned} & -10 \cdot 7 \\ & (-35 \cdot 7 \text { to } 19 \cdot 8) \end{aligned}$
Nigeria	$\begin{aligned} & 59644 \cdot 1 \\ & (43761 \cdot 4 \text { to } \\ & 80821 \cdot 9) \end{aligned}$	$190 \cdot 3$ $(139.6$ to $257.9)$	$\begin{aligned} & -23 \cdot 4 \\ & (-46 \cdot 8 \text { to } 9 \cdot 3) \end{aligned}$	$50 \cdot 12$ (43.56 to 57.15)	$51 \cdot 19$ (37.64 to 69.39)	$\begin{aligned} & -23 \cdot 3 \\ & (-46 \cdot 7 \text { to } 9 \cdot 3) \end{aligned}$	$\begin{aligned} & 129528 \cdot 6 \\ & (93421 \cdot 9 \text { to } \\ & 183585 \cdot 3) \end{aligned}$	$\begin{aligned} & 71.0 \\ & \text { (51.2 to 100.6) } \end{aligned}$	$\begin{aligned} & -10 \cdot 5 \\ & (-32 \cdot 9 \text { to } 21 \cdot 0) \end{aligned}$	97.76 (89.82 to 105•57)	74.69 (56.45 to 99.56)	$\begin{aligned} & -15 \cdot 8 \\ & (-37 \cdot 2 \text { to } 12 \cdot 2) \end{aligned}$
Rwanda	$\begin{aligned} & 4079 \cdot 1 \\ & (2804 \cdot 7 \text { to } \\ & 5645 \cdot 0) \end{aligned}$	237.7 (163.4 to 328.9)	$\begin{aligned} & -39 \cdot 6 \\ & (-58 \cdot 4 \text { to }-12 \cdot 2) \end{aligned}$	$\begin{gathered} 3.25 \\ (2.80 \text { to } 3.76) \end{gathered}$	$\begin{gathered} 3.5 \\ (2.41 \text { to } 4.84) \end{gathered}$	$\begin{aligned} & -39 \cdot 6 \\ & (-58 \cdot 3 \text { to }-12 \cdot 3) \end{aligned}$	$\begin{aligned} & 8181 \cdot 3 \\ & (6218 \cdot 1 \text { to } \\ & 11024 \cdot 6) \end{aligned}$	$\begin{aligned} & 70 \cdot 3 \\ & \text { (53.5 to 94.8) } \end{aligned}$	$\begin{aligned} & -20 \cdot 5 \\ & (-41.7 \text { to } 10 \cdot 2) \end{aligned}$	$\begin{gathered} 7.98 \\ (7.33 \text { to } 8.62) \end{gathered}$	$\begin{gathered} 4.74 \\ (3.55 \text { to } 6 \cdot 15) \end{gathered}$	$\begin{aligned} & -30 \cdot 9 \\ & (-49 \cdot 9 \text { to }-4 \cdot 1) \end{aligned}$
São Tomé and Príncipe	$\begin{gathered} 36 \cdot 1 \\ (24.9 \text { to } 49.0) \end{gathered}$	$\begin{aligned} & 119 \cdot 3 \\ & \text { (82.2 to } \\ & 161 \cdot 8) \end{aligned}$	$\begin{aligned} & -45 \cdot 2 \\ & (-60 \cdot 4 \text { to }-22 \cdot 7) \end{aligned}$		$\begin{gathered} 0.03 \\ (0.02 \text { to } 0.04) \end{gathered}$	$\begin{aligned} & -45 \cdot 2 \\ & (-60 \cdot 2 \text { to }-22 \cdot 7) \end{aligned}$	$\begin{gathered} 129 \cdot 2 \\ \text { (85•4 to } 179 \cdot 9) \end{gathered}$	$\begin{aligned} & 67 \cdot 6 \\ & (44 \cdot 7 \text { to } 94 \cdot 1) \end{aligned}$	$\begin{aligned} & -16 \cdot 9 \\ & (-39 \cdot 2 \text { to } 9.0) \end{aligned}$	$\begin{gathered} 0.12 \\ (0.11 \text { to } 0.13) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.04 \text { to } 0.07) \end{gathered}$	$\begin{aligned} & -30 \cdot 6 \\ & (-47 \cdot 5 \text { to }-7 \cdot 3) \end{aligned}$
Senegal	$\begin{aligned} & 3562 \cdot 8 \\ & (2604 \cdot 9 \text { to } \\ & 4552 \cdot 3) \end{aligned}$	138.0 $(100.9$ to $176.4)$	$\begin{aligned} & -31 \cdot 4 \\ & (-51 \cdot 3 \text { to }-6 \cdot 0) \end{aligned}$	$\begin{gathered} 3.63 \\ (3.22 \text { to } 4.07) \end{gathered}$	$\begin{gathered} 3.06 \\ (2.24 \text { to } 3.9) \end{gathered}$	$\begin{aligned} & -31 \cdot 4 \\ & (-51 \cdot 1 \text { to }-6 \cdot 2) \end{aligned}$	$\begin{aligned} & \quad 8797 \cdot 7 \\ & \text { (6329•6 to } \\ & 12395 \cdot 3) \end{aligned}$	$\begin{aligned} & 58.2 \\ & (41.9 \text { to } 82.0) \end{aligned}$	$\begin{gathered} -4.9 \\ (-30 \cdot 0 \text { to } 29.7) \end{gathered}$	$\begin{gathered} 8.28 \\ (7.69 \text { to } 8.88) \end{gathered}$	$\begin{gathered} 4.61 \\ (3.54 \text { to } 5 \cdot 89) \end{gathered}$	$\begin{aligned} & -19 \cdot 1 \\ & (-39 \cdot 4 \text { to } 8 \cdot 3) \end{aligned}$
Sierra Leone	$\begin{aligned} & 3612 \cdot 1 \\ & (2458.7 \text { to } \\ & 5054.6) \end{aligned}$	$\begin{aligned} & 356 \cdot 5 \\ & (242 \cdot 6 \text { to } \end{aligned}$ 498.8)	$\begin{aligned} & -26 \cdot 7 \\ & (-49 \cdot 5 \text { to } 3 \cdot 8) \end{aligned}$	$\begin{gathered} 1.96 \\ (1.67 \text { to } 2.30) \end{gathered}$	$\begin{gathered} 3.1 \\ \text { (2.11 to } 4.34 \text {) } \end{gathered}$	$\begin{aligned} & -26 \cdot 6 \\ & (-49 \cdot 4 \text { to } 3 \cdot 7) \end{aligned}$	$\begin{gathered} 6658 \cdot 3 \\ \text { (5025.4 to } 8498 \cdot 9) \end{gathered}$	$\begin{aligned} & 103.0 \\ & (77.8 \text { to 131.5) } \end{aligned}$	$\begin{aligned} & -12 \cdot 2 \\ & (-35 \cdot 8 \text { to 13.3) } \end{aligned}$	$\begin{gathered} 4 \cdot 47 \\ (4.14 \text { to } 4.85) \end{gathered}$	$\begin{gathered} 4.12 \\ \text { (3.08 to } 5 \cdot 4) \end{gathered}$	$\begin{aligned} & -19 \cdot 6 \\ & (-41.0 \text { to } 6 \cdot 9) \end{aligned}$

	Children younger than 5 years						All ages					
	Deaths			Episodes Number $\left(\times 10^{5}\right)$	DALYs		Deaths			Episodes Number ($\times 10^{5}$)	DALYs	
	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15	Total number	Number per 100000	Percent change 2005-15		Number $\left(\times 10^{5}\right)$	Percent change 2005-15
(Continued from previous page)												
Somalia	$\begin{aligned} & 11116 \cdot 1 \\ & (8223 \cdot 0 \text { to } \\ & 14563 \cdot 7) \end{aligned}$	546.8 (404.5 to 716.4)	$\begin{gathered} 2.8 \\ (-25.8 \text { to } 50.0) \end{gathered}$	$\begin{gathered} 4.39 \\ (3.81 \text { to } 5.01) \end{gathered}$	$\begin{aligned} & 9.52 \\ & (7.05 \text { to } \\ & 12.47) \end{aligned}$	$\begin{gathered} 2.8 \\ (-25 \cdot 6 \text { to } 49 \cdot 5) \end{gathered}$	$\begin{aligned} & 17021 \cdot 0 \\ & (12116 \cdot 0 \text { to } \\ & 24645 \cdot 9) \end{aligned}$	$\begin{aligned} & 156 \cdot 9 \\ & (111 \cdot 7 \text { to } 227 \cdot 2 \text {) } \end{aligned}$	$\begin{gathered} 8.8 \\ (-18.2 \text { to } 53.6) \end{gathered}$	$\begin{gathered} 8.91 \\ (8.22 \text { to } 9.65) \end{gathered}$	11.4 (8.55 to 15.11)	$\begin{gathered} 5 \cdot 7 \\ (-21 \cdot 4 \text { to } 49 \cdot 6) \end{gathered}$
South Africa	$\begin{aligned} & 3306 \cdot 8 \\ & (2645 \cdot 2 \text { to } \\ & 4140 \cdot 6) \end{aligned}$	$\begin{aligned} & 62 \cdot 1 \\ & (49.7 \text { to } \\ & 77 \cdot 7) \end{aligned}$	$\begin{aligned} & -63 \cdot 5 \\ & (-71 \cdot 8 \text { to }-53 \cdot 3) \end{aligned}$	$\begin{aligned} & 7.29 \\ & (6.49 \text { to } \\ & 8.07) \end{aligned}$	$\begin{gathered} 2.85 \\ (2.28 \text { to } 3.56) \end{gathered}$	$\begin{aligned} & -63 \cdot 4 \\ & (-71 \cdot 7 \text { to }-53 \cdot 2) \end{aligned}$	$\begin{aligned} & 35124 \cdot 5 \\ & (30300 \cdot 4 \text { to } \\ & 39843 \cdot 0) \end{aligned}$	$\begin{aligned} & 65 \cdot 4 \\ & \text { (} 56.4 \text { to } 74 \cdot 2 \text {) } \end{aligned}$	$\begin{aligned} & -14 \cdot 5 \\ & (-25 \cdot 8 \text { to }-3 \cdot 5) \end{aligned}$	$\begin{aligned} & 35 \cdot 50 \\ & (34.07 \text { to } \\ & 36.84) \end{aligned}$	$\quad 10.68$ $(9.27$ to $12.23)$	$\begin{aligned} & -35 \cdot 2 \\ & (-44 \cdot 1 \text { to }-26 \cdot 3) \end{aligned}$
South Sudan	$\begin{aligned} & 7605 \cdot 5 \\ & (5167.5 \text { to } \\ & 10622 \cdot 6) \end{aligned}$		$\begin{aligned} & 47 \cdot 6 \\ & (-2 \cdot 4 \text { to } 167.0) \end{aligned}$	$\begin{aligned} & 4.79 \\ & (4.02 \text { to } \\ & 5.64) \end{aligned}$	$\begin{gathered} 6.52 \\ (4.43 \text { to } 9.1) \end{gathered}$	$\begin{aligned} & 47 \cdot 5 \\ & (-2 \cdot 3 \text { to } 165 \cdot 8) \end{aligned}$	$\begin{aligned} & 13757 \cdot 3 \\ & (8562 \cdot 4 \text { to } \\ & 22165 \cdot 2) \end{aligned}$	$\begin{aligned} & 112 \cdot 0 \\ & (69 \cdot 7 \text { to } 180 \cdot 4) \end{aligned}$	$\begin{gathered} 55 \cdot 3 \\ (1 \cdot 6 \text { to } 166 \cdot 9) \end{gathered}$	12.05) $\begin{aligned} & 11.04 \\ & (10.13 \text { to } \\ & 12.05) \end{aligned}$	$\quad 8.35$ $(5.67$ to $11.76)$	$\begin{aligned} & 51 \cdot 2 \\ & (2 \cdot 4 \text { to 157.4) } \end{aligned}$
Swaziland	$\begin{aligned} & \quad 303 \cdot 4 \\ & \text { (199.0 to } \\ & 438 \cdot 5) \end{aligned}$	173.3 (113.7 to 250.5)	$\begin{aligned} & -46 \cdot 6 \\ & (-64 \cdot 4 \text { to }-22 \cdot 7) \end{aligned}$	$\quad 0.30$ $(0.26$ to $0.36)$	$\begin{gathered} 0.26 \\ (0.17 \text { to } 0.38) \end{gathered}$	$\begin{aligned} & -46 \cdot 5 \\ & (-64 \cdot 3 \text { to }-22 \cdot 6) \end{aligned}$	$\begin{gathered} 1062 \cdot 8 \\ (637.6 \text { to } 1629 \cdot 8) \end{gathered}$	$\begin{aligned} & 82 \cdot 5 \\ & (49 \cdot 5 \text { to } 126 \cdot 5) \end{aligned}$	$\begin{aligned} & -17 \cdot 6 \\ & (-47 \cdot 0 \text { to } 22 \cdot 5) \end{aligned}$	$\begin{gathered} 0.85 \\ (0.79 \text { to } 0.91) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.34 \text { to } 0.74) \end{gathered}$	$\begin{aligned} & -30 \cdot 8 \\ & (-53 \cdot 1 \text { to } 0 \cdot 2) \end{aligned}$
Tanzania	$\begin{aligned} & 17712 \cdot 5 \\ & (13115 \cdot 7 \text { to } \\ & 23577 \cdot 8) \end{aligned}$	$\begin{aligned} & 190 \cdot 4 \\ & (141 \cdot 0 \text { to } \\ & 253 \cdot 5) \end{aligned}$	$\begin{aligned} & -26 \cdot 3 \\ & (-45 \cdot 6 \text { to }-1 \cdot 7) \end{aligned}$	$\begin{aligned} & 14 \cdot 12 \\ & (12 \cdot 31 \text { to } \\ & 16 \cdot 31) \end{aligned}$	$15 \cdot 22$ (11.27 to 20.25)	$\begin{aligned} & -26 \cdot 2 \\ & (-45 \cdot 4 \text { to }-1 \cdot 7) \end{aligned}$	$\begin{array}{r} 38574 \cdot 2 \\ (28222 \cdot 2 \text { to } \\ 52240 \cdot 4) \end{array}$	$\begin{aligned} & 72 \cdot 3 \\ & \text { (52.9 to } 97.9 \text {) } \end{aligned}$	$\begin{gathered} -1 \cdot 6 \\ (-27 \cdot 8 \text { to } 33 \cdot 2) \end{gathered}$	$\begin{aligned} & 32.02 \\ & (29.53 \text { to } \\ & 34.63) \end{aligned}$	21.14 (16.22 to $26.77)$	$\begin{aligned} & -16 \cdot 2 \\ & (-36 \cdot 0 \text { to } 8 \cdot 3) \end{aligned}$
The Gambia	$\begin{aligned} & 457 \cdot 3 \\ & \text { (344.3 to } \\ & 600 \cdot 8) \end{aligned}$	$\begin{aligned} & 121 \cdot 6 \\ & (91 \cdot 6 \text { to } \\ & 159 \cdot 8 \text {) } \end{aligned}$	$\begin{aligned} & -26 \cdot 7 \\ & (-46 \cdot 1 \text { to } 0 \cdot 3) \end{aligned}$	$\begin{aligned} & \quad 0.55 \\ & (0.47 \text { to } \\ & 0.64) \end{aligned}$	$\begin{gathered} 0.39 \\ (0.3 \text { to } 0.52) \end{gathered}$	$\begin{aligned} & -26 \cdot 6 \\ & (-46 \cdot 0 \text { to } 0 \cdot 2) \end{aligned}$	$\begin{gathered} 1077 \cdot 8 \\ (830 \cdot 0 \text { to } 1355 \cdot 9) \end{gathered}$	$\begin{aligned} & 53 \cdot 9 \\ & (41 \cdot 5 \text { to } 67 \cdot 8) \end{aligned}$	$\begin{gathered} -6 \cdot 7 \\ (-27 \cdot 6 \text { to } 21 \cdot 5) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.04 \text { to } 1.24) \end{gathered}$	$\begin{gathered} 0.58 \\ (0.46 \text { to } 0.71) \end{gathered}$	$\begin{aligned} & -16 \cdot 6 \\ & (-34 \cdot 8 \text { to } 6 \cdot 4) \end{aligned}$
Togo	$\begin{aligned} & 2229 \cdot 8 \\ & (1647 \cdot 2 \text { to } \\ & 2964 \cdot 3) \end{aligned}$	$\begin{aligned} & 192 \cdot 5 \\ & (142 \cdot 2 \text { to } \\ & 256 \cdot 0) \end{aligned}$	$\begin{aligned} & -19 \cdot 2 \\ & (-40 \cdot 4 \text { to } 10 \cdot 3) \end{aligned}$	$\begin{gathered} 2.53 \\ (2.17 \text { to } 2 \cdot 94) \end{gathered}$	$\begin{gathered} 1.92 \\ \text { (1.42 to } 2.55 \text {) } \end{gathered}$	$\begin{aligned} & -19 \cdot 1 \\ & (-40 \cdot 2 \text { to } 10 \cdot 3) \end{aligned}$	$\begin{gathered} 5333 \cdot 9 \\ (3995 \cdot 9 \text { to } 6982 \cdot 5) \end{gathered}$	$\begin{aligned} & 73 \cdot 0 \\ & \text { (54.7 to 95.6) } \end{aligned}$	$\begin{gathered} 0.0 \\ (-25.7 \text { to } 33 \cdot 8) \end{gathered}$	$\begin{gathered} 5 \cdot 63 \\ (5 \cdot 18 \text { to } 6 \cdot 12) \end{gathered}$	$\begin{gathered} 2 \cdot 88 \\ (2 \cdot 22 \text { to } 3 \cdot 73) \end{gathered}$	$\begin{aligned} & -9 \cdot 0 \\ & (-30 \cdot 3 \text { to 19•1) } \end{aligned}$
Uganda	$\begin{aligned} & 12506 \cdot 9 \\ & (8972 \cdot 5 \text { to } \\ & 17330 \cdot 6) \end{aligned}$	$\begin{aligned} & 169 \cdot 0 \\ & (121 \cdot 3 \text { to } \\ & 234 \cdot 2) \end{aligned}$	$\begin{aligned} & -1.0 \\ & (-31.2 \text { to } 42.0) \end{aligned}$	$\begin{aligned} & 16.56 \\ & (14 \cdot 10 \text { to } \\ & 19.24) \end{aligned}$	10.74 $(7.71$ to $14.86)$	$\begin{aligned} & -1.0 \\ & (-31.0 \text { to } 42.0) \end{aligned}$	$\begin{aligned} & 25997 \cdot 1 \\ & (18861 \cdot 8 \text { to } \\ & 34105 \cdot 5) \end{aligned}$	$\begin{aligned} & 66 \cdot 4 \\ & (48 \cdot 2 \text { to } 87 \cdot 1) \end{aligned}$	$\begin{gathered} 7 \cdot 7 \\ (-23 \cdot 1 \text { to } 46 \cdot 3) \end{gathered}$	$\begin{aligned} & 33 \cdot 42 \\ & (30 \cdot 39 \text { to } \\ & 36 \cdot 45) \end{aligned}$	$\begin{aligned} & \quad 15 \\ & (11 \cdot 39 \text { to } \\ & 19.56) \end{aligned}$	$\begin{gathered} 4 \cdot 5 \\ (-23 \cdot 2 \text { to } 39 \cdot 1) \end{gathered}$
Zambia	$\begin{aligned} & 5072 \cdot 6 \\ & (3542 \cdot 4 \text { to } \\ & 7114 \cdot 9) \end{aligned}$	$\begin{aligned} & 175 \cdot 6 \\ & (122 \cdot 7 \text { to } \\ & 246 \cdot 4) \end{aligned}$	$\begin{aligned} & -31 \cdot 3 \\ & (-52 \cdot 9 \text { to }-2 \cdot 6) \end{aligned}$	$\begin{aligned} & 4.43 \\ & (3.88 \text { to } \\ & 5.06) \end{aligned}$	$\begin{gathered} 4.36 \\ (3.05 \text { to } 6.11) \end{gathered}$	$\begin{aligned} & -31 \cdot 2 \\ & (-52.8 \text { to }-2 \cdot 5) \end{aligned}$	$\begin{aligned} & 13140 \cdot 0 \\ & (9867.0 \text { to } \\ & 16934.5) \end{aligned}$	$\begin{aligned} & 80.9 \\ & (60.7 \text { to } 104 \cdot 2) \end{aligned}$	$\begin{aligned} & -8 \cdot 7 \\ & (-32.5 \text { to } 19 \cdot 3) \end{aligned}$	$\begin{gathered} 9.77 \\ (9.06 \text { to } 10.53) \end{gathered}$	$\begin{gathered} 6.81 \\ \text { (5.23 to 8.91) } \end{gathered}$	$\begin{aligned} & -20 \cdot 0 \\ & (-40 \cdot 1 \text { to } 6.0) \end{aligned}$
Zimbabwe	$\begin{aligned} & 2896.8 \\ & (2089.0 \text { to } \\ & 3836.0) \end{aligned}$	$\begin{aligned} & 117 \cdot 0 \\ & (84 \cdot 4 \text { to } \\ & 154 \cdot 9) \end{aligned}$	$\begin{gathered} 5.9 \\ (-26.4 \text { to } 48.0) \end{gathered}$	$\begin{gathered} 3.24 \\ \text { (2.79 to } 3.71 \text {) } \end{gathered}$	$\begin{gathered} 2.49 \\ (1.8 \text { to } 3.3) \end{gathered}$	$\begin{gathered} 6.0 \\ (-26 \cdot 2 \text { to } 48 \cdot 1) \end{gathered}$	$\begin{aligned} & 10709 \cdot 5 \\ & (7235 \cdot 2 \text { to } \\ & 15661 \cdot 0) \end{aligned}$	$\begin{aligned} & 68.8 \\ & (46.5 \text { to } 100 \cdot 6) \end{aligned}$	$\begin{gathered} -2 \cdot 9 \\ (-33 \cdot 5 \text { to } 41 \cdot 5) \end{gathered}$	$\begin{gathered} 8.33 \\ (7.70 \text { to } 8 \cdot 97) \end{gathered}$	$\begin{gathered} 4.68 \\ (3.41 \text { to } 6.42) \end{gathered}$	$\begin{gathered} 0 \cdot 7 \\ (-28 \cdot 3 \text { to } 38 \cdot 3) \end{gathered}$
Data are nor \% (95% uncertainty interval). Modelled number of deaths, episodes, and DALYs for each country in children younger than 5 years and for all ages (not age standardised). The percent change in deaths and DALYs is the change in the absolute number between 2005 and 2015. Data are from GBD 2015 estimates for both sexes. ${ }^{45}$ DALYs=disability-adjusted life-years.												

Articles

(Figure 1 continues on next page)

Figure 1: Global distribution of LRI mortality
LRI mortality rate per 100000 people in children younger than 5 years (A) and all ages (B) in 2015 . Percent change in LRI deaths per 100000 people between 2005 and 2015 in children younger than 5 years (C) and in all ages (D). LRI=lower respiratory tract infection. ATG=Antigua and Barbuda. VCT=Saint Vincent and the Grenadines. FSM=Federated States of Micronesia. LCA=Saint Lucia. T TO=Trinidad and Tobago. TLS=Timor-Leste.

Figure 2: LRI burden by Global Burden of Diseases Study region plotted against SDI
Under-5 LRI mortality rate per $100000(A)$ and incidence per child-year (B) is shown. Data points show 5-year increments from 1990 to 2015. The black line is a least-squares cubic spline regression, with knots at $0 \cdot 4,0 \cdot 6$, and 0.8 , using the under- 5 LRI mortality rate or incidence for each geographic location, and represents the expected rate based on SDI alone (estimates above the black line are higher than expected and those below are lower than expected). More information on the formulation and theory of the SDI can be found in the Cause of Death GBD 2015 capstone paper. ${ }^{5}$ LRI=lower respiratory tract infection. SDI=Sociodemographic Index.

SDI (figure 2B). Despite reductions in LRI mortality, LRI incidence has decreased at a slower rate than mortality in children younger than 5 years ($8 \cdot 8 \%$, 95% UI $6 \cdot 6-11 \cdot 1 \%$) from $0 \cdot 18$ episodes per child-year (95% UI $0 \cdot 16-0 \cdot 20$) in 2005 to $0 \cdot 15$ episodes per child-year (95% UI $0 \cdot 13-0 \cdot 17$) in 2015, and in all ages ($5 \cdot 5 \%, 4 \cdot 4-6 \cdot 6$) from $0 \cdot 042(95 \%$ UI $0.039-0.044)$ in 2005 to $0.040(0 \cdot 037-0.042)$ in 2015.
LRIs were attributed to four aetiologies in GBD 2015.5 We estimated that the bacterial causes of LRIs, pneumococcal pneumonia and Hib, together accounted for $64 \cdot 1 \%$ of LRI deaths in children younger than 5 years (table 2). Pneumococcal pneumonia was the most
common aetiology, leading to an estimated 392965 deaths (95% UI $228367-532281$) or $55 \cdot 8 \% ~(95 \%$ UI $32 \cdot 5-75 \cdot 0$) of LRI deaths in children younger than 5 years, and 1517388 deaths ($857940-2183791$), or $55 \cdot 4 \%$ (31.5-79•1) of LRI deaths in all ages. Syria had the largest percentage of under-5 LRI deaths due to pneumococcal pneumonia (70.6\%, 95\% UI 43•4-91•8). Pneumococcal pneumonia was also responsible for a substantial number of deaths in the elderly population worldwide: we estimated that in 2015, pneumococcal pneumonia killed 693041 people aged 70 years and older (95% UI 295084-1116257). The pneumococcal pneumonia PAF in children younger than 5 years was unchanged globally between 2005 and 2015, but decreased in high-SDI regions (figure 3). During the same period, the attributable fraction of LRI deaths in children younger than 5 years due to Hib decreased by $38 \cdot 6 \%$ (95% UI $34 \cdot 5$ to $43 \cdot 3$), from $13.4 \% ~(-0.8$ to 24.7) in 2005 to $8 \cdot 3 \%(-0.5$ to $15 \cdot 9)$ in 2015 (figure 3). Hib was a major cause of under-5 LRI mortality in India where we estimated that it was responsible for 14.9% (-0.9 to 27.4) of LRI deaths (table 2). Hib was not attributed to any LRI deaths in people older than 5 years.
We estimated that RSV was responsible for 36363 deaths (20355-61545), and influenza was responsible for 10151 (5731-16790) in children younger than 5 years, together accounting for $6 \cdot 6 \%$ of LRI deaths in this age group (table 2). The burdens of RSV were highest in central and eastern Europe and in central Asia, where it accounted for more than 10% of under- 5 LRI mortality in 2015 in each of these regions (figure 3); the highest RSV burden was $12 \cdot 3 \%$ (95% UI $6 \cdot 6-21 \cdot 7 \%$) in Macedonia. Influenza was not frequently associated with under-5 LRI mortality but was responsible for more than 7% of deaths in all ages in central and eastern Europe and central Asia. The highest attributable fraction due to influenza was in central Asia and central and eastern Europe. The viral aetiologies, RSV and influenza, were more often associated with non-fatal episodes of LRI, largely because of the adjustment for the lower case fatality ratio in viral causes of LRI than bacterial aetiologies. In all ages, $15 \cdot 4 \%$ (95% UI $13 \cdot 0-18 \cdot 4 \%$) of incidence was attributable to RSV and 10.4\% (8.7-11.9\%) to influenza. Between 2005 and 2015, the influenza PAF increased globally in all ages (5.6\% increase, 95% UI $0 \cdot 0-11 \cdot 0 \%$), and by more than 15% in North Africa, the Middle East, and south Asia.
We estimated that the leading risk factors for LRI DALYs in 2015 were childhood wasting (responsible for $44 \cdot 6 \%$ [95% UI 31.7-52.8] of DALYs worldwide), household air pollution $(35 \cdot 8 \%, 24 \cdot 8-45 \cdot 5)$, and ambient particulate matter $(27 \cdot 5 \%, 20 \cdot 8-34 \cdot 7)$. Suboptimal breastfeeding was the third-leading risk factor for under-5 DALYs globally and the leading risk factor for under-5 DALYs in high SDI locations. Other risk factors for LRI, such as smoking, alcohol use, and zinc deficiency, were responsible for less than 10% of LRI DALYs globally.

	Pneumococcal pneumonia		Haemophilus influenzae type b		Respiratory syncytial virus		Influenza		LRI deaths unattributed, \%
	Number	PAF, \%							
Global	$\begin{aligned} & 392964 \cdot 8 \\ & (228367 \cdot 0 \text { to } 532281 \cdot 4) \end{aligned}$	$\begin{aligned} & 55 \cdot 8 \\ & (32 \cdot 5 \text { to } 75 \cdot 0) \end{aligned}$	$\begin{aligned} & 58735 \cdot 8 \\ & (-3130 \cdot 9 \text { to } 114528 \cdot 3) \end{aligned}$	$\begin{aligned} & 8.3 \\ & (-0.5 \text { to } 15 \cdot 9) \end{aligned}$	$\begin{aligned} & 36362 \cdot 5 \\ & (20355 \cdot 4 \text { to } 61544 \cdot 9) \end{aligned}$	$\begin{aligned} & 5 \cdot 2 \\ & (2 \cdot 9 \text { to } 8 \cdot 6) \end{aligned}$	$\begin{aligned} & 10150 \cdot 6 \\ & \text { (5731.1 to } 16789 \cdot 6 \text {) } \end{aligned}$	$\begin{aligned} & 1.4 \\ & (0.8 \text { to } 2.4) \end{aligned}$	$\begin{aligned} & 29 \cdot 3 \\ & (-1 \cdot 9 \text { to } 63 \cdot 8) \end{aligned}$
India	$\begin{aligned} & 82448 \cdot 4 \\ & (51126 \cdot 5 \text { to } 112117 \cdot 5) \end{aligned}$	$\begin{aligned} & 58 \cdot 7 \\ & (36 \cdot 6 \text { to } 75 \cdot 8) \end{aligned}$	$\begin{aligned} & 20987 \cdot 1 \\ & (-1164 \cdot 2 \text { to } 39659 \cdot 8) \end{aligned}$	$\begin{aligned} & 14.9 \\ & (-0.9 \text { to } 27 \cdot 4) \end{aligned}$	$\begin{gathered} 8414 \cdot 9 \\ (4689.0 \text { to } 14116 \cdot 9) \end{gathered}$	$\begin{aligned} & 6.0 \\ & (3.4 \text { to } 10.1) \end{aligned}$	$\begin{gathered} 2351 \cdot 7 \\ (1326 \cdot 4 \text { to } 3790 \cdot 8) \end{gathered}$	$\begin{aligned} & 1 \cdot 7 \\ & \text { (1 to 2.7) } \end{aligned}$	$\begin{aligned} & 18.7 \\ & (-16.0 \text { to } 59.9) \end{aligned}$
Nigeria	$\begin{aligned} & 33810 \cdot 9 \\ & (17837 \cdot 6 \text { to } 53327 \cdot 8) \end{aligned}$	$\begin{aligned} & 56 \cdot 5 \\ & \text { (33• to } 75 \cdot 3 \text {) } \end{aligned}$	$\begin{gathered} 5249 \cdot 7 \\ (-239 \cdot 1 \text { to } 11278 \cdot 1) \end{gathered}$	$\begin{aligned} & 8.8 \\ & (-0.5 \text { to } 17 \cdot 4) \end{aligned}$	$\begin{gathered} 2297 \cdot 1 \\ (1040 \cdot 9 \text { to } 4276 \cdot 5) \end{gathered}$	$\begin{aligned} & 3.8 \\ & (2 \text { to } 6.6) \end{aligned}$	$\begin{gathered} 396.4 \\ (188.9 \text { to } 745.6) \end{gathered}$	$\begin{aligned} & 0.7 \\ & (0.4 \text { to } 1 \cdot 1) \end{aligned}$	$\begin{aligned} & 30 \cdot 2 \\ & (-0.4 \text { to } 64 \cdot 2) \end{aligned}$
Pakistan	$\begin{aligned} & 20025 \cdot 0 \\ & \text { (9714•1 to } 32523 \cdot 3 \text {) } \end{aligned}$	$\begin{aligned} & 50 \cdot 0 \\ & (26 \cdot 5 \text { to } 75 \cdot 9) \end{aligned}$	$\begin{gathered} 2565 \cdot 7 \\ (-106 \cdot 3 \text { to } 5580 \cdot 4) \end{gathered}$	$\begin{aligned} & 6 \cdot 5 \\ & (-0 \cdot 3 \text { to } 13 \cdot 4) \end{aligned}$	$\begin{aligned} & 3263 \cdot 4 \\ & (1664 \cdot 4 \text { to } 5706 \cdot 6) \end{aligned}$	$\begin{aligned} & 8 \cdot 3 \\ & (4 \cdot 6 \text { to } 14 \cdot 3) \end{aligned}$	$\begin{gathered} 556.5 \\ (269.5 \text { to } 1057.0) \end{gathered}$	$\begin{aligned} & 1.4 \\ & (0.8 \text { to } 2.5) \end{aligned}$	$\begin{aligned} & 32 \cdot 8 \\ & (-6.1 \text { to } 68 \cdot 4) \end{aligned}$
Democratic Republic of the Congo	$\begin{aligned} & 21483 \cdot 2 \\ & (9964 \cdot 1 \text { to } 35809 \cdot 1) \end{aligned}$	$\begin{aligned} & 55 \cdot 8 \\ & \text { (29 to 80.9) } \end{aligned}$	$\begin{gathered} 2966 \cdot 7 \\ (-147.6 \text { to } 6748.8) \end{gathered}$	$\begin{aligned} & 7.7 \\ & (-0.4 \text { to } 15 \cdot 6) \end{aligned}$	$\begin{gathered} 1612 \cdot 8 \\ \text { (739.2 to } 3251 \cdot 3 \text {) } \end{gathered}$	$\begin{aligned} & 4 \cdot 2 \\ & (2 \cdot 3 \text { to } 7 \cdot 4) \end{aligned}$	$\begin{gathered} 677 \cdot 7 \\ \text { (308.1 to } 1309 \cdot 8) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (0.9 \text { to } 3) \end{aligned}$	$\begin{aligned} & 30 \cdot 5 \\ & (-6 \cdot 9 \text { to } 68 \cdot 2) \end{aligned}$
Ethiopia	$\begin{aligned} & 14148 \cdot 3 \\ & (6769 \cdot 4 \text { to } 22672 \cdot 6) \end{aligned}$	$\begin{aligned} & 54 \cdot 2 \\ & (30 \cdot 5 \text { to } 76 \cdot 1) \end{aligned}$	$\begin{gathered} 2121 \cdot 4 \\ (-100 \cdot 8 \text { to } 4583 \cdot 1) \end{gathered}$	$\begin{aligned} & 8.1 \\ & (-0.4 \text { to } 16 \cdot 4) \end{aligned}$	$\begin{gathered} 606 \cdot 2 \\ (255 \cdot 1 \text { to } 1219 \cdot 1) \end{gathered}$	$\begin{aligned} & 2 \cdot 3 \\ & (1 \cdot 1 \text { to } 4 \cdot 4) \end{aligned}$	$\begin{gathered} 298 \cdot 2 \\ (115 \cdot 4 \text { to } 620 \cdot 2) \end{gathered}$	$\begin{aligned} & 1.1 \\ & (0.5 \text { to } 2.2) \end{aligned}$	$\begin{aligned} & 34 \cdot 3 \\ & (0 \cdot 9 \text { to } 68 \cdot 3) \end{aligned}$
China	$\begin{gathered} 12177 \cdot 0 \\ (7171 \cdot 5 \text { to } 16901 \cdot 6) \end{gathered}$	$\begin{aligned} & 50 \cdot 2 \\ & (30 \text { to } 66 \cdot 7) \end{aligned}$	$\begin{gathered} 857 \cdot 9 \\ (-42 \cdot 1 \text { to } 1825 \cdot 4) \end{gathered}$	$\begin{aligned} & 3 \cdot 5 \\ & (-0.2 \text { to } 7 \cdot 3) \end{aligned}$	$\begin{gathered} 896.8 \\ (494.2 \text { to } 1548 \cdot 5) \end{gathered}$	$\begin{aligned} & 3 \cdot 7 \\ & (2 \cdot 1 \text { to } 6 \cdot 3) \end{aligned}$	$\begin{gathered} 303 \cdot 4 \\ (167.8 \text { to } 519 \cdot 5) \end{gathered}$	$\begin{aligned} & 1 \cdot 3 \\ & (0.7 \text { to } 2 \cdot 1) \end{aligned}$	$\begin{aligned} & 41 \cdot 3 \\ & (17 \cdot 6 \text { to } 67 \cdot 4) \end{aligned}$
Bangladesh	$\begin{gathered} 8460 \cdot 8 \\ (4028.1 \text { to } 13627.8) \end{gathered}$	$\begin{aligned} & 39 \cdot 8 \\ & (20 \cdot 4 \text { to } 59 \cdot 8) \end{aligned}$	$\begin{gathered} 733 \cdot 2 \\ (-32 \cdot 6 \text { to } 1645 \cdot 8) \end{gathered}$	$\begin{aligned} & 3.4 \\ & (-0.2 \text { to } 7 \cdot 4) \end{aligned}$	$\begin{gathered} 1258 \cdot 0 \\ (665 \cdot 0 \text { to } 2238 \cdot 3) \end{gathered}$	$\begin{aligned} & 5 \cdot 9 \\ & (3.2 \text { to } 10 \cdot 5) \end{aligned}$	$\begin{gathered} 154 \cdot 2 \\ \text { (78.5 to } 269 \cdot 6 \text {) } \end{gathered}$	$\begin{aligned} & 0.7 \\ & (0.4 \text { to } 1 \cdot 3) \end{aligned}$	$\begin{aligned} & 50 \cdot 2 \\ & (21 \cdot 0 \text { to } 76 \cdot 2) \end{aligned}$
Afghanistan	$\begin{aligned} & 11920 \cdot 0 \\ & (5681 \cdot 6 \text { to } 19034 \cdot 2) \end{aligned}$	$\begin{aligned} & 62 \cdot 2 \\ & (36 \cdot 7 \text { to } 84 \cdot 1) \end{aligned}$	$\begin{gathered} 1848.8 \\ (-93.1 \text { to } 4006.6) \end{gathered}$	$\begin{aligned} & 9.7 \\ & (-0.5 \text { to } 18.9) \end{aligned}$	$\begin{gathered} 1702 \cdot 4 \\ \text { (713.2 to } 3350 \cdot 3 \text {) } \end{gathered}$	$\begin{aligned} & 8.9 \\ & (4.2 \text { to } 16 \cdot 6) \end{aligned}$	$\begin{gathered} 318.0 \\ (134 \cdot 4 \text { to } 646 \cdot 0) \end{gathered}$	$\begin{aligned} & 1.7 \\ & (0.8 \text { to } 3 \cdot 2) \end{aligned}$	$\begin{aligned} & 17.5 \\ & (-22.8 \text { to } 58.8) \end{aligned}$
Tanzania	$\begin{aligned} & 9203 \cdot 7 \\ & (4418 \cdot 1 \text { to } 14959 \cdot 4) \end{aligned}$	$\begin{aligned} & 51 \cdot 9 \\ & (27 \cdot 3 \text { to } 74 \cdot 1) \end{aligned}$	$\begin{gathered} 801 \cdot 1 \\ (-31.0 \text { to } 1898.7) \end{gathered}$	$\begin{aligned} & 4.5 \\ & (-0.2 \text { to } 9.6) \end{aligned}$	$\begin{gathered} 450 \cdot 9 \\ (197 \cdot 7 \text { to } 876 \cdot 2) \end{gathered}$	$\begin{aligned} & 2 \cdot 5 \\ & (1 \cdot 2 \text { to } 4 \cdot 8) \end{aligned}$	$\begin{gathered} 162 \cdot 6 \\ \text { (77.9 to } 304 \cdot 9 \text {) } \end{gathered}$	$\begin{aligned} & 0.9 \\ & (0.5 \text { to } 1.6) \end{aligned}$	$\begin{aligned} & 40 \cdot 2 \\ & \text { (9•9 to 71-2) } \end{aligned}$
Indonesia	$\begin{gathered} 9573 \cdot 2 \\ (4522 \cdot 3 \text { to } 14806 \cdot 7) \end{gathered}$	$\begin{aligned} & 62 \cdot 5 \\ & (38 \cdot 6 \text { to } 82 \cdot 2) \end{aligned}$	$\begin{gathered} 1298 \cdot 4 \\ (-73 \cdot 5 \text { to } 2818 \cdot 6) \end{gathered}$	$\begin{aligned} & 8.5 \\ & (-0.5 \text { to } 16 \cdot 7) \end{aligned}$	$\begin{gathered} 567 \cdot 3 \\ (246 \cdot 7 \text { to } 1086 \cdot 3) \end{gathered}$	$\begin{aligned} & 3 \cdot 7 \\ & (1.9 \text { to } 6 \cdot 6) \end{aligned}$	$\begin{gathered} 360 \cdot 0 \\ (160 \cdot 4 \text { to } 654 \cdot 2) \end{gathered}$	$\begin{aligned} & 2.4 \\ & (1.3 \text { to } 4) \end{aligned}$	$\begin{aligned} & 22 \cdot 9 \\ & (-9 \cdot 5 \text { to } 58 \cdot 7) \end{aligned}$
Data are n or $\%(95 \%$ uncertainty interval). The number of deaths in children younger than 5 years are shown for each aetiology at the global level and for each of the ten countries with the highest LRI mortality burden. Aetiological attributable fractions are based on a counterfactual modelling strategy and do not necessarily sum to 100% in a given location. LRI=lower respiratory tract infection. PAF=population attributable fraction.									
Table 2: Number of deaths and PAFs of LRI-related deaths in children aged 5 years or younger, by aetiology, in top ten countries with highest under-5 LRI mortality burden									

A decomposition of the change in attributable DALYs between 2005 and 2015 by country is shown in figure 4, which includes the two leading risk factors for LRI DALYs, childhood undernutrition and air pollution (indoor and ambient). At the global level, we estimated that LRI DALYs have decreased 8.9% because of reduced prevalence of childhood undernutrition and decreased 4.3% because of improvements in air pollution exposure. We estimated that LRIs attributable to childhood undernutrition have decreased in many countries in sub-Saharan Africa during this period, particularly in Kenya ($37 \cdot 2 \%$ decrease), but the number of DALYs in Kenya have only marginally decreased overall, mainly because of population growth (figure 4E). LRI DALYs in many countries in Latin America and the Caribbean have decreased substantially because of reductions in exposure to air pollution, including a 53% reduction attributable to these improvements in air pollution in Paraguay. Population ageing has contributed to a larger burden of LRI DALYs, particularly in highincome countries. In adults aged 70 years and older, DALYs due to LRI have increased by an estimated $18 \cdot 9 \%$ between 2005 and 2015 (data not shown). The increase in LRI DALYs in this age group was highest in low-SDI regions where the number of DALYs increased by $25 \cdot 0 \%$. All LRI models and results for GBD 2015 can be explored further online using the Institute for Health Metrics and Evaluation visualisations.

Discussion

The GBD 2015 study estimated that LRIs were the fifthleading cause of death (of 249 causes) and the leading infectious cause, responsible for 2.74 million deaths (95% UI 2.50 million to 2.86 million). LRIs were the third-leading cause of under-5 mortality behind preterm birth and neonatal encephalopathy, accounting for $12 \cdot 1 \%$ of deaths in this age group. Our analysis suggests that the number of deaths due to LRI in children younger than 5 years decreased by 37% between 2005 and 2015. We found that, although all-age LRI mortality rate decreased, growing and ageing populations have contributed to no significant decline in total LRI deaths between 2005 and 2015. Despite dramatic improvement in the under-5 LRI mortality rate, LRI remains a preventable cause of death in young children and elderly adults, particularly in south Asia and sub-Saharan Africa, and was the second-leading cause of DALYs in 2015. The findings call for renewed efforts to control and prevent LRIs across all age groups.
Some solutions to prevent LRI deaths do not require major advances in technology. Measures to protect, prevent, and treat LRIs are highlighted in the Global Action Plan for Pneumonia and Diarrhoea. ${ }^{28}$ The findings from this study indicate that LRI incidence has declined far more slowly than mortality, suggesting that interventions and treatments that prevent mortality for LRI, particularly in

For the Institute for Health Metrics and Evaluation visualisations see http://www healthdata.org/gbd/datavisualizations

Figure 3: Attributable fraction of LRI mortality in children younger than 5 years in 2015
Aetiologies for each GBD region are ordered by the global ranking. Numbers show the population attributable fraction in 2015, and colours show the percent change from 2005 to 2015. LRI=lower respiratory tract infection
children younger than 5 years, have been much more successful reducing the burden of LRI than prevention of disease incidence. According to this study, the reduction in LRI DALYs can be traced to Hib vaccine use, decreased exposure to indoor air pollution, and a reduction in undernutrition in children younger than 5 years.
Although such interventions were not estimated in GBD 2015, improved access to health care and emphasis on appropriate treatment have probably played a crucial role in reducing LRI mortality, with proper treatment reducing mortality by $20-42 \% .^{2,29-31}$ How much of the
decrease in mortality is due to proper adherence and implementation of the WHO Integrated Management of Childhood Illness recommendations is unclear, because data on its uptake are scarce. These recommendations, which are based on symptom-based screening criteria such as fast breathing or lower chest wall indrawing, have been updated several times, and their application varies substantially. Divergence from these criteria might lead to inappropriate treatment and misuse of antibiotics. ${ }^{20,32,33}$ Our results suggest that most severe LRIs have bacterial causes, whereas pneumococcal pneumonia and Hib have effective Gavi-supported vaccines, emphasising that combined appropriate case management and vaccine use might prevent many episodes of LRI and reduce dependence on antibiotics. ${ }^{34}$
In 2015, approximately 65% of children younger than 5 years received the Hib vaccine and 40% received the PCV. ${ }^{35}$ At the global level, the PAF of Hib on LRI deaths decreased $37 \cdot 8 \%$ between 2005 and 2015, reflecting the expanded use and introduction of the vaccine during this time, particularly in countries that received support from Gavi. ${ }^{36}$ Despite the growing use of PCV, pneumococcal pneumonia mortality has not decreased significantly at the global level and has decreased more slowly than Hib, in part because the PAF for pneumococcal pneumonia depends on the PAF for Hib; as Hib decreases, we assume that pneumococcal pneumonia must increase to account for overall LRI aetiological attribution.
The expanded use of PCV might have several indirect effects on LRI burden. PCV might prevent influenza and RSV mortality, because up to half of severe viral infections are complicated by pneumococcal pneumonia. ${ }^{37}$ Further, PCV might induce large indirect (herd) vaccine effects that protect unvaccinated populations, such as adults and elderly people. ${ }^{38}$ Amid debate about quantifying the effect of indirect vaccine effectiveness for adults in populations with infant vaccine use, ${ }^{39}$ our findings highlight the burden of LRI in the elderly population, including nearly 700000 deaths in people aged older than 70 years due to pneumococcal pneumonia. Expanding access to the vaccine in adults might substantially reduce the burden of LRI.
Our results suggest that LRIs were the second-leading cause of DALYs globally in 2015 after ischaemic heart disease. ${ }^{4}$ Our results also suggest that decreases in under- 5 undernutrition have substantially reduced LRI DALYs, and are responsible for nearly 9% of the decline during this period. ${ }^{22,40,41}$ The greatest reduction in LRI DALYs due to childhood undernutrition between 2005 and 2015 occurred in east and southeast Asia. This finding is notable because improved childhood nutrition will have effects beyond reducing LRI DALYs and is also likely to reduce the burden of disease caused by diarrhoea and measles. ${ }^{40}$ Emphasis on sustainable agriculture, supplementary nutritional programmes, and equitable distribution of food through the Sustainable Development Goals will be necessary for continued reductions in the global burden of LRI. ${ }^{42}$

(Figure 4 continues on next page)

(Figure 4 continues on next page)

Household solid fuel use as a risk factor for LRI has decreased since 2005, particularly in Latin America and southeast Asia, which are undergoing rapid urbanisation and economic development. Economic development that shifts energy requirements away from household burning of biomass might reduce exposure to indoor air pollution at the expense of outdoor and ambient particulate matter from large-scale energy production facilities like coalburning power plants. ${ }^{43}$ Providing affordable clean energy options in low sociodemographic areas of the world is covered by the Sustainable Development Goals, but achieving this aim will be a challenge and the risk of LRIs might depend on its success. ${ }^{3}$
Our estimates of LRI mortality, morbidity, and aetiology attribution are limited by data availability and especially the sparsity of data in sub-Saharan Africa, the region with
the greatest LRI burden and need for high-quality data (appendix pp 5, 7, and 14-15). Only extremely scarce verbal autopsy data are available for large populations and the data that are available in Africa and south Asia might be of low quality, as measured by indices such as completeness, detail, internal consistency, and timeliness. Better surveillance systems, including standard reporting mechanisms and case definitions, in Africa and south and southeast Asia would substantially reduce a major source of uncertainty in the LRI mortality estimates. ${ }^{44}$ Assessing a systematic bias in morbidity or mortality estimates is difficult because of data quantity and quality. The predictive modelling approaches used in GBD 2015 rely on covariates and shared information across space and time to fill in these areas and the data gaps are reflected in the uncertainty intervals in the estimates (table 1).

(Figure 4 continues on next page)

Even with the application and expanded use of PCR diagnostic techniques, data on the aetiology of pneumonia remain sparse, particularly in areas with high disease burden. This scarcity of data is largely due to the difficulty of obtaining appropriate samples for testing, particularly in children, the relatively high cost of PCR, and challenges in culturing and diagnosing many pathogens that cause respiratory infections. ${ }^{45,46}$ Studies
that have attempted to elucidate the aetiology of childhood pneumonia, frequently using nasopharyngeal swabs or lung aspirates, have had poor success in identifying an obvious aetiological agent. ${ }^{45,47}$ Atypical pathogens, including nosocomial infections such as Staphylococcus aureus, or intracellular pathogens like Mycoplasma pneumoniae, might be important aetiologies for LRIs and are not included in GBD 2015. ${ }^{48,49}$ Such

Figure 4: Risk factor decomposition of the change in attributable DALYs in all ages between 2005 and 2015 (A) Southeast Asia, east Asia, and Oceania; (B) north Africa and Middle East; (C) south Asia; (D) central Europe, eastern Europe, and central Asia; (E) sub-Saharan Africa;
(F) Latin America and Caribbean; and (G) high-income WHO regions. Black dots show the overall percentage change in LRI DALYs and colours show contribution of different factors to the rate of change. Bars to the left of zero show a reduction in attribution and bars to the right show an increase. LRI=lower respiratory tract infection.
DALY=disability-adjusted life-year.

omissions might limit the ability to attribute LRI episodes and deaths to pathogens because our analysis is not able to show whether the unattributed LRI episodes and deaths are due to the four aetiologies included in GBD 2015 or other pathogens. Results from the Pneumonia Etiology Research for Child Health Project, ${ }^{50}$ a seven-site case-control study in sub-Saharan Africa and south Asia, were not available for inclusion in GBD 2015 but might provide evidence on LRI aetiologies such as additional pathogens, the relative contribution of each aetiology, and viral-bacterial coinfections.
The attributable fraction strategy for Hib and pneumococcal pneumonia assumes that the vaccine efficacy against invasive disease is the same as for pneumonia. A study by Bonten and colleagues ${ }^{18}$ using a urine antigen test in elderly adults suggests that the vaccine efficacy of PCV13 might be up to a third higher against invasive pneumococcal disease than against pneumococcal pneumonia. ${ }^{18}$ We have adjusted our estimates of vaccine effectiveness from other studies using this ratio but recognise the uncertainty around the application of a single study in elderly adults to all other studies and decided to use a flat distribution centred on the mean ratio from the study to reflect this uncertainty. Application of this diagnostic test is unsuitable for children and is complicated by the frequent nasopharyngeal carriage rate in children, perhaps up to 90% in low-income settings. ${ }^{45,51,52}$ We do not account for serotype replacement or changes in serotype prevalence due to the introduction of PCV, which might be an important factor in the burden of pneumococcal pneumonia and the effectiveness of the vaccine at the population level. ${ }^{29}$
Only four randomised controlled trials on Hib vaccine efficacy have been done in children younger than 5 years. Despite a plausible disease burden in older children and adults, we decided to apply the attributable fraction of LRI episodes and deaths due to Hib pneumonia to the under-5 age group only. The lower bound of the Hib PAF estimates is below zero (not statistically significant) at the global level, reflecting in part the scarcity of reliable data on Hib vaccine efficacy.
The attribution of the viral pathogens to LRI mortality was based on the relative case fatality of bacterial to viral aetiologies, and cases of LRI admitted to hospital might not be representative of cases not admitted to hospital. Efforts to improve surveillance, such as the African Network for Influenza Surveillance and Epidemiology, ${ }^{53}$ are essential in tracking the burden of influenza and other LRI aetiologies and for appropriate and timely response to epidemics. We excluded data describing pandemic H1N1 influenza to avoid biasing global and temporal trends in influenza burden, but doing so might have led to lower estimates of influenza burden, particularly since 2008.
The GBD 2015 estimates of LRI mortality and burden are generally similar to the GBD 2013 estimates. ${ }^{1,10}$ Global under-5 mortality was lower in GBD 2015 than GBD 2013,
primarily because of decreased estimates in Nigeria (appendix pp 18-21). Nigeria is a high-population, high-burden country with sparse data and estimates in this high-burden country are influenced by regional trends and covariates; limitations shared by much of sub-Saharan Africa. In fact, only a single datapoint informed cause of death models in this country. Mortality and morbidity were different between GBD versions in China and India (appendix pp 18-21), which reflects in part that these countries are now modelled subnationally (data not shown), allowing for greater accuracy and precision in geographic disparities. Disparities in LRI burden by wealth, geography, and other subpopulation characteristics might be missed when national-level estimates are presented. The GBD study will be produced annually starting with GBD 2016, and future iterations will feature finer spatial resolution, including mapping the burden of LRI on a $5 \times 5 \mathrm{~km}$ level, which will enable tracking of the burden at a very fine resolution.
Our estimates of pneumonia mortality in children younger than 5 years differ from those produced by the WHO Department of Evidence, Information and Research and the Maternal and Child Epidemiology Estimation (MCEE) group. The GBD 2015 estimates for under-5 mortality due to LRI in 2015 (704000 deaths, 95% UI 651000-763000) were much lower than those from the MCEE (920000 deaths). ${ }^{54,55}$ The difference in total under- 5 deaths was greatest for Nigeria and India (appendix p 25).
Despite substantial reductions in under-5 LRI mortality in many countries, the burden remains high, particularly in areas of low sociodemographic development, and has increased in some populations, particularly elderly people. Estimates of the global burden of LRI will be improved by more high-quality data on mortality, morbidity, and aetiologies, especially in sub-Saharan Africa where the burden is highest and data are most scarce. The creation and expansion of civil registration systems in Africa and south Asia are gaining momentum, and such data will not only improve global comparative mortality assessments such as the GBD study, but also increase the evidence for guiding decision about local policy. ${ }^{4,56}$ Improvements in diagnostics for LRI aetiologies, including those appropriate for children younger than 5 years to better understand the unique contribution of each aetiology to the LRI burden, will help guide targeted interventions such as vaccination. Continuing to emphasise the importance of appropriate case management, to expand the use of PCV, and to reduce childhood undernutrition and exposure to air pollution will accelerate the reduction in LRI disease burden.

GBD 2015 LRI Collaborators

Christopher Troeger, Mohammad Forouzanfar, Puja C Rao, Ibrahim Khalil, Alexandria Brown, Scott Swartz, Nancy Fullman, Jonathan Mosser, Robert L Thompson, Robert C Reiner Jr, Amanuel Abajobir, Noore Alam, Mulubirhan Assefa Alemayohu, Azmeraw T Amare, Carl Abelardo Antonio, Hamid Asayesh,

Euripide Avokpaho, Aleksandra Barac, Muktar A Beshir, Dube Jara Boneya, Michael Brauer, Lalit Dandona, Rakhi Dandona, Joseph R A Fitchett, Tsegaye Tewelde Gebrehiwot,
Gessessew Buggsa Hailu, Peter J Hotez, Amir Kasaeian, Tawfik Khoja, Niranjan Kissoon, Luke Knibbs, G Anil Kumar, Rajesh Kumar Rai, Hassan Magdy Abd El Razek, Muktar S K Mohammed, Katie Nielson, Eyal Oren, Abdalla Osman, George Patton, Mostafa Qorbani, Hirbo Shore Roba, Benn Sartorius, Miloje Savic, Mika Shigematsu, Bryan Sykes, Soumya Swaminathan, Roman Topor-Madry, Kingsley Ukwaja, Andrea Werdecker, Naohiro Yonemoto, Maysaa El Sayed Zaki, Stephen S Lim*, Mohsen Naghavi*, Theo Vos*, Simon I Hay*, Christopher J L Murray*, Ali H Mokdad. *Joint senior authors.

Affiliations

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA (C Troeger MPH, M Forouzanfar MBBS, P C Rao MPH, I Khalil MD, A Brown MSc, S Swartz MS, N Fullman MPH, J Mosser MD, R L Thompson PhD, R C Reiner Jr PhD, S S Lim PhD, M Naghavi PhD, T Vos PhD, S I Hay FMedSci, C J L Murray DPhil, A H Mokdad PhD, L Dandona MD); University of Oxford, Oxford, UK (S I Hay FMedSci); University of Queensland, Brisbane, QLD, Australia (A Abajobir MPH, L Knibbs PhD); Queensland Health Australia, Brisbane, QLD, Australia (N Alam MA); University of British Columbia, Vancouver, BC, Canada (M Brauer ScD, N Kissoon MBBS); Mekelle University, Mekelle, Ethiopia (M A Alemayohu MPH, G B Hailu MSc); University of Adelaide, Adelaide, SA, Australia (A T Amare MPH, MSc); University of the Philippines Manila, Manila, Philippines (C A Antonio MD); Qom University of Medical Sciences, Qom, Iran (H Asayesh PhD); Africare Benin, Cotonou, Benin (E Avokpaho MD, MPH); University of Belgrade, Belgrade, Serbia (A Barac PhD); Jimma University, Jimma, Ethiopia (M A Beshir MPH, T T Gebrehiwot MPH); Debre Markos University, Debre Markos, Ethiopia (D Boneya MPH); Public Health Foundation of India, Gurugram, India (R Dandona PhD, G A Kumar PhD); Harvard University, Boston, MA, USA (J R A Fitchett MBBS); Baylor University, Atlanta, GA, USA (P J Hotez PhD); Tehran University of Medical Sciences, Tehran, Iran (A Kasaeian PhD); Executive Board of the Health Ministers' Council for Cooperation Council States, Riyadh, Saudi Arabia (T Khoja FRCGP); Society for Health and Demographic Surveillance, Kolkata, India (R K Rai MPH); Mansoura University, Mansoura, Egypt (H Magdy Abd El Razek MBBCH, M El Sayed Zaki PhD); MizanTepi University, Tepi, Ethiopia (M S K Mohammed MS); University of Washington, Seattle, WA, USA (K Nielsen MD); University of Arizona, Tucson, AZ, USA (E Oren PhD); Public Health Institute Sudan, Khartoum, Sudan (A Osman MD); University of Melbourne, Melbourne, VIC, Australia (G Patton MD); Alborz University of Medical Sciences, Baghestan, Iran (M Qorbani, PhD); Haramaya University, Dire Dawa, Ethiopia (H S Roba MPH); University of KwaZulu-Natal, Durban, South Africa (B Sartorius PhD); Norwegian Institute of Public Health, Oslo, Norway (M Savic PhD); National Institute of Infectious Diseases Japan, Tokyo, Japan (M Shigematsu PhD); University of California Irvine, Irvine, CA, USA (B Sykes PhD); Indian Council of Medical Research, New Delhi, India (S Swaminathan MD); Jagiellonian University Medical College, Kraków, Poland (R Topor-Madry PhD); Federal Teaching Hospital, Abakaliki, Nigeria (K Ukwaja MD); Federal Institute for Population Research, Wiesbaden, Germany (A Werdecker PhD); Kyoto University, Kyoto, Japan (N Yonemoto MPH).

Contributors

CT, PCR, and IK prepared the first draft. CT, MF, and AB constructed the figures and tables. MF, CJLM, AHM, RCR, and SIH provided overall guidance. PCR managed the project. CT, PCR, and IK finalised the manuscript based on comments from other authors and reviewer feedback. CT and PCR managed the appendix. All other authors provided data or developed models for indicators, reviewed results, initiated modelling infrastructure, and reviewed or contributed to the report.

Declaration of interests

SIH is funded by grants from the Bill \& Melinda Gates Foundation (OPP1106023, OPP1093011, OPP1132415, and OPP1159934). All other authors declare no competing interests.

References

1 GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117-71.
2 Bhutta ZA, Das JK, Walker N, et al. Interventions to address deaths from childhood pneumonia and diarrhoea equitably: what works and at what cost? Lancet 2013; 381: 1417-29.
3 UN Department of Economic and Social Affairs. Sustainable Development Goal 3: ensure healthy lives and promote well-being for all at all ages. 2017. https://sustainabledevelopment. un.org/sdg3 (accessed Oct 10, 2016).
4 GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545-602.
5 GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459-544.
6 Stevens GA, Alkema L, Black RE, et al. Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER statement. Lancet 2016; 388: e19-e23.
7 Naghavi M, Makela S, Foreman K, O'Brien J, Pourmalek F, Lozano R. Algorithms for enhancing public health utility of national causes-of-death data. Popul Health Metr 2010; 8: 9.
8 Foreman KJ, Lozano R, Lopez AD, Murray CJ. Modeling causes of death: an integrated approach using CODEm. Popul Health Metr 2012; 10 : 1.
9 WHO Department of Child and Adolescent Health and Development. Handbook: integrated management of childhood illness. Geneva: World Health Organization, 2005. http://apps.who.int/iris/ bitstream/10665/42939/1/9241546441.pdf (accessed Nov 7, 2016).
10 Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 743-800.
11 Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2163-96.
12 GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1603-58.
13 Feikin DR, Scott JA, Gessner BD. Use of vaccines as probes to define disease burden. Lancet 2014; 383: 1762-70.
14 O'Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 2009; 374: 893-902.
15 Watt JP, Wolfson LJ, O'Brien KL, et al. Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet 2009; 374: 903-11.
16 Swingler G, Fransman D, Hussey G. Conjugate vaccines for preventing Haemophilus influenzae type B infections. Cochrane Database Syst Rev 2007; 2: CD001729.
17 Lucero MG, Dulalia VE, Nillos LT, et al. Pneumococcal conjugate vaccines for preventing vaccine-type invasive pneumococcal disease and X-ray defined pneumonia in children less than two years of age. Cochrane Database Syst Rev 2009; 4: CD004977.
18 Bonten MJ, Huijts SM, Bolkenbaas M, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med 2015; 372: 1114-25.
19 Shi T, McLean K, Campbell H, Nair H. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: a systematic review and meta-analysis. J Glob Health 2015; 5: 010408.
20 Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 1974; 99: 325-32.

21 United Nations Development Programme. Human development report 2015: work for human development. New York, NY: United Nations, 2016. hdr.undp.org/sites/default/files/2015 human_development_report.pdf (accessed Nov 10, 2016)
22 GBD 2015 Risk Factors Collaborators. Global, regional and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-724.
23 Mokdad AH, Forouzanfar MH, Daoud F, et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2016; 387: 2383-401.
24 Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ 2008; 86: 390-398C.
25 Mehta S, Shin H, Burnett R, North T, Cohen AJ. Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health 2013; 6: 69-83.
26 Olofin I, McDonald CM, Ezzati M, et al. Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: a pooled analysis of ten prospective studies. PLoS One 2013; 8: e64636.
27 Das Gupta P. Standardization and decomposition of rates: a user's manual. Washington DC: US Bureau of the Census; 1993.
28 WHO, The United Nations Children's Fund (UNICEF). Ending preventable child deaths from pneumonia and diarrhoea by 2025: the integrated Global Action Plan for Pneumonia and Diarrhoea (GAPPD). Geneva: World Health Organization, 2013. http://apps. who.int/iris/bitstream/10665/79200/1/9789241505239_eng. pdf?ua=1 (accessed Nov 7, 2016).
29 Izadnegahdar R, Cohen AL, Klugman KP, Qazi SA. Childhood pneumonia in developing countries. Lancet Respir Med 2013; 1: 574-84.
30 Soofi S, Ahmed S, Fox MP, et al. Effectiveness of community case management of severe pneumonia with oral amoxicillin in children aged 2-59 months in Matiari district, rural Pakistan: a cluster-randomised controlled trial. Lancet 2012; 379: 729-37.
31 Sazawal S, Black RE. Effect of pneumonia case management on mortality in neonates, infants, and preschool children: a meta-analysis of community-based trials. Lancet Infect Dis 2003; 3: 547-56.
32 Graham SM, English M, Hazir T, Enarson P, Duke T. Challenges to improving case management of childhood pneumonia at health facilities in resource-limited settings. Bull World Health Organ 2008; 86: 349-55.
33 Crowther-Gibson P, Cohen C, Klugman KP, de Gouveia L, von Gottberg A. Risk factors for multidrug-resistant invasive pneumococcal disease in South Africa, a setting with high HIV prevalence, in the prevaccine era from 2003 to 2008. Antimicrob Agents Chemother 2012; 56: 5088-95.
34 Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev 2016; 29: 525-52.
35 WHO. Immunization coverage. Geneva: World Health Organization, 2016. http://www.who.int/mediacentre/factsheets/ fs378/en/ (accessed Nov 2, 2016).
36 No authors listed. Progress introducing Haemophilus influenzae type b vaccine in low-income countries, 2004-2008. Wkly Epidemiol Rec 2008; 83: 61-67.
37 Madhi SA, Kuwanda L, Cutland C, Klugman KP. The impact of a 9 -valent pneumococcal conjugate vaccine on the public health burden of pneumonia in HIV-infected and -uninfected children. Clin Infect Dis 2005; 40: 1511-18.
38 Rodgers GL, Klugman KP. Surveillance of the impact of pneumococcal conjugate vaccines in developing countries. Hum Vaccin Immunother 2016; 12: 417-20.

39 Prato R, Fortunato F, Martinelli D. Pneumococcal pneumonia prevention among adults: is the herd effect of pneumococcal conjugate vaccination in children as good a way as the active immunization of the elderly? Curr Med Res Opin 2016; 32: 543-45.
40 Stevens GA, Finucane MM, Paciorek CJ, et al. Trends in mild, moderate, and severe stunting and underweight, and progress towards MDG 1 in 141 developing countries: a systematic analysis of population representative data. Lancet 2012; 380: 824-34.
41 Jackson S, Mathews KH, Pulanic D, et al. Risk factors for severe acute lower respiratory infections in children: a systematic review and meta-analysis. Croat Med J 2013; 54: 110-21.
42 UN Department of Economic and Social Affairs. Sustainable Development Goal 2: end hunger, achieve food security and improved nutrition and promote sustainable agriculture. 2017. https://sustainabledevelopment.un.org/sdg2 (accessed Oct 7, 2016).
43 Kurmi OP, Lam KBH, Ayres JG. Indoor air pollution and the lung in low- and medium-income countries. Eur Respir J 2012; 40: 239-54.
44 Mikkelsen L, Phillips DE, AbouZahr C, et al. A global assessment of civil registration and vital statistics systems: monitoring data quality and progress. Lancet 2015; 386: 1395-406.
45 Scott JA, Brooks WA, Peiris JS, Holtzman D, Mulholland EK. Pneumonia research to reduce childhood mortality in the developing world. J Clin Invest 2008; 118: 1291-300.
46 Templeton KE, Scheltinga SA, van den Eeden WC, Graffelman AW, van den Broek PJ, Claas EC. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis 2005; 41: 345-51.
47 Resti M, Moriondo M, Cortimiglia M, et al. Community-acquired bacteremic pneumococcal pneumonia in children: diagnosis and serotyping by real-time polymerase chain reaction using blood samples. Clin Infect Dis 2010; 51: 1042-49.
48 Arnold FW, Summersgill JT, Lajoie AS, et al. A worldwide perspective of atypical pathogens in community-acquired pneumonia. Am J Respir Crit Care Med 2007; 175: 1086-93.
49 Cilloniz C, Martin-Loeches I, Garcia-Vidal C, San Jose A, Torres A. Microbial etiology of pneumonia: epidemiology, diagnosis and resistance patterns. Int J Mol Sci 2016; 17: E2120.
50 Levine OS, O'Brien KL, Deloria-Knoll M, et al. The Pneumonia Etiology Research for Child Health Project: a 21st century childhood pneumonia etiology study. Clin Infect Dis 2012; 54 (suppl 2): S93-101.
51 Dowell SF, Garman RL, Liu G, Levine OS, Yang YH. Evaluation of Binax NOW, an assay for the detection of pneumococcal antigen in urine samples, performed among pediatric patients. Clin Infect Dis 2001; 32: 824-25.
52 Hill PC, Akisanya A, Sankareh K, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian villagers. Clin Infect Dis 2006; 43: 673-79.
53 Radin JM, Katz MA, Tempia S, et al. Influenza surveillance in 15 countries in Africa, 2006-2010. J Infect Dis 2012; 206 (suppl 1): S14-21.
54 Johns Hopkins Bloomberg School of Public Health. Maternal and child epidemiology estimation. http://www.jhsph.edu/research/ centers-and-institutes/institute-for-international-programs/current-projects/maternal-child-epidemiology-estimation/ (accessed Aug 26, 2016).
55 WHO. Estimates for 2000-2015. Geneva: World Health Organization. http://www.who.int/healthinfo/global_burden_ disease/estimates/en/index3.html (accessed Aug 25, 2016).
56 AbouZahr C, de Savigny D, Mikkelsen L, et al. Civil registration and vital statistics: progress in the data revolution for counting and accountability. Lancet 2015; 386: 1373-85.

