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Abstract

Background: Environment and diet in early life can affect development and health throughout the life course. Metabolic
phenotyping of urine and serum represents a complementary systems-wide approach to elucidate environment–health
interactions. However, large-scale metabolome studies in children combining analyses of these biological fluids are lacking.
Here, we sought to characterise the major determinants of the child metabolome and to define metabolite associations with
age, sex, BMI and dietary habits in European children, by exploiting a unique biobank established as part of the Human
Early-Life Exposome project (http://www.projecthelix.eu).

Methods: Metabolic phenotypes of matched urine and serum samples from 1192 children (aged 6–11) recruited from birth
cohorts in six European countries were measured using high-throughput 1H nuclear magnetic resonance (NMR)
spectroscopy and a targeted LC-MS/MS metabolomic assay (Biocrates AbsoluteIDQ p180 kit).

Results: We identified both urinary and serum creatinine to be positively associated with age. Metabolic associations
to BMI z-score included a novel association with urinary 4-deoxyerythreonic acid in addition to valine, serum carnitine,
short-chain acylcarnitines (C3, C5), glutamate, BCAAs, lysophosphatidylcholines (lysoPC a C14:0, lysoPC a C16:1, lysoPC a
C18:1, lysoPC a C18:2) and sphingolipids (SM C16:0, SM C16:1, SM C18:1). Dietary-metabolite associations included
urinary creatine and serum phosphatidylcholines (4) with meat intake, serum phosphatidylcholines (12) with fish,
urinary hippurate with vegetables, and urinary proline betaine and hippurate with fruit intake. Population-specific
variance (age, sex, BMI, ethnicity, dietary and country of origin) was better captured in the serum than in the urine
profile; these factors explained a median of 9.0% variance amongst serum metabolites versus a median of 5.1%
amongst urinary metabolites. Metabolic pathway correlations were identified, and concentrations of corresponding
metabolites were significantly correlated (r > 0.18) between urine and serum.
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Conclusions: We have established a pan-European reference metabolome for urine and serum of healthy children and
gathered critical resources not previously available for future investigations into the influence of the metabolome on
child health. The six European cohort populations studied share common metabolic associations with age, sex, BMI
z-score and main dietary habits. Furthermore, we have identified a novel metabolic association between threonine
catabolism and BMI of children.

Keywords: Exposome metabolomics, Metabonomics, Metabolic phenotyping, Epidemiology, Birth cohorts, Paediatrics,
NMR spectroscopy, LC-MS, European children, Metabolic profile,

Background
Under-nutrition during gestation was first proposed in the
early 1990s to explain the association observed between
low birth weight in infancy and higher mortality rates
from cardiovascular disease in male adults [1, 2]. Since
then, it has been hypothesised that the origins of many
diseases that manifest later in life may be traced back to
fetal development—known as the DOHaD (Developmen-
tal Origins of Health and Disease) paradigm [3]. In
addition, early-life environmental exposures may have
wide-ranging consequences for health. Critical windows in
development, such as the prenatal period and infancy,
have been shown to be particularly susceptible to environ-
mental risk factors that influence disease burden into
adulthood [4–6]. For example, prenatal exposure to pas-
sive smoke and outdoor air pollutants are acknowledged
risk factors for asthma and other allergies including ec-
zema [7, 8], and exposure to endocrine-disrupting and
household chemicals have been found to increase obesity
risk in children [9, 10]. Moreover, childhood exposure to
passive smoke has also been associated with lung cancer
risk in adults [11], whilst prenatal infection and exposure
to lead have been linked respectively to schizophrenia [12]
and attention deficit hyperactivity disorder in children
[13]. Growing evidence suggests environmental expo-
sure in early life can also alter molecular phenotypes—
such as the epigenome—which then persist throughout
life [14, 15]. Consequently, the importance of measu-
ring multiple environmental exposures simultaneously
(the exposome) and the impact of this on health at dif-
ferent stages of life are increasingly being recognised
[16–20]. Population cohort-based exposome research
studies could help address the multi-dimensional inter-
play between various environmental factors and deve-
lopmental health outcomes [21]. For example, a recent
exposome study conducted in Greece has identified
that proximity to landfill waste may impact neurodeve-
lopment in children [22].
Metabolic profiling has been utilised to characterise

markers of environmental exposures [23–27] and confer
valuable information regarding early life health outcomes;
from preterm birth [28] and fetal growth [29] to childhood
disease [30–32]. Age, sex, body morphology, and dietary

intakes all play important roles in determining the urine
and serum metabolome, and whilst their contributions to
metabolic phenotypes are relatively well characterised in
the adult population [33–42], to date there are only a
few studies, of relatively small sample size, in children
[43–46]. In addition, epidemiological studies that per-
mit evaluation of the complementarity of urine and
serum metabolomics data are also lacking [47].
To address this knowledge gap, metabolomic analyses of

serum and urine were performed as part of the Human
Early-Life Exposome (HELIX) project, which seeks to
define the environmental exposome from pregnancy to
childhood, to associate these with child health outcomes
and to define molecular ‘omics’ markers [48]. The project
gathered samples and data from six longitudinal birth
cohort studies across six European countries—France,
Greece, Lithuania, Norway, Spain and the UK. Analyses
were conducted on biofluid samples from the HELIX
subcohort of children between 6 and 11 years of age to
perform molecular phenotyping including metabolomics,
proteomics, transcriptomics and genomics and also to
measure chemical exposure levels in order to identify
molecular markers of exposure [49]. Specifically in this
current study, we aim to (a) characterise the major deter-
minants of the child metabolome, (b) define metabolite
associations to demographic factors, BMI and main die-
tary intake habits in European children, and (c) evaluate
correlation patterns and complementarity between serum
and urine metabolic profiles.

Methods
HELIX project multilevel study design
The HELIX study is a collaborative project across six
established and longitudinal birth cohorts in Europe. A
multilevel study design was employed. Level 1—the
entire study population of HELIX consists of 31,472
mother-child pairs which were recruited between 1999
and 2010 during their pregnancies by the six cohorts.
Level 2—the HELIX subcohort consists of 1301
mother-child pairs from which exposure data, ‘omics’
molecular profiles, and child health outcomes were
measured at 6–11 years of age. Level 3—panel studies
with repeated sampling periods from a cohort of 150
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children and 150 pregnant women to understand tem-
poral variability of the personal exposure data [49].

Current study sample population—the HELIX children
subcohort
The children in the HELIX subcohort were followed up
between December 2013 and February 2016; there were
approximately 200 mother–child pairs from each of the
six cohorts. Follow-up examinations for the subcohort
took place either at local hospitals, primary care centres
or the National Institute for Public Health (NIPH) in
Oslo, during which mothers were interviewed and chil-
dren checked and examined by trained nurses according
to standardised operating procedures. Biological samples
were also collected on the day of the examinations.
Metabolic phenotypes of 1201 children’s urine and sera
samples from the HELIX subcohort were generated, of
which complete matching metadata listed in Table 1 were
available for 1192 children as follows: Born in Bradford, UK
(BiB, n = 199) [50]; Study of determinants of pre- and post-
natal developmental, France (EDEN, n = 157) [51]; Infancia
y Medio Ambiente, Environment and Childhood, Spain
(INMA, n = 207) [52]; Kaunas Cohort, Lithuania (KANC,
n = 201) [53]; The Norwegian Mother and Child Cohort
Study, Norway (MoBa, n = 229) [54]; Mother-Child Cohort
in Crete, Greece (Rhea, n = 199) [55]. Hence, the number
of samples carried forward for data analysis was 1192.

Body mass index and food dietary frequency data
zBMI
During the subcohort follow-up examinations, height and
weight were respectively measured with a stadiometer and
a digital weight scale both without shoes and with light
clothing. Height and weight measurements were
converted to body mass index (BMI in kg/m2) for age and
sex z-scores using the international World Health
Organization (WHO) reference curves in order to allow
for comparison with other studies [56].

Dietary frequency
Data on the food intake frequency of 44 food items from
11 main food groups were collected through a short

food frequency questionnaire and the average number of
times per week that each food item was consumed was
recorded. The 11 main groups were sweets, which
include chocolate (bars, bonbon, spreads, cacao), sugar,
honey, jam or other sweets; meat, which includes pro-
cessed meat, poultry and red meat; fish, which includes
canned fish, oily fish, white fish and seafood; beverages,
which include both high- and low-sugar soda, other soft
and fizzy drinks; potatoes, which include also French
fries; vegetables, which include both raw and cooked
vegetables; dairy products, which include yogurt, cheese,
milk and dairy desserts; cereal, which include bread,
breakfast cereal, rice and pasta, rusks, crispy bread, rice
and corn cakes; fruits, which include fruits, fresh juice,
canned and dry fruits; bakery products which include
biscuits, cookies and pastries; and total added lipids
which include butter, margarine and vegetable oil.

Biofluid sample collection
Urine and sera samples were collected and processed ac-
cording to identical pre-defined standardised protocols
across all six cohorts. Urine samples were collected by
family members at home, kept in a fridge overnight and
transported in a temperature controlled environment.
Samples were aliquoted and frozen within 3 h of arrival
at the clinics. Two urine samples, representing last
night-time and first morning voids, were collected on
the evening and morning before the clinical examination
and were subsequently pooled to generate a more repre-
sentative sample of the last 24 h for metabolomic ana-
lysis (n = 1107) [57]. Either the night-time void (n = 37)
or morning void (n = 48) sample was analysed in cases
where a pooled sample was missing.
Serum sampling: Blood was collected during the

follow-up visit at the end of the clinical examination.
Blood samples were drawn using a ‘butterfly’ vacuum
clip and local anaesthetic and were collected into 4 mL
silica plastic tubes. Samples were inverted gently for 6–7
times and spun down at 2500 g for 15 min at 4 °C. The
median serum sample processing time from sample
collection to freezing was 1.8 h (IQR: 1.5–2.0), and
the median postprandial interval (time between last

Table 1 Sample population characteristics in the HELIX subcohort study

Overall BiB EDEN INMA KANC MoBa Rhea

Sample n 1192 199 157 207 201 229 199

Female (%) 45.4 46.2 42.0 44.9 45.8 48.0 44.2

Male (%) 54.6 53.8 58.0 55.1 54.2 52.0 55.8

White European (%) 89.6 42.7 100 100 100 95.6 100

BAME (%) 10.4 57.3 0 0 0 4.4 0

Age (years) 7.4 (6.5–8.9) 6.6 (6.4–6.8) 10.8 (10.3–11.2) 8.8 (8.4–9.3) 6.4 (6.1–6.8) 8.5 (8.2–8.8) 6.5 (6.4–6.6)

BMI (z-score) 0.3 (− 0.4–1.2) 0.1 (− 0.4–0.9) 0.2 (−0.5–1.2) 0.7 (− 0.1–1.7) 0.4 (− 0.3–1.2) 0.1 (− 0.4–0.6) 0.6 (− 0.3–1.6)

NB. BAME indicates Black and Asian Minority Ethnic group. For age and BMI, median values and interquartile range in parentheses are presented
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meal and blood collection) was 3.3 h (IQR: 2.8–4.0,
Additional file 1: Figure S1).

Urine metabolite NMR measurements
1H NMR spectroscopy was chosen for urinary analysis
for several reasons: it has inherently high reproducibility
[58]; urinary metabolite concentrations are high, making
the relatively low sensitivity of NMR spectroscopy less of
a hindrance; the data processing workflow is well esta-
blished [59]. One-dimensional 600 MHz 1H NMR spec-
tra of all 1192 urine samples were acquired on the same
BrukerAvance III spectrometer operating at 14.1 Tesla
within a period of 1 month. The spectrometer was
equipped with a BrukerSampleJet system, and a 5-mm
broad-band inverse configuration probe maintained at
300K. Prior to analysis, cohort samples were randomised
to mitigate analytical bias, and individual samples were
thawed and homogenised using a vortex mixer and
centrifuged at 13,000 g for 10 min at 4 °C to remove in-
soluble material. Five hundred forty microliters of urine
sample was mixed with 60 μL of a buffer solution (1.5 M
KH2PO4, 2 mM NaN3, 1% deuterated 3-(trimethylsi-
lyl)-[2,2,3,3-d4]-propionic acid sodium salt (TSP) solu-
tion, pH 7.4) and was transferred into an NMR tube
(5 mm Bruker SampleJet NMR tubes). Ninety-six-sample
tube well plates were kept at 6 °C in the cooled Bru-
ker SampleJet unit. Aliquots of the study quality control
(QC) sample, made from pooled urine samples from 20
individuals included in this study, were used to monitor
analytical performance throughout the run and were
analysed at an interval of every 23 samples (i.e. 4 QC
samples per well plate). The 1H NMR spectra were ac-
quired using a standard one-dimensional solvent
suppression pulse sequence (relaxation delay - 90° pulse
- 4 μs delay - 90° pulse - mixing time - 90° pulse - ac-
quire FID). For each sample, 32 transients were collected
into 64K data points using a spectral width of 12,000 Hz
with a recycle delay of 4 s, a mixing time of 100 ms, and
an acquisition time of 2.73 s. A line-broadening function
of 0.3 Hz was applied prior to Fourier transformation.
All 1H NMR spectra were automatically phased and
baseline-corrected using Topspin 3.2 software (Bruker-
BioSpin, Rheinstetten, Germany). The 1H NMR urine
spectra were referenced to the TSP resonance at 0 ppm.
NMR spectra were imported into the MATLAB 2014a
(MathWorks, Massachusetts, USA) computing environ-
ment and aligned using the recursive segment-wise peak
alignment method [60], an algorithm based on
cross-correlation. The study QC sample spectrum was
used as a reference for spectral alignment. A single repre-
sentative resonance in the spectrum was selected for each
assigned metabolite, based on its presence in a high pro-
portion of the spectra, high signal-to-noise ratio, and lim-
ited overlap with other resonances. Metabolite resonance

peak areas were estimated using trapezoidal numerical in-
tegration and were corrected for local spectral baseline,
and 44 metabolites were obtained using this method.
Quantification was achieved for 24 metabolites; 20 metab-
olites were semi-quantified using a method of signal inte-
gration and quantification as previously described in
Maitre et.al [57]. Probabilistic quotient normalisation [61]
was used to adjust for variable urine sample dilution.
Assignment of endogenous urinary metabolites was

made by reference to online databases (HMDB) [62],
statistical total correlation spectroscopy (STOCSY) [63]
and using ChenomxNMRsuite 7.1 profiler (ChenomxInc,
Edmonton, Canada) and/or confirmed by 2D NMR ex-
periments on a selected sample including homonuclear
1H-1H correlation spectroscopy (COSY), and 1H-1H
total correlation spectroscopy (TOCSY) and 1H-13C
heteronuclear single quantum coherence spectroscopy
(HSQC). Spike-in experiments using authentic chemical
standards were also used to confirm novel metabolite
annotations. A summary of signal annotation and
assignment is shown in Additional file 1: Table S1.

Serum metabolite measurements
The AbsoluteIDQ p180 kit [64] was chosen for serum
analysis as it is a widely used standardised, targeted
LC-MS/MS assay, and its inter-laboratory reproducibility
has been demonstrated by several independent labora-
tories [65]. It is increasingly employed for large-scale
epidemiology studies [66] [67, 68], facilitating compari-
sons to thousands of metabolome profiles across other
studies. Serum samples were quantified using the Abso-
luteIDQ p180 kit following the manufacturer’s protocol
[64] using LC-MS/MS—and Agilent HPLC 1100 liquid
chromatography coupled to a SCIEX QTRAP 6500 triple
quadrupole mass spectrometer. Briefly, the kit allows for
the targeted analysis of 188 metabolites in the classes of
amino acids, biogenic amines, acylcarnitines, glycero-
phospholipids, sphingolipids and sum of hexoses, cove-
ring a wide range of analytes and metabolic pathways in
one targeted assay. The kit consists of a single sample
processing procedure, with two separate analytical runs,
a combination of liquid chromatography (LC) and flow
injection analysis (FIA) coupled to tandem mass spec-
trometry (MS/MS). Isotopically labelled and chemically
homologous internal standards were used for quanti-
fication; in total, 56 analytes were fully quantified and
validated. Of the total 188 metabolites measured, 42
metabolites were measured by LC-MS/MS and 146 me-
tabolites by FIA-MS/MS. The amino acids and biogenic
amines were analysed quantitatively by LC–ESI-MS/MS,
with the use of an external seven-point calibration curve
based on isotope-labelled internal standards. The quanti-
fication method for all amino acids and amines was fully
validated. The acylcarnitines (40), glycerophospholipids
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(90), sphingolipids (15), and sum of hexoses (1) were ana-
lysed by FIA-ESI-MS/MS, using a one-point internal stand-
ard calibration with representative internal standards.
Metabolites were quantified (results shown in micromolar
concentration units) according to the manufacturer’s proto-
col using the MetIDQ™ Version 5.4.8 Boron software for
targeted metabolomic data processing and management.
Blank PBS (phosphate-buffered saline) samples (three
technical replicates) were used for the calculation of the
limits of detection (LOD). The median values of all PBS
samples on the plate were calculated as approximation of
the background noise per metabolite signal, and 3 times
this value was calculated as the LOD.
LC-MS/MS data of serum samples were acquired in 18

batches. Every analytical batch, in a 96-well plate format,
is included up to 76 randomised cohort samples. Also in
every analytical batch, three sets of quality control samples
were included, the NIST SRM 1950 plasma reference ma-
terial (in 4 replicates), a commercial available serum QC
material (CQC in 2 replicates, SeraLab, S-123-M-27485)
and the QCs provided by the manufacturer in three con-
centration levels. The NIST SRM 1950 reference was used
as the main quality control sample for the LC-MS/MS
analysis.

Analytical performance of urinary and serum metabolites
Analytical performance in the urinary NMR and serum
LC-MS/MS data was assessed by reference to the QC
samples measured at regular intervals during the run,
with 4 QC samples analysed in every 96-well plate batch.
Coefficients of variation (CVs) for each metabolite were
calculated based on the pooled QC for the NMR analysis
and the NIST SRM 1950 for the LC-MS/MS. Moreover,
for the LC-MS/MS serum analysis, the limits of
detection (LODs) were also used to assess the analytical
performance of individual metabolites. For the LC-MS/
MS serum dataset, metabolite exclusion was based on a
variable meeting two conditions: (1) CV of over 30% and
(2) over 30% of the data are below LOD. Eleven out of
the 188 serum metabolites detected were excluded as a
result, leaving 177 serum metabolites to be used for fur-
ther statistical analysis. Mean coefficients of variations
across the 44 NMR detected urinary metabolites, and
the 177 LC-MS/MS detected serum metabolites carried
forward for data analysis were found to be 11 and 15%,
respectively (Additional file 1: Tables S2 and S3).

Statistical analyses
Metabolite concentrations were log10 transformed to nor-
malise data prior to statistical analyses, and the resultant
distribution of the transformed data can be found in
Additional files 2 and 3. To avoid log transform of zero
values, the lowest non-zero value was added to the vari-
able distribution as a constant before log transformation.

All statistical analyses were performed using R (‘The R
Project for Statistical Computing’) software environment
(v3.3.1) unless specified otherwise. Metabolome-wide as-
sociation study (MWAS) analyses were performed using
multiple linear regression models in the R package ‘base’.
Linear regression models were fitted for each metabolite
with concentration as the outcome variable. Covariates in-
cluded in the regression models were batch, run order,
sex, age, zBMI and dietary intake habits of the 11 food
groups; in addition, urine data models were adjusted for
sampling type (night only, morning only or pooled
sample) and the serum data models were adjusted for
postprandial interval. Regression models were computed
separately for each individual cohort and meta-analysis
was used to combine the effect size estimates using a
fixed-effect inverse variance weighting from the six co-
horts with the R package ‘meta’, and I2 statistics were used
to assess the heterogeneity in the effect estimates between
the cohorts. Bonferroni correction (n = 177 for serum
data, n = 44 for urine data) was applied throughout to
account for multiple test comparisons (p value thresh-
old = 1.1 × 10−3 for urine and 2.8 × 10−4 for serum me-
tabolites). For variance decomposition, analysis was
performed using a partial R2 approach, the variance
in the urinary and serum data was partitioned accord-
ing to the following 5 main categories: pre-analytical,
analytical, demographic, dietary and cohort/country.
The analysis was performed on each of the 44 urinary
metabolites and 177 serum metabolites. In addition to
the covariates used in the MWAS analyses—batch
(analytical), run order (analytical), time of sampling
(urine pre-analytical), postprandial interval (serum
pre-analytical), sex (demographic), age (demographic),
BMI z-score (demographic) and dietary intake fre-
quencies; ethnicity (demographic), and serum and
urine sample processing time variables (pre-analytical)
were also included in the respective serum and urine
variance decomposition analyses. For principal
components analysis, metabolite data were also mean-
centred and univariate scaled prior to PCA modelling.
For serum and urine metabolic pairwise correlation
analyses, data were pre-adjusted for analytical and
pre-analytical variables and Pearson’s correlation coef-
ficients were calculated. Serum correlation networks
were drawn using Cytoscape (version 3.5) software
[69] and the MetScape plugin application (version 3)
[70]. Additionally, we have examined the impact of
applying alternative data transformation and imput-
ation strategies on the MWAS analysis results. To
this end, Box-Cox transformation [71] was used in
conjunction with QRILC imputation (quantile regres-
sion approach for left-censored missing) [72] and the
modelled results are shown in Additional file 1:
Tables S12–S15. Box-Cox transformation and QRILC
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imputation were performed respectively using R pac-
kages ‘MASS’ and ‘imputeLCMD’.

Results
Characteristics of the study population included in this
analysis (n = 1192) are shown in Table 1. Around 200
children from each of the six cohorts participated in this
study (54.6% male, 45.4% female), and the vast majority
of the sample population were of White-European back-
ground with the notable exception of BiB (UK) where
many were of Black and Asian Minority Ethnic group,
mainly of South Asian origin. There were also significant
age differences between the cohorts, with the children
from the EDEN cohort being the oldest (median age in
EDEN was 10.8 years whilst median ages in KANC, BiB,
and Rhea were 6.4–6.6 years). In addition, there were
substantial differences between the cohorts in BMI
z-score and across dietary intake habits in the 11 food
groups (Tables 1 and 2).
In our study, 1H NMR spectroscopy and targeted

LC-MS/MS were respectively used to perform metabolic
profiling of the urine and serum samples. Estimates of
the concentrations for urinary metabolites using NMR
spectroscopy (μmol/mmol of creatinine) are provided in
Additional file 1: Table S4 and for serum metabolite
measurements using the LC-MS/MS AbsoluteIDQ p180
assay (μmol/L) in Additional file 1: Table S5.

Metabolic differences between cohorts
Differences in metabolite concentrations between cohorts
were assessed by ANOVA after pre-adjusting for cova-
riates through linear regression models. Metabolites with
p values below the significance threshold after Bonferroni
correction (p value threshold = 1.1 × 10−3 for urine and
2.8 × 10−4 for serum metabolites) are shown in Fig. 1. A
large number of metabolites, 104 out of 177 serum meta-
bolites and 10 of the 44 urine metabolites measured, were

found to be significantly different between cohorts. In par-
ticular, serum amino acid levels were frequently found
highest in the Rhea cohort, whilst a disproportionally high
number of serum glycerophospholipid species were found
to be most abundant in the MoBa cohort samples. Given
the stark differences in the metabolic phenotypes between
cohorts, we decided to perform stratified analyses
followed by meta-analysis to combine the effect estimates
from the six individual cohorts in many of the subsequent
analyses.

Pre-analytical factors
None of the 177 serum metabolites were identified from
meta-analysis to be significantly affected by serum
sample processing time after adjusting for covariates and
stratifying by country. Similarly, none of the 44 urinary
metabolites were found to be associated with sample
processing time. Thus, in subsequent analyses, urine and
serum processing time were not included as covariates.
The majority of serum samples were collected 3 to 4 h

postprandial (median was 3.3 h with IQR: 2.8–4.0), and
there were no major differences in postprandial interval
between the cohorts (Additional file 1: Figure S1).
Postprandial effects could be observed in 21 out of 177
metabolites: 11 amino acids, one biogenic amine, two
short-chain acylcarnitines, four long-chain acylcarnitines
and three lysophosphatidylcholine species were found to
be associated with postprandial interval (Fig. 2a). The 11
amino acids were negatively associated whilst the four
long-chain acylcarnitines were positively associated with
postprandial interval.
Comparing the urinary metabolite levels of night-time

void (n = 38) and morning void (n = 48) samples, we
found alanine and citrate concentrations to be elevated
in the night-time void samples and N-methyl nicotina-
mide, N-acetyl-neuraminic acid and 4-deoxythreonic
acid to be higher in the morning void samples (Fig. 2b).

Table 2 Dietary intake of 11 main food groups

Overall BiB EDEN INMA KANC MoBa Rhea

Cereal 18.5 (12.5–26) 17 (13.1–23.5) 21.5 (13–27.5) 17 (11.4–24.1) 14 (9.3–22) 25 (19–29.6) 16 (12.1–23.5)

Meat 7.5 (5.1–10) 6 (4–9) 7.5 (5.5–10) 8 (7–12) 7.1 (5.1–10) 7.5 (5–10.5) 6.5 (5–7.6)

Fish 2 (1.1–3.5) 2 (1–3.3) 2.1 (1.5–3) 3.6 (2.4–5) 1.1 (0.4–1.6) 2.6 (1.6–5) 1.5 (1–2)

Dairy 19.8 (12.5–27.6) 24 (17.2–31.6) 24 (15–31) 18.1 (13.8–25.8) 11 (8–17) 20 (12.3–27) 22.5 (15.1–28.5)

Lipids 4.5 (1–8.5) 7 (4–10) 6 (3.1–9) 1 (0.3–3.1) 7 (4–11) 7.5 (4–15.5) 1 (0.1–3)

Potatoes 3.5 (2–4) 4 (3.1–6) 3.1 (1.5–4) 3.5 (2–4) 3.1 (3–5.6) 3.1 (1.1–3.1) 3.5 (2–4)

Vegetables 6.5 (4–10) 6 (4–10) 8 (4–11) 6 (3–8.5) 6 (3.5–8.5) 8.5 (6–14) 6.5 (4–10)

Fruits 8.8 (5.9–18) 15.5 (10–21) 6.6 (3.3–13.6) 7.5 (3.7–13.2) 7.4 (3.8–10) 14 (8.6–21) 8.5 (6.2–13.5)

Sweets 6.6 (3.5–10) 6.6 (3.6–10) 8.5 (5–14) 4.5 (2–8.1) 9.5 (7–15.5) 5 (3–7.5) 6 (3.3–7.5)

Bakery products 4 (1.5–6.5) 4 (2–7.5) 5.6 (2–8) 4 (3–6.5) 4 (2–6.5) 1.5 (1–2) 6 (4–8.5)

Beverages 0.5 (0–1) 0.5 (0–1.8) 1 (0.3–3) 0.5 (0–1.3) 0.5 (0.1–1) 0.6 (0.1–1.1) 0.1 (0–0.5)

Data represent portion consumed per week. Median values with interquartile range given in parentheses or percentages as indicated
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Demographic factors and BMI for the HELIX children
Both urinary and serum creatinine levels (Additional file 1:
Figures S3, S4 and Table S6) were found to be significantly
associated with age after adjusting for multiple testing
using Bonferroni correction. An increase of 1 year in the
child’s age was associated with increases of 0.39 standard
deviation (SD) in urinary creatinine level (95% CI 0.26 to
0.53) and 0.30 SD in serum creatinine level (95% CI 0.17
to 0.43). A positive association between creatinine concen-
tration and age was identified as a common phenotype
amongst our six different study cohorts (Additional file 1:
Figures S3 and S4); effect sizes between urine creatinine
level and age were 0.40 SD/year for BiB, 0.27 SD/year for
EDEN, 0.35 SD/year for KANC, 0.33 SD/year for MoBa,
0.84 SD/year for Rhea and 0.45 SD/year for INMA. No
other urine or serum metabolites measured were associ-
ated with age.
Metabolic associations with sex, adjusted for covariates

and multiple testing, are shown in Fig. 3. Variation in
effect size between cohorts was assessed using I2 statis-
tic, which measures the percentage of variation across
cohorts that is due to heterogeneity rather than chance.
Fifteen out of 18 urine or serum metabolites identified
as associated with sex have I2 < 50% (Additional file 1:
Table S7). Urinary isoleucine was found at lower concen-
trations (− 0.24 SD lower; 95% CI − 0.37 to − 0.12) while
5-oxoproline (0.23 SD higher; CI 0.11 to 0.36) and tyro-
sine (0.43 SD higher; CI 0.31 to 0.55) were higher in

males. Amongst the serum metabolites, the neurotrans-
mitter serotonin (0.32 SD higher; CI 0.20 to 0.44) was
found to be higher in males while serine (− 0.26; CI − 0.39
to − 0.14), lysine (− 0.24; CI − 0.35 to − 0.12), orni-
thine (− 0.35; CI − 0.47 to − 0.23), putrescine (− 0.21;
CI − 0.33 to − 0.10), six median-to-long chain acylcar-
nitines (C10, C12, C14:1, C14:1–OH, C14:2 and
C16:1) and three sphingolipids (SM C16:1, SM C18:0,
SM C18:1) were found higher in females.
Based on regression models adjusted for covariates, we

found 45 urine or serum metabolites to be associated
with BMI z-score and 44 of the 45 associations have I2

< 50% (Fig. 4 and Additional file 1: Table S8). Urinary
4-deoxyerythronic acid (metabolite SD per unit zBMI:
0.21; 95% CI 0.16 to 0.26) and valine (BCAA, metabolite
SD/zBMI: 0.09; CI 0.04 to 0.15) were positively associ-
ated with BMI z-score, and urinary p-cresol sulphate (a
microbial metabolite and uremic toxicant [73], metabo-
lite SD/zBMI: − 0.10; CI − 0.16 to − 0.05) and pantothen-
ate (vitamin B5—required for synthesis of coenzyme A,
metabolite SD/zBMI: − 0.12; CI − 0.17 to − 0.07) were
negatively associated with BMI z-score. Positive associa-
tions between urine 4-deoxyerythronic acid and valine
levels and zBMI could be observed consistently in five of
the six different study cohorts with the exception of
MoBa (Additional file 1: Figures S5 and S6); effect sizes
between urine 4-deoxyerythronic acid level and zBMI
were 0.25 SD/unit score for BiB, 0.25 SD/unit score for

Fig. 1 Metabolic differences between the six cohorts. a Serum metabolites. b Urine metabolites. Colour represents standardised mean difference
between cohorts; blue—metabolite levels lower than average, and red—metabolite levels higher than average. P values were assessed by ANOVA,
and significant metabolites after multiple testing correction are shown. Using multiple linear regression models metabolic data were pre-adjusted for
analytical batch and run order, age, sex, zBMI, frequency of weekly dietary intake of the 11 food groups, and a sampling type in the case of urine and
postprandial interval in the case of serum, prior to ANOVA analysis. BiB (UK), EDEN (France), KANC (Lithuania), MoBa (Norway), Rhea (Greece),
INMA (Spain)
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EDEN, 0.25 SD/unit score for KANC, 0.00 SD/unit score
for MoBa (not significant), 0.22 SD/unit score for Rhea
and 0.19 SD/unit score for INMA. Interestingly, children
from MoBa have the lowest BMI z-score amongst the
six cohorts (Table 1).
Amongst serum metabolites, significant positive

associations with BMI z-score included free carnitine,
(metabolite SD/zBMI: 0.18; CI 0.13 to 0.24), short-chain
acylcarnitines (C3, C5), seven amino acids including glu-
tamate, BCAAs valine and leucine and sphingolipids
(SM C16:0, SM C16:1, SM C18:1). A large number of
phosphatidylcholine species (20) and four lysophosphati-
dylcholines (lysoPC a C14:0, lysoPC a C16:1, lysoPC a
C18:1, lysoPC a C18:2) were also found to be strongly
associated with BMI z-score in the study (Fig. 4 and
Additional file 1: Table S8). Again, associations between
serum metabolites and zBMI could be observed

consistently in our study cohorts, for example both
serum glutamate (Additional file 1: Figure S7) and carni-
tine (Additional file 1: Figure S8) levels were positively
associated with zBMI in all six cohorts.

Dietary intake
Figure 5 and Additional file 1: Table S9 summarise the
significant urine and serum metabolite associations with
the 11 dietary food group intake after adjusting for mul-
tiple testing (p value threshold = 1.1 × 10−3 for urine and
2.8 × 10−4 for serum metabolites) and covariates includ-
ing analytical batch and run order, age, sex, BMI z-score
and postprandial interval for serum and urine sampling
type for urine models. We identified 57 diet-metabolite
associations and 40 of the 57 associations have I2 < 50%.
For urinary metabolites, we identified creatine to be

positively associated with meat intake (SD per portion

Fig. 2 Pre-analytical factor effects on the children’s metabolome. a Postprandial effects on serum metabolites (adjusted for age, sex,
zBMI)—meta-analysis after stratifying by cohorts with estimates representing the change in metabolite SD per hour postprandial and error bar
indicating 95% confidence interval. b Diurnal effects on urine metabolites. Only t test adjusted p < 0.05 are shown (n = 48 for morning and n = 37 for
night samples). The estimates indicate the standardised mean differences between the morning and night samples, with the error bars indicating the
95% confidence intervals. Metabolites found higher in the morning void samples are shown as positive and metabolites found higher in night-time
void samples are shown as negative
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Fig. 4 Urine and serum metabolites associated with BMI z-score—meta-analysis after stratifying by cohorts. Regression models were adjusted for
analytical batching, postprandial effect (for serum), sampling (urine), age, sex and dietary intakes of the 11 main food groups

Fig. 3 Sex associations with 1H NMR urine and serum metabolites in children—meta-analysis after stratifying by cohorts. Regression models were
adjusted for covariates, and Bonferroni correction was used to adjust for multiple testing. The estimates represent the metabolite standardised
mean difference between males and females with the error bars indicating the 95% confidence intervals. Metabolites found higher in male
children are shown as positive, and metabolites found higher in female children are shown as negative
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per week: 0.025; 95% CI 0.012 to 0.039). Hippurate was
positively associated with both fruit (SD per portion per
week: 0.026; 95% CI 0.018 to 0.034) and vegetable con-
sumption (SD per portion per week: 0.021; 95% CI 0.011
to 0.031). Proline betaine, N-methylnicotinic acid and
scyllo-inositol were positively associated with fruit
intake, whilst glutamine, alanine and leucine were nega-
tively associated with fruit intake. In addition, panto-
thenate and acetate were respectively found positively
associated with dairy and potato intake.
For serum metabolites, we found 12 glycerophosphati-

dylcholine species to be associated with fish consumption
(Fig. 5), 4 glycerophosphatidylcholine species (PC ae 36:3,
PC ae 36:4, PC ae 36:5 and PC ae 38:5) to be positively
associated with meat consumption and 5 glycerophospha-
tidylcholine species (PC aa C38:0, PC aa C38:6, PC ae
C38:5, PC ae C38:6, PC ae C40:6) to be negatively asso-
ciated with sweet consumption. In addition, we found
acetylornithine to be positively associated with fruit intake,
and two acylcarnitines (C5:1, C6:1) and one sphingolipid
(SM (OH) C16:1) to be negatively associated with
beverages (soft and fizzy drinks).

Variance decomposition analysis of LC-MS/MS serum and
NMR urine metabolic profiles
Using principal components analysis, we found that
metabolites in LC-MS/MS serum metabolic profiles
were inherently more collinear when compared to NMR
urine profiles; only 6 principal components were re-
quired to describe half of the variance in the 177 serum
metabolites as opposed to 12 principal components re-
quired to describe the same proportion of the variance
in the 44 urinary metabolites (Additional file 1: Figure S9).
Secondly, as metabolic profiles often capture information
derivable from various sources that may be analysis-spe-
cific or individual-specific, we performed variance decom-
position analysis to discover and compare the volume of
information contained in the two metabolic datasets that
were attributable to the various factors. Using a partial R2

approach, we partitioned the variance in the urinary and
serum data according to the following 5 main categories:
pre-analytical, analytical, demographic, dietary and co-
hort/country. The analysis was performed on each of the
44 urinary metabolites and on each of the 177 serum me-
tabolites, and Fig. 6 illustrates the distributions of the

Fig. 5 Metabolites associated with dietary intake frequencies (weekly). Weekly dietary frequency intake data of the 11 main food groups (cereal,
meat, fish, dairy, lipids, potatoes, vegetables, fruits, sweets, bakery products, beverages) were collected via food frequency questionnaire, and
multiple linear regression analysis followed by meta-analysis were performed on each metabolite—dietary factor pair. Regression models were
adjusted for analytical batching, postprandial effect (for serum), sampling (urine), age, sex and zBMI score

Lau et al. BMC Medicine          (2018) 16:202 Page 10 of 19



percentages of variance explained by the 5 categories. Our
data indicate that whilst analytical biases accounted for
only a small fraction (median of 1.5%) of the explained
variance in the NMR urinary profile, they accounted for a
much larger portion of the explained variance (median of
9.1%) in the LC-MS/MS serum profile. Dietary informa-
tion accounted for the largest proportion of the explained
variance in the urinary metabolic profile (median of 1.6%),
and overall, we found that demographic, dietary and infor-
mation about country of origin are better reflected in the
serum dataset, as these factors together explain a median
of 9.0% amongst serum metabolites versus a median of
5.1% amongst urine metabolites (breakdown by individual
metabolite can be found in Additional file 1: Tables S10
and S11).

Serum and urine metabolic pairwise correlations
Metabolite inter-correlations often convey biological path-
way information; thus, metabolite pairwise correlation ana-
lyses were performed separately for serum and urine
datasets. Significant correlations were observed between
serum metabolites which belong to the same compound
classes (Fig. 7), and in particular, strong correlation clusters
are found for glycerophospholipids species (maximum
Pearson’s correlation coefficient r = 0.94), amino acids
(maximum r = 0.97) and acylcarnitines (maximum r = 0.88).
Other notable correlations included positive correlations
between valine, leucine and isoleucine (all BCAA, r > 0.92),
alpha-AAA (α-aminoadipic acid) with BCAA and lysine,

positive correlations between valine and short chain acyl-
carnitines (C5, C3, C4, r = 0.65 between valine and C5) and
negative correlations between alanine and acetylcarnitine
(C2, r = − 0.54). Significant positive correlations between
urine metabolites are shown as a heatmap in Fig. 8 (p value
threshold of 5.3 × 10−5). Positive correlations included leu-
cine with valine (r = 0.56), acetate with succinate (r = 0.32),
formate with acetate (r = 0.17), trimethylamine oxide and
dimethylamine (r = 0.44), 3-indoxylsulfate and p-cresol
sulphate (r = 0.43), alanine and glycine and threonine/
lactate (r = 0.52–0.65), 4-deoxyerythronic acid with
alanine (r = 0.17) and threonine/lactate (r = 0.21), and
creatine with carnitine/choline (r = 0.30). Significant
negative correlations included 4-deoxythreonic acid with the
following amino acids: threonine/lactate, alanine, tyrosine,
glutamine and glycine (r=− 0.17 to − 0.42). Pairwise corre-
lation between metabolite concentrations across the two bio-
logical fluid types were also examined (Additional file 1:
Figure S10, p value threshold of 6.4 × 10−6). Significant corre-
lations were found in 391/7788 serum-urine metabolite pairs.
Significant positive correlations were found in the cases
when a metabolite has been measured in both urine and
serum. Specifically creatinine (r= 0.39), glycine (r= 0.35),
alanine (r= 0.29), valine (r= 0.18), serum carnitine and urine
carnitine/choline (r= 0.23), and serum threonine and urinary
threonine/lactate (r= 0.26) are all individually strongly corre-
lated across the two biological fluid matrices. Other notable
correlations include serum threonine with urine
4-deoxyerythronic acid (r= 0.31), which is consistent with
the proposition that threonine is the main source of
4-deoxyerythronic acid [74]. Urine N-methylnicotinic acid
was correlated (r= 0.23) with serum Ac-Orn (acetylor-
nithine), and additionally, we also found urine acetone and
4-deoxythreonic acid to be positively associated with multiple
serum acylcarnitines, while urine alanine was negatively asso-
ciated with multiple serum acylcarnitines (Additional file 1:
Figure S10). Amongst the 391 significant serum-urine
metabolite pairs, the median correlation r2 was 2.7% whilst
across all 7788 serum-urine metabolite pairs the median
correlation r2 was only 0.15% indicating that, even if a subset
of serum-urine metabolic correlations are significant, infor-
mation contained in our urine and serum profiles was largely
orthogonal to one another.

Discussion
Utilising two reproducible and well-characterised meta-
bolic profiling platforms, 1H NMR spectroscopy and
LC-MS/MS, we have characterised the urine and serum
metabolic phenotypes in European children from six co-
hort populations representing different demographic and
sample characteristics. Little is known regarding the nor-
mal concentration ranges of urinary and serum metabo-
lites in healthy European children at present, and in this
study, we have used a sample size of approximately 1200

Fig. 6 Variance decompositions of LC-MS/MS serum and NMR urine
metabolic profiles. Using a partial R2 approach, regression models were
performed on each of the 44 urinary metabolites and on each of the 177
serum metabolites. Variables included in the model: batch (analytical), run
order (analytical), time of sampling (urine pre-analytical), postprandial
interval (serum pre-analytical), sample processing time (pre-analytical), sex
(demographic), age (demographic), BMI z-score (demographic), ethnicity
(demographic), 11 dietary intake frequencies (dietary) and cohort
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individuals spread across six European countries and
embedded the work in a population with rich metadata
on diet, anthropometry and environmental exposure. 1H
NMR spectroscopy and targeted LC-MS/MS (the Abso-
luteIDQ p180 kit) were chosen for the analysis of urine,
and serum samples correspondingly in this study, as they
offer good sensitivity, broad dynamic range and metabol-
ite coverage, are widely applied and have been used pre-
viously for epidemiological studies in the respective bio
fluids [75].

Sample handling and pre-analytical effects
Sample handling in such a large population and across
six different centres would be expected to impact on
metabolite levels. Stability of serum metabolites are con-
sidered lower when compared to those found in urine,
and it has been reported that concentrations of many
blood metabolites are altered by 12 h pre-storage delay
at room temperature [76]. Thus, great care was taken
when the study sample collection protocol was deve-
loped to help ensure that the sample processing time
was kept short (< 2 h). Two separate studies have

previously found that urine or serum samples stored at
4 °C for up to 24 h before being frozen were comparable
to those frozen immediately [77, 78], and in our study,
we have confirmed that neither urine nor serum sample
processing time appear to bias our subsequent data ana-
lysis. Also, the design of the urine sample collection
benefited from our previous pilot work [57] and we took
advantage of a pooled sample design, combining the last
sample before bedtime with the first morning void sam-
ple in the following day, to reduce diurnal variations.
Morning or night void samples were only included in
analyses as replacements for the pooled samples when
pooled samples were missing (7% of the total). Levels of
several metabolites, including citrate and N-methyl
nicotinamide, were found to be significantly different
between morning or night-time void samples; these are
consistent with findings from our earlier pilot panel
study which examined the diurnal and day-to-day vari-
ability of urine sampling [57]. Whilst fasting-state sam-
ples reduce temporal within-day sampling variability
compared to non-fasted samples [75], such sample
collections are not always feasible, as was the case for

Fig. 7 Serum metabolic correlation network diagram generated using MetScape (Cytoscape) based on metabolite pairwise correlations (“edge”)
either < − 0.5 or > 0.65
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the HELIX project. Thus, most of the serum samples
analysed were from non-fasting states with a median
postprandial period of 3.3 h, and we have found large
number of amino acids and acylcarnitines to be associ-
ated with postprandial intervals. Similarly, in a previous
study of healthy female volunteers [79], using the
AbsoluteIDQ p180 kit, significantly altered postprandial
concentrations of amino acids and acylcarnitines were
reported, likely as a result of changes in fatty acid oxida-
tion and ketogenesis.

Demographic factors, BMI and the child metabolome
Overall, we found the serum metabolite concentrations
from the HELIX children population to be remarkably
similar to reference values obtained in a study of healthy
French adults [66]. However, there are some notable
differences; for example, the serum creatinine level is
lower in the HELIX children compared with adult popu-
lations, probably reflecting differences in lean muscle
mass between adults and children [80]—a well-studied
phenomenon [81] that was replicated in our study.

Fig. 8 Urinary metabolic correlation heatmap diagram. Colour represents Pearson correlation coefficients and only significant correlations after
Bonferroni correlations (p value threshold = 5.3 × 10−5) are shown
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Likewise, the urinary creatinine level was lower in the
HELIX children population compared to reference
values for adult populations [82, 83], and our
cohort-stratified regression models also identified both
urinary and serum creatinine to be positively associated
with a child’s age, reaffirming creatinine as a valid indi-
cator of muscle development in children [81, 82, 84].
Body anthropometry is an important predictor of

molecular profiles and is of intense interest for disease
risk stratification in epidemiological studies. The stan-
dardised BMI z-score calculated for a given age and sex
has been established as a reliable measure in accessing
obesity burden in child populations [85]. We observed
positive associations between urinary and serum BCAAs
and standardised BMI z-score, which have previously
been reported in other children or young adult popula-
tions [43, 86, 87]. BCAAs are important nutrient signals
[88], and increased circulating BCAAs levels have been
suggested to predict future insulin resistance [43] as well
as increased cardio-metabolic risk independent to adi-
posity in young adults [86]. Also, we identified two
sphingolipids (SM C16:1 and SM C18:1) to be both
higher in females and positively associated with BMI
z-score, possibly reflecting differences in body fat com-
position and physical development between boys and
girls. Also, two of the lysophosphatidylcholines (lysoPC
a C16:1, lysoPC a C18:1) associated with BMI z-score in
this study have recently been shown to be correlated to
infant birth weight [89]. Moreover, out of the 41 serum
metabolites found to be associated with BMI z-score in
our HELIX children cohort, 14 metabolites (including
kynurenine, glutamate, lysoPC a C18:1, lysoPC a C18:2)
have also previously been reported in the EPIC study in
an adult population, where the AbsoluteIDQ p180 kit
was also used [90], demonstrating that many serum
metabolic associations with BMI observed in adulthood
can also be found in childhood.
A key finding of our study was novel evidence for a

positive association between urinary 4-deoxyerythronic
acid and child BMI z-score, a threonine catabolite [91, 92]
found elevated during pregnancy [93]. Whilst very little is
currently known about the biology of 4-deoxyerythreonic
acid, it is present and has been found to be inversely
associated with age in adults [27, 74, 94], and higher levels
of this and related metabolites have been observed in chil-
dren with early onset type I diabetes [95]. Threonine is an
essential amino acid, and threonine dehydrogenase has
been reported as a relatively minor (~ 10%) contributor to
threonine oxidation in humans when compared to other
species (up to 80%) [77]—indicating that exogenous
sources or symbiotic microbial metabolism may be playing
an important role in 4-deoxyerythronic acid exposure.
Interestingly, it has been reported that formula-fed infants
have a lower capacity to oxidise threonine than do infants

fed breast milk [96] and that catabolism of threonine can
lead to methylglyoxal production which contributes to the
pathophysiology of obesity and diabetes [97] and can
reduce health span in model systems [98]. Urinary
4-deoxyerythronic acid was found positively associated
with child BMI in five of the six participating cohorts, with
the exception of MoBa which has the lowest BMI z-score
distribution amongst the six cohorts. It is possible that
4-deoxyerythronic acid association to BMI is more dis-
cernable in overweight populations. We report herein a
correlation between serum threonine and urinary
4-deoxyerythreonic acid which supports the hypothesis
that endogenous catabolism of threonine is a source of
this metabolite. However, further work is required to
understand the relationship between 4-deoxyerythronic
acid and metabolic health.

Habitual dietary intake and the child metabolome
We have confirmed in children a number of known
diet-metabolite associations in adults, including meat
(which has high creatine content) with urine creatine
[99], vegetables and fruits with urine hippurate [100, 101],
fruits with proline betaine and scyllo-inositol [47, 102]. It is
also of note that all 12 metabolites associated with fish in-
take in the study were serum glycerophosphatidylcholine
metabolites; oily fish in the diet alters glycerophospholipid
composition and is an important nutrient source for poly-
unsaturated fatty acids [103, 104]. The extent to which
metabolic phenotypes mediate the impact of dietary behav-
iour on childhood adiposity and cardiovascular indicators
will be a focus of our future work. We anticipate that the
metabolic phenotyping dataset acquired on the HELIX
study population will provide a useful molecular resource
to help elucidate the complex interactions between child-
hood environmental and dietary exposures and adverse
health outcomes.

Complementarity between the serum and urine
metabolome
In the HELIX study, matched urine and serum samples
across six European cohorts were collected according to
well-defined protocols, providing a valuable resource for
uncovering metabolic relationships across the two most
accessible biological fluid types. Whilst NMR spectros-
copy and LC-MS/MS-based metabolic profiling have
been widely applied in epidemiological studies [34, 68,
83, 105, 106], our study is one of very few that allows
comparison of the effects of pre-analytical, analytical,
demographic, dietary and geographic variation between
the two biofluid types from the same sample population.
It has previously been reported that biological variations
are more robustly captured in a blood metabolic profile
compared to urine [107]. In our study, we confirm that
the combined information from demographics, diet and
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cohort accounts for greater variance in the LC-MS/MS
serum profile compared to NMR urine profile, even if
the LC-MS/MS serum profile is more susceptible to
analytical batch effects. However, with respect to dietary
habits specifically, these are better reflected in the urinary
metabolome presumably due to high metabolite turn-
over, and it has previously been reported in a colon ad-
enoma case-control study (n = 253) that more
metabolites in urine were uniquely associated with diet
than in serum [47]. Our pairwise metabolite correlation
analyses also potentially confer information about meta-
bolic pathway activities: urinary acetate with formate
and succinate (TCA cycle activity and gut bacterial me-
tabolism); urinary creatine with choline/carnitine (meat
diet); 3-indoxylsulfate and p-cresol sulphate (both
sulphated uremic solutes produced by gut bacteria);
urinary dimethylamine with trimethylamine, and tri-
methylamine oxide (amine derivatives), and urinary and
serum valine with leucine (branched-chain amino acid
metabolism). Our correlation analysis between metabol-
ite concentrations across the two biological fluid types
confirmed that for many compounds, metabolite con-
centrations between urine and serum are positively cor-
related and also confirmed metabolic pathway
associations with serum threonine and urinary
4-deoxyerythronic acid (threonine catabolism) [74].

Limitations
Our study had a number of important limitations.
Firstly, the sample size from each of the six individual
cohorts was relatively small (n~200) for observational
studies, limiting the statistical power available to un-
cover novel metabolic associations, particularly when ef-
fect sizes were generally small. There were also notable
differences in sample characteristics between the co-
horts, particularly in age, with the median cohort child
age varying from 6 to 11 years old, making it difficult to
disentangle cohort level differences from other covari-
ates in our variance decomposition analyses, as those
confounders were heavily correlated. Our study also
lacks 24-h dietary recall data, and serum samples were
collected from non-fasting states. In addition, we ac-
knowledge the inherent limitations in the use of food
frequency questionnaire which include the potential for
dietary intake misclassifications and that categorising
distinct food sources into groups may be imperfect. For
example, cocoa could be considered as a vegetable but
was classified as sweets in this study. We intend to fol-
low up the metabolite—diet associations identified in
this study with detailed food subgroup analyses as part
of a future publication.
To make certain the timely completion of an anno-

tated metabolome resource, we have decided to acquire
and to process the serum and urine metabolic data using

analytical methods which quantify omnipresent metabo-
lites that were typically detected well in this study.
Whilst this approach had the advantage of improving
the sensitivity and specificity of the quantitation and
provide explicit metabolite identification, it limited the
number of metabolites that were measured and resulted
in only partial coverage of the serum and urine metabo-
lome. Also, the serum metabolic assay only provided
partial specificity in the assignment of lipid species as
the locations of double bonds or the length of the fatty
acid chains remain ambiguous. Supplementing the
current study with other complementary metabolomic
approaches such as untargeted LC-MS and GC-MS ana-
lyses in future would help enhance metabolite coverage
and greatly augment the metabolome resource of healthy
children available at present.

Conclusions
We have characterised the major components of the
urine and serum metabolome in the HELIX subco-
hort. Typically but not universally, metabolic associa-
tions with age, sex, BMI z-score and dietary habits
were common to the six populations studied. Also, a
novel metabolic association between threonine cata-
bolism and BMI of children was identified.
Inter-metabolite correlation analyses for both urine
and serum metabolic phenotypes revealed potential
pathway associations, and population-specific variance
(demographic, dietary and country of origin) was bet-
ter captured in the serum than in the urine metabolic
profile. This study establishes a reference metabolome
resource in multiple European populations for urine
and serum from healthy children. This provides a
critical foundation for future work to define the util-
ity of metabolic profiles to monitor or predict the im-
pact of environmental and other exposures on human
biology and child health.
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