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Abstract

We propose a dyadic Item Response Theory (dIRT) model for measuring interactions of pairs
of individuals when the responses to items represent the actions (or behaviors, perceptions,
etc.) of each individual (actor) made within the context of a dyad formed with another
individual (partner). Examples of its use include the assessment of collaborative problem
solving, or the evaluation of intra-team dynamics. The dIRT model generalizes both Item
Response Theory (IRT) models for measurement and the Social Relations Model (SRM) for
dyadic data. The responses of an actor when paired with a partner are modeled as a function
of not only the actor’s inclination to act and the partner’s tendency to elicit that action, but
also the unique relationship of the pair, represented by two directional, possibly correlated,
interaction latent variables. Generalizations are discussed, such as accommodating triads
or larger groups. Estimation is performed using Markov-chain Monte Carlo implemented in
Stan, making it straightforward to extend the dIRT model in various ways. Specifically, we
show how the basic dIRT model can be extended to accommodate latent regressions, multi-
level settings with cluster-level random effects, as well as joint modeling of dyadic data and
a distal outcome. A simulation study demonstrates that estimation performs well. We apply
our proposed approach to speed-dating data and find new evidence of pairwise interactions
between participants, describing a mutual attraction that is inadequately characterized by
individual properties alone.

Keywords: Item response theory, social relations model, dyadic data, Markov-chain Monte
Carlo, Stan
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1 Introduction

The study of how individuals interact within a group has been and continues to be of
interest to researchers in the behavioral sciences. Even in this setting, the majority of sta-
tistical models focus primarily on how each individual behaves isolated from the influences
of other group members. However, one model developed to handle the simplest case of two
individuals interacting in a dyad is the Social Relations Model (SRM) (e.g., Warner et al.,
1979, Kenny and La Voie, 1984, Kenny et al., 2006). Here, the ways one individual (often
called an actor or perceiver) of a dyad behaves when paired with the other (often called
the partner or target) and vice-versa are analyzed to infer individual-level and dyad-level
effects. The behavior of the actors can be directed towards the partner (e.g., an individual’s
perception of the partner’s attractiveness) or undirected (e.g., the number of times an indi-
vidual takes the lead in a collaborative problem solving task), and can be measured during
or after socially interacting with the partner. Compared with traditional “isolated” models,
the innovative SRM considers both members of the dyad as contributors to the eventual
observed behavior. The SRM model has been most often used in social psychology (e.g.,
Kenny and Kashy, 1994), but is increasingly being used in other fields. A diverse set of
examples include relationships in pharmacy and therapeutics hospital-committee decision-
making (Bagozzi and Ascione, 2005), social media ties among basketball teammates (Koster
and Brandy, 2018), and militarized interstate disputes (Dorff and Ward, 2013).

In the original formulation of the SRM, the specific behavior of an actor when paired with
a partner depends on a composite dyad-level latent trait that can be decomposed into three
parts: (i) an individual-level latent trait reflecting a general inclination of the actor to behave
in a certain way when paired with a partner, (ii) an individual-level latent trait reflecting the
general tendency of the partner to elicit such a behavior, and (iii) a dyad-level latent trait
that characterizes the effect of the unique (directed) relationship between both parties on
the behavior of the actor that is independent of the two individual-level latent traits (Back
and Kenny, 2010). More concretely, if one is interested in the level of physical attraction of
an actor towards a partner, then the three components reflect (i) how, on average, an actor
tends to find others attractive, (ii) how, on average, the partner tends to be found attractive,
and how (iii) the actor uniquely finds the partner attractive. As a result of this formulation,
the SRM is identifiable only if individuals belong to multiple pairs.

While the SRM is a useful tool in the analysis of dyads, it has not yet been extended for
the case where a set of behaviors or responses of an actor can be viewed as measuring a la-
tent variable, such as the actor’s perception of or disposition towards a partner. Multivariate
SRM (e.g., Kenny, 1994, Card et al., 2008, Nestler, 2018) accommodates multiple measures,
but it effectively corresponds to a set of univariate SRMs with additional correlations of
individual-level and dyad-level latent traits across measures. When there are more than two
or three measures, the multivariate SRM has an abundance of cross-variable correlations
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that are not easy to interpret. More importantly, multivariate SRMs do not provide a means
for predicting or scoring actor, partner and dyad effects on an underlying latent trait. With
existing methodology, a better alternative would be to specify a univariate SRM for some
summary of the measures, such as a sum-score or mean. However, this could result in a loss
of information analogous to educational testing where the scores on different items of the test
are sometimes summed up, and only the sum score is used. Our proposed dyadic Item Re-
sponse Theory (dIRT) model therefore incorporates an Item Response Theory (IRT) model.
Advantages include having the ability to account for differences in item difficulty, allowing
for missing responses in subsets of items (under the Missing-at-Random assumption), and
having individualized standard errors of the latent trait scores (e.g., Embretson and Reise,
2000).

IRT is the standard approach for modeling the relationship between the latent traits of
individuals and their responses to a set of items in educational testing. There are a variety
of IRT models that may differ, among other things, in terms of the numbers of parameters
in the model, the type of link function used, or the approach taken (e.g., confirmatory or
exploratory) (e.g., van der Linden, 2016). However, existing models treat the latent trait as
a property of the individuals who responded to the items, and perhaps an external party
like a rater, but do not include a unique interaction between individuals in a dyad. That is,
traditional IRT can be used to model the behavior of an actor when paired with a partner as
a function of the items/stimuli, the actor’s tendency to behave in a certain way and perhaps
the partner’s tendency to elicit the behavior, but does not accommodate the unique dyadic
effect due to both individuals interacting in a social setting. Thus, if individuals interact
with one another, and the manner and effect of this interaction is of interest, then existing
IRT models are not useful.

Although SRM and IRT models each have limitations that could be overcome by the
other, there is, to our knowledge, no prior work on integrating the models. Only two related
cases appear to exists: Alexandrowicz (2015) extended the Actor-Partner Interdependence
Model (APIM) and Common Fate Model (CFM) that we describe in Section 2.4 to work
within an IRT framework. While these models relax the condition that only an individual’s
latent ability affects the individual’s response to an item, neither of them models the dyadic
interaction as a latent trait of the dyad. Furthermore, the APIM and CFM are limited to a
dyadic design where each individual is paired with only one other partner whereas the SRM
handles the case where individuals belong to multiple pairs (Kenny et al., 2006).

Our contributions include the following. First, we describe our proposed dIRT model that
incorporates the key features of both the SRM and IRT. The model includes individual and
dyad-level latent traits and corresponding variance and covariance parameters afforded by the
SRM, while retaining all the important measurement properties of IRT. We also indicate how
the model can be extended to larger groupings than dyads, such as triads. Second, we provide
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a literature review of related classes of models and discuss data designs and conditions for
identifiability. Importantly, unlike the SRM, the dIRT model is identified for cross-sectional
data. Third, we extend the basic dIRT model to let the latent traits affect a distal outcome
and depend on observed covariates and cluster-level random effects. Finally, we demonstrate
the practical utility of the model by applying it to a speed dating dataset and making Stan

code available, together with a case-study explaining the code. While univariate SRMs for
one Likert scale item at a time, treated as continuous, have been applied to speed-dating
data (e.g., Ackerman et al., 2015), our multivariate model accommodates the ordinal nature
of the responses and allows estimation of the unique interaction variance separate from the
error variance. We hope that our contributions will inspire researchers to collect and analyze
dyadic data in new settings.

The structure of the paper is as follows. In Section 2, we introduce the basic dIRT model,
discuss data design and identification, propose various extensions of the basic model, and
provide a review of related models. We present a Markov-chain Monte Carlo approach to
estimating the model in Section 3, using Stan for estimation. In Section 4, we apply our
model and estimation method to a publicly available speed-dating dataset. In Section 5 we
conduct a simulation study to evaluate the performance of our estimator under a variety of
conditions. Finally, we make some concluding remarks in Section 6.

2 Dyadic Item Response Theory (dIRT)

2.1 Basic dIRT Model

In a social setting where groups of individuals interact, it is likely that the behavior of
individual a ∈ {1, 2, . . . , n} (called the actor) in group g is affected not only by his/her own
latent traits, but also those of the individuals he/she interacts with. Additionally, there
could also be a “unique” component attributable to the specific composition of the group
that could affect the actor’s behavior above and beyond the effects at the individual level.
We can extend any IRT model to deal with such a setting by replacing the latent trait θa of
individual a, with a composite latent trait θa,g of individual a in the context of group g of
size n:

θa,g ≡ αa +
n∑
j=1
j 6=a

βj +
∑
k∈K

γa,g(k). (1)

Here, αa represents the inclination of the actor to behave in a certain way, βj represents
the tendency of another member j of the group to elicit the behavior, and γa,g(k) represents
the unique way members of subgroup g(k) interacted to elicit the behavior from actor a.
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The last sum above is over all possible subgroups g(k) of sizes 1 to n − 1 excluding the
actor. (The index set is defined as K := {A ⊆ {1, 2, . . . , n} \ {a} | |A| ≥ 1}, i.e., the set of
all subsets of {1, 2, . . . , n} \ {a} except the empty set). Note that γa,g(k) includes not only
physical interactions between actor a and the other members of the group, but also how the
behavior of actor a is altered by the mere presence of the rest of the group. For example,
in a collaborative problem solving task, αa could represent the inclination of actor a to be
vocal, βj how much partner j tends to elicit opinions from actors, and γa,g(k) how vocal the
actor is due to the composition of the group g(k). In practice, it may not be necessary to
include anything more than pairwise and possibly three-way interactions.

To simplify notation, in the rest of the paper, we focus on the case when n = 2 as it is
clear how the model can be extended when working with larger group sizes. In this dyadic
setting, for actor a and partner p, the composite latent trait is modeled as

θa,p ≡ αa + βp + γa,p.

Unlike (1) where the composite latent variable θ, and in particular the dyad-level latent trait
γ, are indexed by the actor and the group, we can instead index θ and γ by both individuals
a and p since the index set K reduces to the singleton set {{p}}. Here, αa is the actor latent
trait (sometimes called actor effect), βp the partner latent trait (sometimes called partner
effect), and γa,p the dyadic latent trait (sometimes called interaction or relationship effect)
which represents the unique contribution of pairing actor a with partner p to the behavior
of the actor. Note that γa,p is not assumed to be identical to γp,a when the roles of actor and
partner are reversed.

We could consider any traditional IRT model for measuring θa,p. The model for response
ya,p,i to item i by actor a, when paired with the partner p, is of the form

g(P(ya,p,i = j | θa,p, ξi,j)) = f(θa,p, ξi,j)

for some link function g(·), item parameters ξi,j, and functional form f(·). For instance,
for ordinal responses we can obtain the standard partial credit model (Masters, 1982) by
using the adjacent-category logit link, letting ξi,j represent (unidimensional) step difficulty
parameters, and taking f(·) to be the identity function. If item i has mi categories (from 0
to mi − 1), the model becomes

log

(
PPCM(ya,p,i = j | θa,p, δi,j)

PPCM(ya,p,i = j − 1 | θa,p, δi,j)

)
= θa,p − δi,j ≡ (αa + βp + γa,p)− δi,j, (2)

subject to the constraint that
∑mi−1

j=0 PPCM(ya,p,i = j | θa,p, δi,j) = 1, where j ∈ {1, 2, . . . ,mi−
1}, and δi,j are item step difficulties. Note that we condition on δi,j because we will adopt a
(pragmatic) Bayesian perspective (see Section 3).
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In the dIRT model, we assume that the latent traits (or random effects) have bivariate
normal distributions: [

αa
βa

]
∼ N

([
µα
µβ

]
,

[
σ2
α ραβσασβ

ραβσασβ σ2
β

])
,[

γa,p
γp,a

]
∼ N

([
µγ
µγ

]
,

[
σ2
γ ργσ

2
γ

ργσ
2
γ σ2

γ

])
. (3)

The parameters are (i) the variances σ2
α, σ2

β, and σ2
γ of the individual and dyad latent traits,

(ii), the expectations µα, µβ, and µγ of each of the individual and dyadic latent traits, and
(iii) the correlations ραβ and ργ.

The individual-level correlation ραβ (sometimes called the general or individual reci-
procity) relates the tendency of an individual to behave in a certain way (i.e., αa or αp) to
that same individual’s tendency to elicit the behavior from his/her partner (i.e., βa or βp).
The dyad-level correlation ργ (sometimes called dyadic reciprocity) relates the two (directed)
latent traits of each dyad (i.e., γa,p and γp,a) to each other.

We will extend the dIRT model in Section 2.3 after discussing data design and identifi-
cation issues that will motivate and justify some of the extensions.

2.2 Data Design and Identification

The dIRT model has five variance-covariance parameters for the individual and dyadic la-
tent traits that imply five “reduced-form parameters” for the composite latent trait: one con-
stant variance, Var(θa,p) = σ2

α+σ2
β+σ2

γ, and four distinct non-zero covariances, cov(θa,p, θp,a) =
2ραβσασβ + ργσ

2
γ), cov(θa,p, θa,q) = σ2

α, cov(θa,p, θb,p) = σ2
β, and cov(θa,p, θb,a) = ραβσασβ

(where a, p, b, q are all different individuals). It is straightforward to find unique solu-
tions for the five variance-covariance parameters from the five equations above, showing
that the they are identified if the reduced-form parameters (variance and covariances) are
identified.

The reduced-form parameters are identified if all the pairs of dyads involved in the co-
variances exist, i.e., actor/partner role reversal (sometimes referred to as “reciprocals”) must
occur to identify cov(θa,p, θp,a) and it must be possible to belong to more than one dyad.
Specifically, it must be possible for actors to be paired with several partners to identify
cov(θa,p, θa,q), for partners to be paired with several actors to identify cov(θa,p, θb,p), and for
an actor paired with a partner p to also occur in a dyad as a partner of an actor b 6= p to
identify cov(θa,p, θb,a). It is necessary to set some mean parameters and/or step difficulty
parameters to constants for identification. Here, we set the expectations of the latent traits
to zero (µα = µβ = µγ = 0), and allow the item step difficulties δi,j to be unconstrained
(anchoring on latent trait scores instead of item difficulties), except that δi,0 = 0.
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We have implicitly assumed that dyads and individuals within dyads are exchangeable
by restricting the mean of θa,p to be constant (set to 0 to identify the step-difficulties) and
allowing for only five distinct second-order reduced form parameters (one variance and four
covariances), i.e., by assuming that the variance is constant and that covariances between
dyadic composite latent variables depend only on the actor/partner roles of the individuals
that are present in both dyads. The corresponding five parameters σ2

α, σ2
β, σ2

γ, ραβ, and ργ
enforce no other constraints besides exchangeability and positive semi-definiteness. Li and
Loken (2002) make the point, for a regular SRM, that the model is in that sense justified by
exchangeability.

When dyads occur naturally, such as in families or work settings, and where different
individuals have different roles (e.g., father and daughter) or when interest centers on asym-
metric relationships (e.g., supervisor and trainee), the exchangeability restrictions enforced
by the model are no longer justified and we discuss how to relax them in Section 2.3.1. A
special case of non-exchangeability is where each dyad is composed of individuals from two
different groups, such as husbands and wives, and these groups are the same across dyads,
so that there cannot, for example, be husband and wife dyads as well as father and daughter
dyads. Kenny et al. (2006) refer to this design as distinguishable dyads.

We now explore several dyadic designs for which the SRM is identified, following Kenny
and La Voie (1984) and Malloy and Kenny (1986). The simplest and most common design
is the round robin design. In this design, each individual belongs to a dyad with every other
member of the study, and there are a total of n(n−1)

2
dyads and n(n− 1) directed dyads. In

graph theoretic language where we view each individual as a node, the round-robin design
is represented by a complete graph in the undirected case (see upper-left panel of Figure 1),
and a complete directed graph (digraph) in the directed case.

One immediate extension of the round-robin design is the block design where the n
individuals are split into two blocks of sizes p and q respectively, and p + q = n. Then,
each individual from every block forms a dyad with every individual from the other block,
but not with individuals in his/her block. That is, there are a total of pq undirected dyads
and 2pq directed dyads. In graph theoretic terms, such a design can be represented by a
complete bipartite graph (see upper-right panel of Figure 1). This occurs most naturally
for distinguishable dyads, for example when interactions only occur between members of the
opposite gender. In this case, the n individuals are split into two blocks by their gender.
Kenny et al. (2006) refer to such a design as an asymmetric block design.

When individuals are nested in groups, such as families, work groups, or social networks,
where each individual from the group forms a dyad with each other individual of the group,
we have a “k-group round-robin design” (see lower-left panel of Figure 1). In addition to
such naturally occurring groups, the groups can also be created by the researcher to reduce
response burden and costs by reducing the number of partners per actor and the number
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of dyads, respectively. Another reason for creating groups artificially is to allow individuals
to interact within a group as a way to create the context for the dyadic responses. For
example, Christensen and Kashy (1998) created an initial social situation for groups of four
lonely individuals that involved problem-solving tasks and subsequently collected dyadic
ratings on personal characteristics. There can also be a block design within each group,
resulting in the “k-group block design” (see lower-right panel of Figure 1). This is the data
design for the speed-dating application in Section 4.

Figure 1: Graphs representing round-robin design (upper-left panel), block design (upper-
right panel), k-group round-robin design (lower-left panel), and k-group block design (lower-
right panel). For the k-group designs each group is represented by a layer.

2.3 Extended dIRT Model

2.3.1 Including Covariates for the Latent Traits

The dIRT model can be extended to take into account individual and dyadic covariates
that may affect the latent traits at both the individual and dyadic levels by generalizing
the idea of explanatory item response models (e.g., De Boeck and Wilson, 2004). One way
that this can be accomplished is by specifying how the means µα, µβ, and µγ depend on
covariates, such as

µα,a = x′α,acα, µβ,p = x′β,pcβ, µγ,a,p = x′γ,a,pcγ, (4)
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where xα,a are the covariates for αa, xβ,p are the covariates for βp, xγ,a,p are the covariates
for γa,p, and cα, cβ and cγ are the corresponding regression coefficients. If the dyads are
all pairs of individuals within a family (k-group round-robin design), the covariates can
include dummy variables for the roles, e.g., for the actor being a father (Snijders and Kenny,
1999).

Keeping in mind that the response probability for actor a when combined with partner
p is a function of the composite latent variable θa,p, whose mean is µα,a + µβ,p + µγ,a,p, care
must be taken to ensure that the regression coefficients are identified. For instance, if one
of the covariates for µγ,a,p is the difference in some attribute, za− zp, between the actor and
partner, it is not possible to also include both the attribute for the actor, za, in the model
for µα,a and the attribute for the partner, zp, in the model for µβ,p. Another example where
identification is impossible is where dyads are males paired only with females (i.e., if the
actor is a male, then the partner must be a female and vice versa) and gender is included
as a covariate in the models for both µα,a and µβ,p. Such an example is described in greater
detail in Section 4.

It is also possible to allow the variances of the latent traits to depend on covariates, for
instance to have different variances for different roles within families (Snijders and Kenny,
1999). Such an approach allows modeling non-exchangeable dyads in general.

2.3.2 Including Random Effects for the Latent Traits

If the individuals are clustered in different ways, e.g., in schools and/or neighborhoods,
it may make sense to include cluster-level random effects into the models for αa and βp, to
allow the actor and partner effects to be higher, on average, in some clusters than others, or,
in other words, to have intraclass correlations. (For simplicity, we do not consider random
effects in the model for γa,p.)

An obvious specification would be to introduce corresponding cluster-level actor and
partner effects, Aj and Bj, respectively, for cluster j. The corresponding expression for θa,p
then becomes

θa,p ≡ αa + βp + γa,p + Aj[a] +Bj[p],

where j[a] is the cluster that individual a belong to. We could specify a bivariate normal
distribution for Aj, Bj with variances σ2

A, σ2
B and correlation ρA,B.

These three additional parameters are identified if individuals in the same dyad can
belong to different clusters. In this case, cov(θa,p, θb,q) = 0 if the four different individuals
a, p, b, q come from four different clusters. Otherwise, we add σ2

A to the covariance if and
only if (iff) j[a] = j[b], σ2

B iff j[p] = j[q], ρA,BσAσB iff either j[a] = j[q] or j[p] = j[b] but not
both, and 2ρA,BσAσB iff j[a] = j[q] and j[p] = j[b]. Depending on the cluster memberships
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of these four individuals, each of these terms can be added in isolation or in combination,
producing eight distinct covariances. The parameters σ2

A, σ2
B and ρA,B are identified from

these reduced form parameters alone. Further distinct covariances arise if, for instance, the
actor is the same individual in both dyads. In this case, cov(θa,p, θa,q) = σ2

a + σ2
A if the

different individuals, a, p and q, all belong to different clusters and we follow the same rules
as above for adding the other terms besides σ2

A.

However, if dyads are formed only among individuals within the same cluster, e.g., stu-
dents are paired only with other students from the same school, then the term σ2

A + σ2
B +

2ρA,BσAσB appears in all variances and covariances unless the two dyads belong to different
clusters. This can occur only if the two dyads do not share any individuals in common, in
which case we obtain cov(θa,p, θb,q) = σ2

A + σ2
B + 2ρA,BσAσB if dyad (a, p) belongs to the

same cluster as dyad (b, q) and cov(θa,p, θb,q) = 0, otherwise. It follows that only the sum
σ2
A + σ2

B + 2ρA,BσAσB is identified and therefore it makes sense to define uj ≡ Aj +Bj, with
one variance parameter σ2

u, and to include uj directly in the model for θa,p.

It is of course possible to handle multiple nested or non-nested classifications by adding
the corresponding random intercepts u if dyads are formed within a classification and A and
B if dyads are formed across classifications (e.g., neighborhood when dyads are formed within
schools or firms). Non-exchangeability can be handled by specifying different (co)variances
for u or for A and B for different groups of individuals.

2.3.3 Distal Outcomes

The dIRT model can be extended by using, for instance, Generalized Linear Models to
model one or more distal outcomes, where αa, βp, and γa,p are latent covariates.

For example, we can consider a binary distal outcome da,p of a dyad (a, p) taking the
value of 1 with the conditional probability πa,p given the latent traits, and 0 otherwise. For
the speed-dating application considered in Section 4, the distal outcome is whether each
actor in a dyad elected to see the partner again. Here, πa,p can be modeled using the logistic
regression

log

(
πa,p

1− πa,p

)
= b0 + b1αa + b2αp + b3βa + b4βp + b5γa,p + b6γp,a

+ b7αaαp + b8βaβp + b9γa,pγp,a. (5)

Distal outcome regressions can also include covariates of both the individual and the dyad
if necessary.

Notice that in the above example, the distal outcome is directed in the sense that it
depends on which individual in the dyad plays the role of the actor, and the individuals are
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therefore not exchangeable in the sense that the effect of αa on the distal outcome for actor
a is not necessarily the same as the effect of αp. If the distal outcome is undirected, however,
and individuals within dyads are exchangeable (e.g., in the case of pairs of individuals par-
ticipating in a collaborative problem solving task where the outcome of interest is how well
the task was completed per pair), then, (5) should be constrained to have b1 = b2, b3 = b4,
and b5 = b6. If there is one undirected outcome per dyad and the individuals in the dyad
are non-exchangeable (e.g., males paired with females), such a constraint is not needed if,
for instance, a represents the male and p the female in the dyad.

2.4 Relationship with Other Models

We first review models for dyadic designs for which the dIRT and SRM are not identified,
either because individuals can belong only to one dyad or because actor/partner role reversal
is not possible.

Starting with the situation where individuals belong to only one grouping (dyad or larger
group), the dIRT model reduces to a multilevel IRT where θa,g = ζg + ζa,g, sometimes called
a variance components factor/IRT model (e.g., Rabe-Hesketh et al., 2004). Here ζg is a
group-level random intercept and ζa,g an individual-level random intercept.

In the dyadic data literature, the most popular model for this case is the Actor-Partner-
Interdependence Model (APIM) proposed by Kenny (1996). The APIM for distinguishable
dyads is basically a bivariate regression model where the actor’s and partner’s continuous
responses ya and yp are both regressed on the covariates xa and xp of both the actor and the
partner:

ya = b1xa + c1xp + ζa, yp = c2xa + b2xp + ζp,

where the disturbances ζa and ζp are correlated. Here, b1 and b2 are interpreted as actor
effects and c1 and c2 as partner effects. In the exchangeable APIM the actor effects are
constrained to be equal, b1 = b2, as are the partner effects, c1 = c2, and the variances,
Var(ζa) = Var(ζp). Generalizations of the classical APIM have also been proposed. For
example, Loeys and Molenberghs (2013) used generalized linear mixed models for categorical
ya and yp. Alexandrowicz (2015) replaced the observed variables, xa, xp and ya, yp, in the
APIM by latent variables measured by multiple items via IRT models.

The mutual-influence model (Kenny, 1996) has no partner covariate effects which allows
a reciprocal or mutual relationship between the responses of the actor and partner:

ya = d1yp + b1xa + ζa, yp = d2ya + b2xp + ζp,

where ζa and ζp are correlated. This is a simultaneous equation model where d1 and d2
represent the mutual influence between the responses in a pair and xa and xp serve as
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instrumental variables for the endogenous explanatory variables ya and yp, respectively. In
the exchangeable version (Duncan et al., 1968), the actor effects are constrained to be equal,
b1 = b2, as are the mutual effects, d1 = d2, and the variances, Var(ζa) = Var(ζp).

In the Common-Fate Model (CFM) of Kenny and La Voie (1984) a dyad-level latent
variable ηg for dyad g, measured by the continuous responses ya,g and yp,g, is regressed on a
dyad-level latent variable ξg, measured by the continuous covariates xa,g and xp,g:

xa,g = ξg + δa,g, xp,g = ξg + δp,g, ya,g = ηg + εa,g, yp,g = ηg + εp,g,

ηg = γξg + ζg.

The unique factors δa,g and εa,g for the actor-variables are correlated as are δp,g and εp,g for
the partner-variables. Hence, the relationships between the variables is decomposed into
a dyad-level relation (represented by γ) and two individual-level relations (represented by
the error covariances, cov(δa,g, εa,g) and cov(δp,g, εp,g)). In the exchangeable case, the follow-
ing constraints are necessary: Var(δa,g) = Var(δp,g), Var(εa,g) = Var(εp,g), cov(δa,g, εa,g) =
cov(δp,g, εp,g). To use the CFM in an IRT framework, Alexandrowicz (2015) simply allowed
all items measuring the latent versions of xa,g and xp,g to load on ξg and all items measuring
the latent versions of ya,g and yp,g to load on ηg. We believe that a more appropriate approach
would have been to replace each of xa,g, xp,g, ya,g and yp,g by a separate (first-order) latent
variable, so that ξg and ηg become second-order latent variables and the error covariances
of the CFM can be directly accommodated as covariances among the disturbances of the
first-order latent variables.

We now discuss the situation where individuals appear in multiple dyads but actor/partner
role reversals (or reciprocals) do not occur. For example, if the dyads are raters and exam-
inees (with each examinee rated by several raters and each rater rating several examinees)
only the raters provide responses so that the raters are always the actors and the examinees
are always the partners. Then αa is the rater leniency, βp the examinee ability and γa,p,
interpretable as person-specific rater leniency, can be included only if raters assesses several
items by the same examinee (see, e.g., Shin et al., 2019). In such a design, ραβ and ργ are
not defined because examinees and raters never switch roles.

We now turn to designs of the kind discussed in Section 2.2, where the SRM or dIRT are
identified. Kenny and La Voie (1984) defined the original SRM for a continuous observed
outcome y of actor a in the presence of partner p measured over multiple time points t
as

ya,p,t = αa + βp + γa,p + εa,p,t.

Here, εa,p,t can be viewed as test-retest measurement error. Since this term reduces to εa,p
if there is only one time point, the identifiability of the above model, and in particular the
variance of γa,p separately from that of εa,p,i, hinges crucially on measurements of the same
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dyad across multiple time points. In the dIRT model, multiple items essentially play the
role of multiple time points, allowing for identification of the variance of γa,p. If one does not
have multiple items or time-points, the model may still be identifiable if we assume that for
two individuals a and p, γa,p = γp,a. That is, we assume that the dyadic effect of the pair is
symmetric across the role that the individuals play and in that sense is no longer directional.
In this case, γa,p simply induces additional dependence between the responses for a given
dyad and we can alternatively replace γa,p + εa,p by a single error term, typically denoted
γa,p, that is correlated across members of the same dyad. In a k-group round-robin design,
it may also make sense to include a group-level random intercept, for instance, when the
groups are families, with each pair of family members forming a dyad (Snijders and Kenny,
1999, Loncke et al., 2018). Such a model is described at the end of Section 2.3.2.

In genetic experiments, a diallel cross is the set of all possible matings between several
genotypes. The genotypes may be defined as individuals, clones, homozygous lines, etc.
(Hayman, 1954). Some quantitative trait is measured for offspring from father a and mother
p, and there are reciprocal crosses, with the role of mother and father reversed. Li and
Loken (2002) show the correspondence between the SRM and a diallel model used in genetics
(e.g., Cockerham and Weir, 1977):

ya,p = µ+ ga + gp + sa,p + da − dp + ra,p,

where all terms are uncorrelated, except for ga and da, and where sa,p = sp,a and ra,p = −rp,a.
The correspondence with the SRM is that αa = ga + da, βp = gp − dp, and γa,p = sa,p +
ra,p.

Multivariate extensions of the SRM have been proposed for the situation where actors
provide ratings on several continuous variables (Nestler, 2018, Lüdtke et al., 2018). For the
case with a single time-point, the model can be written as

ya,p,i = αa,i + βp,i + γa,p,i

for variable i, where εa,p,i has been removed because only one error term (correlated across
members of the same dyad) can be included. Unstructured covariance matrices are specified
for each of these terms across variables and, in addition to the same-variable covariances
between αa,i and βa,i and between γa,p,i and γp,a,i that are part of a univariate SRM, the
model allows for all corresponding cross-variable covariances as well. As far as we know,
the common factor analogue to our dIRT model (where the measurement model for θa,p is a
univariate factor model) has not been discussed in the literature.

We are aware of only very few papers that extend the classic SRM model to handle
non-continuous responses, such as Koster and Leckie (2014) who used bivariate Poisson
models for counts and Koster and Brandy (2018) who used bivariate probit models for
binary responses.



14

3 Estimation

The dIRT model includes crossed random effects so that the marginal likelihood involves
high-dimensional integrals. For example, in a k-group block design, the dimensionality
of integration for the likelihood contribution of a group is p + 1 or q + 1, whichever is
smaller (Goldstein, 1987). Numerical integration or Monte Carlo integration quickly becomes
prohibitive and approximate methods are often not satisfactory (see, e.g., Jeon et al., 2017
and references therein). Fortunately, Bayesian estimation via Markov-chain Monte Carlo
(MCMC) is feasible, and we adopt this approach here. Specifically, we use the the “No-U-
Turn” sampler (Hoffman and Gelman, 2014) implemented in Stan (Stan Development Team,
2018). The Stan language affords us great flexibility in extending the basic dIRT model. We
also verified all results using Matlab (version r2016b) via custom-written code based on the
Metropolis-Hastings algorithm (Metropolis and Ulam, 1949).

To use MCMC, we define prior distributions for the parameters in (3) as well as the item
parameters in (2) (and potentially the coefficients of the distal outcome regression in (5)).
In our approach, we take the distributions of all hyperparameters σ2

α, σ
2
β, σ

2
γ, ραβ and ργ to be

noninformative by assuming uniform distributions for the variances [0,+∞) and correlations
[−1, 1]. For step difficulties δi,j and regression coefficients b0, b1, . . . , b9 in the distal outcome
model (5), we specify noninformative uniform priors (−∞,+∞).

All parameter estimates were obtained using MCMC simulations of 4 chains with 2, 000
iterations, with a burn-in period of 1, 000 iterations. The parameter and hyper-parameter
estimates are expected a posteriori (EAP) values obtained as means over the converged
(post burn-in) MCMC draws for the four chains, i.e., they are based on an MCMC sample
size of 4,000. Convergence was assessed by monitoring the R̂ statistic (Gelman and Rubin,
1992).

The distal outcome model in (5) can be estimated jointly with the dIRT model by com-
bining the log-likelihood contributions from the dIRT (`dIRT) and distal outcome (`distal)
models in forming the joint log posterior of all parameters, given the dIRT item responses
and distal outcome.

Joint estimation of the dIRT and distal outcome models is consistent and asymptoticaly
efficient if both models are correctly specified. However, to protect against misspecification
of the distal outcome (or “structural”) model, a sequential approach could be used where
the parameters of the dIRT (“measurement”) model are estimated in step 1 and subsequent
steps are used to obtain estimates of the structural (distal outcome) model parameters. If
the measurement model is correctly specified, the estimates from step 1 are consistent even if
the structural model is misspecified. However, if the structural model is correctly specified,
joint estimation is more efficient than sequential approaches. From a conceptual point of
view, it has been argued in the structural equation modeling and latent class literature, that
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altering the structural model by, for instance, adding or removing distal outcomes, affects
the interpretation of the measurement model because these distal outcomes play a similar
role to the items or indicators that define the latent traits. Sequential modeling can protect
against such “interpretational confounding” (Burt, 1976) where the meaning of a construct
is different from the meaning intended by the researcher (see Bakk and Kuha (2018) for
further discussion).

The most obvious sequential approach is to use factor score regression (Skrondal and
Laake, 2001) where one estimates the measurement model (step 1), obtains judiciously chosen
scores for the latent traits from the measurement model (step 2), and substitutes these scores
for the latent traits to estimate the structural model as if the latent traits were observed
(step 3). This approach was adopted by Loncke et al. (2018) for SRMs. However, factor score
regression is only consistent for link functions that are rarely of relevance in IRT (such as
the identity) and naive standard errors from this approach are moreover underestimated. To
address these limitations, a multiple imputation approach can be used, where multiple draws
of the latent traits are obtained from their posterior distribution and the estimates for the
structural model are combined using Rubin’s formula (Rubin, 1987). Lüdtke et al. (2018) use
such an approach in an SRM to estimate covariate effects on individual-level latent traits
(i.e., as discussed in Section 2.3.1). Multiple imputation is natural in a Bayesian setting
where full posteriors of the latent traits are available. A more straightforward pseudo-
likelihood estimator, in the sense of Gong and Samaniego (1981), was proposed by Skrondal
and Kuha (2012) (see also Bakk and Kuha (2018)). In this case the measurement model is
first estimated, followed by joint estimation of the measurement and structural models under
the constraint that the parameters of the measurement model are set equal to the estimates
from the first stage.

We present the results of the joint approach in this paper and include results for the
sequential approach with multiple imputation in Appendix B.

4 Speed-Dating Application

We use a speed-dating dataset (Fisman et al., 2006) to examine the mutual attractiveness
ratings of both individuals in a dyad to look for evidence of interactions that cannot be
explained solely by the individuals’ attractiveness or rating preferences. We also considered
whether males and females differ in how they perceive their interactions. Additionally, by
treating the final dating decision of whether the actor wants to see the partner again as a
distal outcome, we investigate to what extent it relates to the dyadic latent trait.

The data was collected at 21 separate researcher-organized speed-dating sessions, over a
period of 2 years, with 10-44 students from graduate and professional schools at Columbia
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University in each session. During these sessions, attended by nearly an equal number of
male and female participants, all members of one gender would meet and interact with every
member of the opposite gender for 5 minutes each. At the end of the 5 minute session,
participants would rate their partner based on five attractiveness factors on a form attached
to a clipboard that they were provided with. They also indicated whether or not they would
like to see the person again.

After data cleaning, we had a total of 551 individuals, interacting in 4,184 distinct pairs,
leading to 8,368 surveys completed (twice the number of pairs, given that both members of
a pair rated each other). This corresponds to the “k-group block-dyadic” design described
in Section 2.2. An illustrative example of data collected for one item in a balanced group of
10 individuals is shown in Figure 2.

partner, p
F1 F2 F3 F4 F5 M6 M7 M8 M9 M10

actor, a

F1 y1,6 y1,7 y1,8 y1,9 y1,10
F2 y2,6 y2,7 y2,8 y2,9 y2,10
F3 y3,6 y3,7 y3,8 y3,9 y3,10
F4 y4,6 y4,7 y4,8 y4,9 y4,10
F5 y5,6 y5,7 y5,8 y5,9 y5,10
M6 y6,1 y6,2 y6,3 y6,4 y6,5
M7 y7,1 y7,2 y7,3 y7,4 y7,5
M8 y8,1 y8,2 y8,3 y8,4 y8,5
M9 y9,1 y9,2 y9,3 y9,4 y9,5
M10 y10,1 y10,2 y10,3 y10,4 y10,5

Figure 2: Example of responses ya,p of actor a rating partner p in a single-group block-dyadic
structure consisting of 5 females F1, . . . , F5 and 5 males M6, . . . ,M10.

In the data, the rating by actor a of partner p on item i is given by ya,p,i. Each item
was rated on a 10-point Likert-scale, which we collapsed to a 5-point scale by combining
pairs of adjacent response categories to mitigate sparseness. Participants rated each other
on 5 different items, all related to the overall attractiveness of the partner (viz. physical
attractiveness, ambition, how fun they were, intelligence, and sincerity). We dropped all
invalid ratings from an actor of a partner and the corresponding ratings from the partner
of the actor even if the latter was valid. This amounted to a loss of less than 5% of the
data.

In addition to each individual’s rating of his/her partner, we also had access to an in-
dicator da,p for whether actor a elected to see partner p again. Note that this indicator is
directional and da,p may therefore differ from dp,a. However, embedding the dIRT model
within a distal outcome regression where the distal outcome is non-directional is also possi-
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ble. For example, if we knew whether the dyad did in fact go on a date, this outcome would
be unique to the dyad.

Using the joint MCMC estimation approach described in Section 3, the results of estimat-
ing the basic dyadic partial credit model (2) and the model also including a distal regression
(5) are presented in Tables 1 and 2 under the heading “without gender”. The code used to
obtain the subsequent results is provided in Appendix A and explained in a Stan case-study
(Sim et al., 2019). We estimate two versions of the distal regression, one with all 10 pa-
rameters b0, . . . , b9 (labeled “with interactions”), and another model with b7 = b8 = b9 = 0
(labeled “without interactions”). The estimates presented are the posterior means of the
MCMC draws, and the values in parentheses represent the 2.5th and the 97.5th quantiles of
the posterior distribution of the MCMC draws.

Table 1: Estimates of Standard Deviations and Correlations of Individual and Dyadic Latent
Traits (Joint Approach)

without gender with gender
with interactions without interactions without interactions

µmale 0.08 (-0.10,0.24)
σα 1.03 ( 0.96,1.10) 1.03 ( 0.96,1.10) 1.03 ( 0.96,1.10)
σβ 0.63 ( 0.58,0.68) 0.63 ( 0.58,0.68) 0.63 ( 0.58,0.69)
σγ 0.98 ( 0.95,1.02) 0.98 ( 0.95,1.01) 0.98 ( 0.95,1.02)
ραβ -0.06 (-0.17,0.04) -0.06 (-0.16,0.04) -0.07 (-0.17,0.03)
ργ 0.46 ( 0.42,0.51) 0.46 ( 0.41,0.51) 0.46 ( 0.42,0.51)

Table 2: Estimates for Distal Outcome Regression (Joint Approach)
without gender with gender

with interactions without interactions without interactions
b0 -0.87 (-1.03,-0.71) -0.88 (-1.04,-0.73) -0.88 (-1.04,-0.73)
b1 0.15 (-0.04, 0.33) 0.14 (-0.05, 0.32) 0.14 (-0.04, 0.32)
b2 -0.02 (-0.13, 0.09) -0.02 (-0.13, 0.09) -0.03 (-0.13, 0.08)
b3 -3.03 (-3.62,-2.58) -2.92 (-3.46,-2.49) -2.91 (-3.44,-2.45)
b4 3.56 ( 3.17, 4.01) 3.48 ( 3.12, 3.93) 3.48 ( 3.11, 3.91)
b5 3.50 ( 3.06, 4.06) 3.42 ( 3.00, 3.95) 3.42 ( 2.99, 3.94)
b6 0.17 ( 0.00, 0.35) 0.13 (-0.04, 0.29) 0.13 (-0.04, 0.29)
b7 -0.01 (-0.13, 0.09)
b8 0.45 ( 0.06, 0.87)
b9 -0.28 (-0.53,-0.02)
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4.1 Partitioning of Variance between Individual and Dyadic La-
tent Traits

Standard deviation and correlation estimates are reported in Table 1. In the dIRT, the
variance of the composite latent variable θa,p is the sum of the variances of the individual and
dyad-level latent traits, αa, βp and γa,p. It is instructive to examine the relative contributions
of these latent traits to the composite. The percentage of the variance of θa,p that is due to
αa, βp and γa,p is estimated as 44%, 16% and 40%, respectively.

Interestingly, the variance of αa is larger than that of βp, implying that the actor’s
perception of the partner is more influenced by the actor’s average tendency to rate others
as attractive, which we could call actor leniency, than by the partner’s average tendency to
be rated as attractive, which we could think of as the partner’s “universal” attractiveness.
While the majority (60%) of the variance is accounted for by the individual effects (αa and
βp), the dyadic effect (γa,p) accounts for a substantial proportion of the total variance, at
40%. A traditional IRT model, measuring individual latent traits only, would ignore this
contribution, which can be thought of as the “eye-of-the-beholder” effect. In particular, this
dyadic component would not be identifiable for standard IRT data where the individual only
belongs to a single dyad.

4.2 Correlations

The within-person correlation ραβ of αa and βa reflects the relationship between how
willing an individual was to rate someone else as attractive (“leniency”), and his/her own
attractiveness. If this correlation is positive, it indicates that the more attractive an indi-
vidual is, the more lenient he/she is in his/her ratings. If negative, it indicates that more
attractive an individual is, the harsher he/she tends to be in rating his/her partners’ attrac-
tiveness.

The between-person correlation ργ of a dyad reflects the extent to which the (directed)
dyadic trait is correlated between members of a given pair. If positive, it indicates that
when an individual is affected by a social interaction with his/her partner, the partner will
be more likely to also be affected in a similar manner. If negative, it suggests that members
of a pair perceive their interaction in opposing ways.

Table 1 shows that the estimate of the correlation ργ is positive with a 95% credible inter-
val that does not contain zero. In contrast, the estimate of the correlation ραβ is negative with
a 95% credible interval containing zero. The relatively larger estimated between-individual
correlation indicates that members of each pair were likely to perceive their interaction sim-
ilarly.
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4.3 Distal Outcome Regression

We estimate the distal outcome regression for each individual’s dating decision in (5) using
the joint approach described in Section 3 and compare the regression estimates in Table 2 for
the full model (under “with interactions”) and a reduced model without interaction terms
(under “without interactions”).

We see that the estimated distal outcome regression coefficients are largest, in absolute
value, for: a) the individual attractiveness α of both the actor (b̂3) and the partner (b̂4), and
b) the unique relationship of the dyad γ from the actor’s perspective (b̂5) but not for that
from the partner’s perspective (b̂6). Finding b) is consistent with our expectations given
that the distal outcome reflects the viewpoint of the actor, rather than that of the partner.
However, a less obvious finding is a) because the rater’s own attractiveness, b̂3, negatively
influences their dating decision. This suggests that the more attractive a rater was, the less
likely they were to want to see the partner again. The estimated coefficients are tiny for the
leniency of both the actor and the partner, as well as for the unique relationship of the dyad
from the perspective of the partner, and have 95% credible intervals either containing zero
or having one limit close to zero.

4.4 Gender Differences

Both the basic dIRT model and the model with a distal outcome can be extended to
account for differences in the way females and males perceived their social interactions. In
(3), we assumed that male and female participants shared the same expected leniency µα
and attractiveness µβ, by setting both of these expectations to zero. We can relax this by
allowing the genders to have a different expectation for one of these parameters whilst setting
the other to zero. The distribution for µα and µβ becomes:[

αa
βa

]
∼ N

([
maµmale

0

]
,

[
σ2
α ραβσασβ

ραβσασβ σ2
β

])
. (6)

Here, µmale is the difference between the expected attractiveness of males and females re-
spectively, and ma is an indicator for whether individual a is male. This gender parameter
can also be interpreted as the difference between the expected leniency of females and males.
Hence, a positive µmale would suggest that males were on average more attractive than fe-
males, and/or females were more lenient in their ratings of males. We note that these effects
could be disentangled if males rated other males and females rated other females. However,
because we do not have such data, µmale can only be interpreted as a linear combination
(with unknown constants) of the average additional male attractiveness and average addi-
tional female rater leniency.
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Estimates are reported under the heading “with gender” in the tables. The gender
difference µmale is estimated to be 0.08 with a 95% credible interval containing zero. There
is therefore insufficient evidence to suggest a gender difference. The variance and correlation
estimates are virtually the same for the models with and without µmale.

5 Simulations

We first present the results of a simulation study exploring Bayesian properties of the
MCMC estimator for an extended dIRT model that includes a distal outcome. We generated
data for the same data design, size and parameter estimates as in the previous section.
Starting with the estimated values of the variance and correlation hyperparameters, we
generated 551 pairs of individual latent traits (αa, βa), and 8,126 directed dyadic latent
traits γa,p. Using the estimated item step-difficulties from Section 4, we then generated
responses from the dIRT model (2). Using the estimated regression coefficients, we finally
generated the distal outcomes according to model (5). We summarize our findings regarding
parameter recovery in the figures below.

Figure 3 depicts the difference between the estimated hyperparameters and the actual
parameters across all 4,000 draws after convergence. The square represents the posterior
mean of these estimates while the whiskers represent the bounds for the 95% credible intervals
based on the 2.5th and 97.5th quantiles. Similarly, Figures 4 and 5 provide the analogous
comparison for estimates of the item step parameters and the distal outcome regression
parameters, respectively. We see that all credible intervals contains the true value and our
procedure hence has good Bayesian performance.
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Figure 3: Difference between hyperparameter estimates and true parameter values.
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Figure 4: Difference between item step difficulty estimates and true parameter values.

In order to evaluate frequentist properties such as the bias of point estimates and the va-
lidity of model-based standard errors, we generated 50 datasets based on the same procedure
as above, and estimated the same model for each dataset. Based on these 50 replications,
we then estimated (i) the absolute bias of parameter estimates using the difference between
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Figure 5: Difference between distal outcome regression estimates and true parameter values.

the mean (over replications) of the estimated parameters and the true values, and (ii) the
relative bias of standard error estimates using the mean (over replications) of the estimated
standard errors divided by the empirical standard deviation (over replications) of the point
estimates minus 1. Monte Carlo errors for these quantities were estimated using the formulae
in White (2010).

In Figure 6 we show the estimated absolute bias of the parameter estimates (top) and
relative error of the standard error estimates (bottom), together with error bars of ±1.96
times their Monte Carlo error estimates, representing approximate 95% confidence intervals
if the sampling distributions are approximately normal. We see that there is small absolute
bias in our point estimates across parameters, most of which can be attributed to Monte
Carlo error with the exception of b2, b4 and b5. There is also small relative bias for the
standard error estimates, most of which can be attributed to Monte Carlo error with the
exception of δ2,2 and δ3,4. In summary, our procedure has good frequentist properties.

6 Concluding Remarks

We have proposed a dyadic Item Response Theory (dIRT) model that integrates Item
Response Theory (IRT) models for measurement and the Social Relations Model (SRM) for
dyadic data by modeling the responses of an actor as a function of the actor’s inclination to
act and the partner’s tendency to elicit that action as well as the unique relationship of the
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Figure 6: Performance of point estimates and standard errors across 50 replications.

pair. We described how the model can be extended to larger group settings, include covariates
for the individual and dyad, include cluster-level random effects, and accommodate distal
outcomes. We also discussed data designs for which the dIRT model is identified, emphasizing
that longitudinal data is not required, and described how the model can be estimated using
standard software for Bayesian inference. The proposed estimation approach was shown to
have good performance in simulation studies.

The practical utility of the dIRT model was demonstrated by applying it to speed dating
data with ordinal items. The estimated variance of the actor effect suggests that there
was some variation in the way different individuals rated the same sets of partners, or
in other words that there was a large variation in how lenient individuals were in rating
their partners. The estimated variance of the partner effect can be thought of as reflecting
how attractive the partner is, on average, to all other individuals, and indicates that there
is some degree of universal attractiveness. We found that there is evidence for a unique
interaction effect (dyadic latent trait) and that the magnitude of this effect helps predict
whether the individuals want to see each other again. This finding suggests that the dyadic
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latent trait has predictive validity, a conclusion that can perhaps be more easily justified when
a sequential estimation approach is used. A traditional IRT model, measuring individual
latent traits only, would ignore this dyadic latent trait, which can be thought of as the “eye-
of-the-beholder” effect. The dyadic latent traits were positively correlated within dyads,
suggesting that both members of a dyad tended to perceive their interaction similarly.

In the speed-dating application, the dyadic latent trait was of particular interest from
the point-of-view of matchmaking. In other applications where the actors can be viewed as
the raters, “perceivers” or informants used to make inferences regarding the partners, the
partner latent trait is of greatest interest. In this case, the advantage of the dIRT is that
it purges the measurement of the partner latent trait from both the global rater bias α and
the target-specific rater bias γ. In a collaborative problem-solving task, both the actor and
partner latent traits may be of interest, in which case it becomes important to accommodate
the dyadic latent trait in the model to prevent it from contaminating the individual latent
traits of interest. The dyadic latent trait could in this case be viewed as a nuisance reflecting
a fortunate or unfortunate choice of collaborator. For all these types of applications, dyadic
designs that permit estimation of the dIRT are essential.

The formulation of the dIRT model, and providing a viable estimation approach for it,
provides researchers with the impetus to collect appropriate data for investigating dyadic
interactions or individual latent traits, free from such interaction effects, in a measurement
context.

Acknowledgements

Brian Gin and Nicholas Sim are joint first authors of this paper. This work was partly
funded by the Research Council of Norway through its Centres of Excellence funding scheme,
project number 262700, and by the Institute of Education Sciences, U.S. Department of
Education, through Grant R305D140059.

References

Ackerman, R. A., Kashy, D. A., and Corretti, C. A. (2015). A tutorial on analyzing data
from speed-dating studies with heterosexual dyads. Personal Relationships, 22:92–110.

Alexandrowicz, R. W. (2015). Analyzing dyadic data with IRT models. In Stemmler, M.,
von Eye, A., and Wiedermann, W., editors, Dependent Data in Social Sciences Research,
pages 173–202. Springer, New York.



25

Back, M. D. and Kenny, D. A. (2010). The social relations model: How to understand dyadic
processes. Social and Personality Psychology Compass, 4:855–870.

Bagozzi, R. P. and Ascione, F. J. (2005). Inter-role relationshis in hospital-based pharmacy
and therapeutics committee decision making. Journal of Health Psychology, 10:45–64.

Bakk, Z. and Kuha, J. (2018). Two-step estimation of models between latent classes and
external variables. Psychometrika, 83:871–892.

Burt, R. S. (1976). Interpretational confounding of unobserved variables in structural equa-
tion models. Sociological Methods & Research, 5:3–52.

Card, N. A., Little, T. D., and Selig, J. P. (2008). Using the bivariate social relations
model to study dyadic relationships: Early adolescents’ perceptions of friends’ aggression
and prosocial behavior. In Card, N. A., Little, T. D., and Selig, J. P., editors, Modeling
Dyadic and Interdependent Data in the Developmental and Behavioral Sciences, pages
245–276. New York: Routledge.

Christensen, P. N. and Kashy, D. A. (1998). Perceptions of and by lonely people in initial
social interactions. Personality and Social Psychology Bulletin, 24:322–329.

Cockerham, C. C. and Weir, B. S. (1977). Quadratic analysis of reciprocal crosses. Biomet-
rics, 33:187–203.

De Boeck, P. and Wilson, M., editors (2004). Explanatory Item Response Models: A Gener-
alized Linear and Nonlinear Approach. Springer, New York.

Dorff, C. and Ward, M. D. (2013). Networks, dyads, and the social relations model. Political
Science Research and Methods, 1:159–178.

Duncan, O. D., Haller, O. A., and Portes, A. (1968). Peer influences on aspirations: A
reinterpretation. American Journal of Sociology, 74:119–137.

Embretson, S. E. and Reise, S. P. (2000). Item Response Theory for Psychologists. Psycho-
logical Press, New York, NY.

Fisman, R., Iyengar, S. S., Kamenica, E., and Simonson, I. (2006). Gender differences
in mate selection: Evidence from a speed dating experiment. The Quarterly Journal of
Economics, 121:673–697.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7:457–472.

Goldstein, H. (1987). Multilevel variance components models. Biometrika, 74:430–431.



26

Gong, G. and Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and
applications. The Annals of Statistics, 74:861–869.

Hayman, B. I. (1954). The theory and analysis of diallel crosses. Genetics, 39:789–809.

Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn Sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–
1623.

Jeon, M., Rijmen, F., and Rabe-Hesketh, S. (2017). A variational maximization-
maximization algorithm for generalized linear mixed models with crossed random effects.
Psychometrika, 82:693–716.

Kenny, D. A. (1994). Interpersonal Perception: A Social Relations Analysis. Guilford, New
York.

Kenny, D. A. (1996). Models of nonindependence in dyadic research. Journal of Social and
Personal Relationships, 13:279–294.

Kenny, D. A. and Kashy, D. A. (1994). Enhanced co-orientation in the perception of friends:
A social relations analysis. Journal of Personality and Social Psychology, 67:1024–1033.

Kenny, D. A., Kashy, D. A., and Cook, W. L. (2006). Dyadic Data Analysis. Guilford, New
York.

Kenny, D. A. and La Voie, L. (1984). The social relations model. Advances in Experimental
Social Psychology, 18:141–182.

Koster, J. M. and Brandy, A. (2018). The effects of individual status and group performance
on network ties among teammates in the National Basketball Association. PLoS ONE,
13(e0196013).

Koster, J. M. and Leckie, G. (2014). Food sharing networks in lowland Nicaragua: An
application of the social relations model to count data. Social Networks, 38:100–110.

Li, H. and Loken, E. (2002). A unified theory of statistical analysis and inference for variance
components models for dyadic data. Statistica Sinica, 12:519–535.

Loeys, T. and Molenberghs, G. (2013). Modeling actor and partner effects in dyadic data
when outcomes are categorical. Psychological Methods, 18:220–236.

Loncke, J., Eichelsheim, V. I., Branje, S. J. T., Buysse, A., Meeus, W. H. J., and Loeys,
T. (2018). Factor score regression with social relations model components: A case study
exploring antecedents and consequences of perceived support in families. Frontiers in
Psychology, 9(1699).



27
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Appendix A: Stan Code

# clears workspace:
rm(list = ls())

library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = 8)

library(tidyverse)

# load dataset:
load(file = "df.complete.Rdata")
load(file = "dpair.specific.Rdata")

# no gen with int stan model
modelngwi <- "
functions {

real pcminteract(int x, real alpha, real beta, real gamma, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), alpha + beta + gamma - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(x+1 | probs);

}
}

data {
int<lower = 1> I; // # items
int<lower = 1> A; // # actors (or partners)
int<lower = 1> U; // # undirected pairs
int<lower = 1> N; // # responses
int<lower = 1> D; // # decisions
int<lower = 1> B; // integer value for # distal regression parameters
int<lower = 1, upper = A> aa[N]; // size N array to index actors for each response
int<lower = 1, upper = A> pp[N]; // size N array to index partners for each response
int<lower = 1, upper = I> ii[N]; // size N array to index items for each response
int<lower = 0> x[N]; // size N array for responses; x = 0, 1 ... m_i
int<lower = 1, upper = U> dd[N]; // size N array to index undirected pairs for each response
int<lower = 1, upper = 2> mm[N]; // size N array to index match for each response
int<lower = 1, upper = A> aaa[D]; // size D array to index actors for each decision
int<lower = 1, upper = A> ppp[D]; // size D array to index partners for each decision
int<lower = 1, upper = U> ddd[D]; // size D array to index undirected pairs for each decision
int<lower = 1, upper = 2> mmm[D]; // size D array to index match for each decision
int<lower = 0, upper = 1> zzz[D]; // size D array for decisions

}
transformed data {

int M; // # parameters per item (same for all items)
M = max(x);

}
parameters {

vector[M] delta[I]; // length m vector for each item i
vector[2] AB[A]; // size 2 vector of alpha and beta for each person;
vector[2] GG[U]; // size 2 vector of gammas for each undirected pair;
real<lower = 0> sigmaA; // real sd of alpha
real<lower = 0> sigmaB; // real sd of beta
real<lower = 0> sigmaG; // real sd of gamma
real<lower = -1, upper = 1> rhoAB; // real cor between alpha and beta (within person)
real<lower = -1, upper = 1> rhoG; // real cor between gammas (within pair)
real beta[B]; // B-dimensional array of real valued of beta

// (distal regression parameters)
}
transformed parameters {

cov_matrix[2] SigmaAB; // 2x2 covariance matrix of alpha and beta
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cov_matrix[2] SigmaG; // 2x2 covariance matrix of gammas
SigmaAB[1, 1] = sigmaA^2;
SigmaAB[2, 2] = sigmaB^2;
SigmaAB[1, 2] = rhoAB * sigmaA * sigmaB;
SigmaAB[2, 1] = rhoAB * sigmaA * sigmaB;
SigmaG[1, 1] = sigmaG^2;
SigmaG[2, 2] = sigmaG^2;
SigmaG[1, 2] = rhoG * sigmaG^2;
SigmaG[2, 1] = rhoG * sigmaG^2;

}
model {

AB ~ multi_normal(rep_vector(0.0, 2), SigmaAB);
GG ~ multi_normal(rep_vector(0.0, 2), SigmaG);
for (n in 1:N){
target += pcminteract(x[n], AB[aa[n],1], AB[pp[n],2], GG[dd[n], mm[n]], delta[ii[n]]);

}
for (d in 1:D){
//distal logistic regression
target += bernoulli_logit_lpmf(zzz[d] | (beta[1]
+ beta[2]*AB[aaa[d],1]
+ beta[3]*AB[ppp[d],1]
+ beta[4]*AB[aaa[d],2]
+ beta[5]*AB[ppp[d],2]
+ beta[6]*GG[ddd[d], mmm[d]]
+ beta[7]*GG[ddd[d], (3-mmm[d])]
+ beta[8]*AB[aaa[d],1]*AB[ppp[d],1]
+ beta[9]*AB[aaa[d],2]*AB[ppp[d],2]
+ beta[10]*GG[ddd[d], mmm[d]]*GG[ddd[d], (3-mmm[d])]));

}
}
"

# no gen with int model
I <- max(df.complete$item)
A <- max(df.complete$actor)
U <- max(df.complete$unique.pair)
N <- nrow(df.complete)
D <- nrow(dpair.specific)
B <- 10

data <- list(I = I,
A = A,
U = U,
N = N,
D = D,
B = B,
aa = as.numeric(df.complete$actor),
pp = as.numeric(df.complete$partner),
ii = as.numeric(df.complete$item),
x = as.numeric(df.complete$x),
dd = as.numeric(df.complete$unique.pair),
mm = as.numeric(df.complete$selector),
aaa = as.numeric(dpair.specific$actor),
ppp = as.numeric(dpair.specific$partner),
ddd = as.numeric(dpair.specific$unique.pair),
mmm = as.numeric(dpair.specific$selector),
zzz = as.numeric(dpair.specific$decision))

set.seed(349)
samples <- stan(model_code=modelngwi,

data=data,
iter=2000,
chains=4,
seed = 349)
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pcm_estimated_values <- summary(samples,
pars = c("sigmaA",

"sigmaB",
"sigmaG",
"rhoAB",
"rhoG",
"beta"),

probs = c(.025, .975))
View(pcm_estimated_values$summary)

# no gen no int stan model
modelngni <- "
functions {

real pcminteract(int x, real alpha, real beta, real gamma, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), alpha + beta + gamma - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(x+1 | probs);

}
}

data {
int<lower = 1> I; // # items
int<lower = 1> A; // # actors (or partners)
int<lower = 1> U; // # undirected pairs
int<lower = 1> N; // # responses
int<lower = 1> D; // # decisions
int<lower = 1> B; // integer value for # distal regression parameters
int<lower = 1, upper = A> aa[N]; // size N array to index actors for each response
int<lower = 1, upper = A> pp[N]; // size N array to index partners for each response
int<lower = 1, upper = I> ii[N]; // size N array to index items for each response
int<lower = 0> x[N]; // size N array for responses; x = 0, 1 ... m_i
int<lower = 1, upper = U> dd[N]; // size N array to index undirected pairs for each response
int<lower = 1, upper = 2> mm[N]; // size N array to index match for each response
int<lower = 1, upper = A> aaa[D]; // size D array to index actors for each decision
int<lower = 1, upper = A> ppp[D]; // size D array to index partners for each decision
int<lower = 1, upper = U> ddd[D]; // size D array to index undirected pairs for each decision
int<lower = 1, upper = 2> mmm[D]; // size D array to index match for each decision
int<lower = 0, upper = 1> zzz[D]; // size D array for decisions

}
transformed data {

int M; // # parameters per item (same for all items)
M = max(x);

}
parameters {

vector[M] delta[I]; // length m vector for each item i
vector[2] AB[A]; // size 2 vector of alpha and beta for each person;
vector[2] GG[U]; // size 2 vector of gammas for each undirected pair;
real<lower = 0> sigmaA; // real sd of alpha
real<lower = 0> sigmaB; // real sd of beta
real<lower = 0> sigmaG; // real sd of gamma
real<lower = -1, upper = 1> rhoAB; // real cor between alpha and beta (within person)
real<lower = -1, upper = 1> rhoG; // real cor between gammas (within pair)
real beta[B]; // B-dimensional array of real valued of beta

// (distal regression parameters)
}
transformed parameters {

cov_matrix[2] SigmaAB; // 2x2 covariance matrix of alpha and beta
cov_matrix[2] SigmaG; // 2x2 covariance matrix of gammas
SigmaAB[1, 1] = sigmaA^2;
SigmaAB[2, 2] = sigmaB^2;
SigmaAB[1, 2] = rhoAB * sigmaA * sigmaB;
SigmaAB[2, 1] = rhoAB * sigmaA * sigmaB;
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SigmaG[1, 1] = sigmaG^2;
SigmaG[2, 2] = sigmaG^2;
SigmaG[1, 2] = rhoG * sigmaG^2;
SigmaG[2, 1] = rhoG * sigmaG^2;

}
model {

AB ~ multi_normal(rep_vector(0.0, 2), SigmaAB);
GG ~ multi_normal(rep_vector(0.0, 2), SigmaG);
for (n in 1:N){
target += pcminteract(x[n], AB[aa[n],1], AB[pp[n],2], GG[dd[n], mm[n]], delta[ii[n]]);

}
for (d in 1:D){
//distal logistic regression
target += bernoulli_logit_lpmf(zzz[d] | (beta[1]
+ beta[2]*AB[aaa[d],1]
+ beta[3]*AB[ppp[d],1]
+ beta[4]*AB[aaa[d],2]
+ beta[5]*AB[ppp[d],2]
+ beta[6]*GG[ddd[d], mmm[d]]
+ beta[7]*GG[ddd[d], (3-mmm[d])]));

}
}
"

# no gen with int model
I <- max(df.complete$item)
A <- max(df.complete$actor)
U <- max(df.complete$unique.pair)
N <- nrow(df.complete)
D <- nrow(dpair.specific)
B <- 7

data <- list(I = I,
A = A,
U = U,
N = N,
D = D,
B = B,
aa = as.numeric(df.complete$actor),
pp = as.numeric(df.complete$partner),
ii = as.numeric(df.complete$item),
x = as.numeric(df.complete$x),
dd = as.numeric(df.complete$unique.pair),
mm = as.numeric(df.complete$selector),
aaa = as.numeric(dpair.specific$actor),
ppp = as.numeric(dpair.specific$partner),
ddd = as.numeric(dpair.specific$unique.pair),
mmm = as.numeric(dpair.specific$selector),
zzz = as.numeric(dpair.specific$decision))

set.seed(349)
samples <- stan(model_code=modelngni,

data=data,
iter=2000,
chains=4,
seed = 349)

pcm_estimated_values <- summary(samples,
pars = c("sigmaA",

"sigmaB",
"sigmaG",
"rhoAB",
"rhoG",
"beta",
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"delta"),
probs = c(.025, .975))

View(pcm_estimated_values$summary)

# with gen no int stan model
modelwgni <- "
functions {

real pcminteract(int x, real alpha, real beta, real gamma, vector delta) {
vector[rows(delta) + 1] unsummed;
vector[rows(delta) + 1] probs;
unsummed = append_row(rep_vector(0.0, 1), alpha + beta + gamma - delta);
probs = softmax(cumulative_sum(unsummed));
return categorical_lpmf(x+1 | probs);

}
}

data {
int<lower = 1> I; // # items
int<lower = 1> A; // # actors (or partners)
int<lower = 1> U; // # undirected pairs
int<lower = 1> N; // # responses
int<lower = 1> D; // # decisions
int<lower = 1> B; // integer value for # distal regression parameters
int<lower = 1, upper = A> aa[N]; // size N array to index actors for each response
int<lower = 1, upper = A> pp[N]; // size N array to index partners for each response
int<lower = 1, upper = I> ii[N]; // size N array to index items for each response
int<lower = 0> x[N]; // size N array for responses; x = 0, 1 ... m_i
int<lower = 1, upper = U> dd[N]; // size N array to index undirected pairs for each response
int<lower = 1, upper = 2> mm[N]; // size N array to index match for each response
int<lower = 0, upper = 1> gg[N]; // size N array to index gender for each response
int<lower = 1, upper = A> aaa[D]; // size D array to index actors for each decision
int<lower = 1, upper = A> ppp[D]; // size D array to index partners for each decision
int<lower = 1, upper = U> ddd[D]; // size D array to index undirected pairs for each decision
int<lower = 1, upper = 2> mmm[D]; // size D array to index match for each decision
int<lower = 0, upper = 1> zzz[D]; // size D array for decisions

}
transformed data {

int M; // # parameters per item (same for all items)
M = max(x);

}
parameters {

vector[M] delta[I]; // length m vector for each item i
vector[2] AB[A]; // size 2 vector of alpha and beta for each person;
vector[2] GG[U]; // size 2 vector of gammas for each undirected pair;
real<lower = 0> sigmaA; // real sd of alpha
real<lower = 0> sigmaB; // real sd of beta
real<lower = 0> sigmaG; // real sd of gamma
real<lower = -1, upper = 1> rhoAB; // real cor between alpha and beta (within person)
real<lower = -1, upper = 1> rhoG; // real cor between gammas (within pair)
real mu; // real value of mean of theta for males
real beta[B]; // B-dimensional array of real valued of beta

// (distal regression parameters)
}
transformed parameters {

cov_matrix[2] SigmaAB; // 2x2 covariance matrix of alpha and beta
cov_matrix[2] SigmaG; // 2x2 covariance matrix of gammas
SigmaAB[1, 1] = sigmaA^2;
SigmaAB[2, 2] = sigmaB^2;
SigmaAB[1, 2] = rhoAB * sigmaA * sigmaB;
SigmaAB[2, 1] = rhoAB * sigmaA * sigmaB;
SigmaG[1, 1] = sigmaG^2;
SigmaG[2, 2] = sigmaG^2;
SigmaG[1, 2] = rhoG * sigmaG^2;
SigmaG[2, 1] = rhoG * sigmaG^2;

}
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model {
AB ~ multi_normal(rep_vector(0.0, 2), SigmaAB);
GG ~ multi_normal(rep_vector(0.0, 2), SigmaG);
for (n in 1:N){
target += pcminteract(x[n], AB[aa[n],1] - mu*gg[n], AB[pp[n],2], GG[dd[n], mm[n]], delta[ii[n]]);

}
for (d in 1:D){
//distal logistic regression
target += bernoulli_logit_lpmf(zzz[d] | (beta[1]
+ beta[2]*AB[aaa[d],1]
+ beta[3]*AB[ppp[d],1]
+ beta[4]*AB[aaa[d],2]
+ beta[5]*AB[ppp[d],2]
+ beta[6]*GG[ddd[d], mmm[d]]
+ beta[7]*GG[ddd[d], (3-mmm[d])]));

}
}
"

# no gen with int model
I <- max(df.complete$item)
A <- max(df.complete$actor)
U <- max(df.complete$unique.pair)
N <- nrow(df.complete)
D <- nrow(dpair.specific)
B <- 7

data <- list(I = I,
A = A,
U = U,
N = N,
D = D,
B = B,
aa = as.numeric(df.complete$actor),
pp = as.numeric(df.complete$partner),
ii = as.numeric(df.complete$item),
x = as.numeric(df.complete$x),
dd = as.numeric(df.complete$unique.pair),
mm = as.numeric(df.complete$selector),
gg = as.numeric(df.complete$male),
aaa = as.numeric(dpair.specific$actor),
ppp = as.numeric(dpair.specific$partner),
ddd = as.numeric(dpair.specific$unique.pair),
mmm = as.numeric(dpair.specific$selector),
zzz = as.numeric(dpair.specific$decision))

set.seed(349)
samples <- stan(model_code=modelwgni,

data=data,
iter=2000,
chains=4,
seed = 349)

pcm_estimated_values <- summary(samples,
pars = c("sigmaA",

"sigmaB",
"sigmaG",
"rhoAB",
"rhoG",
"mu",
"beta"),

probs = c(.025, .975))
View(pcm_estimated_values$summary)
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Appendix B: Sequential Estimation

Using the sequential estimation approach with multiple imputation described in Section 3, the results of
first estimating the dyadic partial credit model (ignoring the distal outcome), and subsequently estimating
the distal regression are presented in Tables 3 and 4. We report estimates as means of draws, and the values
in parentheses represent the 2.5th and the 97.5th quantiles of the parameter estimates.

MCMC estimates for the standard deviations and correlations of the individual and dyadic latent traits
are shown in Table 3. The estimates are qualitatively similar to the estimates from the joint approach
reported in Table 1.

Estimates for the distal regression based on multiple draws of the latent traits from their posterior
distribution are shown in Table 4. While the sign of the coefficient estimates are the same as for the
joint approach in Table 2, their magnitudes differ substantially. Overall, the estimates using the sequential
approach are smaller in absolute value, particularly for b3, b4 and b5. This may be because the joint approach
effectively treats the distal outcome as an item in the measurement model, and therefore makes the latent
traits highly predictive of the distal outcome.

Table 3: Sequential Estimation Approach: Estimates of Standard Deviations and Correla-
tions of Individual and Dyadic Latent Traits

without gender with gender
with interactions without interactions without interactions

µmale -0.15 (-0.36,0.06)
σα 1.05 ( 0.98,1.13) 1.05 ( 0.98,1.13) 1.05 ( 0.98,1.13)
σβ 0.71 ( 0.66,0.76) 0.71 ( 0.66,0.76) 0.71 ( 0.66,0.76)
σγ 0.89 ( 0.86,0.92) 0.89 ( 0.86,0.92) 0.89 ( 0.86,0.91)
ραβ 0.03 (-0.06,0.13) 0.03 (-0.06,0.13) 0.04 (-0.06,0.13)
ργ 0.35 ( 0.30,0.40) 0.35 ( 0.30,0.40) 0.35 ( 0.30,0.40)

Table 4: Sequential Estimation Approach: Estimates for Distal Outcome Regression
without gender with gender

with interactions without interactions without interactions
b0 -0.36 (-0.43,-0.29) -0.36 (-0.43,-0.29) -0.36 (-0.43,-0.28)
b1 0.40 ( 0.36, 0.44) 0.40 ( 0.36, 0.44) 0.38 ( 0.34, 0.43)
b2 -0.03 (-0.07, 0.00) -0.03 (-0.07, 0.00) -0.02 (-0.06, 0.02)
b3 -0.35 (-0.44,-0.26) -0.34 (-0.42,-0.25) -0.32 (-0.42,-0.23)
b4 1.29 ( 1.19, 1.38) 1.28 ( 1.19, 1.37) 1.26 ( 1.16, 1.36)
b5 0.82 ( 0.76, 0.89) 0.82 ( 0.77, 0.89) 0.82 ( 0.76, 0.88)
b6 0.06 ( 0.01, 0.11) 0.06 ( 0.01, 0.11) 0.06 (-0.01, 0.11)
b7 -0.01 (-0.04, 0.01)
b8 0.18 ( 0.09, 0.28)
b9 -0.02 (-0.07, 0.04)
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