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BACKGROUND: Telomere length is a molecular marker of biological aging.

OBJECTIVE: Here we investigated whether early-life exposure to residential air pollution was associated with leukocyte telomere length (LTL) at 8 y
of age.

METHODS: In a multicenter European birth cohort study, HELIX (Human Early Life Exposome) (n=1,396), we estimated prenatal and 1-y childhood
exposure to nitrogen dioxide (NO2), particulate matter with aerodynamic diameter ≤2:5 lm (PM2:5), and proximity to major roads. Average relative
LTL was measured using quantitative real-time polymerase chain reaction (qPCR). Effect estimates of the association between LTL and prenatal, 1-y
childhood air pollution, and proximity to major roads were calculated using multiple linear mixed models with a random cohort effect and adjusted
for relevant covariates.

RESULTS: LTL was inversely associated with prenatal and 1-y childhood NO2 and PM2:5 exposures levels. Each standard deviation (SD) increase in
prenatal NO2 was associated with a −1:5% (95% CI: −2:8, −0:2) change in LTL. Prenatal PM2:5 was nonsignificantly associated with LTL (−0:7%
per SD increase; 95% CI: −2:0, 0.6). For each SD increment in 1-y childhood NO2 and PM2:5 exposure, LTL shortened by −1:6% (95% CI: −2:9,
−0:4) and −1:4% (95% CI: −2:9, 0.1), respectively. Each doubling in residential distance to nearest major road during childhood was associated with
a 1.6% (95% CI: 0.02, 3.1) lengthening in LTL.
CONCLUSION: Lower exposures to air pollution during pregnancy and childhood were associated with longer telomeres in European children at 8 y of
age. These results suggest that reductions in traffic-related air pollution may promote molecular longevity, as exemplified by telomere length, from
early life onward. https://doi.org/10.1289/EHP4148

Introduction
In the recent update of the Global Burden of Disease, Injuries,
and Risk Factor study, air pollution is ranked fifth on a list of the
most influential factors affecting health worldwide (Gakidou et al.
2017). Hypotheses are that oxidative stress and inflammation are
important underlying mechanisms through which air pollutants
could cause adverse health outcomes (Kannan et al. 2006).

Telomeres are complexes of tandem repeats of DNA
(50-TTAGGG-30), sited at the termini of the chromosomes.
Telomeres have a significant function in maintaining the integrity
of chromosomes and the stability of the genome, and preventing
end-to-end chromosomal fusions (Blackburn 1991). Since DNA
polymerase is unable to fully replicate the 30 end of the DNA
strand, telomeres shorten with each cell division. Consequently,
telomere length is considered a biomarker of biological aging, and
shorter telomeres have been associated with age-related diseases
such as cardiovascular disease (Chen et al. 2014; Haycock et al.
2014; Hunt et al. 2015; Zhan and Hagg 2019), type 2 diabetes
(Tamura et al. 2016; Wang et al. 2016; Willeit et al. 2014), and
increased mortality (Cawthon et al. 2003; Dean et al. 2017;
Fitzpatrick et al. 2011; Needham et al. 2015). Furthermore, it is
believed that the natural erosion of telomeres is accelerated
through oxidative stress and inflammation (Kawanishi and Oikawa
2004; von Zglinicki et al. 2005).

According to the Developmental Origins of Health and
Disease (DOHaD), small changes in the early-life environment
shape the future probability of the development of age-related
diseases (Barker 1995; Gluckman et al. 2008; Kumaran et al.
2017). The rate of telomere attrition is greatest in young children
(Aubert and Lansdorp 2008), and the telomere length decline
then continues at a slower rate throughout adulthood (Yamaguchi

Address correspondence to Tim Nawrot, Centre for Environmental
Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek,
Belgium. Telephone: 0032 11 26 83 82. Fax: 0032 11 26 82 99. Email: Tim.
nawrot@uhasselt.be
Supplemental Material is available online (https://doi.org/10.1289/EHP4148).
The authors declare they have no actual or potential competing financial

interests.
Received 10 July 2018; Revised 21 May 2019; Accepted 24 June 2019;

Published 8 August 2019.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 087001-1 127(8) August 2019

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP4148.Research

https://doi.org/10.1289/EHP4148
mailto:Tim.nawrot@uhasselt.be
mailto:Tim.nawrot@uhasselt.be
https://doi.org/10.1289/EHP4148
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP4148


et al. 2005). Consequently, telomere loss in childhood is a poten-
tial important factor leading to the ultimate telomere length in
adults. Environmental factors might have the greatest effect in
childhood when the high telomere attrition is occurring.

Air pollution exposures may contribute to the aging pheno-
type, and telomere length may play a mechanistic role in linking
air pollution to age-related diseases. It is thus important to study
the link between early-life air pollution exposure and telomere
length in childhood to gain insights into the etiology of age-
related diseases. Here, we assessed, within a multicenter birth
cohort study in six European countries with a wide range of expo-
sures, the association between prenatal and 1-y childhood expo-
sure to air pollution as exemplified by residential nitrogen
dioxide (NO2), particulate matter with aerodynamic diameter
≤2:5 lm (PM2:5), residential proximity to major roads, and leu-
kocyte telomere length (LTL) in 8-y-old children.

Materials and Methods

Study Population and Data Collection
The Human Early Life Exposome (HELIX) study is a collabora-
tive project across six established and ongoing longitudinal
population-based birth cohort studies in Europe: the Born in
Bradford (BiB) study in the United Kingdom (Wright et al.
2013), the Etude de cohorte généraliste, menée en France sur les
Déterminants pré et post natals précoces du développement psy-
chomoteur et de la santé de l’Enfant (EDEN) study in France
(Heude et al. 2016), the INfancia y Medio Ambiente (INMA)
cohort in Spain (Guxens et al. 2012), the Kaunas cohort (KANC)
in Lithuania (Grazuleviciene et al. 2009), the Norwegian Mother
and Child Cohort Study (MoBa) (Magnus et al. 2016), and the
RHEA Mother and Child Cohort study in Crete, Greece (Chatzi
et al. 2009). The study population for the entire HELIX cohort
includes 31,472 women who had singleton deliveries between
1999 and 2010, and for whom exposure to ambient air pollution
during pregnancy had been estimated as part of the European
Study of Cohorts for Air Pollution Effects (ESCAPE) project
(Pedersen et al. 2013). Local ethical committees approved the
studies that were conducted according to the guidelines laid
down in the Declaration of Helsinki. All participating women
provided informed written consent. The analysis of this paper
made use of the HELIX subcohort that includes mother–child
pairs who were fully characterized for a broad suite of environ-
mental exposures to be clinically examined and to have biologi-
cal samples collected. A new follow-up visit was organized for
these mother–child pairs. Subcohort subjects were recruited
from within the entire cohorts such that there were approxi-
mately 200 mother–child pairs from each of the six cohorts.
Subcohort recruitment in the EDEN cohort was restricted to the
Poitiers area, and in the INMA cohort to the city of Sabadell.

Detailed information on maternal age at birth, maternal educa-
tion, maternal marital status, smoking status during pregnancy,
parity, and maternal ethnicity from each study participant was
obtained by each cohort during pregnancy or at birth by question-
naire or medical records. The level of maternal education reported
by the participant was used as the primary indicator of socioeco-
nomic status and categorized according to the International
Standard Classification of Education (ISCED) (Schneider 2013)
as three levels: low (less than primary, primary, and lower sec-
ondary education, ISCED 2011 levels 0–2), middle (upper sec-
ondary and postsecondary nontertiary education, ISCED 2011
levels 3 and 4), and high (tertiary education, ISCED 2011 levels
5–8). Maternal smoking status was categorized as no active
smoking during pregnancy and active smoking during preg-
nancy. Child ethnicity was defined for all cohorts and

subdivided in seven different groups (African; Asian; white
European; mixed Native American; South Asian; white, not
European; or others). Perinatal parameters such as birth date and
newborn sex were obtained at birth.

Blood Collection and DNA Extraction
DNA was obtained from buffy coat collected in ehylenediami-
netetraacetic acid tubes. Briefly, DNA was extracted using the
Chemagen DNA Blood kit (PerkinElmer) in batches of 12 sam-
ples. Samples were extracted by cohort and following their
position in the original boxes. DNA concentration was deter-
mined in a NanoDrop™ 1000 UV-Vis Spectrophotometer
(Thermo Scientific), and DNA integrity was tested with Quant-
iT™ PicoGreen® dsDNA Assay Kit (Life Technologies).

Average Relative Telomere Length Measurement
Average relative telomere length was measured by a modified
quantitative real-time polymerase chain reaction (qPCR) protocol
as described previously (Cawthon 2009). Telomere and single-
copy gene reaction mixture and PCR cycles used can be found
in Martens et al. (2016). All measurements were performed in
triplicate on a 7900HT Fast Real-Time PCR System (Applied
Biosystems) in a 384-well format. On each run, a six-point se-
rial dilution of pooled DNA was run to assess PCR efficiency as
well as eight interrun calibrators to account for interrun vari-
ability. Relative telomere lengths were calculated using qBase+
software (Biogazelle) and were expressed as the ratio of telo-
mere copy number to single-copy gene number (T/S) relative to
the average T/S ratio of the entire sample set. We achieved
coefficient of variation (CV) within triplicates of the telomere
runs, single-copy gene runs, and T/S ratios of 0.84, 0.43, and
6.4%, respectively. Two batches were used to measure telomere
length. Each batch contained multiple cohorts that were ran-
domly selected.

Since blood leukocyte is a mixed cell sample and the effect
of obesity may be different in different cell types, white blood
cell proportions [CD4+ and CD8+ T cells, natural killer (NK)
cells, monocytes, eosinophiles, neutrophils, and B cells] were
estimated from raw methylation data using the Houseman algo-
rithm (Houseman et al. 2012) implemented in the minfi R pack-
age (version R3.3.0; http://www.r-project.org) (R Development
Core Team) and the Reinius reference panel (Reinius et al.
2012) in samples of 1,146 children.

Exposure Assessment
We assessed both prenatal and 1-y childhood air pollution expo-
sure at the residential address during pregnancy and follow-up.
Air pollutants used in this study included NO2 and PM2:5. These
air pollutants were estimated using land use regression (LUR) or
dispersion models, temporally adjusted to measurements made in
local background monitoring stations and averaged over trimester
1, trimester 2, trimester 2, and the whole pregnancy period. For
most cohorts, we used site-specific LUR models developed in the
context of the ESCAPE project (Beelen et al. 2013; Eeftens et al.
2012). In EDEN, dispersion models were used to assess the NO2
exposure (Rahmalia et al. 2012), and the ESCAPE European-
wide LUR model was applied for PM2:5, corrected for local back-
ground monitoring data (Wang et al. 2014). In BiB, PM2:5 assess-
ment was made based on the ESCAPE LUR model developed in
the Thames Valley region of the United Kingdom and adjusted
for background PM levels from monitoring stations in Bradford
(Schembari et al. 2015). Additionally, we collected information
on the traffic assessed as distance to nearest road (m) at mother’s
residence. One-year childhood air pollution included annual NO2
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and PM2:5, assessed for the year before the telomere length meas-
urements through site-specific ESCAPE LUR models for all
cohorts except EDEN. In EDEN, a local dispersion model was
used to assess the NO2 exposure. Additionally, we assessed traf-
fic levels as distance to nearest road (m) at the child’s home
residence.

The software used to make the spatial analysis were ArcGIS
platform (ESRI ArcMap TM 10.0; ArcGIS Desktop 10 Service
Pack 4) and SpatiaLite (version 4.11; Alessandro Furieri).

Statistical Analysis
We performed multiple imputation of exposures and confounders
assuming missing at random (Royston and White 2011). The
missing values were imputed using the method of chained equa-
tions (White et al. 2011), using the mice package in R (van
Buuren and Groothuis-Oudshoorn 2011). We followed HELIX
Statistical protocol for imputation process. The following points
were taken into account: a) the imputation models included no
more than 15 to 20 variables (van Buuren and Groothuis-
Oudshoorn 2011), and quickpred function was used to reduce the
number of predictors; b) predictive mean matching was used to
impute continuous covariates, and logistic or multinomial regres-
sion was employed to impute binary or categorical exposures,
respectively; c) variables that were functions of others [e.g., body
mass index (BMI) is a function of weight of weight and height]
were not imputed and were calculated after imputation; and d)
n=20 imputed datasets were created for each analyses (White
et al. 2011). After imputation, we conducted diagnostics that
included comparisons of the imputed and nonmissing observa-
tions using density plots and strip plots (van Buuren and
Groothuis-Oudshoorn 2011). If the variables included in the im-
putation process were not flagged and imputations seemed plausi-
ble, we included the predictors in the imputation model (Stuart
et al. 2009).

LTL showed a skewed distribution and was therefore log10
transformed to achieve a normal distribution. Generalized addi-
tive models were used to assess the linearity of the associations
between prenatal and 1-y childhood air pollution exposure and
LTL. If the p-value for gain was higher than 0.05, the model
was considered linear. Multiple linear mixed models with a ran-
dom cohort effect were applied to test the association between
traffic and air pollution exposures and LTL at age 8 y (range:
5.4–12.0 y). All models were adjusted for a priori chosen cova-
riates based on literature including child’s age (in days), sex
(male or female), qPCR batch (batch 1 or batch 2), maternal age
(in years), maternal education (low, middle, high), maternal
smoking status during pregnancy (yes or no), child ethnicity
(listed in Table 1), child BMI (continuous), and parental smok-
ing at the time of blood collection for the LTL measurements
(neither, one, or both).

In a first step of the analysis, we studied LTL by medians of
the distributions of the exposure variables considered separately.
In the next step, air pollutants were treated as continuous varia-
bles and were scaled to a standard deviation (SD) difference in
level for testing associations with LTL. Distance to nearest road
was log10 transformed to assure normality. Multiple-pollutant
models simultaneously considering PM2:5 and NO2 levels in each
exposure window were assessed. Finally, we used models that
mutually adjusted for prenatal and 1-y childhood exposure to
assess which period had the largest effect on LTL.

To test whether the results were robust, we ran different sensi-
tivity analyses in which we tested the sex interaction between air
pollution exposure and sex on LTL in children by including its
interaction term in the full models. Additionally, we ran another
sensitivity analysis in which we stratified our exposure analyses

by group of children who lived at the same address at both time
points (pregnancy and 1-y childhood) vs. those who moved
between those two time points. Because blood leukocyte is a
mixed cell sample, we included an additional analyses in which
we included the proportion of white blood cells (CD4+ and
CD8+ T cells, NK cells, monocytes, eosinophiles, neutrophils,
and B cells) as covariates in our model. The sensitivity of the
findings was also examined by removing one cohort at the time
from the analysis and recalculating the estimates.

Analyses were performed using the SAS statistical software
(version 9.3; SAS Institute Inc.). Results were indicated as statis-
tically significant when the p-value was lower than 0.05.

Table 1. General characteristics of the complete case study population
(n=1,396).

Mean±SD or n (%)

Children
Sex
Girls 643 (46.1)
Boys 753 (53.9)
Ethnicity
African 12 (0.9)
Asian 21 (1.5)
White European 1,223 (87.4)
Mixed Native American 13 (0.9)
Other 22 (1.6)
South Asian 79 (5.7)
White, not European 26 (1.9)
Cohort
INMA 428 (30.6)
MoBa 213 (15.3)
BiB 205 (14.7)
RHEA 202 (14.5)
KANC 199 (14.3)
EDEN 149 (10.6)
Moved
Yes 191 (13.7)
No 1,205 (86.3)
Age at telomere length assessment, years 8:0± 1:5
Relative telomere length 1.0 (0.9–1.1)
BMI 0:48± 1:2

Mothers
Age at delivery, years 30:5± 4:9
Missing 15 (1.1)
Education
Low 219 (15.8)
Middle 480 (34.5)
High 643 (46.2)
Missing 54 (3.5)
Active smoking during pregnancy
Yes 1,121 (83.3)
No 229 (13.4)
Missing 46 (3.30)
Parity
1 635 (45.5)
2 498 (35.7)
≥3 228 (16.3)
Missing 35 (2.5)
Parental smoking at 8 y
Neither 827 (59.3)
One 394 (28.2)
Both 156 (11.2)
Missing 19 (1.3)

Note: Continuous covariates expressed by mean and standard deviation (SD) or geomet-
ric mean and 25th–75th percentiles; categorical covariates described by number and fre-
quencies (percent). Data are complete for all observations unless otherwise indicated.
BiB, Born in Bradford study; BMI, body mass index; EDEN, Etude de cohorte
généraliste, menée en France sur les Déterminants pré et post natals précoces du
développement psychomoteur et de la santé de l’Enfant; INMA, INfancia y Medio
Ambiente cohort; KANC, Kaunas cohort; MoBA, Norwegian Mother and Child Cohort
Study; RHEA, Mother and Child Cohort study.
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Results

Characteristics of the Study Population
Table 1 describes the general characteristics of the study popula-
tion (n=1,396). The children were mainly white European
(87.4%) and had a mean (SD) age of 8 (1.5) y. Forty-six percent
of the children were girls. The mean (SD) maternal age at deliv-
ery was 30.5 (4.9) y. Overall, 643 (46.1%) of the mothers were
highly educated, 635 (45.5%) of the mothers were primiparous,
and 229 (13.4%) of the mothers actively smoked during preg-
nancy. There were few missing covariate data. We reported miss-
ing data for maternal education (3.5%), active smoking during
pregnancy (3.3%), parity (2.5%), and parental smoking (1.3%)
(Table 1). The characteristics for the individual cohorts are pre-
sented in Table S1.

Table 2 displays the average outdoor prenatal and 1-y child-
hood air pollution exposures. Average (25th–75th percentile) mean
prenatal exposure was 25.0 (14.8–32.9) and 15:1 ð13:5–16:9Þ
lg=m3 for NO2, and PM2:5, respectively. Average (25th–75th per-
centile) mean 1-y childhood exposure was 23.1 (11.9–32.2) and
13:2 ð11:0–15:0Þlg=m3 for NO2, and PM2:5, respectively. Pre-
natal and 1-y childhood NO2 were highly correlated, whereas a sim-
ilar analysis for PM2:5 showed a moderate correlation (Table 2).
The exposure characteristics for the individual cohorts are presented
in the Table S2. The distributions of the NO2 and PM2:5 exposure
levels across the different HELIX cohorts are presented in Figures
S1 and S2.

Association between Leukocyte Telomere Length and
Maternal and Child Characteristics
We observed shorter LTL in boys compared with girls (0.98 vs.
1.02; p<0:0001), while LTL was not significantly correlated with
child´s age within our narrow age range (r= − 0:038; p=0:15).
Shorter LTL in children was associated with higher child BMI
(r=0:073; p=0:007). Telomere lengths in children were posi-
tively associated with maternal age (r=0:09; p=0:0006).

Association between Prenatal and Childhood Air Pollution
and Leukocyte Telomere Length at Age of Eight Years
Associations between prenatal and 1-y childhood air pollution
exposures and LTL did not deviate from linearity, as p-value of
gain was higher than 0.05 (Figure S3).

In analyses treating exposure to air pollution as continuous
variables, increasing NO2 exposure during pregnancy was associ-
ated with a shortening in LTL (−1:5% per SD increment; 95%
CI: −2:8, −0:2). Each SD increment in NO2 during trimester 1,
trimester 2, and trimester 3 exposure was associated with shorter
telomeres of −1:6% (95% CI: −2:8, −0:4), −1:3% (95% CI:
−2:6, −0:04), and −1:6% (95% CI: −2:9, −0:4), respectively
(Table 3). Prenatal PM2:5 exposure was not significantly

associated with telomere length (entire pregnancy: −0:7%; 95%
CI: −2:0, 0.6) (Table 3). One-year childhood NO2 was associated
with statistically significant shorter LTL (−1:6% per SD incre-
ment; 95% CI: −2:9, −0:4) at age 8 y. Furthermore, 1-y child-
hood PM2:5 was inversely (−1:4%; 95% CI: −2:9, 0.1) associated
with telomere length at age 8 y, although this was only borderline
statistically significant. Doubling of the residential distance to
nearest road during pregnancy was not significantly associated
with 1-y childhood telomere length (0.2%; 95% CI: −1:3, 1.6),
whereas a doubling in residential distance to nearest road in 1-y
childhood was associated with significant longer childhood telo-
mere length (1.6%; 95% CI: 0.02, 3.1) (Table 3). Table S3
presents the results in the original metric without conversion to
percent difference in telomere length.

Ambient air pollutants (NO2 and PM2:5) were weakly corre-
lated with each other ((r=0:20, p<0:0001; r=0:15, p<0:0001)
for prenatal and 1-y childhood exposure, respectively). Therefore,
multipollutant models that included both NO2, and PM2:5 did not
alter interpretation of the results (Table 4). In the prenatal period,
the estimates for NO2 exposure were a bit greater when adjusted
for PM2:5 exposure, whereas the estimates for PM2:5 attenuated
slightly. In childhood, there was a very small attenuation of the
estimates for both NO2 exposure and PM2:5 exposure. Prenatal
and 1-y childhood NO2 were highly correlated, whereas a similar
analysis for PM2:5 showed a moderate correlation (Table 2); there-
fore, it is difficult to distinguish the effects of prenatal and

Table 2. Exposure characteristics of the complete case study population (lg=m3).

n Mean±SD

Percentiles Correlationa

5th 25th 50th 75th 95th Prenatal 1-y childhood

NO2
Prenatal 1,237 25:0± 13:9 9.6 14.8 20.4 32.9 51.4 1 —
1-y childhood 1,366 23:1± 12:2 7.3 11.9 23.3 32.2 42.2 0.74b 1
PM2:5
Prenatal 1,307 15:1± 2:6 10.7 13.5 15.0 16.9 19.6 1 —
1-y childhood 1,366 13:2± 3:3 7.3 11.0 13.3 15.0 19.1 0.48b 1

Note: Continuous variables expressed by mean± standard deviation ðSDÞ. —, no data; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm.
aSpearman correlation coefficient between prenatal and 1-year childhood exposure.
bp<0:0001.

Table 3. Association between leukocyte telomere length (LTL) and traffic-
related air pollution exposure and distance to nearest road.

Percent difference (95% CI) p-Value

NO2
Trimester 1 −1:6 (−2:8, −0:4) 0.01
Trimester 2 −1:3 (−2:6, −0:04) 0.04
Trimester 3 −1:6 (−2:9, −0:4) 0.01
Entire pregnancy −1:5 (−2:8, −0:2) 0.02
1-y childhood −1:6 (−2:9, −0:4) 0.01

PM2:5
Trimester 1 −0:8 (−2:3, 0.7) 0.5
Trimester 2 −0:1 (−1:3, 1.1) 0.9
Trimester 3 −0:3 (−1:5, 0.8) 0.6
Entire pregnancy −0:7 (−2:0, 0.6) 0.3
1-y childhood −1:4 (−2:9, 0.1) 0.08

Distance to nearest road
Pregnancy 0.2 (−1:3, 1.6) 0.8
1-y childhood 1.6 (0.02, 3.1) 0.04

Note: Effect size was estimated as a percent difference in LTL for each standard devia-
tion (SD) increment in ambient air pollution exposure. Models included a variable for
only one pollutant (NO2 or PM2:5) during one time period [during pregnancy (trimester
1, 2, 3, or entire pregnancy)] or the year before LTL measurement. Models were
adjusted for child’s age, sex, quantitative real-time polymerase chain reaction (qPCR)
batch, maternal age, maternal education, maternal smoking status during pregnancy,
child ethnicity, child body mass index (BMI), and parental smoking at 8 y. CI, confi-
dence interval; NO2, nitrogen dioxide; PM2:5, particulate matter with aerodynamic di-
ameter ≤2:5 lm.
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childhood air pollutants. However, results from models that mutu-
ally adjusted for prenatal and 1-y childhood exposure suggest that
the effects of air pollutants on telomere length could be stronger in
childhood rather than in the prenatal period (Table 4). For NO2,
the estimates for both prenatal and 1-y childhood exposure were
attenuated, although the attenuation was greater for prenatal expo-
sure than for childhood exposure. Furthermore, the association
with 1-y childhood PM2:5 exposure became slightly stronger when
adjusted for prenatal PM2:5. In a model including variables for
both pollutants (NO2 and PM2:5) during both time periods (prena-
tal and 1-y childhood), the estimates for prenatal and 1-y childhood
NO2 and PM2:5 were attenuated.

Sensitivity Analyses
Including an interaction term between air pollution exposure and
sex in the full models showed that the sex interaction was not sig-
nificant for the different models (p=0:89 and p=0:60 for prena-
tal NO2 and PM2:5 exposure, respectively, and p=0:91 and
p=0:53 for 1-y childhood NO2 and PM2:5 exposure, respec-
tively). Including white blood cell proportions as covariates in
our model as an additional analysis did not substantially change
our reported results (Table S4). The sensitivity of the significant
findings was further examined by removing one cohort at the
time from the analyses and recalculating the percent difference in
telomere length (Table S4). The percent difference in telomere
length for each increment in prenatal NO2 exposure decreased to
−3:2% when INMA was excluded and to −1:7% when MoBa
was excluded, while excluding RHEA lead to an increase in telo-
mere length to −1:1%. Excluding BiB, KANC, or EDEN did not
change our reported percentage changes in telomere length.
Additionally, the percent change in telomere length for each

increment in 1-y childhood NO2 exposure decreased to −2:4%
when INMA was excluded and to −1:7% and −2:0% when
MoBa and KANC were excluded, respectively, while excluding
BiB and RHEA led to an increase in telomere length of −1:4%
and −1:1%, respectively. Excluding EDEN did not alter our
reported percentage changes in telomere length. Finally, associa-
tion for 1-y childhood exposure was much stronger when the
analysis was limited to 191 HELIX participants who moved (e.g.,
for average 1-y childhood NO2: −10:0%; 95% CI: −17:9, −1:3
compared with −1:2%; 95% CI: −2:7, 0.4) (Table S4).

Discussion
To our knowledge, the present study, including six populations
across Europe, is so far the largest study of air pollution exposure
and LTL in children. Here we showed that prenatal (entire preg-
nancy) and childhood (1 y prior blood collection) traffic-related air
pollution were associated with shorter leukocyte telomeres in chil-
dren. For each SD increment in prenatal NO2 (13:9 lg=m3), LTLs
were −1:5% shorter in children. Additionally, for each SD incre-
ment (12:2lg=m3, 3:3 lg=m3) in 1-y childhood NO2 and PM2:5
exposure, LTL was −1:6% and −1:4% shorter, respectively.

Extensive epidemiological studies showed associations between
ambient air pollution and adverse health outcomes, including pre-
mature mortality and cardiovascular and respiratory disease, both
with short-term (Levy et al. 2001; Nawrot et al. 2011) and chronic
exposure (Beelen et al. 2014a, 2014b; Hamra et al. 2014; Laden
et al. 2006). The biological mechanisms by which air pollutants
may cause adverse health outcomes are not completely understood,
but oxidative stress and inflammation are thought to be of impor-
tance. The ability of oxidative stress to damage nucleic acids pro-
vides a potential mechanism by which oxidative stress could
interfere with telomere DNA (Epel et al. 2006). It is assumable that
telomeres are a sensitive target for reactive oxygen species (ROS)–
induced damage, as telomeres contain a high amount of ROS-
sensitive guanine bases (Grahame and Schlesinger 2012). It is
believed that ROS can induce DNA breakage, and single-strand
breaks in telomeric DNA are ineffectively repaired, which could
lead to increased telomere shortening (Kawanishi and Oikawa
2004).

We found a significant inverse association between prenatal
and 1-y childhood air pollution exposure and telomere length at
8 y of age. Our findings of prenatal exposure and LTL in children
are in line with studies in newborns (Bijnens et al. 2015; Martens
et al. 2017). In the East Flanders Prospective Twin Survey
(n=221), maternal residential proximity to a major road was
associated with placental telomere length; a doubling in the dis-
tance to the nearest major road was associated with 5.32% longer
placental telomere length at birth (Bijnens et al. 2015). In 641
newborns of the ENVIRonmental influence ON early AGEing
(ENVIRONAGE) birth cohort, cord blood and placental telomere
length were significantly inversely associated with PM2:5 expo-
sure during midgestation, with approximately 8.8% and 13.2%
shorter cord blood and placental telomere length at birth for each
5 lg=m3 increase in residential PM2:5 exposure, respectively
(Martens et al. 2017). The mean PM2:5 exposure was comparable
(13:4 lg=m3) with the mean exposure of our study. We found
that the association between telomere length and exposure to air
pollution is persistent into childhood. However, it is difficult to
distinguish between potential effects on telomere length during
the individual time periods (prenatal vs. 1-y childhood), given
that the exposures are well correlated. In contrast to our current
study and previous studies (Hoxha et al. 2009; Lee et al. 2017;
McCracken et al. 2010; Pieters et al. 2016), a study of 333 school
children (8–9 y) in London reported that annual air pollution ex-
posure was associated with longer telomeres in saliva, DNA

Table 4. Percentage difference in leukocyte telomere length (LTL) at
approximately 8 y of age in association with standard deviation (SD)
increases in average NO2 and PM2:5 throughout pregnancy (prenatal expo-
sure) and childhood (average annual concentration 1 y before the LTL
measurement).

Model
Prenatal
exposure

1-y childhood
exposure

NO2
One pollutant and time perioda –1:5 (–2:8, –0:2) −1:6 (−2:9, −0:4)
Adjusted for PM2:5 during the
same time periodb

–1:9 (–3:3, –0:6) −1:5 (−2:7, −0:4)

One pollutant during both time
periodsc

–0:7 (–2:7, 1.3) −1:2 (−3:0, 0.7)

Both pollutants during both
time periodsd

−0:5 (−2:2, 1.2) −1:1 (−2:8, 0.7)

PM2:5
One pollutant and time perioda −0:7 (−2:0, 0.6) −1:4 (−2:9, 0.1)
Adjusted for NO2 during the
same time periodb

−0:6 (−2:7, −0:4) −1:5 (−3:2, 0.2)

One pollutant during both time
periodsc

0.3 (−1:4, 2.0) −1:6 (−3:6, 0.4)

Both pollutants during both
time periodsd

0.4 (−1:1, 1.9) −1:2 (−3:0, 0.5)

Note: NO2 SD: prenatal= 13:9lg=m3, 1-y childhood= 12:2lg=m3; PM2:5 SD: prenatal=
2:6lg=m3, 1-y childhood= 3:3 lg=m3. All models included random effects for study
cohort and were adjusted for quantitative real-time polymerase chain reaction (qPCR) batch;
maternal age, education, and active smoking during pregnancy; child's ethnicity and gender;
child's age; child's body mass index (BMI) z-score; and parental smoking at the time of
blood collection for the LTL measurement. NO2, nitrogen dioxide; PM2:5, particulate matter
with aerodynamic diameter ≤2:5 lm.
aModels included a variable for only one pollutant (NO2 or PM2:5) during one time pe-
riod (during pregnancy or the year before LTL measurement).
bModels included variables for one pollutant (NO2 or PM2:5) during two time periods
(during pregnancy and during the year before LTL measurement).
cModels included variables for both pollutants (NO2 and PM2:5) during the same time
period (during pregnancy or the year before LTL measurement).
dModels included variables for both pollutants (NO2 and PM2:5) during both time peri-
ods (during pregnancy and the year before LTL measurement).
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coming from a mixture of different cell types (Walton et al. 2016).
The authors suggested that these increases in telomere length may
be due to the effect on telomere-associated proteins, telomerase
activation, or clonal expansion of less mature leukocytes (Hodes
et al. 2002; Weng et al. 1997). It could also be due to difficulties in
measuring telomeres in the saliva matrix. Furthermore, the mean
NO2 exposure in this study (43:6 lg=m3) was much higher than
the mean NO2 exposure of our study. The mean PM2:5 exposure
was comparable (13:7lg=m3) with the mean exposure of our
study.

How do our results in childhood compare to the evidence in
adults? Among 165 never-smoking men, the Normative Aging
Study found an inverse association between long-term exposure
to ambient black carbon (BC) and telomere length in adulthood
(−7:6% for each 0:25lg=m3 increment in BC; 95% CI: −12:8,
−2:1) (McCracken et al. 2010). A cross-sectional study on 77
traffic officers and 57 indoor office workers found that traffic offi-
cers (LTL=1:02; 95% CI: 0.96, 1.09) had shorter leukocyte telo-
meres than did office workers (LTL=1:22; 95% CI: 1.13, 1.31),
suggesting that long-term exposure to traffic-related air pollution
may shorten telomere length (Hoxha et al. 2009). Furthermore, a
study in the Cooperative Health Research in the Augsburg
Region (KORA) F4 cohort (n=1,777) found that telomere length
was inversely associated with BC exposure in men (b= − 0:28;
95% CI: −0:47, −0:1) (Ward-Caviness et al. 2016). Among 166
nonsmoking elderly participants, a 5-lg=m3 increment in annual
PM2:5 concentration (range: 15–23lg=m3) was associated with a
relative decrease of 16.8% in telomere length (Pieters et al.
2016). In this elderly study, they found also that short-term (last
month) exposure to PM2:5 was associated with increased telomere
length. Short-term personal exposure to PM was associated with
5.2% longer telomeres in a study with highly exposed steel-
workers (Hou et al. 2012). The discrepancies in the results of the
studies associating telomere length with air pollution exposure
are mainly driven by differences in exposure windows. Long-
and short-term exposure to air pollution can change the telomere
length in different directions (Miri et al. 2019). As seen above,
long-term exposure to PM has been associated with shorter telo-
mere length, whereas short-term exposure to PM has been associ-
ated with longer LTL. Whether this acute increase in telomere
length is due to the effects on telomere-associated proteins, telo-
merase activation, or to the proliferative capacity and clonal
expansion of less mature leukocytes needs to be evaluated
(Hodes et al. 2002; Weng et al. 1997).

Telomere length synchrony across somatic tissues has been
observed (Daniali et al. 2013; Friedrich et al. 2000). However, lim-
ited evidence is available of the correlation between respiratory-
specific cells and blood telomere length. In this regard, Saferali
et al. (2014) found a significant correlation between blood telo-
mere length and lung tissue telomere length (n=51; r=0:348;
p=0:012). Furthermore, Snetselaar et al. (2017) found a very
strong association between blood telomere length and alveolar
type 2 cells (n=9; r=0:82; p=0:007), whereas whole-lung bi-
opsy telomeres did not correlate with blood telomeres. It has been
shown that air pollutants can cross the respiratory tract and enter
the blood circulation (Nemmar et al. 2002; Saenen et al. 2017).
Consequently, the exposure may directly affect blood cells. In this
regard, it has been shown that air pollution exposure leads to
increased lung and systemic inflammation and oxidative stress
(Chuang et al. 2007; Colicino et al. 2017), which both are proc-
esses involved in telomere shortening. However, whether our
results found in blood are exactly representative for respiratory cell
telomeres is unclear.

Traffic-related air pollution in the early-life environment, as
exemplified by residential ambient NO2 exposure, both prenatal

and during childhood, may increase the risk for chronic diseases
in adulthood. Indeed, although telomeres of children are long
compared with adults, shortening due to early-life exposure to air
pollution may decrease the buffer capacity to cope with inflam-
mation and oxidative stress later in life, and therefore, it is rea-
sonable to assume that it might lead to faster shortening of
critical telomere length at older age.

Our study needs to be interpreted within the context of its
potential limitations. Firstly, the traditional method to determine
telomere length is telomere restriction fragment (TRF) analysis.
In this study, we used a real-time PCR method, which has, in
general, a higher assay variability compared with the TRF
method (Aviv et al. 2011; Kimura et al. 2010). However, an
interlaboratory comparison of our method showed that the coeffi-
cient of variation was less than 7%. Secondly, the assessment of
telomere length at 8 y of age represents only a snapshot in child-
hood. We were not able to evaluate telomere dynamics through-
out the entire pregnancy and the childhood period. Thirdly, our
results are based on exposure at the residential address, and
potential misclassification may be present because we could not
take into account other exposure sources that contribute to perso-
nal exposure, such as exposure during commute and elsewhere.
However, proxies of exposure, such as residential proximity to
major roads, have been shown recently to be associated with in-
ternal exposure to nanosized particles, reflecting exposure to BC
(Saenen et al. 2017). Fourthly, we only looked at two exposure
periods during the child’s life, in utero exposure during preg-
nancy and childhood exposure during the year before telomere
length was measured. However, the exposures in these periods
were highly correlated and therefore difficult to distinguish.
Furthermore, blood leukocyte is a mixed cell sample that would
include granulocytes (neutrophils and eosinophils) as well as
mononuclear cells. The effects of increased exposure to air pol-
lution may be different in different cell types. It is known that
average telomere length is shorter in neutrophils than lympho-
cytes, and the half-life of neutrophils is much shorter than that
of lymphocytes. However, we did a sensitivity analyses where
we adjusted for the proportion of the different white blood
cells: NK cells, B cells, CD4T, CD8T, eosinophils, mononu-
clear cells, and neutrophils. The results of these analyses did
not differ from those without these additional adjustments.
Finally, our results are based on exposure at the home address,
and potential misclassification may be present because we
could not account for other exposure sources that contribute to
personal exposure, such as exposure during commute, at work
or school, and elsewhere.

In conclusion, air pollution exposure in early life and child-
hood is an important contributing factor for later telomere length.
Its potential importance for the susceptibility to later-life diseases
underscores the relevance of identifying early-life and childhood
determinants of telomere length. In a large multicenter European
cohort, we showed that traffic-related air pollution exposure in
early life and childhood was associated with childhood telomere
length, indicating a potential higher susceptibility for the devel-
opment of telomere length–associated diseases later in life when
exposed to higher concentrations of air pollution. Reduction of
traffic-related air pollution levels may promote molecular longev-
ity, as exemplified by telomere length, from early life onward,
leading to improved health in later life.
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