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Abstract 27 

Background: Studies on stability of genetic risk for depression have relied on self-reported symptoms 28 

rather than diagnoses and/or short follow-up time. Our aim is to determine to what degree genetic 29 

and environmental influences on clinically assessed major depressive disorder (MDD) are stable 30 

between age 18 and 45.  31 

 32 

Methods: A population-based sample of 11,727 twins (6,875 women) born between 1967 and 1991 33 

were followed from 2006 to 2015 in health registry data from primary care that included diagnoses 34 

provided by treating physicians. Individuals with schizophrenia or bipolar disorder (n=163) were 35 

excluded. We modelled genetic and environmental risk factors for MDD in an accelerated 36 

longitudinal design. 37 

 38 

Results: The best-fitting model indicated that genetic influences on MDD were completely stable 39 

from ages 18 to 45 and explained 38% of the variance. At each age, environmental risk of MDD was 40 

determined by the risk at the preceding observation, plus new environmental risk, with an 41 

environmental correlation of +0.60 over two years. The model indicated no effects of shared 42 

environment and no environmental effects stable throughout the observational period. All long-term 43 

stability was therefore explained by genetic factors. 44 

 45 

Conclusions: Different processes unfolded in the genetic and environmental risk for MDD. The 46 

genetic component is stable from later adolescence to middle adulthood and accounted for nearly all 47 

long-term stability. Therefore, molecular genetic studies can use age-heterogenous samples when 48 

investigating genetic risk variants of MDD. Environmental risk factors were stable over a short span 49 

of years with associations rapidly decreasing and no evidence of permanent environmental scarring.  50 

 51 
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Introduction 53 

Major depressive disorder (MDD) is a common and disabling disorder with an age at onset 54 

most typically from late adolescence to middle adult life (Ferrari et al., 2013). In multiple twin 55 

studies, lifetime MDD has been shown to have a heritability of approximately 40% with individual-56 

specific environment contributing most of the remaining liability (Sullivan et al., 2000, Kendler et al., 57 

2006). Polygenic studies have estimated that the sum of measured genetic variation explains 6-32% 58 

of the variance (SNP-h2) in risk of MDD (Lubke et al., 2012, Lee et al., 2013, Hyde et al., 2016, Direk et 59 

al., 2017, Wray et al., 2018). However, most of the genetic risk has not been linked to specific 60 

polymorphisms (Ripke et al., 2013, Converge consortium, 2015, Geschwind and Flint, 2015, Van der 61 

Auwera et al., 2018). One of several factors contributing to this discrepancy could be age-related 62 

variation in risk factors (Korten et al., 2012, Power et al., 2017). Results from studies using diagnostic 63 

interviews of twins indicate completely stable genetic risk factors for MDD from the 20s to 30s 64 

(Torvik et al., 2017), and in MDD assessed two times 1.5 years apart (Kendler et al., 1993), and four 65 

times over a decade in adulthood (Kendler and Gardner, 2017). Studies on symptoms of depression 66 

and/or anxiety have found small or no changes in genetic risk factors during adulthood (Gillespie et 67 

al., 2004, Cerda et al., 2010, Nivard et al., 2015), but there seem to be genetic factors specific to 68 

childhood and adolescence (Kendler et al., 2008, Nivard et al., 2015, Waszczuk et al., 2016) and old 69 

age (Gillespie et al., 2004, Petkus et al., 2016).  70 

Conflicting information exists about the temporal stability of the environmental risk factors 71 

for MDD. One view is that the effects of such risk factors rapidly decrease over time, disappearing in 72 

as short a time period as a single year (Kendler et al., 1993, Dunn et al., 2015), and that the 73 

environment is therefore not responsible for the longer-term stability of risk. In this view, the 74 

stability of MDD is entirely due to genetic factors, whereas environmental events produce variation 75 

around this ‘set point’. By contrast, a range of studies show that early severe adversities such as 76 

childhood sexual abuse can have enduring effects on the risk of MDD for decades (Hammen, 2005). 77 

Most such studies are genetically uninformative and therefore unable to determine to what extent 78 
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the environment contributes to stability. The major findings from twin studies concerning this has 79 

indicated no (Kendler et al., 1993, Torvik et al., 2017) or low (Kendler and Gardner, 2010, 2017) 80 

stability in environmental causes of MDD and symptoms of anxiety and depression in adulthood 81 

(Gillespie et al., 2004, Nivard et al., 2015, Waszczuk et al., 2016). These studies rely on self-reported 82 

symptoms, which include measurement error that can lead to underestimates of environmental 83 

stability. In addition, studies with long duration between follow-ups were not able to study short-84 

term stability. The most informative study to date on this question (Kendler and Gardner, 2017) 85 

suggests that about 17% of the environmental influences on MDD in the last year in are stable over 8 86 

years and the remainder is occasion-specific. Both clinical and molecular genetic work would benefit 87 

from a better understanding of the degree of stability of the genetic and environmental risk factors 88 

for MDD. This can be achieved if MDD is observed over a long-time window with assessments close 89 

in time. 90 

The purpose of this study is to examine to what degree genetic and environmental influences 91 

on clinically assessed MDD are stable between age 18 and 45 by using a population based twin 92 

sample with continuously updated registry data from primary care.  93 

Methods 94 

Sample 95 

The data consist of registry based information on 11,727 Norwegian twins born between 96 

1967 and 1991 who were recorded in the Norwegian Twin Registry. In total, 21,517 twins identified 97 

through the mandatory Norwegian Medical Birth Registry were invited to be part of the twin registry. 98 

Among these, 433 (2.0%) had unknown address, whereas 11,608 (53.9%) gave consent. In addition, 99 

116 twins consented to registry linking without being permanent members of the registry, and 3 100 

twins born abroad self-recruited. Individuals with possible schizophrenia or bipolar disorder (n=163) 101 

were excluded from the analyses. The analyzed sample thus consisted of 11,564 individuals (59.4% 102 

women). Zygosity was determined by a combination of questionnaire items and genotyping of a 103 

subsample. There were 1860 complete MZ and 2190 complete DZ twin pairs as well as 3445 single 104 
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twins with known zygosity. Using unique person-identification numbers assigned at birth, we linked 105 

the twin registry to demographic registries and treatment data from governmentally funded primary 106 

care for the years 2006-2015. As consent was gathered in 2016, there was no attrition. The twins 107 

were on average 27.7 years old in the beginning of 2006 (range 14-38), and 37.7 at the end of 2015.  108 

Ethics 109 

The study was approved by the Regional Ethical Committee for Medical and Health Research 110 

Ethics, and written informed consent was obtained from all participants. 111 

Measures 112 

 Primary care data. All individuals who legally reside in Norway are members of the National 113 

Insurance Scheme and assigned a general practitioner. General practitioners and other health service 114 

providers, such as emergency rooms, send billing information to The Norwegian Health Economics 115 

Administration (Helfo) along with a diagnosis or reason for the visit in order to receive 116 

reimbursements. Due to economic incentives, it is unlikely that health visits go unreported. 117 

Diagnostic information is coded according to the International Classification of Primary Care (ICPC-2) 118 

(World Organization of National Colleges Academies, 2005) and registered in the database Control 119 

and Payment of Health Reimbursements operated by the Norwegian Directorate of Health. The ICPC-120 

2 contains both diagnoses and complaints. In this study, we analyze visits registered with the 121 

diagnosis ‘P76 - Depressive disorder’ as MDD. We have previously demonstrated that this diagnosis is 122 

strongly phenotypically and nearly fully genetically correlated both with diagnoses given in specialist 123 

care (F32 and F33) and with diagnoses from structured interviews (Torvik et al., 2018). Being 124 

registered at least once with either ‘P72 – Schizophrenia’ or ‘P73 Affective disorder’ (n=163) was 125 

used as exclusion criterion.  126 

Demographic data. The data were linked to demographic information on educational 127 

attainment from The Norwegian Educational Database and information on income and marital status 128 

from The Tax Database, both databases operated by Statistics Norway. At the end of the 129 
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observational period (in 2015), 18.1% had master’s degree or equivalent, 40.4% had bachelor’s 130 

degree or equivalent, 33.5% had completed high school, and 8.0% had primary education only.  131 

Statistical analyses 132 

We first described the associations of MDD with sex, age and educational attainment in 133 

multiple logistic regression models, and then tested the association with income, marriage and 134 

divorce adjusted for these variables. We did this in order to describe the sample and to test whether 135 

MDD measured in the registries related to known characteristics of individuals with MDD.  136 

We applied an accelerated longitudinal twin design to study the development of depression 137 

from ages 18 to 45. In this design, each individual is followed for a limited amount of time, here 10 138 

years, and where variation in individuals’ age across the sample permits an examination of 139 

development over a longer period. In the current analyses, we analyzed the occurrence of MDD in 140 

two-year windows from ages 18 to 45. As shown in Table S1, this resulted in 14 time intervals which 141 

were scored ‘0’ if there were no MDD entries in the registry for that period or ‘1’ if there were one or 142 

more MDD entries. We did not model MDD prior to age 18 or above age 45, due to the low number 143 

of observations and differences relating to organization of child mental health services.  144 

We modelled the genetic and environmental sources of individual differences in risk of MDD 145 

within and across time by using multivariate twin analyses for binary data with different prevalences 146 

(thresholds) for men and women at each age. Monozygotic (MZ) twins share all their genes and 147 

dizygotic (DZ) twins share on average half of the genes that vary in the population. Utilizing this 148 

difference, stability and change in depression can be ascribed to varying combinations of additive 149 

genetic factors (A), shared environmental factors (C), and individual-specific or non-shared 150 

environmental factors, which includes measurement error (E). For illustration, we consider a twin 151 

pair where one member has MDD. If the stability between time-points is due to E factors alone, the 152 

depressed twin will have an elevated risk of MDD at the next observation, but not the co-twin. If the 153 

stability is due to C factors alone, both twins, regardless of their genetic relatedness, will have the 154 

same elevated risk of future MDD as the initially depressed twin, and this is true for MZ and DZ twin 155 
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pairs alike. If, however, the stability is due to A factors alone, MZ co-twins are equally likely to be 156 

depressed at the next point in time, whereas DZ co-twins will have a less elevated risk due to sharing 157 

only half their genes.  158 

We used the Cholesky decomposition to freely estimates of the correlations between genetic 159 

influences on MDD at the different ages, and similarly for the environmental influences (Neale and 160 

Cardon, 1992). We then applied a model that includes two processes: i) stable components of A, C, 161 

and E that influence all time points; and ii) auto-regressive components of A, C, and E, which make 162 

each observation in part dependent on the genetic and environmental factors active at the previous 163 

observation plus new variation. Thus, we can separate enduring individual set-point from temporary 164 

stability in each of the three biometric components. See Figure 1 for an illustration of the model and 165 

the Figure legend for a more detailed explanation. We compared this model to the Cholesky 166 

decomposition to test if it adequately represented the data. Simpler, more restricted variants of the 167 

model were then tested by removing specific paths from the model or setting several paths to equal. 168 

We restricted paths between adjacent time points to be equal in order to test whether the stability 169 

of MDD varied between life-phases. We then tested the presence of new genetic or shared 170 

environmental influences during the observational period by setting the effects of these to zero, and 171 

tested whether there were any auto-regression by setting the genetic and environmental path 172 

between adjacent time-points to zero. Finally, we tested the risk factors by setting these to zero. The 173 

models were fitted to raw, ordinal data using the OpenMx 2.7.16 package for R. The raw data 174 

method utilizes all data, from both complete and incomplete pairs, and allows estimating effects for 175 

the full age range, although each individual is observed for only 10 years. We used a threshold-176 

liability model, which models ordinal categories as arising from estimated thresholds on an 177 

underlying normal distribution (Falconer, 1965). The twins in incomplete pairs are useful in 178 

estimating stability and change, but do not contribute towards the estimation of genetic and 179 

environmental factors. We determined goodness of fit using likelihood ratio chi-square tests and by 180 
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comparing the sample-size adjusted Bayesian information criterion (sBIC). By the principle of 181 

parsimony, models with the lowest sBIC were preferred (Sclove, 1987). 182 

Results 183 

 In an average year, 1.8% of men and 4.2% of women were registered at least once with MDD, 184 

although as depicted in Figure 2, this varied by age. During the observational period of 10 years, 366 185 

men (7.8%) and 1210 women (17.6%) were registered with at least one episode of MDD. We ran a 186 

series of multiple logistic regression analyses in order to test the associations between MDD and 187 

demographic characteristics. All of these analyses are adjusted for age, sex, and educational 188 

attainment. MDD was more common among women with an odds ratio (OR) of 2.71 (95% CI 2.39, 189 

3.07), individuals with higher age with an OR of 1.02 (95% CI 1.01, 1.02) per year, and less common 190 

among individuals with higher educational attainment with an OR of 0.63 (95% CI 0.59, 0.67) per 191 

level of education. Being registered at least once with MDD was associated with an annual income 192 

loss of 75,000 Norwegian kroner (95% CI 63,000, 88,000) at the end of the observational period, 193 

which corresponds to 16.8% of the median income in the sample. MDD was also associated with a 194 

lower probability of being ever married (OR=0.76, 95% CI 0.67, 0.86) and a higher probability of 195 

divorce among those who married (OR=2.52, 95% CI 2.07, 3.06). Year of birth was not statistically 196 

significantly associated with MDD after adjustment for age and sex (OR = 1.02, 95% CI 0.99, 1.05). A 197 

demographic breakdown of the sample by zygosity is provided in supplemental Table S2. 198 

The analyses of stability and change were based on two-year prevalence windows. The 199 

average phenotypic tetrachoric correlation of registered MDD between adjacent two-year 200 

prevalence windows was +0.75. Correspondingly, over 4, 6 and 8 years, the average correlation was 201 

respectively +0.60, +0.47, and +0.47. Thus, observations close in time have higher correlations than 202 

distant observations, but after some time, they seem to stabilize. A full phenotypic correlation matrix 203 

is provided in supplemental Table S3.  204 

We first applied an unrestricted full correlational model (Cholesky decomposition) to 205 

estimate freely how A, C, and E contributed to MDD at each two-year prevalence window and the 206 
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correlations between MDD across age. Figure 3 shows the proportion of variance explained by A, C, 207 

and E factors in each two-year prevalence window. Averaged across all ages, genetic factors (A) 208 

accounted for 37.5% of the variation in MDD, shared environmental (C) factors for 8.4%, and 209 

individual-specific (E) environmental factors for 54.1%. All fit indices for the biometric modelling is 210 

provided in Table S4. Compared to the fully saturated Cholesky, the longitudinal model (Figure 1) had 211 

a better fit in terms of sBIC (ΔsBIC = -1314.55). We tested whether MDD was more stable in some 212 

life-phases than in others by testing if the paths between adjacent time points could be set to be 213 

constant across age for A, C and E, instead of estimating each path separately. This improved the 214 

model parsimony (ΔsBIC = -185.23). Next, we tested whether the genetic effects present at age 18 215 

could explain the genetic risk at all subsequent observational windows, and similarly for shared 216 

environmental risk. A model without either novel genetic influences (‘genetic innovation’) or novel 217 

shared environmental effects provided the better fit (ΔsBIC=-129.18). We further tested if the 218 

influences of for A, C, and E were enduring and affected MDD at subsequent prevalence windows via 219 

the auto-regression. This process would describe A, C, or E effects that are still active over the next 220 

observational period, but not throughout the entire observational window. Such autoregressive 221 

models would be favored if influences on observations close in time were more strongly correlated 222 

than influences on distant observations. We found that removing the genetic effects between 223 

adjacent time points improved the model (ΔsBIC = -11.32), as did removal of the shared-224 

environmental effects between adjacent time points (ΔsBIC = -10.24). However, removing the 225 

individual-specific effects between adjacent time points caused model fit to deteriorate (ΔsBIC = 226 

+219.62). In subsequent models the individual-specific environment is dependent on previous 227 

observations, whereas additive genetic and shared environmental effects are stable throughout the 228 

observational period. Finally, we tested whether there were stable risk factors for A, C, and E by 229 

setting each of these to zero. A stable genetic risk factor could not be removed from the model 230 

(ΔsBIC = +13.68), but the two stable environmental risk factors (C, E, and both) could be removed 231 

with a slight improvement in fit (ΔsBIC = -5.62, ΔsBIC = -5.73, and ΔsBIC = -11.48, respectively). This 232 



 

10 
 

implies that there are no influences of shared environment present in the model and that the shared 233 

environmental influences in Figure 3 are not significant.  234 

In the best fitting model, shown in Figure 4, the genetic factors are stable across time, 235 

whereas the environment is individual-specific and changing at a constant rate. In this model, genetic 236 

factors explain 38.0% of the variance in MDD at each time-point and account for all long-term 237 

stability. Environmental factors correlate +0.60 over two years and +0.36 (0.602) over four years. 238 

New individual-specific environmental influences explain 39.5% of the variation in MDD at any given 239 

point in time, whereas 22.5% of the variance is due to environmental influences from earlier time-240 

points.  241 

Discussion 242 

We examined a population-based twin sample with longitudinal information on clinically 243 

assessed depression, and found that a simple developmental model best explained the genetic and 244 

environmental structure of clinically assessed MDD from age 18 to 45. The model entails three 245 

notable features: i) complete stability of genetic risk factors, ii) high stability of the individual-specific 246 

environment over short periods of time, but minimal long-term environmental stability, and iii) no 247 

significant effects of shared environment. 248 

We found stable genetic influences in MDD between ages 18 and 45. Although previous 249 

studies have not investigated genetic continuity in clinically assessed MDD over this long age span, 250 

the findings are consistent with previous research on MDD over shorter time-periods (Kendler et al., 251 

1993, Kendler and Gardner, 2017, Torvik et al., 2017), and with research on symptoms of anxiety and 252 

depression (Gillespie et al., 2004, Cerda et al., 2010, Nivard et al., 2015). This finding is important for 253 

molecular genetic studies of MDD because they suggest that there are no age-related heterogeneity 254 

from early to middle adulthood. One may therefore use heterogenous samples without worrying that 255 

they might be identifiying distinct genetic risk variants acting at different ages. This is unlike for 256 

instance for alcohol use disorder, where changing genetic influences has been found during 257 

adulthood (Long et al., 2017, Torvik et al., 2017). There are, however, indications that the genetic 258 
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effects for MDD could be different in childhood, early adolescence and old age (Gillespie et al., 2004, 259 

Nivard et al., 2015, Petkus et al., 2016, Waszczuk et al., 2016). Whereas we did not specifically study 260 

age at first onset, our results may seem to deviate from a molecular genetic study finding a locus 261 

associated with age at onset (Power et al., 2017). This potential discrepancy may be explained by our 262 

exclusion of individuals who developed schizophrenia or bipolar disorder, which were related to early 263 

onset MDD in the aforementioned study. 264 

A fundamentally different mechanism emerged in the individual-specific environment, which 265 

had no stable component, but rather was explained by a combination of previous plus new or 266 

emergent environmental risks. This implies that events that increase risk for MDD at one point 267 

persist over time with their effects decreasing at an approximately the same rate throughout 268 

adulthood. Whereas the association is rather strong across short time-spans, and theoretically never 269 

fully disappears, it dissipates quickly, so that environmental factors relevant at one time point explain 270 

62% of the variation at that time point, but only 10% of the total variation in MDD risk after 3.5 271 

years, and only 1% after 8 years. These results are commensurate first with studies finding that 272 

depressive episodes predict future depressive episodes (Monroe and Harkness, 2005), even within 273 

MZ twin pairs (Kendler and Gardner, 2010), and second with findings of no or very low 274 

environmental stability after substantial time periods (Kendler et al., 1993, Kendler and Gardner, 275 

2010, Torvik et al., 2017). Our evidence of stability in MDD is also in agreement with results from a 276 

large longitudinal, but not genetically informative Finnish cohort (Rosenstrom et al., 2013). The 277 

present study is in partial disagreement with a previous study finding 17% stability in environmental 278 

risk of MDD over 8 years (Kendler and Gardner, 2017), whereas our model implies an environmental 279 

stability of only 2% over a similar length of time. The reason for this discrepancy is not apparent, but 280 

we note that the present study had a larger sample size, covered a wider age-span, and included 281 

both men and women. In any case, these studies and others agree that the stability of risk of MDD 282 

over adult life is largely of genetic origin (Burcusa and Iacono, 2007). Our estimate could be 283 

interpreted as an average of the durability of life-events, some inducing a risk over shorter and some 284 
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over longer time spans. We did not detect effects of permanent environmental scarring from severe 285 

events, modelled as environmental effects operating throughout the observational period.  286 

Environmental factors shared between twins did not have any significant occasion specific or 287 

long-term effects. Behavioral genetic studies have previously found shared environmental influences 288 

on depression in childhood, but these become less relevant in adulthood (Bergen et al., 2007, Lamb 289 

et al., 2010). Whereas we cannot rule out that long-term environmental effects exist and are relevant 290 

for certain individuals with particularly severe life-events, whether shared or individual-specific, they 291 

were not especially important in explaining adult MDD in our sample. As a rule, environmental 292 

exposures does not seem to change permanently a person’s risk of depression. The findings 293 

underline the importance of helping depressed individuals improve their current and future 294 

environment. In clinical settings, psychotherapy emphasizing modification of the current 295 

environment could be more effective than approaches aimed at understanding past events.  296 

Limitations 297 

The present study has several notable advantages, such as a large, genetically informative, 298 

population-based twin sample, with longitudinal clinical data from primary care. Nevertheless, some 299 

limitations are noteworthy: First, the sample was based on voluntary participation, and thus subject 300 

to nonresponse and possibly associated biases. However, we did not have any attrition after 301 

baseline. Second, we only had available data on cases of MDD clinically diagnosed in primary care. 302 

Therefore, we could not study sub-clinical levels of depression, individual symptoms, or other 303 

conceptualizations of depression. Third, we relied on registry data with diagnostic information based 304 

on reimbursement claims from treating physicians in primary care. This implies that in order to be 305 

registered, individuals must have sought treatment and received the diagnosis of MDD. Previous 306 

research indicate that approximately half of depressed individuals receive treatment in high-income 307 

countries (Thornicroft et al., 2017). One could therefore fear that the health registries are likely to 308 

miss many true cases and that the results are not generalizable to depression in general. However, 309 

we have previously shown that MDD registered in primary care has a genetic correlation of around 310 
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0.80 with both MDD in specialist care and with MDD assessed with structured diagnostic interviews 311 

(Torvik et al., 2018). In addition, we found a prevalence similar to major international (Kessler et al., 312 

2005, de Graaf et al., 2012, Hasin and Grant, 2015) and previous Norwegian epidemiological studies 313 

(Kringlen et al., 2001, 2006), a narrow-sense heritability close to the one reported in a meta-analysis 314 

(Sullivan et al., 2000), and that MDD was associated with expected demographic characteristics 315 

(female sex, lower education, lower income, divorce, and single marital status). These observations 316 

provide strong indications that the results are representative for individuals with depression. Fourth, 317 

it was not feasible to longitudinally model sex differences other than in prevalence, however, 318 

univariate analyses on MDD across all time-points suggest no genetic sex differences in our data (Δ-319 

2LL = 2.64, Δdf = 3, p = 0.451).  320 

Conclusion 321 

The genetic and the environmental components of clinically assessed MDD exhibit 322 

fundamentally different structures. The genetic component is stable over almost 30 years from ages 323 

18 to 45. Therefore, molecular genetic studies may use variable adult age samples to identifiy genetic 324 

risk variants of MDD without introducing genetic heterogeneity in their analyses. The environmental 325 

risk factors for MDD were stable over a short span of years with effects rapidly decreasing. We did 326 

not detect effects of permanent environmental scarring, as virtually all long-term stability was due to 327 

genetic factors. Long-term environmental effects therefore do not seem to be important in 328 

explaining MDD at the population level. 329 

 330 

 331 

 332 

 333 

   334 
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Figure 1. The longitudinal model of major depressive disorder (MDD) in primary care from age 18 to 564 

45 in two year prevalence windows. The environmental variation in risk of MDD (upper part) consists 565 

of three parts: i) a latent factor common to all time points (Le), ii) new variation (et), and iii) effects 566 

from previous time points transmitted via the auto-regression (bet,t-1). The genetic variation in risk of 567 

MDD (lower part) has the same structure. Parallel structures were also modelled for shared 568 

environmental influences, for simplicity not shown in this figure.  569 
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 572 

Figure 2. One-year prevalence of major depressive disorder (MDD) in primary care among women 573 

(red), men (blue), and total (black) in %, by age. Grey line represents the relative amount of available 574 

data at each age.  575 

 576 
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 578 

Figure 3. Relative contributions of genetic (A; red), shared environmental (C; green) and individual-579 

specific environment (E; blue) to MDD in primary care by age. Results from Cholesky decomposition. 580 

As the data were binary, the variance is fixed to unity.  581 
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Figure 4. Best fitting longitudinal model of MDD in primary care. 586 

587 
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Table S1. Number of observations in each two-year age bin by birth year, excluding individuals with 606 

at least one registered entry of bipolar disorder or schizophrenia.   607 

 Age                

Born 16-

17 

18-

19 

20-

21 

22-

23 

24-

25 

26-

27 

28-

29 

30-

31 

32-

33 

34-

35 

36-

37 

38-

39 

40-

41 

42-

43 

44-

45 

46-

47 

1991 452 452 452 452 0 0 0 0 0 0 0 0 0 0 0 0 

1990 483 483 483 483 483 0 0 0 0 0 0 0 0 0 0 0 

1989 0 459 459 459 459 0 0 0 0 0 0 0 0 0 0 0 

1988 0 422 422 422 422 422 0 0 0 0 0 0 0 0 0 0 

1987 0 0 467 467 467 467 0 0 0 0 0 0 0 0 0 0 

1986 0 0 409 409 409 409 409 0 0 0 0 0 0 0 0 0 

1985 0 0 0 461 461 461 461 0 0 0 0 0 0 0 0 0 

1984 0 0 0 411 411 411 411 411 0 0 0 0 0 0 0 0 

1983 0 0 0 0 404 404 404 404 0 0 0 0 0 0 0 0 

1982 0 0 0 0 459 459 459 459 459 0 0 0 0 0 0 0 

1981 0 0 0 0 0 376 376 376 376 0 0 0 0 0 0 0 

1980 0 0 0 0 0 412 412 412 412 412 0 0 0 0 0 0 

1979 0 0 0 0 0 0 329 329 329 329 0 0 0 0 0 0 

1978 0 0 0 0 0 0 399 399 399 399 399 0 0 0 0 0 

1977 0 0 0 0 0 0 0 321 321 321 321 0 0 0 0 0 

1976 0 0 0 0 0 0 0 394 394 394 394 394 0 0 0 0 

1975 0 0 0 0 0 0 0 0 405 405 405 405 0 0 0 0 

1974 0 0 0 0 0 0 0 0 474 474 474 474 474 0 0 0 

1973 0 0 0 0 0 0 0 0 0 536 536 536 536 0 0 0 

1972 0 0 0 0 0 0 0 0 0 534 534 534 534 534 0 0 

1971 0 0 0 0 0 0 0 0 0 0 562 562 562 562 0 0 

1970 0 0 0 0 0 0 0 0 0 0 566 566 566 566 566 0 

1969 0 0 0 0 0 0 0 0 0 0 0 625 625 625 625 0 

1968 0 0 0 0 0 0 0 0 0 0 0 619 619 619 619 619 

1967 0 0 0 0 0 0 0 0 0 0 0 0 585 585 585 585 

Total 935 1816 2692 3564 3975 3821 3660 3505 3569 3804 4191 4715 4501 3491 2395 1204 

 608 
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Table S2. Description of the sample by zygosity.  610 

 Monozygotic Dizygotic 

 Male Female Male Female Opposite sex 

 n % n % n % n % n % 

Sex           

Male 1845 100.0% 0 0.0% 1413 100.0% 0 0.0% 1426 42.6% 

Female 0 0.0% 2795 100.0% 0 0.0% 2144 100.0% 1922 57.4% 

MDD           

No 1708 92.6% 2288 81.9% 1301 92.1% 1778 82.9% 2895 86.5% 

Yes 137 7.4% 507 18.1% 112 7.9% 366 17.1% 453 13.5% 

Education           

1 165 9.0% 199 7.1% 114 8.1% 158 7.4% 285 8.5% 

2 714 38.8% 811 29.0% 531 37.7% 674 31.5% 1133 33.9% 

3 580 31.5% 1291 46.2% 488 34.6% 978 45.6% 1322 39.5% 

4 381 20.7% 492 17.6% 276 19.6% 333 15.5% 605 18.1% 

Marriage           

No 1064 57.7% 1616 57.8% 818 57.9% 1225 57.1% 1945 58.1% 

Yes 781 42.3% 1179 42.2% 595 42.1% 919 42.9% 1403 41.9% 

Divorce           

No 703 90.0% 1036 87.9% 531 89.2% 816 88.8% 1242 88.5% 

Yes 78 10.0% 143 12.1% 64 10.8% 103 11.2% 161 11.5% 

Note: MDD = Major depressive disorder. Educational attainment is coded according to the following 611 

categories: 1 = primary education only; 2 = completed high school; 3= bachelor’s degree or 612 

equivalent; 4 = master’s degree or equivalent.  613 

 614 

 615 



 

30 
 

Table S3. Phenotypic tetrachoric pairwise correlations by age.  616 

 18-

19 

20-

21 

22-

23 

24-

25 

26-

27 

28-

29 

30-

31 

32-

33 

34-

35 

36-

37 

38-

39 

40-

41 

42-

43 

44-

45 

18-19 1.00 0.74 0.60 0.45 0.22          

20-21 0.74 1.00 0.72 0.62 0.50 0.56         

22-23 0.60 0.72 1.00 0.76 0.68 0.52 0.65        

24-25 0.45 0.62 0.76 1.00 0.73 0.63 0.49 0.40       

26-27 0.22 0.50 0.68 0.73 1.00 0.75 0.57 0.54 0.40      

28-29  0.56 0.52 0.63 0.75 1.00 0.73 0.61 0.54 0.57     

30-31   0.65 0.49 0.57 0.73 1.00 0.71 0.66 0.22 0.45    

32-33    0.40 0.54 0.61 0.71 1.00 0.71 0.40 0.35 0.54   

34-35     0.40 0.54 0.66 0.71 1.00 0.77 0.59 0.59 0.41  

36-37      0.57 0.22 0.40 0.77 1.00 0.77 0.65 0.46 0.53 

38-39       0.45 0.35 0.59 0.77 1.00 0.78 0.54 0.47 

40-41        0.54 0.59 0.65 0.78 1.00 0.80 0.64 

42-43         0.41 0.46 0.54 0.80 1.00 0.82 

44-45          0.53 0.47 0.64 0.82 1.00 

 617 

 618 
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Table S4. Results from biometric structural equation model fitting.  620 

# Model ep Δ-2LL Δdf sBIC 

      

 Step 0:     

1 Full correlational Cholesky  343 - - 17495.75 

      

 Step 1:     

2 Full longitudinal model* 112 42.36 231 16181.20 

      

 Step 2:     

3 All beta A equal 100 4.51 12 16116.78 

4 All beta C equal 100 6.04 12 16118.31 

5 All beta E equal 100 9.70 12 16121.97 

6 All beta A, C, and E equal 76 21.56 36 15995.97 

      

 Step 3:     

7 No A innovation 63 6.95 13 15928.24 

8 No C innovation 63 3.24 13 15924.53 

9 No A or C innovation 50 20.17 26 15866.79 

      

 Step 4:     

10 No A auto-regression 48 0.17 2 15855.47 

11 No C auto-regression 48 1.24 2 15856.55 

12 No E auto-regression 49 225.37 1 16086.41 

13 No A or C auto-regression* 46 5.31 4 15849.13 

      

 Step 5:     

14 No time-invariant A 45 19.42 1 15862.80 

15 No time-invariant C 45 0.12 1 15843.50 

16 No time-invariant E 45 0.01 1 15843.39 

17 No time-invariant C or E** 44 0.01 2 15837.64 

Note: All models compared to best model in previous step. * best fitting model in step. ** overall 621 

best fitting model. ep = estimates parameters 622 

 623 

 624 


