Brunborg Geir Scott (Orcid ID: 0000-0002-1382-2922)

Burdzovic Andreas Jasmina (Orcid ID: 0000-0002-6730-1321)

Title: Adolescent income and binge drinking initiation: Prospective evidence from the MyLife study

Authors: Geir Scott Brunborga*, Tilmann von Soestb, & Jasmina Burdzovic Andreasa

Affiliations:

^a Norwegian Institute of Public Health

Department of Alcohol, Tobacco, and Drugs

PO Box 222-Skøyen

N-0213 Oslo

Norway

^b PROMENTA Research Center

Department of Psychology

University of Oslo

PO Box 1094 Blindern

N-0317 Oslo

Norway

*Corresponding author, e-mail address: geir.brunborg@fhi.no

Running head: Adolescent income and binge drinking

Word count: 3491

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/add.15279

Declaration of competing interest: None

Abstract

Background and aims. No previous studies have examined the prospective association between disposable income and binge-drinking initiation among adolescents. We aimed to examine whether there is such an association, and if so, whether it is robust to confounders, uniform across individual characteristics, and linear versus non-linear.

Design. Prospective study of adolescents from 32 middle schools, stratified according to geographic location, urban and rural locations, and standard of living. Adolescents were assessed in 2017 (T1) and one year later (T2).

Setting. Norway.

Participants. A nation-wide sample of N = 1,845 adolescents (mean age 13.5 years, 44% boys) with no binge-drinking experience at T1.

Measurements. Data were collected on binge drinking at T1 and T2. Data on disposable income and on a range of demographic, individual, and family factors were collected at T1.

Findings. Overall, 7.2% initiated binge drinking between T1 and T2. Logistic regression showed that the crude linear effect of disposable income on binge drinking initiation was substantial, and only slightly attenuated in the fully adjusted model including all putative confounders (OR = 1.19 [1.08, 1.31], P < 0.001). However, interaction analyses showed disposable income to be negatively related to binge drinking initiation for adolescents who had experienced light drinking at T1 (OR = 0.66 [0.49, 0.89], P = 0.006) or who had seen their mothers intoxicated (OR = 0.62 [0.39, 0.99], P = 0.043).

Conclusion. Norwegian adolescents with higher disposable income have greater risk of subsequent binge drinking initiation than those with lower disposable income. Each additional 100 NOK (≈ 10 Euro) of weekly income increased the risk of binge drinking initiation in the following year by about 20%.

Keywords. Binge-drinking, alcohol, heavy episodic drinking, initiation, onset, adolescence, income, spending money, socio-economic status, longitudinal study.

Introduction

Adolescent alcohol consumption, and binge drinking in particular, is associated with multiple negatives consequences, and is one of the most important risk factors for reduced disability adjusted life years among young people (1-4). Knowledge of key modifiable risk factors for adolescent binge drinking is important for developing effective prevention strategies. One such factor may be adolescents' own income, which in Western societies is typically obtained from weekly allowances, different types of paid work and gifts from family members (5, 6). The degree to which this income is freely disposable probably varies, but higher income might place adolescents at greater risk for alcohol consumption because they may be more able to afford alcohol purchases (6). Adolescents with higher income may also to a larger degree work in paid jobs where they experience less monitoring by parents and more exposure to older youth and adults who drink alcohol, which again may increase the risk of binge drinking (7). However, the relationship between adolescents' own income and the risk of binge drinking has received surprisingly little attention from researchers.

Previous studies have shed some light on this basic association. A common assumption is that family socio-economic status (SES) is a proxy for adolescents' income, and that adolescents from higher SES backgrounds are at greater risk of alcohol use because they can afford to buy alcohol, and afford greater amounts. Some studies indicate that this may be the case (8, 9). However, a recent systematic review concluded that current research offers inconclusive evidence as to the relationship between family SES and adolescent binge drinking (10). One reason for this is that family SES might be an imprecise proxy for adolescents' own, freely disposable income (5, 11-13).

We have identified only three studies where adolescents' own income was conceived as a risk factor for alcohol use. The first analyzed data from 16 repeated cross-sectional studies conducted in Finland, and estimated the association between 14-year-olds' weekly disposable income and drinking to intoxication, with adjustment for place of residence, father's or guardian's level of education and professional status, family structure, and survey year (12). The results showed that adolescents' higher income was associated with increased odds for drinking to intoxication weekly, monthly, and occasionally. The second study used cross-sectional data from 14 to 17 yearolds from six European cities, and estimated the association between adolescents' weekly income and binge drinking, adjusted for age, gender, migrant background, parental level of education, family affluence, and academic achievement (14). These results also showed that the odds of adolescents' weekly binge drinking increased with their income. The third study used cross-sectional data from North-West England on binge drinking among 15/16 year-olds (15). After adjusting for sex, age, social deprivation, ethnicity, ever buying own alcohol, membership of a youth organization, and others supplying alcohol, the study found that adolescents with more than £ 10 of spending money per week had greater odds for binge drinking, compared to those with lower weekly income. These studies indicate that there is an association between disposable income and binge drinking, however they were limited by their cross-sectional nature and insufficient control for possible confounders. To understand the direction of the association between income and adolescence binge drinking, longitudinal data are needed. However, to the best of our knowledge, no such prospective study has been conducted so far.

We address the lack of prospective research by using data from a large-scale prospective study of Norwegian adolescents. Weekend binge drinking – albeit in decline – remains the primary drinking mode among youth in Norway (16-18), and the rate of binge drinking is slightly below the average of European and North-American countries (19). We estimated the prospective relation between adolescents' disposable income and binge drinking initiation in the next 12 months. We also considered if this relation might be spurious by including other factors as control variables in

our analysis. These factors were chosen because we assume that they are related to both income and binge drinking initiation, and may confound the hypothesized association (20). Previous studies have shown that demographic and family factors (gender, grade level, residing in an urban versus rural area, parents' cohabitation, belonging to a religion that prohibits alcohol consumption, family social status, family financial problems, and low parental monitoring) may directly or indirectly determine adolescents' income and engagement in binge drinking (21-25). Social influence (seeing parents drink, the importance of alcohol among peers) and own experiences with drinking small amounts of alcohol might also be related to both income and binge drinking (26). Moreover, personal characteristics such as low self-regulation, deviant behavior, or school connectedness may be additional potential confounders of the income-bingeing relationship (2, 27, 28). We also considered whether this relationship may differ across levels of important background characteristics, and whether it may be non-linear, as income might infer risk only after a certain amount.

The aims of this contribution can be summarized as follows: 1) To estimate the prospective relation between adolescents' income and initiation of binge drinking in the following year while controlling for key confounding variables; and if such a relationship is found, 2) to test if the relation between adolescents' income and initiation of binge drinking is moderated by key personal characteristics, and 3) to test if the relation between adolescents' income and initiation of binge drinking is linear or non-linear.

Methods

Design

This research is based on the MyLife study, where a population- based sample of adolescents has been followed by means of surveys at two time-points one year apart.

Data source and sampling

The sampling strategy aimed to recruit a nationwide yet geographically and socio-economically heterogeneous sample. For this purpose, one county was selected from each of Norway's five geographical regions. Municipalities and city districts were drawn from within each county, stratified by degree of urbanization and socio-economic indicators. In districts with several middle schools (8th, 9th, and 10th grade) only one school was drawn for participation. The study design, ethical approval, recruitment and consent procedures are described in detail elsewhere (29).

Of the 42 eligible schools, 10 declined participation, leaving 32 schools with a total enrollment of 6,805 students. Through school sessions, all students were instructed to deliver and return information packages with consent forms to/from their parents. A total of 4,123 forms were returned, 3,447 with parental consent.

Baseline assessment (T1) was completed in the 2017 Fall semester, with 86% response rate (2,975 students). All eligible students were invited for the follow-up (T2) during the 2018 Fall semester. A total of 2,857 students (83%) provided valid responses, and 2,514 (73%) completed both assessments.

We restricted our analysis to students in grade 8 and 9 at T1 who completed both assessments (n = 1,892) because our main question concerned binge drinking initiation, and these youngest cohorts were less likely to have initiated at T1. Forty-seven students who reported any binge drinking at T1 were excluded for the same reason. This group was older than the main sample (74.4% versus 46.1% were in the ninth grade, P < 0.001), and they had higher weekly disposable income (318 NOK versus 189 NOK, P < 0.001). They were also over-represented in terms of having non-cohabiting parents, family financial problems, low parental monitoring, seen parents intoxicated, scored higher on conduct problems, and scored lower on self-regulation and school connectedness (P < 0.05).

The final analytical sample comprised 1,845 (44% male) 8th and 9th graders who were on average 13.5 years old (SD = 0.50) at T1. At both assessments the participants completed an online questionnaire during a regular school hour under teachers' supervision.

Measures

Binge drinking initiation. At T2, respondents indicated the frequency with which they had consumed five or more standard drinks during the same occasion in the last 12 months (i.e., since T1). A dichotomous variable (no = 0, yes = 1) was constructed to capture any binge drinking; that is, its initiation in this sample.

Disposable income. Adolescents' disposable income in Norwegian kroner (NOK) was measured at T1 by two questions: 1) "How much is your weekly allowance (including payment for house chores)?" with responses ranging from "None" to "more than 500 NOK" on a 5-point scale, and 2) "How much do you earn per month from other types of work?" with thirteen response options ranging from: "Nothing" to "10,000 NOK or more". The responses were capped at 3000 NOK (i.e. included in the "2000-2999 NOK" category) to reduce the effect of extreme values. The responses to both questions were coded as mid-point amounts (e.g. "500-999 NOK" coded as 750) and allowance and other income (divided by four to get weekly amounts), summed to total income, and divided by 100 to obtain a basic metric of 100 NOK/week.

<u>Covariates</u>. All covariates were measured at T1. Information about residential area (rural vs. urban) was obtained from Statistics Norway.

Parents' cohabitation was measured by the item "Do your parents live together?" with a yes/no (coded 0/1) response option.

Religious denomination was measured by the question "Which religion do you belong to?"

As Islam and Buddhism explicitly prohibit alcohol consumption, those two options were coded 1

while the remaining 6 options (including "non-religious" and "other") were coded 0.

Family social status was measured with an adaptation of the MacArthur Scale of Subjective Social Status – Youth Version (30). Respondents indicated where in their neighbourhoods they would place their families on a scale from the least (coded 1) to most affluent (coded 10).

Family financial problems was measured with one item asking whether the adolescent's family experienced money problems. The responses "Yes, in the past 12 months" and "Yes, more than 12 months ago" were both coded 1, while "No, never" was coded 0.

"How much do your parents know about what you do in your free time?". The three response options "They think they know what I'm doing", "Usually they don't know what I'm doing", "Sometimes they know what I'm doing", were coded 1 to indicate low parental monitoring. The remaining options; "Pretty often they know what I'm doing", and "They always know what I'm doing" were coded 0.

Parental alcohol use was measured by two questions assessing whether the respondent had seen his/her father or mother intoxicated in the past 12 months. The response options were "Never" (coded 1), "Once or twice" (coded 2), "3 to 10 times" (coded 3), and "More than 10 times" (coded 4).

Importance of alcohol among peers was measured by asking the participants "How important is drinking alcohol among your peers?". Response options ranged from "Not important at all" (coded 1) to "Very important" (coded 4).

Frequency of light drinking was measured by asking the participants to indicate if they had ever had any alcohol (more than just taking a sip) and asking those who responded affirmatively to indicate the frequency with which they had consumed alcohol in the previous 12 months. Responses options ranged from "Not at all" (0) to "Every day or almost every day" (5).

Self-regulation was measured by a set of 4 items adopted from a larger 31-item Self-Regulation Questionnaire (33), which included items such as "I make a plan for the important things that I do". Responses were made on a 4-point scale ranging from "Rarely or never" (coded 1) to "Almost always or always" (coded 4), and the mean of item scores comprised the Self-regulation Index. Cronbach's alpha for the scale was 0.77.

Conduct problems were measured by 7 items adopted from the Young in Norway Study (34), assessing the frequency of conduct problems such as vandalism, lying, stealing and fighting during

the past 12 months. Reponses were made on a 4-point scale ranging from "Never" (coded 0) to "5 or more times" (coded 3). The sum of item scores comprised the Conduct Problems Index.

School connectedness was measured with the 5-item Add Health School Connectedness

Scale (35). Participants responded to each item (e.g. "I am happy to be at this school") using a 5point scale ranging from "Strongly disagree" (coded 1) to "Strongly agree" (coded 5). The mean of
item scores comprised the School Connectedness Index. Cronbach's alpha for the scale was 0.81.

Analyses

We used Stata version 15 for data analysis (36). Missing values were handled by multiple imputations, under the missing at random (MAR) assumption (37) with the predictive mean matching module in Stata (38). Ten datasets were created based on all study variables.

Logistic regression was used to estimate the relation between income and binge drinking initiation. Crude estimates were obtained by regressing binge drinking initiation on each of the study variables in separate models. The adjusted estimate was obtained by regressing binge drinking initiation on income and all putative confounders. All models accounted for school nesting by use of cluster-robust standard errors.

As sensitivity analysis we estimated the adjusted model with list-wise deletion, under the missing completely at random (MCAR) assumption (39). We also estimated the adjusted model using a propensity score approach with continuous treatment (40) implemented with the "gpscore" and "doseresponse model" modules in Stata (41).

We assessed moderation by adding interaction terms for income by each of the considered confounders, one-by-one, to the adjusted model. Some variables were dichotomized for this purpose, either converted to binary indicators or to indicate high scores (≤ 1 SD above mean = 0, > 1 SD above mean = 1), see Table 3.

To test non-linearity, the quadratic and cubic terms for income were successively added to the adjusted model.

Predicted probabilities of binge drinking initiation with control variables set at the mean were estimated with the "mimrgns" module in Stata (42).

The analysis was not pre-registered on a publicly available platform, and the results should be considered exploratory.

Results

Descriptive statistics and correlations for all study variables are presented in Table 1. In total, 7.2% initiated binge drinking in the 12 months between T1 and T2. Of those who initiated, 51% reported binge drinking on one or two occasions in the last 12 months, 23% reported once per month or less frequently, and 26% reported binge drinking more frequently than once per month. Fewer of the 8th graders (4.9%) initiated binge drinking compared to the 9th graders (9.7%), χ^2 (1) = 180.02, P < 0.001. Average weekly disposable income was 189 NOK (\approx 19 Euro). The 25th, 50th and 75th percentiles were 50 NOK, 113 NOK, and 263 NOK respectively.

The crude effect of disposable income on the risk of binge drinking initiation was substantial, and this relationship was only slightly attenuated in the fully adjusted model (Table 2). All covariates apart from gender and belonging to a religion that prohibits alcohol use were associated with greater odds of binge drinking initiation. The estimate for our key exposure (income) can be interpreted as relative risk (43): Each additional 100 NOK (\approx 10 Euro) of weekly income is associated with 19% greater risk of binge drinking initiation in the following year. As evident in Figure 1, the risk of binge drinking initiation was small for adolescents with no and minimal income, however it increases with higher income. For instance, the risk for adolescents with 500 NOK weekly income was double that of adolescents with 100 NOK weekly income.

We also tested whether income from paid work had a different relationship to binge drinking initiation than weekly allowance. Regressing binge drinking initiation on income from paid work, adjusting for all covariates (OR = 1.28, 95% CI: 1.10, 1.50, P = 0.002) and repeating the model

with weekly allowance (OR = 1.21, 95% CI: 1.05, 1.40, P = 0.009) generated estimates that were similar to the original results.

We tested whether the income-binge drinking association was moderated by any of the 15 covariates by including product terms (Table 3). Only maternal intoxication and light drinking showed statistically significant interaction effects. As shown in Figure 2, in contrast to the general trend of higher risk for binge drinking with increasing income, among adolescents who had seen their mother intoxicated, high disposable income was related to a reduced risk of binge drinking initiation. Likewise, income was negatively related to binge drinking initiation for those who already had engaged in light drinking at T1 (see Figure 3).

The quadratic (OR = 0.99; 95% CI: 0.97, 1.01, P = 0.442) and the cubic (OR = 1.00; 95% CI: 1.00, 1.01, P = 0.305) terms for income were not statistically significant, indicating that the relation between income and binge drinking initiation was linear.

The estimate for income on binge drinking initiation adjusting for putative confounders using list-wise deletion (OR = 1.17, 95% CI: 1.05, 1.29) did not differ substantially from adjusted logistic regression with multiple imputations. This was also the case for propensity score analysis (OR = 1.23, 95% CI: 1.09, 1.39).

Discussion

In line with previous cross-sectional studies (12, 14, 15), we found that adolescents with greater income were more likely to initiate binge drinking in the following year. This relationship was robust to adjustment for a number of putative confounding factors. However, interaction models revealed that for the small group of adolescents who had seen their mother intoxicated and those who had already engaged in light drinking at the start of the study, greater income was associated with lower risk of binge drinking initiation.

Our results echo previous cross-sectional studies investigating disposable income and smoking during adolescence (44, 45), and provide converging evidence that adolescents' own

income acts as a potent yet modifiable risk factor for early substance use. Several potential mechanisms may explain the income-binge drinking association. For example, adolescents with high income may be better positioned to afford alcohol and other goods (6), and to buy enough to engage in binge drinking. Or, such adolescents may be socializing with older adolescents (e.g., at shopping malls or outside service stations), and may be introduced to alcohol earlier through such contacts. The present study was not designed to provide conclusive information about such potential mechanisms. Understanding the role of disposable income, and its mechanisms of action, is an important task for future research, and may be of key importance for early alcohol prevention strategies.

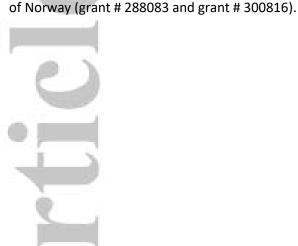
We note that several of the potential confounders included in the study were statistically significant prospective predictors of binge drinking initiation in the adjusted model. Interestingly, family financial problems was independently related to binge drinking initiation, indicating a complex interplay between adolescents' own disposable income and the family financial situation as sources for binge drinking initiation. Other factors found to be of importance were urbanity, conduct problems, connectedness to school, and initial experiences with light drinking. These, and other characteristics need to remain integrated into future research on early substance use. Finally, our results indicate that the general association between income and binge drinking initiation may be reversed for certain adolescents, i.e. those who had seen their mother intoxicated, and those with early light drinking experiences. It is possible that binge drinking in these groups was not driven by mechanisms involving financial means and alcohol purchases. They may instead reflect factors such as availability of alcohol at home, parental offering of alcohol or deterrence caused by negative experiences. Future research needs to examine such characteristics and putative subgroup differences in greater detail.

Reducing alcohol accessibility through taxation is already a cornerstone of public health policies in developed and high income countries (46). This strategy may be even more effective with closer parental control of their children's disposable income. Indeed, an important implication of the

current study is that reducing the amount of money freely available to adolescents may translate into lowering the risk of binge drinking, and adverse consequences.

Strengths and limitations

To our knowledge, this is the first prospective study of adolescents' disposable income and binge drinking. The study also accounted for a substantial number of confounding factors. The sample was both diverse and sizeable, enabling more precise estimates.


All measures were based on self-reports, which can lead to known biases, such as selective recall and social desirable responses, especially among younger participants. Study limitations also include that a considerable number of students did not participate because parental consent forms were not returned. We don't know how such non-participation has affected the results, because it was not possible to obtain information on students whose parents did not return consent forms. The exploratory moderation analyses involved multiple testing; therefore, we cannot rule out false discoveries. Finally, while we assessed many putative confounding variables, some may have been omitted, and we cannot rule out residual confounding. For instance, parental-reported measures of household income and parental education were not available.

Conclusion

We estimated the effect of adolescents' disposable income on the risk of binge drinking initiation, and found that each additional 100 NOK (\approx 10 Euro) of weekly income was associated with about 20% greater risk of binge drinking initiation during the following year. Furthermore, this effect was robust to adjustment for multiple putative confounding factors. An important implication is that parental control of adolescents' freely disposable income may reduce the risk of binge drinking initiation and related adverse consequences.

Acknowledgements

Tilmann von Soest's work with this research was supported by two grants from the Research Council

References

- 1. HILL K. G., WHITE H. R., CHUNG I. J., HAWKINS J. D., CATALANO R. F. Early adult outcomes of adolescent binge drinking: person-and variable-centered analyses of binge drinking trajectories, Alcoholism: Clinical and Experimental Research 2000: 24: 892-901.
- 2. BRUNBORG G. S., NORSTRÖM T., STORVOLL E. E. Latent developmental trajectories of episodic heavy drinking from adolescence to early adulthood: Predictors of trajectory groups and alcohol problems in early adulthood as outcome, Drug and alcohol review 2018: 37: 389-395.
- 3. VINER R. M., TAYLOR B. Adult outcomes of binge drinking in adolescence: findings from a UK national birth cohort, Journal of Epidemiology & Community Health 2007: 61: 902-907.
- 4. Mokdad A. H., Forouzanfar M. H., Daoud F., Mokdad A. A., El Bcheraoui C., Moradi-Lakeh M. et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013, The Lancet 2016: 387: 2383-2401.
- 5. MEEKS C. B. Factors influencing adolescents' income and expenditures, Journal of Family and Economic Issues 1998: 19: 131-150.
- 6. DARLING H., REEDER A. I., McGee R., Williams S. Brief report: Disposable income, and spending on fast food, alcohol, cigarettes, and gambling by New Zealand secondary school students, Journal of Adolescence 2006: 29: 837-843.
- 7. Frone M. R. Developmental consequences of youth employment, 1999.
- 8. LUTHAR S. S., SMALL P. J., CICIOLLA L. Adolescents from upper middle class communities: Substance misuse and addiction across early adulthood, Development and Psychopathology 2017: 30: 315-335.
- 9. KENDLER K. S., GARDNER C. O., HICKMAN M., HERON J., MACLEOD J., LEWIS G. et al. Socioeconomic status and alcohol-related behaviors in mid- to late adolescence in the Avon Longitudinal Study of Parents and Children, J Stud Alcohol Drugs 2014: 75: 541-545.
- 10. KWOK K. H. R., YUAN S. N. V. Parental socioeconomic status and binge drinking in adolescents: a systematic review, The American Journal on Addictions 2016: 25: 610-619.
- 11. SOTERIADES E. S., DIFRANZA J. R. Parent's socioeconomic status, adolescents' disposable income, and adolescents' smoking status in Massachusetts, American Journal of Public Health 2003: 93: 1155-1160.
- 12. LINTONEN T., NEVALAINEN J. Has the role of personal income in alcohol drinking among teenagers changed between 1983 and 2013: A series of nationally representative surveys in Finland, BMJ open 2017: 7: e013994.
- 13. LINTONEN T. P., WILSKA T.-A., KOIVUSILTA L. K., KONU A. I. Trends in disposable income among teenage boys and girls in Finland from 1977 to 2003, International Journal of Consumer Studies 2007: 31: 340-348.

- 14. BOSQUE-PROUS M., KUIPERS M. A. G., ESPELT A., RICHTER M., RIMPELÄ A., PERELMAN J. et al. Adolescent alcohol use and parental and adolescent socioeconomic position in six European cities, BMC public health 2017: 17: 646-646.
- 15. Bellis M. A., Hughes K., Morleo M., Tocque K., Hughes S., Allen T. et al. Predictors of risky alcohol consumption in schoolchildren and their implications for preventing alcohol-related harm, Subst Abuse Treat Prev Policy 2007: 2: 15.
- 16. BURDZOVIC ANDREAS J. Perceived harmfulness of various alcohol-and cannabis use modes: secular trends, differences, and associations with actual substance use behaviors among Norwegian adolescents, 2007-2015, Drug and alcohol dependence 2019: 197: 280-287.
- 17. BRUNBORG G. S., BYE E. K., ROSSOW I. Collectivity of drinking behavior among adolescents: An analysis of the Norwegian ESPAD data 1995-2011, Nordic studies on alcohol and drugs 2014: 31: 389-400.
- 18. PAPE H., ROSSOW I., BRUNBORG G. S. Adolescents drink less: How, who and why? A review of the recent research literature, Drug and alcohol review 2018: 37: S98-S114.
- 19. INCHLEY J C. D., BUDISAVLJEVIC S, TORSHEIM T, JÅSTAD A, COSMA A, ET AL. Spotlight on adolescent health and well-being. Findings from the 2017/2018 Health Behaviour in School-aged Children (HBSC) survey in Europe and Canada. International report Copenhagen: WHO Regional Office for Europe; 2020.
- 20. MACKINNON D. P., KRULL J. L., LOCKWOOD C. M. Equivalence of the mediation, confounding and suppression effect, Prevention science 2000: 1: 173-181.
- 21. CHAN G. C., LEUNG J., QUINN C., KELLY A. B., CONNOR J. P., WEIER M. et al. Rural and urban differences in adolescent alcohol use, alcohol supply, and parental drinking, The Journal of Rural Health 2016: 32: 280-286.
- 22. WILES N. J., LINGFORD-HUGHES A., DANIEL J., HICKMAN M., FARRELL M., MACLEOD J. et al. Socio-economic status in childhood and later alcohol use: A systematic review, Addiction 2007: 102: 1546-1563.
- 23. JABLONSKA B., LINDBERG L. Risk behaviours, victimisation and mental distress among adolescents in different family structures, Social Psychiatry and Psychiatric Epidemiology 2007: 42: 656-663.
- 24. HANSON M. D., CHEN E. Socioeconomic status and substance use behaviors in adolescents: the role of family resources versus family social status, Journal of health Psychology 2007: 12: 32-35.
- 25. RITTERMAN M. L., FERNALD L. C., OZER E. J., ADLER N. E., GUTIERREZ J. P., SYME S. L. Objective and subjective social class gradients for substance use among Mexican adolescents, Social science & medicine 2009: 68: 1843-1851.
- 26. WOOD M. D., READ J. P., MITCHELL R. E., BRAND N. H. Do parents still matter? Parent and peer influences on alcohol involvement among recent high school graduates, Psychology of Addictive Behaviors 2004: 18: 19-30.
- 27. LYNSKEY M. T., FERGUSSON D. M. Childhood conduct problems, attention deficit behaviors, and adolescent alcohol, tobacco, and illicit drug use, Journal of Abnormal Child Psychology 1995: 23: 281-302.
- 28. DAVIS K. D., WINSLER A., MIDDLETON M. Students' perceptions of rewards for academic performance by parents and teachers: Relations with achievement and motivation in college, The Journal of genetic psychology 2006: 167: 211-220.
- 29. BRUNBORG G. S., SCHEFFELS J., TOKLE R., BUVIK K., KVAAVIK E., ANDREAS J. B. Monitoring young lifestyles (MyLife) a prospective longitudinal quantitative and qualitative study of youth development and substance use in Norway, BMJ open 2019: 9: e031084.
- 30. GOODMAN E., ADLER N. E., KAWACHI I., FRAZIER A. L., HUANG B., COLDITZ G. A. Adolescents' perceptions of social status: development and evaluation of a new indicator, Pediatrics 2001: 108: e31-e31.
- 31. STATTIN H., KERR M. Parental monitoring: A reinterpretation, Child development 2000: 71: 1072-1085.
- 32. Kerr M., Stattin H. What parents know, how they know it, and several forms of adolescent adjustment: further support for a reinterpretation of monitoring, Developmental psychology 2000: 36: 366.
- 33. CAREY K. B., NEAL D. J., COLLINS S. E. A psychometric analysis of the self-regulation questionnaire, Addictive behaviors 2004: 29: 253-260.

Accepted

- 34. FRØYLAND L. R., STRAND N. P., VON SOEST T. Young in Norway Cross-sectional: Documentation of design, variables and scales Oslo: NOVA; 2010.
- 35. FURLONG M. J., O'BRENNAN L. M., YOU S. Psychometric properties of the Add Health School Connectedness Scale for 18 sociocultural groups, Psychology in the Schools 2011: 48: 986-997.
- 36. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017.
- 37. ENDERS C. K. Applied missing data analysis: Guilford press; 2010.
- 38. StataCorp. Stata multiple-imputation reference manual: Release 16. College Station, TX Author; 2019.
- 39. LITTLE R. J., RUBIN D. B. Statistical analysis with missing data: John Wiley & Sons; 2019.
- 40. HIRANO K., IMBENS G. W. The propensity score with continuous treatments, Applied Bayesian modeling and causal inference from incomplete-data perspectives 2004: 226164: 73-84.
- 41. BIA M., MATTEI A. A Stata package for the estimation of the dose-response function through adjustment for the generalized propensity score, The Stata Journal 2008: 8: 354-373.
- 42. KLEIN D. MIMRGNS: Stata module to run margins after mi estimate. Boston: Boston College Department of Economics; 2014.
- 43. GREENLAND S. Interpretation and choice of effect measures in epidemiologic analyses, American journal of epidemiology 1987: 125: 761-768.
- 44. PERELMAN J., ALVES J., PFOERTNER T. K., MOOR I., FEDERICO B., KUIPERS M. A. et al. The association between personal income and smoking among adolescents: A study in six European cities, Addiction 2017: 112: 2248-2256.
- 45. ZHANG B., CARTMILL C., FERRENCE R. The role of spending money and drinking alcohol in adolescent smoking, Addiction 2008: 103: 310-319.
- 46. BABOR T., CACTANO R., CASSWELL S., EDWARDS G., GIESBRECHT N., GRAHAM K. et al. Alcohol: No ordinary commodity. Research and public policy Oxford: Oxford University Press; 2010.

Table 1. Descriptive statistics and pairwise correlations between all study variables (N = 1,845).

N o.	Obser Variable ved range	Val id cas es	Mean (SD)/%	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Binge drinking 0-1 at T2	18 10	7.1%	-															
2	Income (in 100 0- NOK† per 11.25 week)	16 85	1.89 (1.95)	.14 *	-														
3	Male 0-1 gender	18 45	43.6%	.02	.0 1	-													
4	Grade (9th)	18 45	45.7%	.10 *	.0 6*	.0 1	-												
5	Urban 0-1 area	18 45	64.2%	.09 *	.0	.0 3	.00	-											
6	Parents non- cohabitat ion Religion prohibiti	18 40	26.5%	.07	.0 0	.0 3	.02	.01	-										
7	ng 0-1 alcohol consump tion	17 92	2.5%	.03	.0	.0 0	.01	.01	.04	-									
8	Family social 1-10 status	17 33	7.31 (1.66)	- .04	.1 4*	.0 5	.05 *	0.0 1	- .15 *	- .07 *	-								
9	Family financial 0-1 problems Low	18 06	7.7%	.13	.0	.0 2	.04	.02	.16 *	.08 *	.28 *	-							
1	parental 0-1 monitori ng Freq.	18 34	16.2%	.14	.1 0*	.1 1*	- .06 *	- .07 *	.07 *	.03	.10 *	.13	-						
1	seen father 1-4 intoxicat ed Freq.	17 11	1.08 (0.34)	.08	.0	.0	.04	.02	.03	.02	- .05	.09	.07	-					
1 2	seen mother 1-3 intoxicat ed Importan	17 05	1.05 (0.23)	.06	.0 6*	.0 0	.03	.00	.03	.01	.03	.05	.07	.44	-				
1	ce of alcohol 1-4 among peers	18 18	1.04 (0.29)	.10	.0 5*	.0	.00	.02	.02	.02	.05 *	.08	.10	.02	.02	-			
1 4	Frequenc y of light 1-5 drinking	18 14	1.06 (0.30)	.23	.0 4	.0 3	.10 *	.00	.01	- .02	.03	.06 *	.13	.15 *	.15 *	0.1 4*	-		
1 5	Self- regulatio 1-4 n	17 12	2.74 (0.67)	- .06 *	.0 2	- .0 4	.02	.08	.03	.03	.12 *	- .04	- .22 *	- .06 *	- .04	.01	- .06 *	-	

1 6	Conduct 0-12 problems	18 28	0.75 (1.04)	.18 *	.0 8*	.1 3*	.02	.00	.08 *	.04	.04	.12 *	.34	.10 *	.13	.11 *	.31 *	.14 *	
1 7	School connecte 1-5 dness	18 27	4.33 (0.74)	- .12 *	.0 1	.1 1*	- .15 *	.06	- .07 *	- .03	.21	- .18 *	- .15 *	- .10 *	- .06 *	- .10 *	- .12	.18	- .22 *

Note: *P <0.05 †100 NOK \approx 10 EUR. The number of missing cases for each variable is *N* (1845) minus the number of valid cases.

Table 2. Binge drinking initiation at T2 regressed on income and possible confounding variables (*N* = 1,845).

	Crude models ^a		Adjusted model ^b				
	OR (95% CI)	Р	OR (95% CI)	Р			
Income (in 100° NOK per week)	1.22 (1.11, 1.32)	<0.001	1.19 (1.08, 1.30)	<0.001			
Male gender	1.11 (0.77, 1.59)	0.577	1.04 (0.70, 1.55)	0.837			
Grade (9th)	2.11 (1.30, 3.42)	0.002	1.96 (1.09, 3.54)	0.026			
Urban area	0.50 (0.33, 0.78)	0.002	0.50 (0.30, 0.84)	0.009			
Parents non-cohabitation	1.71 (1.18, 2.48)	0.004	1.41 (0.92, 2.16)	0.111			
Religion prohibiting alcohol consumption	0.29 (0.04, 2.19)	0.229	0.24 (0.03, 1.85)	0.171			
Family social status	0.93 (0.82, 1.04)	0.184	1.01 (0.89, 1.14)	0.936			
Family financial problems	3.41 (2.05, 5.69)	<0.001	2.21 (1.27, 3.85)	0.005			
Low parental monitoring	3.19 (2.25, 4.52)	<0.001	1.65 (1.04, 2.61)	0.032			
Freq. seen father intoxicated	1.80 (1.34, 2.41)	<0.001	1.27 (0.85, 1.88)	0.238			
Freq. seen mother intoxicated	2.06 (1.21, 3.49)	0.008	0.96 (0.39, 2.34)	0.927			
Importance of alcohol among peers	2.03 (1.37, 3.01)	<0.001	1.49 (0.86, 2.60)	0.155			
Frequency of light drinking	3.89 (2.22, 6.80)	<0.001	2.29 (1.25, 4.16)	0.007			
Self-regulation	0.73 (0.57, 0.93)	0.010	0.94 (0.71, 1.24)	0.659			
Conduct problems	1.35 (1.23, 1.47)	<0.001	1.16 (1.02, 1.33)	0.020			
School connectedness	0.61 (0.51, 0.72)	<0.001	0.83 (0.70, 0.98)	0.033			

Note:

OR = Odds ratio. CI = Confidence interval. CIs were based on cluster-robust standard errors.

^a Heavy drinking initiation regressed on each variable in separate models.

^b All variables entered simultaneously. Estimates are pooled from ten datasets with imputed missing values using predictive mean matching.

 $[^]c$ 100 NOK \approx 10 EUR.

Table 3. Logistic regression models with interaction terms to test moderation.

Nandal #	teally do distance tion to use	Income	2	Interaction term		
Model #	Included interaction term	OR (95% CI)	Р	OR (95% CI)	Р	
Model 1	None	1.19 (1.08,	<0.00 1	-		
Model 2	Income x gender	1.30) 1.24 (1.12,	<0.00	0.92 (0.79,	0.29	
0 1	me Agender	1.38)	1	1.07)	5	
Model 3	Income x grade	1.27 (1.11,	<0.00	0.90 (0.78,	0.16	
		1.45)	1	1.05)	9	
Model 4	Income x urban area	1.22 (1.06,	0.005	0.96 (0.79,	0.64	
(0)		1.39)	<0.00	1.15) 1.00 (0.79,	5 1.00	
Model 5	Income x parents non-cohabitation	1.19 (1.09, 1.30)	<0.00 1	1.00 (0.79,	0	
-	Income x religion prohibiting alcohol	1.19 (1.08,	<0.00	0.85 (0.68,	0.13	
Model 6	consumption	1.19 (1.00,	1	1.05)	2	
-		1.20 (1.09,		0.98 (0.74,	0.90	
Model 7	Income x low perceived social status ^b	1.32)	1	1.31)	9	
		1.20 (1.09,	_	0.95 (0.72,	0.71	
Model 8	Income x family financial problems	1.31)	1	1.25)	6	
		1.21 (1.08,		0.96 (0.78,	0.68	
Model 9	Income x low parental monitoring	1.35)	0.001	1.18)	5	
Model		1.20 (1.08,	< 0.00	0.96 (0.70,	0.78	
10	Income x seen father intoxicated ^a	1.32)	1	1.32)	8	
Model	Income x seen mother intoxicated ^a	1.21 (1.11,	< 0.00	0.62 (0.39,	0.04	
11	income x seen mother intoxicated	1.33)	1	0.99)	3	
Model	Income x alcohol highly important among	1.20 (1.09,	<0.00	0.93 (0.65,	0.69	
12	peers ^a	1.31)	1	1.34)	5	
Model	Income x light drinking ^a	1.23 (1.12,	<0.00	0.66 (0.49,	0.00	
13	meonic x light drinking	1.35)	1	0.89)	6	
Model	Income x high self-regulation b	1.18 (1.07,	0.001	1.03 (0.80,	0.82	
14	Theome Amgreen regulation	1.31)		1.32)	7	
Model	Income x high conduct problems b	1.23 (1.11,	<0.00	0.90 (0.73,	0.30	
15		1.36)	1	1.10)	2	
Model 16	Income x low school connectedness b	1.22 (1.12, 1.32)	<0.00 1	0.88 (0.69, 1.12)	0.30 2	

Note:

Binge drinking initiation regressed on income and the indicated interaction terms in separate models, adjusted for all other covariates.

Estimates are pooled from ten datasets with imputed missing values using predictive mean matching.

OR = Odds ratio. CI = Confidence interval. CIs were based on cluster-robust standard errors.

^a Variable dichotomized (recoded 1=0, 2-4=1).

^b Variable dichotomized (≤1 SD above mean = 0, >1 SD above mean = 1).

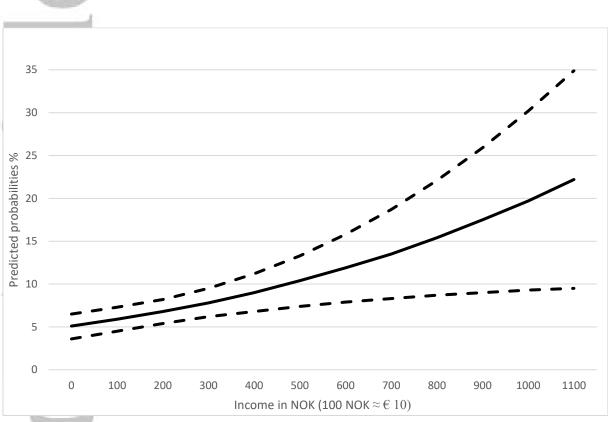


Figure 1:

Predicted probabilities (%) of binge drinking initiation in the next 12 months by level of weekly income (in NOK) among Norwegian 13 and 14 year-olds. Broken lines are upper and lower 95% confidence intervals.

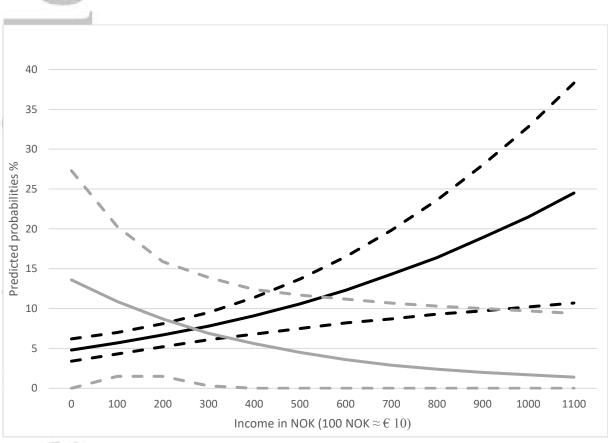


Figure 2:

Predicted probabilities (%) of binge drinking initiation in the next 12 months by level of weekly income for adolescents who have not (black lines) and who have (grey lines) seen their mother intoxicated. Broken lines are upper and lower 95% confidence intervals.

Figure 3:

Predicted probabilities (%) of binge drinking initiation in the next 12 months by level of weekly income for adolescents who have not (black lines) and who have (grey lines) engaged in light drinking at T1. Broken lines are upper and lower 95% confidence intervals.