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Rémy Slama1*

1Inserm, CNRS, University Grenoble Alpes, Team of Environmental Epidemiology Applied to

Reproduction and Respiratory Health, IAB, Grenoble, France, 2ISGlobal, Barcelona, Spain, 3Universitat

Pompeu Fabra (UPF), Barcelona, Spain, 4CIBER Epidemiologı́a y Salud Pública (CIBERESP), Madrid,

Spain, 5Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania,
6Norwegian Institute of Public Health, Oslo, Norway, 7Department of Preventive Medicine, Keck

School of Medicine, University of Southern California, Los Angeles, CA, USA, 8Institute for Risk

Assessment Sciences (IRAS), Division of Environmental Epidemiology (EEPI), Utrecht University,

Utrecht, The Netherlands, 9Mary MacKillop Institute for Health Research, Australian Catholic

University, Melbourne, Australia, 10Bradford Institute for Health Research, Bradford Teaching

Hospitals NHS Foundation Trust, Bradford, UK, 11MRC Centre for Environment and Health, School of

Public Health, Imperial College London, London, UK and 12Department of Social Medicine, University of

Crete, Greece

*Corresponding author. Inserm, CNRS, University Grenoble-Alpes, Team of Environmental Epidemiology Applied to

Reproduction and Respiratory Health, Institute for Advanced Biosciences, Joint Research Center, Rond-Point de la

Chantourne, 38700 La Tronche, France. E-mail: remy.slama@univ-grenoble-alpes.fr

Editorial decision 31 January 2020; Accepted 31 January 2020

Abstract

Background: Several environmental contaminants were shown to possibly influence fe-

tal growth, generally from single exposure family studies, which are prone to publication

bias and confounding by co-exposures. The exposome paradigm offers perspectives to

avoid selective reporting of findings and to control for confounding by co-exposures. We

aimed to characterize associations of fetal growth with the pregnancy chemical and ex-

ternal exposomes.
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Methods: Within the Human Early-Life Exposome project, 131 prenatal exposures were

assessed using biomarkers and environmental models in 1287 mother–child pairs from

six European cohorts. We investigated their associations with fetal growth using a

deletion-substitution-addition (DSA) algorithm considering all exposures simulta-

neously, and an exposome-wide association study (ExWAS) considering each exposure

independently. We corrected for exposure measurement error and tested for exposure–

exposure and sex–exposure interactions.

Results: The DSA model identified lead blood level, which was associated with a 97 g

birth weight decrease for each doubling in lead concentration. No exposure passed the

multiple testing-corrected significance threshold of ExWAS; without multiple testing cor-

rection, this model was in favour of negative associations of lead, fine particulate matter

concentration and absorbance with birth weight, and of a positive sex-specific associa-

tion of parabens with birth weight in boys. No two-way interaction between exposure

variables was identified.

Conclusions: This first large-scale exposome study of fetal growth simultaneously con-

sidered >100 environmental exposures. Compared with single exposure studies, our ap-

proach allowed making all tests (usually reported in successive publications) explicit.

Lead exposure is still a health concern in Europe and parabens health effects warrant fur-

ther investigation.
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Introduction

Humans live in an environment that includes chemical,

physical, biological and social factors that can influence

health. The ‘exposome’ concept, encompassing the totality

of human environmental exposures from conception on-

ward, calls for a complete consideration of these environ-

mental exposures.1 It covers a very large number of

factors: the chemical exposome alone includes tens of

thousands of identified natural and man-made chemicals.

Research is currently at an early stage of characterizing

these exposures and their associations with human health,

in isolation or considering possible interactions. Several

disciplines, in particular toxicology and epidemiology,

contribute to this effort. Most epidemiological research

aimed at characterizing associations of environmental

factors with health have so far relied on the assessment of

exposure to a single compound or compound family (e.g.

atmospheric pollutants). A few studies have simultaneously

considered more than a couple of families of exposures, re-

lating them to outcomes such as birth weight,2–6 fecun-

dity,7,8 type II diabetes mellitus,9 respiratory health10 or

mortality.11

The developmental period (from the prenatal period to

the first years of life) is considered a particularly relevant

exposure window. Exposures during this period could af-

fect the body structure, physiology, epigenetic marks and

metabolism. These alterations may in turn lead to adverse

health effects in the short- and long-terms.12 One of the

first health parameters that can be studied in relation to

the early-life exposome is fetal growth (i.e. birth weight

Key Messages

• We conducted the first exposome study considering the possible association of fetal growth with >100 exposures,

some, such as mono-4-methyl-7-hydroxyoctyl (OHMiNP) and mono-4-methyl-7-oxooctyl (OXOMiNP) phtalate metabo-

lites, being investigated in humans for the first time.

• We considered possible sex-specific effects and exposures interactions effects on fetal growth, and accounted for ex-

posure measurement error in >1200 children from the Human Early-Life Exposome European cohorts.

• Lead maternal pregnancy exposure was associated with decreased fetal growth.

• Parabens health effects on fetal growth in male offspring were suggested, with weaker evidence.

• Associations of all exposures tested are provided for future exposure-specific meta-analyses.
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corrected for gestational duration), which has relevance

for later health.13,14

Human studies based on a single exposure family

have reported fetal growth to be probably sensitive to

particulate matter,15 altitude (or atmospheric pres-

sure)16 and maternal active and passive smoking.17

Associations with fetal growth were also reported for

polychlorinated biphenyls (PCBs),18 metals such as cad-

mium19 and lead,20 and per- and poly-fluoroalkyl sub-

stances,21 with lower and varying levels of evidence.

Among non-persistent chemicals with strong within-

subject temporal variability, compounds such as para-

bens22 or organophosphate pesticides5 have so far been

considered by very few studies: in the case of bisphenol

A and of some phthalates, several studies exist but lack

consistency,23 which may be partly attributed to studies

generally using a single spot urine sample to assess expo-

sure to these non-persistent compounds. Indeed, reliance

on spot biospecimens causes attenuation bias in the ex-

posure–health association under the hypothesis of

classical-type measurement error.24

At least five exposome-wide studies have been con-

ducted in relation to fetal growth,2–6 considering up to 57

chemicals from 6 families.5 From a methodological stand-

point, such exposome research raises many challenges.

These include the ability to consider a large number of

exposures, measurement error (which is expected to be dif-

ferential across exposures, i.e. its amplitude varies depend-

ing on the biological persistence of each compound24), the

correction for confounding by co-exposures, low statistical

power, and the identification of statistical or biological

interactions between exposures.25–27 Among the existing

studies of birth weight sensitivity to multiple environmen-

tal contaminant families,2–6 two considered possible sex-

specific effects on birth weight,2,4 and one additionally

considered possible interactions between exposures.2 With

one possible exception relying on the pooling of two urine

samples,5 most of these studies are likely to suffer from

strong exposure measurement error for non-persistent

compounds, which are the chemicals most produced

today.5

In this study, we aimed to evaluate the relationship be-

tween multiple environmental exposures from both the in-

ternal (including e.g. urinary and blood biomarkers, diet)

and urban (urban environment, meteorological factors,

water disinfection by-products and atmospheric pollu-

tants) exposomes and fetal growth: we considered issues

such as possible confounding by co-exposures, exposure

measurement error, statistical interactions between expo-

sures, and between exposures and offspring sex.

Methods

Study population

We relied on mother–child pairs from six European birth

cohorts [Born in Bradford (BiB; UK), Étude des

Déterminants Pré et Postnatals du Développement et de la

Santé de l’Enfant (EDEN; France), Infancia y Medio

Ambiente (INMA; Spain), Kaunas Cohort (KANC;

Lithuania), Norwegian Mother, Father and Child Cohort

Study (MoBa; Norway) (see Supplementary Material S1,

available as Supplementary data at IJE online) and Mother

Child Cohort in Crete (RHEA; Greece)] for whom 131

exposures were assessed during pregnancy (Table 1) as

part of the Human Early-Life Exposome (HELIX) project.

HELIX is one of the first large prospective exposome

projects on early-life exposures.28,29 It aims to characterize

the early-life exposure to multiple environmental factors

and its association with child health. The cohorts included

�32 000 mother–child pairs with harmonized information

on the urban exposome, among which 1301 pairs were

characterized for their internal exposome. From these, we

obtained birth weight and gestational duration data in

1287 mother–child pairs, who constitute our study popula-

tion. The study was approved by the relevant ethical com-

mittees from each country and an informed consent form

was signed by all participants or the parents of the

children.

Birth-weight data

Birth weight was collected as part of the study protocol of

each cohort and harmonized in the context of the

European Study of Cohorts for Air Pollution Effects

(ESCAPE) project.15 Whenever possible, gestational dura-

tion was defined as the interval between the start of the

last menstruation and delivery; when the date of the last

menstruation was missing, ultrasound-based estimates

were used; when both measures were missing, obstetrician

estimates were used.

Characterization of the pregnancy exposome

We assessed environmental exposures (i) using geographic

information systems, remote sensing and spatio-temporal

modeling; (ii) from questionnaires; and (iii) from exposure

biomarkers assessed in urine and blood samples collected

during pregnancy. The exposure assessment is described in

Supplementary Material S2, available as Supplementary

data at IJE online,30 and exposure levels are described in

Supplementary Table S1, available as Supplementary data
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at IJE online. Most of the exposure biomarkers had high

detection frequencies (78% had >90% detected levels).

Values below the limits of detection were imputed using

the quantile regression approach for the imputation of left-

censored missing data.31 After transforming exposures to

approach normality, missing data for exposures and ad-

justment factors were imputed using the chained equations

method.32 Twenty datasets were imputed in order to ac-

count for the uncertainty associated with the imputation

procedure (see Supplementary Material S3, available as

Supplementary data at IJE online, for more details).30 All

continuous exposure variables were standardized by the

inter-quartile range (IQR). We used version 2.2 of the

HELIX exposome dataset.

For biomarker-based exposures, the structure of mea-

surement error is expected to be of classical-type, a situa-

tion in which the impact of exposure measurement error

on the dose–response estimates can be limited by statistical

modelling if information on the within-subject compound

variability is available (it can either be estimated from re-

peated measurements or be provided by external sour-

ces).24 Exposures assessed from questionnaires or

environmental models are also measured with error, but

their structure is unlikely to be of classical type. We cor-

rected exposure measurement error of classical-type by ap-

plying regression calibration, a regression method that

aims to estimate the true exposure value based on the ex-

posure within-subject temporal variability, and on the in-

formation provided by the other exposures (see

Supplementary Material S4, available as Supplementary

data at IJE online).33 Since no repeated biospecimens were

collected in our study population, we had to rely on exter-

nal estimates of intraclass-correlation coefficients (ICCs)

issued from other studies in pregnant women; ICCs for 26

exposure variables could be identified (Supplementary

Table S2, available as Supplementary data at IJE online).

Overall statistical analyses strategy

Our primary analysis relied on the deletion-substitution-

addition (DSA) variable selection algorithm; we addition-

ally used an exposure-by-exposure exposome-wide associ-

ation study (ExWAS) analysis. In previous simulation

studies investigating an exposome context similar to ours,

DSA showed a lower false discovery rate compared with

other families of linear regression-based methods.27 This

model can be expanded to consider interaction terms, al-

though the expected sensitivity is lowered.25 ExWAS,

which was expected to have a greater sensitivity than DSA,

at the cost of a much higher false discovery rate,25,27 was

secondarily used to allow comparisons with former single

exposure studies.

All models were adjusted for a set of pre-defined adjust-

ment factors: gestational duration (simple and quadratic

terms), sex of the newborn (determined by clinical exami-

nation at birth), parity, maternal height, maternal weight

before pregnancy (using a broken stick model with a knot

at 60 kg), number of cigarettes smoked per day by the

mother during the second trimester of gestation, maternal

education and season of conception. We also adjusted for

the cohort using a fixed effect variable.34

Multi-exposure DSA analysis

DSA is an iterative linear regression variable selection algo-

rithm that, at each iteration, tests for the removal of a vari-

able, the replacement of one variable by another, or the

addition of a variable to the model.35 Only linear terms

were considered in the main model, and the maximum

model size was set to 50, a number that was never reached.

The final model was selected by minimizing the value of

the root mean squared error of predictions using 5-fold

cross-validated data.

We adapted the DSA model in two ways: (i) by stacking

the imputed datasets and running DSA on this extended

dataset, using weights not to artificially inflate the number

of observations.36 This method provides unbiased esti-

mates if the estimates based on a single data set are unbi-

ased.37 (ii) To cope with model instability due to cross-

validation, we ran DSA on our stacked dataset 100 times,

and included in a final linear regression model all the expo-

sure variables that were selected in at least five DSA runs.

We first applied DSA with terms of degree one (i.e., no

polynomial of degree two or interaction terms) only.

Second, we applied DSA with all exposure–exposure, sex–

exposure and cohort–exposure interaction terms, by allow-

ing all quadratic terms and two-way interaction terms be-

tween all exposures and adjustment factors to be selected.

To limit any impact of colinearity, we included in the

DSA procedures only one a priori selected variable for com-

pounds/factors that were estimated over different time win-

dows or in different buffers, and for groups of variables

whose absolute correlation coefficients were >0.90 (the var-

iable with the smallest proportion of imputed values was se-

lected). Following these criteria, 85 out of the 131 exposure

variables entered the DSA selection method (see Table 1).

Exposome-wide association study

The ExWAS approach consists of a covariate-by-covariate

estimation of the exposure–outcome association through

independent linear regression models.9 For each exposure

variable, results from the 20 imputed datasets were aggre-

gated using Meng and Rubin’s rule for multiple imputed
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Table 1. List of exposures assessed during pregnancy

Exposure family Compound/factor Unit Exposure window/categories

Urban exposome

Built environment Bus lines

Bus stops

Building density

Connectivity density

Number of facilities

Number of facility types

Land use, Shannon’s evenness index

Population density

Walkability index

None; at least one

None; at least one

Number of stops/km2

m2 with buildings/km2

Number of intersections/ km2

Number of facilities/km2

Number of facility types/km2

Index

Inhabitants/km2

Index

100ma, 300 m, 500 m buffera

100 m buffera

300 m, 500 m buffer a

100 ma, 300 m buffer

100 ma, 300 m buffer

300 m buffer

300 m buffer

300 m buffer

At pregnancy address

At pregnancy address

Atmospheric pollutants NO2

PM10 mass concentration

PM2.5 mass concentration

PM2.5 absorbance

mg/m3

mg/m3

mg/m3

10�5/m

T1a, T2a, T3a, pregnancy

T1a, T2a, T3a, pregnancy

T1a, T2a, T3a, pregnancy

T1a, T2a, T3a, pregnancy

Road traffic noise Day and night sound pressure level

Night sound pressure level

A-weighted dB, tertiles (<55;

55–60; 60–65; >65)

A-weighted dB, tertiles (<50;

50–55; 55–60; >60)

At pregnancy address

At pregnancy addressa

Meteorological

variables

Humidity

Land surface temperature from satellite

image

Pressure

Temperature

Percentage
�C

Bar
�C

T1a, T2a, T3a, pregnancy

At pregnancy addressa

T1a, T2a, T3a, pregnancy

T1a, T2a, T3a, pregnancy

Surrounding natural

space

Blue space

Green space

NDVI

Absence; presence

Absence; presence

Index

300m buffer

300m buffer

100m, 300 ma, 500 m buffera

Road traffic Inverse distance to nearest road

Traffic load of major roads

Traffic load of all roads

Traffic density on nearest road

m�1

None; at least one

Number of vehicles � m of road

segments/day

Number of vehicles/day

From pregnancy address

100 m buffera

100m buffer

From pregnancy address

Water disinfection by-

products

Total brominated trihalomethanes

Chloroform

Total trihalomethanes

mg/l of water

mg/l of water

mg/l of water

T1a, T2a, T3a, pregnancy

T1a, T2a, T3a, pregnancy

T1a, T2a, T3a, pregnancy

Internal exposome

Metals and essential

elements

Arsenic

Cadmium

Cobalt

Caesium

Copper

Mercury

Manganese

Molybdenum

Lead

Thallium

mg/l of blood

mg/l of blood

mg/l of blood

mg/l of blood

mg/l of blood

mg/l of blood

mg/l of blood

mg/l of blood

mg/l of blood

Undetected; detected in blood

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Lifestyle Alcohol consumption

Cereal consumption

Dairy products consumption

Fast food consumption

Fish and seafood consumption

Folic acid supplementation

Fruit consumption

No; yes

Number of times/week, tertiles

(<9.0; 9.0–27.3; >27.3)

Number of times/week, tertiles

(<17.1; 17.1–27.1; >27.1)

Number of times/week, tertiles

(<0.25; 0.25–0.83; >0.83)

During pregnancy

During pregnancy

During pregnancy

During pregnancy

During pregnancy

During pregnancy

During pregnancy

(Continued)
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Table 1. Continued

Exposure family Compound/factor Unit Exposure window/categories

Legume consumption

Meat consumption

Vegetables consumption

Walking and/or cycling activity

Exercise or sport activity

Number of times/week, tertiles

(<1.9; 1.9–4.1; >4.1)

0: no; 1: yes

Number of times/week, tertiles

(<9.6; 9.6–18.2; >18.2)

Number of times/week, tertiles

(<0.5; 0.5–2.0; >2.0)

Number of times/week, tertiles

(<6.5; 6.5–10.0; >10.0)

Number of times/week, tertiles

(<8.8; 8.8–16.5; >16.5)

None; sometimes; often; very often

Low; medium or high

During pregnancy

During pregnancy

During pregnancy

T1a, T3

T1a, T3

Organochlorine com-

pounds (OCs)

DDE (Dichlorodiphenyldichloroethylene)

DDT (Dichlorodiphenyltrichloroethane)

HCB (Hexachlorobenzene)

PCBs (Polychlorinated biphenyls)

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

PCB118

PCB138

PCB153

PCB170

PCB180a

Sum of the PCBs 118, 138,

153, 170 and 180

Polybrominated

diphenyl ethers

(PBDEs)

PBDE47

PBDE153

ng/g of lipids in serum or plasma

ng/g of lipids in serum or plasma

Spot pregnancy sample

Spot pregnancy sample

Organophosphate (OP)

pesticide metabolites

Diethyl dithiophosphate (DEDTP)

DEP (Diethyl phosphate)

DETP (Diethyl thiophosphate)

DMDTP (Dimethyl dithiophosphate)

DMP (Dimethyl phosphate)

DMTP (Dimethyl thiophosphate)

Detected; undetected in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy samplea

Spot pregnancy sample

Spot pregnancy sample

Per- and poly-fluo-

roalkyl substances

(PFASs)

PFHxS (Perfluorohexane sulfonate)

PFNA (Perfluorononanoate)

PFOA (Perfluorooctanoate)

PFOS (Perfluorooctane sulfonate)

PFUnDA (Perfluoroundecanoate)

mg/l in serum or plasma or whole

blood

mg/l in serum or plasma or whole

blood

mg/l in serum or plasma or whole

blood

mg/l in serum or plasma or whole

blood

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Phenols BPA (Bisphenol A)

MEPA (Methyl paraben)

ETPA (Ethyl paraben)

OXBE (Oxybenzone)

PRPA (Propyl paraben)

BUPA (N-Butyl paraben)

TRCS (Triclosan)

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Phthalate metabolites Sum of DEHP (Di-ethylhexyl phthalate)

metabolites

MBzP (Mono benzyl phthalate)

MECPP (Mono-2-ethyl 5-carboxypentyl

phthalate)

MEHHP (Mono-2-ethyl-5-hydroxyhexyl

phthalate)

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy samplea

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

(Continued)
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data.38 We applied both the Benjamini and Yekutieli false

discovery rate correction39 and the Li et al. family wise er-

ror rate correction40 approaches for multiple hypothesis

testing.

Investigating for interactions in ExWAS was done in

three independent steps. We first performed an ExWAS in-

cluding a cohort–exposure interaction term; we relied on

the I2 statistic to measure the between-cohort heterogene-

ity of the exposure association with birth weight (the lower

the I2, the more consistent the association across

cohorts).41 Second, we performed an ExWAS incorporat-

ing a sex–exposure interaction term. Finally, we incorpo-

rated successively all exposure–exposure interaction terms

(including quadratic terms for each exposure).

Sensitivity analyses

Analyses were repeated (i) without correcting biomarkers

for exposure measurement error, and (ii) excluding the

observations related to the mothers who smoked during

pregnancy, in order to account for the fact that tobacco

smoke contains several metals, including cadmium, arsenic

and lead, as well as particulate matter.

All analyses were performed using the R software ver-

sion 3.4 (www.r-project.org). The R code is provided in

Supplementary Material S5, available as Supplementary

data at IJE online.

Results

Study population

At inclusion, mothers were on average (standard deviation)

30.8 (4.9) years old, with a pre-pregnancy weight of 67.7

(14.3) kg (Supplementary Table S3, available as

Supplementary data at IJE online). Among the 1287 chil-

dren, birth weight was on average 3380 g (5th–95th centi-

les, 2550–4240 g, Figure 1). Children were born on

average after 39.6 weeks of gestation; 63 (5%) were born

before 37 completed gestational weeks.

Association of the exposome with fetal growth

from the main model (DSA)

Maternal lead blood concentration was selected by the

DSA method; the birth weight change was �98 g [95%

confidence interval (CI): �182; �14; exposure selected in

14 out of 100 DSA runs] for a unit increase in log2-trans-

formed lead exposure, i.e. for each doubling in lead con-

centration. When we allowed for two-way interactions, the

DSA model did not select any exposure–exposure, sex–ex-

posure or cohort–exposure interaction term.

No exposure displayed an absolute correlation value

with lead above 0.35, and the lead–birth weight associa-

tion was robust to co-exposure adjustment (when adjusting

on one other exposure, birth weight decrease was in the

90–104 g range for each doubling in lead concentration).

Association of the exposome with fetal growth

from ExWAS approach

No exposure–outcome association was detected in ExWAS

when correcting for multiple hypotheses testing. Table 2

reports the three exposures with an (uncorrected) P-value

below 5%: lead (mean birth weight change for each dou-

bling in lead concentration: �98 g, 95% CI: �182; �14),

particulate matter in the (ambient) air with aerodynamical

diameter <2.5 mm (PM2.5) absorbance in the third

Table 1. Continued

Exposure family Compound/factor Unit Exposure window/categories

MEHP (Mono-2-ethylhexyl phthalate)

MEOHP (Mono-2-ethyl-5-oxohexyl

phthalate)

MEP (Monoethyl phthalate)

MiBP (Mono-iso-butyl phthalate)

MnBP (Mono-n-butyl phthalate)

OHMiNP (Mono-4-methyl-7-hydroxyoctyl

phthalate)

OXOMiNP (Mono-4-methyl-7-oxooctyl

phthalate)

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

mg/g of creatinine in urine

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

Spot pregnancy sample

NDVI, Normalized difference vegetation index; NO2, nitrogen dioxide; PM2.5, particulate matter in the ambient air with an aerodynamical diameter <2.5 mm;

PM10, particulate matter in the ambient air with an aerodynamical diameter <10 mm; T1, averaged over the first trimester of pregnancy; T2, averaged over the

second trimester of pregnancy; T3, averaged over the third trimester of pregnancy.
aThe variable was excluded from the DSA procedure for colinearity reasons, i.e. either another variable was included measuring the same compound/factor esti-

mated over a different time window/buffer, or it displayed an absolute pairwise (Pearson, polyserial or polychoric coefficient, as appropriate) correlation coeffi-

cient >0.90 with another variable (PCB180 and MECCPP displayed a high correlation with PCB153 and MEOHP, respectively).
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trimester of pregnancy (mean birth weight change for a

log-transformed exposure increase of 0.4: �50 g, 95% CI:

�94; �5) and PM2.5 mass concentration in the third tri-

mester of pregnancy (mean birth weight change for an ex-

posure increase of 4.5 mg/m3: �33 g, 95% CI: �66; �1).

Associations of these three exposures with birth weight

were homogeneous across cohorts (I2 < 10%, Figure 2,

Supplementary Table S4, available as Supplementary data

at IJE online); they were stronger, both in terms of P-value

and of effect size, when tested only on subjects whose ex-

posure had not been imputed (Supplementary Table S5,

available as Supplementary data at IJE online).

Modification by offspring sex of the effect measure of

exposure was suggested (i.e. interaction P-value<0.05) in

ExWAS for ethyl-paraben (P¼ 0.0060), propyl-paraben

(P¼ 0.0062) and for molybdenum (P¼ 0.046), with posi-

tive estimated parameters in male births and trends for a

negative parameter in female births (Table 3 and Figure 3).

No exposure–exposure interaction was detected in ExWAS

when correcting for multiple hypotheses testing.

Sensitivity analyses

When analyses were repeated without correcting bio-

markers for exposure measurement error, the differences

were that: (i) lead was not identified in the DSA analysis;

(ii) dimethyl thiophosphate (DMTP), a non-persistent bio-

marker of organophosphate pesticides exposure (ICC,

0.20) was identified in ExWAS (adjusted birth weight

Table 2. Adjusted associations between the exposome and fetal growth (ExWAS approach)

Exposure variable Exposure family Transformation IQR ICC ExWAS

Estimate (95% CI)a P-value

Lead Metals and essential elements Log2 0.5 0.73 �48.6 (�90.5; �6.7) 0.023

PM2.5 absorbance, 3rd trimester of

pregnancy

Atmospheric pollutants Ln 0.4 b �49.9 (�94.4; �5.5) 0.028

PM2.5 mass concentration, 3rd trimester

of pregnancy

Atmospheric pollutants None 4.5 b �33.4 (�66.3; �0.6) 0.046

CI, Confidence interval of the coefficient estimate; ICC, intra-class coefficient of correlation; IQR, inter-quartile range of the (normalized and corrected for

measurement error) exposure variable.
aEstimates are given as a change in mean birth weight (g) for each inter-quartile range (defined over all observations) increase in (normalized and corrected for

measurement error) exposure. Only exposures with an uncorrected P-value < 5% are reported. Associations were adjusted for gestational duration (simple and

quadratic terms), sex of the newborn, parity, maternal height, maternal weight before pregnancy (using a broken stick model with a knot at 60 kg), maternal

smoking during the second trimester of pregnancy, maternal education, season of conception and cohort (fixed effect variable).
bAtmospheric pollutants were not assumed to suffer from classical-type measurement error; no measurement error correction based on the ICC was applied.

Figure 1 Birth weight distribution displayed overall among all cohorts (A) and as boxplots by cohort (B).
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change, 33.9 g, 95% CI: 2.7; 65.1, P¼ 0.033,

Supplementary Table S5, Supplementary Figure S1, avail-

able as Supplementary data at IJE online); for this expo-

sure, there was some evidence of an effect measure

modification by sex in favour of a stronger positive slope

in male births (data not shown); (iii) modification of the ef-

fect measure by sex was weakened for ethyl-paraben (inter-

action P-value¼0.20).

When excluding the observations related to the women

who smoked during pregnancy (i.e. restricting to 1124

mother–child pairs, Supplementary Figure S2, available as

Supplementary data at IJE online), the ExWAS results

yielded similar coefficient values, which was not in favour

of a strong residual confounding bias due to active

smoking.

Discussion

To our knowledge, this study is the first to simultaneously

consider the possible associations of fetal growth with

about 100 exposures from 15 families of environmental

factors. The statistical analysis of this cohort of 1287

mother–child pairs pointed towards a decreased fetal

growth in association with lead maternal exposure. With a

more moderate strength of evidence, we confirmed associa-

tions of PM2.5 absorbance and mass concentration with fe-

tal growth; we provided some evidence for modification by

sex of the effects of ethyl- and propyl-parabens, which

tended to be positively associated with birth weight in

male births only. All of these associations had, to varying

extents, some a priori plausibility based on the epidemio-

logical or toxicological literature. There was no evidence

of interaction between any pair of exposures, in a context

of low statistical power to detect such interactions.25

The exposome approach that we adopted relies on vali-

dated and sensitive exposure metrics for most exposures,

and aimed at better characterizing factors possibly affect-

ing fetal growth and at considering simultaneously expo-

sures that had generally been considered on a compound-

by-compound basis in humans. For many exposures, such

as some organophosphate or phthalate metabolites, our

study was the largest, and for compounds such as mono-4-

methyl-7-hydroxyoctyl (OHMiNP) and mono-4-methyl-7-

Table 3. Adjusted effect measure of exposures on birth weight by offspring sex (ExWAS approach)

Exposure Exposure family Transformation IQR ICC Interaction

P-value

Sex Estimate (95% CI)a P-value

Ethyl-paraben Phenols Log2 3.7 0.44 0.0060 Female �43 (�135; 49) 0.36

Male 112 (31; 193) 0.007

Propyl-paraben Phenols Log2 3.0 0.44 0.0062 Female �61 (�142; 20) 0.14

Male 92 (11; 173) 0.026

Molybdenum Metals and essential elements Log2 0.4 b 0.046 Female �19 (47; 8.2) 0.15

Male 24 (�8.6; 56) 0.17

N-Butyl-paraben Phenols Log2 4.3 0.51 0.055 Female �14 (�114; 86) 0.78

Male 100 (5.6; 195) 0.038

Cadmiumb Metals and essential elements Log2 0.7 0.78 0.060 Female 1.0 (�57; 59) 0.97

Male �55 (�107; 3.6) 0.036

Lead b Metals and essential elements Log2 0.5 0.73 0.092 Female �6.0 (�73; 61) 0.86

Male �76 (�128; �24) 0.0041

Arsenic Metals and essential elements Log2 2.3 0.42 0.11 Female �133 (�258; �6.6) 0.039

Male �24 (�149; 101) 0.71

PFOSb Per- and poly-fluoroalkyl

substances

Log2 0.7 b 0.14 Female �54 (�98; �10) 0.015

Male �15 (�57; 28) 0.50

PM2.5 absorbance

in 3rd trimester

of pregnancy

Atmospheric pollutants Ln 0.4 b 0.38 Female �35 (�91; 20) 0.21

Male �62 (�114; �10) 0.019

DDTb Organochlorine compounds Log2 1.4 b 0.31 Female �15 (�66; 36) 0.56

Male �46 (�90; �2.8) 0.037

CI, Confidence interval of the coefficient estimate; DDT, dichlorodiphenyltrichloroethane; IQR, inter-quartile range of the (normalized and corrected for mea-

surement error) exposure variable; PFOS, perfluorooctane sulfonate.
aEstimates are given as a change in mean birth weight (g) for each inter-quartile range (defined over all observations) increase in (normalized and corrected for

measurement error) exposure. Only exposures with an uncorrected sex interaction or sex-specific P-value < 5% are reported. Associations were adjusted for ges-

tational duration (simple and quadratic terms), sex of the newborn, parity, maternal height, maternal weight before pregnancy (using a broken stick model with a

knot at 60 kg), maternal smoking during the second trimester of pregnancy, maternal education, season of conception and cohort (fixed effect variable).
bAtmospheric pollutants were not assumed to suffer from classical-type measurement error; for biomarker-based exposures, no ICC was available in the

literature.
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oxooctyl (OXOMiNP) phthalate metabolites, the first ever

conducted in humans.

Strengths and limitations

The main strengths of our study are the large number of

exposures considered, the prospective design, the correc-

tion for exposure measurement error due to classical-type

error, and the fact that biomarkers were assessed generally

with very low limits of detection. We had a priori selected

the statistical approaches to be used through simulation

studies mimicking the situation expected in HELIX in

terms of sample size, number of exposures considered and

correlation structure within the exposome;25,27 a difference

was that the DSA model considered in these simulation

studies had not been stabilized as we did here, which is

expected to impact model performances.

Limitations relate to sample size (small given the large

number of exposures investigated), limiting the statistical

power to detect associations and, to a larger extent, inter-

actions. Chung et al. recently estimated that typical exist-

ing cohort studies with hundreds of participants were

underpowered (power <0.8) for EWAS-related investiga-

tions.42 Consequently, our study should not be interpreted

as providing evidence that only lead could influence birth

weight. The estimates associated with all exposures are

provided (Supplementary Table S4, available as

Supplementary data at IJE online) so that they can be used

in future exposure-specific meta-analyses. Regarding the

statistical analyses, we attempted identifying quadratic

dose–response functions, and may therefore have missed

exposures displaying a complex non-monotonic dose–re-

sponse pattern.

In terms of study population, we relied on subgroups se-

lected from six cohorts of pregnant women that are not

Figure 2 Adjusted effect measure of exposures on birth weight by cohort (ExWAS approach). Estimates are given as a change in mean birth weight

(g) for each inter-quartile range (defined over all observations) increase in exposure (normalized and corrected for measurement error). Only expo-

sures with an uncorrected P-value < 5% in the main ExWAS (i.e. without cohort–exposure interaction) are reported. Black squares display the coeffi-

cient estimates, and the horizontal lines their 95% CIs. The values of the coefficients (95% CI) are given on the right-hand side of the graphs; on the

left-hand side, a symbol displays the proportion of missing values that were imputed for the given exposure variable in each cohort (*** <10% of im-

puted values, **10–50% of imputed values, * 50–80% of imputed values, no symbol indicates more than 80% of imputed values). The exposures dis-

tribution is displayed in Supplementary Figure S3, available as Supplementary data at IJE online. Associations were adjusted for gestational duration

(simple and quadratic terms), sex of the newborn, parity, maternal height, maternal weight before pregnancy (using a broken stick model with a knot

at 60 kg), maternal smoking during the second trimester of pregnancy, maternal education, season of conception and cohort (fixed effect variable).

T3, averaged over the third trimester of pregnancy.
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representative of the general population. Such cohorts typi-

cally have a participation rate of �20–50% and generally

over-represent specific population subgroups, such as sub-

jects with high education level or with interest in health

issues. Yet, representativeness is in principle not a validity

requirement for aetiological studies.43

Environmental influences on fetal growth

From a statistical perspective, and disregarding the

strength of previously published evidence, the most likely

association highlighted was that between lead exposure

and birth weight.

Such an association was previously reported.5,20,44

Average lead exposure was 11mg/L (95% CI: 4; 26).

Without imputation of missing data and correction for ex-

posure measurement error so as to allow comparison

across studies, for a unit increase in square root-

transformed lead exposure, fetal growth decreased by 45 g

(95% CI: 15; 75) in our study population, and by 69 g

(95% CI: 46; 183) after restriction to mothers with a lead

concentration in the 0–10 mg/L range. In a study with a me-

dian exposure of 32mg/L, Xie et al.44 reported a 148 g

(95% CI: 12; 286) birth-weight decrease while Zhu et al.20

reported a 27 g (95% CI: 17; 38) decrease after restriction

to women in the 0–10mg/L exposure range. Lead is a rec-

ognized reprotoxicant that is readily transferred from ma-

ternal blood to the fetus. Its effect on fetal growth could be

explained by lead competing with calcium, an essential

component of bones, which might result in alterations of

fetal bone formation and consequently restrictions of fetal

growth.20

From our ExWAS approach, we also observed some evi-

dence for other associations with birth weight. However

these need to be considered with more caution given the

expected high rate of false findings displayed by the

ExWAS approach27 and the fact that these associations

had significance levels way above the multiple hypothesis

testing-corrected significance threshold. The use of multi-

ple testing correction procedures is debated in environmen-

tal epidemiology;45 one reason is that these procedures

were developed under the null hypothesis that the outcome

is associated with none of the exposures considered. This is

a priori quite unlikely, given that the compounds that we

tested were, for the vast majority, selected because of exist-

ing toxicological or epidemiological evidence of adverse

health effects (not necessarily related to fetal growth).

Among the associations highlighted by the ExWAS ap-

proach without multiple testing correction, a negative as-

sociation between PM2.5 mass concentration and birth

weight is clearly supported by previous evidence,15

whereas evidence is weaker for an association of PM2.5 ab-

sorbance, a less commonly assessed metric, in relation to

fetal growth.15,46 Several exposure–birth weight associa-

tions were previously reported in a small number of studies

but were not identified in the present study, such as with

PCB.47 Our confidence intervals were however broad and

did not provide strong evidence against such associations.

Figure 3 Adjusted effect measure of exposures on birth weight by offspring sex (ExWAS approach). Estimates are given as a change in mean birth

weight (g) for each inter-quartile range (defined over all observations) increase in exposure (normalized and corrected for measurement error). Only

exposures with an uncorrected sex interaction or sex-specific P-value < 5% are reported. The dot displays the coefficient estimate, and the vertical

line its 95% CI. Associations were adjusted for gestational duration (simple and quadratic terms), sex of the newborn, parity, maternal height, mater-

nal weight before pregnancy (using a broken stick model with a knot at 60 kg), maternal smoking during the second trimester of pregnancy, maternal

education, season of conception and cohort (fixed effect variable). DDT, dichlorodiphenyltrichloroethane; PFOS, perfluorooctane sulfonate; T3, aver-

aged over the third trimester of pregnancy.
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Some sex-specific exposure association with birth

weight were a priori expected from the literature,48 but

in the absence of studies systematically reporting sex-

specific estimates, publication bias could explain such

apparent sex-specific effects. Trends for positive associa-

tions with birth weight were previously reported for

ethyl-, propyl- and butyl-parabens (whose concentra-

tions are correlated) in a study among 520 male new-

borns (consistent with ourresults), in which female

newborns had not been considered.22 Parabens, used as

preservatives in cosmetics, are known to have oestro-

genic activity and to promote adipocyte differentiation

in vitro.49

Exposure assessment

We considered a large number of exposures, and acknowl-

edge that for some of these the exposure metric may have

been suboptimal.

We measured the total concentration of metals and es-

sential elements in blood. For arsenic, this does not allow

distinguishing inorganic (assumed to be more toxic) from

organic arsenic,50 which would have been more informa-

tive. Moreover, arsenic was measured from blood, al-

though urine is considered a more relevant matrix for

measuring the internal dose.51 For these two reasons, our

results for arsenic should be interpreted with great caution.

Two other limitations affecting the exposure–health assess-

ment of metals and essential elements are cellular homeo-

stasis and lipid levels in blood. Manganese, in particular, is

regulated by homeostasis.52 Consequently, manganese cir-

culating levels are probably a poor biomarker of human

exposure (in the sense of the amount of manganese enter-

ing the body).53 Second, because the handling of lipid lev-

els in blood biomarkers is a matter of debate,54 we tested

all blood biomarkers, both adjusted and unadjusted for lip-

ids, without change in the conclusions (results not shown);

similarly, results for urinary biomarkers differed little with

or without adjustment for creatinine levels.

In addition, because our biomarker-based exposure esti-

mates relied on spot biospecimens collected during preg-

nancy, we expect measurement error, which may be

particularly large for the least persistent compounds con-

sidered (see Supplementary Table S2, available as

Supplementary data at IJE online, for ICCs reported in the

literature). Classical-type exposure measurement error is

expected to lead to attenuation bias in exposure–health

relations. This applies in particular for bisphenol A, for

some phthalate metabolites, such as di-ethylhexyl phthal-

ate (DEHP) metabolites, as well as organophosphate pesti-

cide metabolites: for these compounds, the literature

reports ICCs during pregnancy typically in the 0.1–0.3

range (Supplementary Table S2, available as

Supplementary data at IJE online), which is expected to

translate into an attenuation bias of 70–90%.24,55 For

many other compounds, the situation is somewhat better

but far from optimal; this is in particular the case for para-

bens, triclosan, and metals such as arsenic and manganese.

Regarding other compounds such as lead and cadmium,

ICCs in the 0.7–0.8 range have been reported, so that the

spot biospecimen that we relied on may provide an esti-

mate of exposure over a longer period than a few days or

weeks. Given this issue when assessing the exposure–health

associations, we attempted to correct for classical-type er-

ror in the statistical analyses through our regression cali-

bration approach relying on ICCs. In the absence of

repeated measures of exposure biomarkers during preg-

nancy, we relied on external estimates of ICCs

(Supplementary Table S2, available as Supplementary data

at IJE online), resulting in a likely lower efficiency of re-

gression calibration than would have been obtained with

study-specific ICCs. Moreover, this method does not cor-

rect for any effect of measurement error other than of

classical-type, such as expected for outdoor atmospheric

pollutant levels for example.

Finally, some exposure variables had a large proportion

of missing values (Supplementary Table S6, available as

Supplementary data at IJE online). Yet, for the exposures

most strongly associated with fetal growth in ExWAS,

associations were stronger after restriction to the popula-

tion with non-imputed exposure values (Supplementary

Table S5, available as Supplementary data at IJE online),

which is in favour of our missing data imputation proce-

dure not biasing estimates away from the null.

Conclusions

Our targeted approach focused on a large number of expo-

sures with some a priori evidence for a health effect, based

on the human or toxicological literature. A relevant use of

our results would be for meta-analyses on specific expo-

sures; all estimates from our ExWAS analyses are provided

for such a purpose in Supplementary Table S4, available as

Supplementary data at IJE online.

We have illustrated some potential challenges facing

exposome studies. Our study allowed bringing an informa-

tion equivalent to that generated by about 100 single expo-

sure studies, avoiding selective reporting of findings and

controlling to some extent the false discovery rate, but ex-

pectedly at the cost of reduced power. Our study paves the

way for future prospective exposome studies. These should

possibly consider much larger populations and rely on
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repeated biospecimens collection to limit exposure mea-

surement error for the compounds with the strongest

within-subject variability.24,56,57 From a public health per-

spective, lead exposure during pregnancy (at the levels en-

countered in the years 1999–2010, when these pregnancies

occurred) may still be a health concern in the EU while the

effects of pregnancy exposure to parabens warrant further

investigation.

Supplementary data

Supplementary data are available at IJE online.
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