

memo

<u>covid-19-EPIDEMIC :</u> Saliva sample for testing SARS-CoV-2 infection, 1st update on diagnostic accuracy

Title	Saliva sample for testing SARS-CoV-2 infection, 1^{st} update on
	diagnostic accuracy
Norwegian title	Spyttprøver for testing av SARS-CoV-2 infeksjon, første
	oppdatering om diagnostisk nøyaktighet
Institution	Norwegian Institute of Public Health
Responsible	Camilla Stoltenberg, Director General
Authors	Lauvrak Vigdis, senior advisor, Lene Kristine Juvet, scientific
	director, Norwegian Institute of Public Health
Memo	Desember – 2020
ISBN	978-82-8406-151-1
Publication type	Systematic Review, COVID-19 rapid response
Number of pages	25 (46 including appendix)
Commisioner	Norwegian Institute of Public Health
Citation	Lauvrak V, Juvet LK. Saliva sample for testing SARS-CoV-2
	infection, 1 st update on diagnostic accuracy. Systematic review,
	COVID-19 rapid response 2020. Oslo: Norwegian Institute of
	Public Health, 2020.

Key messages

The aim of this review was to investigate the diagnostic accuracy of reverse transcription real time polymerase chain reaction (rRT-PCR) for detection of SARS-CoV-2 in saliva specimens compared to upper airway samples. We performed a systematic literature search focusing on COVID-19 and saliva. The search provided 501 titles and abstracts, from which we inspected 70 records in full text and included 23 studies. From the included studies, we extracted data from 27 sets of comparative analysis of in total 7065 paired samples to calculate sensitivity¹ and specificity².

- In five studies with a total of 4299 paired samples from screening a mainly asymptomatic population, we found that sensitivity in the analysis ranged from 61% to 100 % (GRADE certainty of the evidence³ moderate, ⊕⊕⊕○). The specificity, ranged from 95% to 100% (GRADE certainty of the evidence high, ⊕⊕⊕⊕).
- In 11 studies with a total of 1612 paired samples from screening mainly symptomatic persons, we found variable, but predominantly good concordance between saliva samples and upper airway samples. Due to risk of bias we have low confidence in estimates based on these studies (GRADE certainty of evidence low ⊕⊕○○).
- In 9 studies with a total of 1154 paired samples from re-testing patients with known Covid-19 status, we likewise found variable, but predominantly good concordance. Due to high risk of bias, we have very low confidence in estimates based on these studies(GRADE certainty of evidence very low ⊕○○○).

The results indicate that the diagnostic accuracy of rRT-PCR on saliva samples, compared to upper airway samples, probably is somewhat lower regarding sensitivity, but high regarding specificity. Variations between the analysis may be related to publication bias (more positive results published), risk of bias in the included studies, technical and clinical factors. The studies do not allow conclusions to be made about what factor may have the largest impact on the results.

¹ Sensitivity is the likelihood that a person with a condition (diseased/infected) is correctly diagnosed using the index test compared to the reference test.

² Specificity is the likelihood that a person without a condition (healthu/non-infected) is correctly identified as negative by the index test compared to the reference test.

³ GRADE certainty of evidence reflects our certainty that the estimate is close to a true estimate. The lower the certainty, the higher is our anticipation that new evidence may change the estimates.

Hovedfunn (Norwegian)

Hensikten med denne oversikten var å undersøke diagnostisk nøyaktighet av revers transkriptase sanntid polymerasekjedereaksjon (rRT-PCR) for påvisning av SARS-CoV-2 i spyttprøver sammenlignet med øvre luftveisprøver. Vi utførte et systematisk litteratursøk med fokus på covid-19 og spytt. Søket ga 501 titler og sammendrag. Etter gjennomgang av disse, inspiserte vi 70 referanser i fulltekst og inkluderte 23 studier. Fra studiene ekstraherte vi data fra 27 sammenliknende analyser av totalt 7065 parede prøver og beregnet sensitivitet⁴ og spesifisitet⁵.

- I fem studier, med totalt 4299 parede prøver fra screening av en hovedsakelig asymptomatisk populasjon, varierte sensitiviteten mellom analysene fra 61 % til 100 % (GRADE tillit til resultatet⁶ moderat ⊕⊕⊕○). Spesifisiteten varierte fra 95 % til 100 % (GRADE tillit til resultatet høy ⊕⊕⊕⊕).
- I 11 studier, med totalt 1612 parede prøver fra screening av hovedsakelig symptomatiske personer, fant vi noe variasjon, men overveiende godt samsvar mellom spyttprøver og øvre luftveisprøver. På grunn av risiko for skjevhet, har vi lav tillit til estimater basert på disse studiene (GRADE tillit til resultatet lav ⊕⊕○○).
- I 9 studier, med totalt 1154 parede prøver fra re-testing av pasienter med kjent Covid-19-status, fant vi også noe variasjon, men overveiende godt samsvar. På grunn av høy risiko for skjevhet, har vi svært lav tillit til estimater basert på disse studiene (GRADE tillit til resultatet svært lav ⊕○○○).

Resultatene indikerer at den diagnostiske nøyaktigheten av rRT-PCR på spyttprøver, sammenlignet med øvre luftveisprøver, sannsynligvis er noe lavere med hensyn til sensitivitet, men høy med hensyn til spesifisitet. Den observerte variasjonen mellom analysene kan være relatert til både publikasjonsskjevhet (mer positive resultater publisert), risiko for skjevhet i inkluderte studier, tekniske og kliniske faktorer. De inkluderte studiene tillater ikke konklusjoner om hvilken faktor som kan ha størst innvirkning på resultatene.

⁴ Sensitivitet er sannsynligheten for at en person med en gitt tilstand (syk/smittet) får tilstanden påvist med indeks testen sammenliknet med en referanse testen, dvs positiv test.

⁵ Spesifisitet er sannsynligheten for at en person uten tilstanden (frisk/ikke smittet) får riktig svar med indeks testen sammenliknet med referanse testen, dvs negativ test.

⁶ GRADE tillit til resultatet reflekterer vår tillit til at estimatet er nært en sann verdi. Jo lavere tillit vi har jo mer sannsynlig anser vi at der at nye studier vil kunne endre estimatet.

Preface

This review has been commissioned by the Director of Infection Prevention and Control at The Norwegian Institute of Public Health (NIPH). The review is an update of a rapid report on saliva samples for rRT-PCR detection of SARS-CoV-2 from May 2020 focusing solely on diagnostic accuracy. The review has been produced without a published protocol and we have used a simplified review process with only one external reviewer. In the current situation, there is an urgent need for identifying the most important evidence quickly. Hence, we opted for this rapid approach despite an inherent risk of overlooking key evidence or making misguided judgements.

We would like to thank the following for valuable contribution:

- Elisabet Hafstad, Senior Advisor and information specialist, Division for Health Services, NIPH. Literature search
- Karoline Bragstad, Head of Section for Influenza and other respiratory viruses, Department of Virology, Division of Infection Control and Environmental Health, NIPH. Feedback during the assessment and read a draft of the review before publication
- Kjetil Gundro Brurberg, Department Director Division for Health Services, NIPH. Read a draft of the report before publication
- Einar Nilsen, Avdelinsgssjef. Overlege Avdeling for medisinsk mikrobiologi, Helse Møre og Romsdal. External review

Vigdis Lauvrak Senior Advisor, Division of Health Services, NIPH Lene Kristine Juvet Scientific Director, Division of Infection Control and Environmental Health, NIPH

Content

KEY MESSAGES	2
HOVEDFUNN (NORWEGIAN)	3
PREFACE	4
CONTENT	5
INTRODUCTION	6
METHODS	8
RESULTS	10
Diagnostic accuracy	11
Differences in Ct values	16
Ongoing studies	17
DISCUSSION AND CONCLUSION	19
REFERENCES	23
Appendix 1. Characteristics of included studies	26
Appendix 2 Risk of Bias assessment and GRADE evaluations	38
Appendix 3 Excluded records assessed in full-text	42

Introduction

In relation to the Norwegian Institute of Public Health's role in handling the COVID-19 epidemic, we have updated a rapid report on saliva samples for rRT-PCR detection of SARS-CoV-2 from May 2020 (1). While our first review had included studies reporting on the identification of SARS-CoV-2 by rRT-PCR and saliva specimens as such, this update is restricted to available research on diagnostic accuracy of rRT-PCR for SARS-CoV-2 using saliva sampling as index test, compared to using upper airway sampling as reference test. The update has been actualised by the recent recommendations on test strategies made by the European Centre for Disease Control (ECDC) were saliva is considered a suitable sample for SARS-CoV-2 testing (2).

Current test strategy

Diagnostic testing of virus can be considered to be a three step process:

- 1. Sampling, transport and storage
- 2. Sample preparation
- 3. Analytical testing

Nasopharyngeal upper airways samples taken by health care workers, followed by laboratory viral nucleic acid extraction and detection of viral RNA by rRT-PCR analysis is characterised by high sensitivity and specificity and considered to be the gold standard of SARS-CoV-2 detection and confirmation of COVID-19 disease. The initial identification of the SARS-CoV-2 virus was based on non-commercial rRT-PCR laboratory protocols published on the World Health Organization (WHO) website (3). According to the FINDS SARS COV19 Diagnostic pipeline listing (4) there are (per 12th of October 2020) 157 commercial SARS–CoV-2 nucleic acid manual test kits, and 67 kits classified as automated lab-based, point of care (POC) or near POC labelled kits with a CE-In Vitro Diagnostic label (IVD) label marketing in Europe.

Recommended test procedures in Norway are found on the web page of the Norwegian Institute of Public health (5). According to the current Norwegian recommendations on sampling procedure for rRT-PCR, health care workers or trained staff should collect upper airway specimens. If possible, the sampling should be performed by combining a nasopharyngeal and an oral deep throat swab in the same test tube, alternatively a swab from only one of the sample sites can be collected (6). The samples are usually transported to a Norwegian hospital or commercial diagnostic virology laboratory were in most cases the samples undergo nucleic acid extraction protocols. Analysis by rRT-PCR for detection of SARS-CoV-2 RNA are performed according to procedures determined and validated by each laboratory. The Norwegian laboratories have deployed a range of in-house and commercial nucleic acid extraction and rRT-PCR test systems, many of which work on existing platforms for automatic handling and analysis of airway samples. In addition some testsites have deployed rapid rRT-PCR test kits working on specific analytical small scale platforms (7).

The collection of upper airway samples requires close contact between healthcare workers and patients, and poses a risk of transmission of the virus, causes discomfort for the patient and may cause bleeding, especially in patients with condition such as thrombocytopenia. Also, it might be difficult to get good upper airway samples from small children, the elderly and disabled. Saliva has a potential as a diagnostic fluid, and it may offer an edge over other biological fluids as its collection method does not require an invasive procedure and self-sampling may be an option (8).

Self-sampling of saliva

Saliva specimens can be obtained by different techniques, including self-sampling were the patient is asked to spit into a sterile bottle. Recent research has suggested that SARS-CoV-2 can be detected in saliva at high titres, and salivary diagnostics has the potential to be incorporated as part of disease diagnosis, clinical monitoring of systemic health and to make clinical decisions for patient care (1;8). The anticipated diagnostic window for using rRT-PCR to detect acute infection with SARS-CoV-2 in nasopharyngeal samples ranges from approximately two days following viral exposure until two weeks following symptom onset (5). Less is known about what the viral detection tells about the severity of disease and how viral load in nasopharyngeal samples relate to risk of transmission. Furthermore, it is still disputed how well viral titres in nasopharyngeal and saliva samples correlate.

Research question of this review

In this review we have focused on diagnostic accuracy expressed as sensitivity and specificity of the index test compared to the reference test. Sensitivity is a measure of the likelihood that a person with a positive reference test result, in this case rRCT – PCR result on NPS and/or OPS specimen, is identified as positive by the index test, in this case rRT-PCR on a saliva specimen. Specificity is a measure of the likelihood that a person with a negative reference test result is identified as negative by the index test. The review is restricted to clinical studies that have reported results from at least 20 paired reference and index samples taken from the same person the same day.

Methods

For the systematic database search, we retrieved RIS-files from the Stephen B Thacker CDC Library COVID-19 Research Articles Downloadable Database (CDC database) (9). This was done on August 26th 2020. The CDC database is updated daily by systematically searching more than 20 bibliographic databases and hand searching selected grey literature sources. The identified 92439 records from CDC files were uploaded to EndNote (10). We then searched within the EndNote database for relevant references using either the word saliva, salivary or sputum, keeping only references added to the database since May 2020. In addition, we inspected the INAHTA database as well as the websites of World Health Organization (WHO), European Centre for Disease Control and Prevention (ECDC), Centers for Disease Control and Prevention (CDC), Agency for Healthcare Research and Quality (AHRQ), National Institute for Health and Care Excellence (NICE), Swedish Agency for Health Technology Assessment and Assessment of Social Services (SBU) and the European Network for Health technology Assessment (EUnetHTA). Reference lists of identified systematic reviews and Health Technology assessments were checked for additional references. All referenced were imported to EndNote-database and duplicates removed. The authors (VL, LKJ), independent of each other, assessed the relevance of each reference based on the title and abstract. Inclusion criteria are revealed in table 1.

Population	Persons tested for SARS-CoV-2. Main subgroups:
	1. Screening population: Asymptomatic or symptomatic
	persons with unknown SARS-CoV-2 and COVID-19 status
	2. Test population: Patients with known COVID-19 status
	upon enrolment (re-testing)
Index test	rRT-PCR on saliva specimens
Comparator/	rRT-PCR on Nasopharyngeal (NPS) and/or oropharyngeal
Reference test	(OPS) specimens
Outcomes	Data to populate a 2 x 2 table reflecting true and false
	positives as well as true and false negatives; Differences
	in rRT-PCR threshold Cycle (Ct) values in paired samples
S tudy design	Primary studies reporting relevant data; Systematic re-
	views*, rapid reviews* and Health Technology Assess-
	ment reports*

Table 1 Inclusion criteria

*Only the most updated of these were used as additional sources of primary studies

We selected for full-text inspection studies, systematic reviews and HTA reports focusing on diagnostic accuracy using rRT-PCR SARS-CoV2 as the analytical test on saliva samples (index test) compared to NPS and/or OPS (reference test). Systematic reviews and HTA reports were only used to identify additional primary studies not detected by our search strategy.

We excluded studies that did not report on paired samples of index and reference test taken from the same person on the same day. We also excluded studies with less than 20 paired samples, and studies were data for calculation of diagnostic accuracy using a 2x2 table could not be extracted or calculated. In addition, we excluded data that were only available as Food and Drug Administration (FDA) accelerated Emergency Use Authorization (EUA) summaries without a scientific publication record.

Disagreements were solved by consensus. The full-text version of each identified reference was read by one author who extracted data, using a data-extraction form prepared for the purpose, and summarized the findings. The extracted data, relative to the full-text version of the reference, was checked by the other author. Notably, we only extracted data relevant for the research question of this report.

The true positive, true negative, false positive and false negative rate of the index test relative to the reference test, was extracted or calculated by one author and checked by the other. The diagnostic test accuracy analytical program in Review Manager 5.4 was used to calculate sensitivity and specificity and present the results as forests plots. The analysis was performed by one author (LKJ) and checked by the other (VL). As diagnostic accuracy is anticipated to be highly variable in different settings and using different approaches to sampling, sample preparation and analysis, meta-analysis to calculate a common estimate of diagnostic accuracy across the analysis was not attempted. The risk of bias in studies included for data-extraction was evaluated by the QUADAS2 protocol for diagnostic accuracy studies (11). Confidence in the estimates of diagnostic accuracy and was evaluated by GRADEpro (https://gradepro.org/).

Ongoing relevant studies were identified in the database search and an additional non-comprehensive search in clinical.trials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) using the search words (Covid or SARS) and Saliva.

Results

The database search resulted in 401 unique references to published articles and 97 preprints. In addition, three references were included from searching websites providing a total of 501 references. After screening titles and abstracts 66 studies were included. In addition, two references from our rapid review from May (1), one references from inspection of an identified systematic review (12) and one reference from an HTA report (13) were included for full-text inspection. Based on this, 70 references were read in full text, and we ended up including 23 primary clinical studies for data-extraction. The inclusion process is revealed in figure 1.

Figure 1. Flow-chart Inclusion process, adapted from The PRISMA Statement (14).

Characteristics of each included study, such as population, sampling techniques, sample preparation, and analytical assays are revealed in Appendix 1. The risk of

bias analysis for the included studies is provided in Appendix 2. A list of excluded studies and reasons for exclusion is provided in Appendix 3.

Diagnostic accuracy

A total of 23 studies were included for assessment of diagnostic accuracy. At the time of inclusion, 12 studies were only available as preprints, eight were letters to editors or short communications and three were peer-reviewed published scientific journal articles. Five studies were conducted in Europe, ten in USA or Canada, seven studies in Asia, and one in Australia (see appendix 1 for more details on each study).

The number of comparisons performed on paired index test and reference test samples in these studies ranged from 51 to 1939 with a total of 7065 paired samples across the included studies. In some cases, more than one paired sample was taken from the same patient/person at different time points, and in some cases the same sample was handled or compared by different approaches (15;16).

The populations tested in the included studies can be grouped according to their SARS-CoV-2 and/or COVID-19 status upon enrolment. Those with unknown SARS-CoV-2 and COVID-19 status upon enrolment were either mainly asymptomatic persons subjected to screening for COVID-19 including persons in quarantine and health care workers (HCWs) or mainly symptomatic persons suspected to have COVID-19x. Those with known SARS-CoV-2 status upon enrolment were either hospitalised patients with confirmed COVID-19, patients with mild symptoms of COVID-19 or asymptomatic persons identified through screening and re-tested. In two studies (17;18) there was two cohorts. See table 2 for details.

Population	No of comparative analysis* (Cohorts)	No of paired samples
Screening mainly asymptomatic	5 (5)	4299
Screening mainly symptomatic	12 (11)	1612
Re-testing confirmed COVID-19	10 (9)	1154
Total	27 (25**)	7065

Table 2. Population groups and number of paired sample comparisons across the included studies

*Some studies had performed more than one set of comparisons (15;16), **Two studies had included two different cohorts (17;18), the number of included studies is 23.

Saliva was collected through different techniques with variable information on the details provided. In most studies, the saliva sampling was stated to be performed by the patient (self-sampling) under instructions of HCWs. In most cases, the reference test sample was collected by HCWs. The use of viral transport media, addition of viral inhibiting substances, storage conditions and the time of storage before analysis was variable. In most studies, the samples were subjected to nucleic acid extraction before analysis. However, there are also studies (see appendix 1 for details) were no extraction was used, and in one study three different extraction protocols were compared (19). In one study, a protocol with extraction was compared to a protocol without extraction (16).

The rRT-PCR test deployed by the included studies was highly variable including both commercially available tests and in-house tests. In most studies, the rRT-PCR test used for the index samples and for the reference standard were the same. In one study (15) one type of rRT-PCR test was compared with another using the same samples. A list of the included studies, patient settings, the number of true positives, false positives, false negatives and true negatives, extracted or calculated to assess diagnostic accuracy for each included study is provided in table 3.

Study ID and Country	Patient setting	No of paired samples	TP	FP	FN	TN
Akgun 2020 (20), Tyrkey	Testing of symptomatic hospitalized patients with moderate COVID-19 symptoms.	98	30	5	25	38
Azzi 2020 (21), Italy	Screening of symptomatic and asympto- matic patients and HCW in a hospital set- ting.	119	24	49	2	38
Becker 2020 (15) USA	Screening of symptomatic and asympto- matic persons – rRT-PCR variant 1	77	g	0	6	62
(10), 00/1	– rRT-PCR variant 2	58	4	1	6	47
	Re-testing confirmed COVID-19 cases	24	Limite ity rep 77% fo	d details orted: 8 or saliva	s, only se 9% for N	ensitiv- NPS and
Byrne 2020 (22), UK	Testing symptomatic patients hospital set- ting	110	12	0	2	96
Caully 2020 (23), Canada	Screening symptomatic or asymptomatic persons	1939	34	14	22	1869
Chen 2020 (24), China	Re-testing archival samples from confirmed COVID-19 patients	58	49	0	6	3
Cheuk 2020 (25), Hong Kong	Re-testing patients with confirmed COVID- 19	229	104	18	37	70
Fernández-Pit- tol 2020 (16), Spain	Re-testing of patients with confirmed pri- mary diagnosis of COVID-19 - 1. With RNA extraction of saliva	54	20	4	7	10
		51	30	1	1	13
	- 2. With heat inactivation of saliva sample	51	31	1	6	13
Griesemer 2020 (18),	Screening asymptomatic persons, low fre- quency cohort	236	6	6	0	224
USA	Screening symptomatic and asymptomatic persons, high frequency cohort	227	79	2	12	134
Hanson 2020 (26), USA	Screening symptomatic persons	354	78	6	5	265
lwasaki 2020 (27), Japan	Testing symptomatic hospital admitted per- sons and re-testing (10) patients with con- firmed COVID-19-	76	8	1	1	66
Jamal A 2020 (28) Canada	Re-testing hospitalized patients with con- firmed COVID-19	53	31	5	6	11
Landry 2020 (29), USA	Screening symptomatic persons	124	28	2		89
Leung 2020 (30), Hong Kong	Re-testing hospital admitted patients with known SARS CoV-2 test results	95	38	13	7	37

Table 3. Data extracted, or calculated to assess diagnostic accuracy (more details on characteristics of each study is provided in Appendix 2)

Study ID and Country	Patient setting	No of paired samples	TP	FP	FN	TN
McCormick 2020 (31), USA	Screening symptomatic persons and re-test- ing hospitalized patients with confirmed COVID-19	156	47	1	2	105
Miller 2020 (19), USA	Re-testing samples from symptomatic and asymptomatic persons with confirmed COVID-19 status or known SARS-CoV-2 status.					
	RNA extraction type 1	91	33	2	1	55
	RNA extraction type 2	91	33	1	1	56
	RNA extraction type 3	91	33	2	1	55
Pasomsub 2020 (32), Thailand	Screening of symptomatic persons.	200	16	2	3	179
Rao 2020 (33), Malaysia	Testing confirmed COVID-19 in quarantine center	217	73	11	76	57
Skolimowska 2020 (34), UK	Screening symptomatic persons	131	15	1	3	112
Vogels 2020 (35), USA	Re-testing paired samples (unclear setting) known to be SARS CoV-2 positive or nega- tive (clinical validation of a kit)	67	32	3	2	30
Williams 2020 (36), Australia	Re-testing paired samples known to be posi- tive or negative from screening population	82	33	6	1	49
Wyllie 2020 (37) USA	Re-testing paired samples from hospitalized patients with confirmed COVID-19	70	50	7	0	13
Yokota 2020 (17), Japan	Screening of asymtomatic airport travelers (quarantine cohort)	1763	4	0	1	1758
	Screening of mainly asymptomatic contacts	161	38	6	3	114

rRT-PCR = reverse transcription real time polymerase chain reaction, HCW=health care workers, N = Total number of patients, TP = True Positive relative to reference, FP = False positive relative to reference, TN= True Negative relative to reference, FN = False negative relative to reference

We analysed the extracted or calculated data (table 3) to provide forest plots revealing diagnostic accuracy expressed as sensitivity and specificity of rRT-PCR for SARS-CoV-2 detection in saliva samples compared to NPS and/or OPS specimens. A total of 27 comparative analysis was performed.

Diagnostic accuracy across all analysis

Sensitivity across all analysis ranged from 0.40 [95% CI, 0.12 to 0.74] to 1 [95% CI, 0.54 to 1.00] (see figure 2, 3 and 4 below). Notably, Becker 2020 (15) the study for which we calculated the lowest sensitivity, had compared two different rRT-PCR tests on the same samples. This could reflect that that the choice of analytical test may influence the results (see figure 3: Becker -1: sensitivity 0.60 [0.32 to 0.84] and Becker-2: sensitivity 0.40 [95% CI, 0.12 to 0.74]).

Twenty-one out of the 27 analysis gave sensitivities above 0.80, and nine gave sensitivities above 0.90. The highest sensitivity rates were seen in smallest studies with higher prevalence and re-testing. Most of these studies are associated with unclear risks of bias as information such as blinding of the laboratory personal is only exceptionally reported and risk of publication bias (more positive than negative results published) cannot be excluded. Specificity was, with one exception of 0.44 [0.33 to 0.55] of data extracted from Azzi 2020 (21), high with the remaining analysis revealing a range from 0.88 [95% CI, 0.75 to 0.96] to 1.00.

Diagnostic accuracy in screening populations

The sensitivity for screening a mainly asymptomatic population ranged from 0.61 [95% CI, 0.47 to 0.74] to 1 [95% CI, 0.54 to 1.00] and the specificity ranged from 0.95 [0.89 to 0.98] to 1.00 (figure 2). The sensitivity in the two largest screening studies including 1869 (23) and 1758 (17) paired samples of mainly asymptomatic persons was 0.61 [95% CI, 0.47 to 0.74] and 0.80 [95% CI, 0.28 to 0.97], respectively. Notably, the prevalence in this setting is low resulting in large uncertainty connected to the sensitivity data.

Figure 2. Summary of diagnostic accuracy (sensitivity and specificity) in a screening setting of (mainly asymptomatic) persons with unknown SARS-CoV-2 status upon enrolment.

Our confidence in the estimates for sensitivity of using rRT PCR on saliva samples for screening mainly asymptomatic persons to be within the range is moderate, for and specificity our confidence is high (see appendix 2). The reason for the difference in confidence is related to the variation in sensitivity as well as large confidence intervals for sensitivity in the studies. I contrast, there is less variation in specificity and narrower confidence intervals. Estimates for expected number of true positives and negatives when testing 1000 persons at prevalences of 0.5%, 3% and 10% is revealed in table 4.

Table 4 Summary of findings for using rRT PCR on saliva samples compared to rRT PCR on NPS/OPS when screening a mainly asymptomatic population based on the range of included analysis

	Estimated num	ber of results pe tested			
Test result	Prevalence 0.5% Low prevalence screening	Prevalence 3% Medium preva- lence screening	Prevalence 10% High preva- lence screening	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	3 to 5	18 to 30	61 to 100	4299	₽₽₽○
False nega- tives	0 to 2	0 to 12	0 to 39	(5)	MODERATE ^a
True negatives	945 to 985	922 to 960	855 to 891	4299	$\oplus \oplus \oplus \oplus$
False positives	10 to 50	10 to 48	9 to 45	(5)	HIGH

a. Variation and large confidence intervals for sensitivity

The sensitivity for screening a mainly symptomatic population ranged from 0.40 [95% CI, 0.12 to 0.74] to 97% [95% CI 0.85 to 1.00] (figure 3). Our confidence in estimates from these studies are low (see appendix 2).

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Argun 2020	30	- 5	25	38	0.55 [0.41, 0.68]	0.88 [0.75, 0.96]		
Azzi 2020	24	49	2	38	0.92 [0.75, 0.99]	0.44 [0.33, 0.55]		
Becker 2020 - 1	9	0	6	62	0.60 [0.32, 0.84]	1.00 [0.94, 1.00]		-
Becker 2020 - 2	4	1	6	47	0.40 [0.12, 0.74]	0.98 [0.89, 1.00]		
Byrne 2020	12	0	2	96	0.86 [0.57, 0.98]	1.00 [0.96, 1.00]		-
Griesemer 2020-1	79	2	12	134	0.87 [0.78, 0.93]	0.99 [0.95, 1.00]		-
Hanson 2020	78	6	5	265	0.94 [0.86, 0.98]	0.98 [0.95, 0.99]	-	•
lwasaki 2020	8	1	1	66	0.89 [0.52, 1.00]	0.99 [0.92, 1.00]		-
Landry 2020	28	2	5	89	0.85 [0.68, 0.95]	0.98 [0.92, 1.00]		-
McCormick 2020	47	1	2	105	0.96 [0.86, 1.00]	0.99 [0.95, 1.00]		-
Skolimowska 2020	15	1	3	112	0.83 [0.59, 0.96]	0.99 [0.95, 1.00]		-
Williams 2020	33	6	1	49	0.97 [0.85, 1.00]	0.89 [0.78, 0.96]		

Figure 3. Summary of diagnostic accuracy (sensitivity and specificity) in a screening setting of (mainly) symptomatic persons with unknown SARS-CoV-2 status upon enrolment.

Diagnostic accuracy in re-testing patients with known SARS-CoV-2 status

In the analysis including paired samples from patients with known SARS-CoV-2 status up-on enrolment, sensitivity ranged from 0.49 [95% CI, 0.41 to 0.57] to 1.00 (figure 4). Specificity in these studies ranged from 0.74 [95% CI 0.60 to 0.85] and 0.96 [95% CI, 0.88 to 1.00]. Our confidence in estimates from these studies are very low (see appendix 2).

Study	TP	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Chen 2020	49	0	6	3	0.89 [0.78, 0.96]	1.00 [0.29, 1.00]	-	
Cheuk 2020	104	18	37	70	0.74 [0.66, 0.81]	0.80 [0.70, 0.87]	-	
Fernandez-Pittol 2020-1	30	1	7	13	0.81 [0.65, 0.92]	0.93 [0.66, 1.00]		
Fernandez-Pittol 2020-2	31	1	6	13	0.84 [0.68, 0.94]	0.93 [0.66, 1.00]		
Jamal 2020	31	5	6	11	0.84 [0.68, 0.94]	0.69 [0.41, 0.89]		
Leung 2020	38	13	7	37	0.84 [0.71, 0.94]	0.74 [0.60, 0.85]		
Miller 2020	33	2	1	55	0.97 [0.85, 1.00]	0.96 [0.88, 1.00]		
Rao 2020	73	11	76	57	0.49 [0.41, 0.57]	0.84 [0.73, 0.92]		
Vogels 2020	32	3	2	30	0.94 [0.80, 0.99]	0.91 [0.76, 0.98]		
Wyllie 2020	50	3	0	13	1.00 [0.93, 1.00]	0.81 [0.54, 0.96]		

Figure 4. Summary of diagnostic accuracy (sensitivity and specificity) of known SARS-CoV-2 or COVID-19 status upon enrolment.

In conclusion, the overall results of our analysis indicate that the diagnostic accuracy of rRT-PCR on saliva samples, compared to NPS and/or OPS, probably is somewhat lower regarding sensitivity, but high regarding specificity. The observed variation may be related to both publication bias (more positive results published), risk of bias in the included studies, technical and clinical factors. The included studies do not allow conclusions to be made about what factor may have the largest impact on the results.

Differences in Ct values

Test results using rRT-PCR rely on multiple cycles of amplification to produce a detectable amount of product above background values. The threshold cycle value (Ct) is defined as the cycle number at which the PCR product crosses a threshold of detection, beyond this threshold positive signals are likely to be negative (noise). This threshold line is either automatically set by the software algorithm of the real-time PCR instrument, or can be manually adjusted. The Ct values are essential for quantitation since a standard curve is generated by plotting the Ct values versus the logarithmic nucleic acid concentration. A positive unknown sample will be assigned a specific Ct value and by comparison with the standard curve the concentration of viral RNA in the sample can be calculated. The same sample can give different Ct values on different RT-PCR instruments and different analytical tests. Different sampling and preparation procedures will influence the RNA concentration in the analysed sample. Therefore, the Ct values are not an absolute scale and cannot directly be used to estimate viral load in different clinical specimens. However, when comparing two samples with the same analytical test and instrument, the concentration of nucleic acid in the prepared samples can be estimated. A low Ct value indicates a higher concentration of viral RNA in the analysed sample.

For some studies the Ct values were not presented (16;21;23;32) or in some studies the mean Ct values were not given specifically for index or reference tests (15;20;22;34;36). However, in some of the included studies the mean or average Ct values for the positive samples was stated. The measurement given in table 5 are data extracted from studies that presented mean values of positive samples for both the index and reference tests.

Cycle threshold value	Sample (Target)	Nasopharyngeal	Saliva	significance
Chen 2020 (24)	All (N2 target Ct)	29.3, IQR 23.3– 36.5	2.3, IQR: 29.9–38.6	p = 0.0002
Cheuk 2020 (25)	Positive (n/a)	mean diff 0.26 (range: 1 in NPS	2.63 to −14.74) higher	Pearson's R 0.579
Hanson 2020 (26)	Positive (TMA assay)	27.0 (range 19.7-32.7)	28.2 (range 18.3–7.5)	n/a
Iwasaki 2020 (27)	n/a (n/a)	26.5 ± 8.1	30.6 ± 4.6	p =0.206
Jamal 2020 (28)	Positive (N gene Ct)	32 (IQR 28-35)	27 (IQR 28-35)	p =0.6

Table 5. Median cycle threshold value (average in all pair samples or in only positive pair samples)

Cycle threshold value	Sample (Target)	Nasopharyngeal	Saliva	significance
Landry 2020 (29)	Positive (N1 target Ct)	34 (IQR 33-38)	38 (IQR 37-38)	p = 0.0331
Leung 2020 (30)	Positive (N gene Ct)	Range 33.7 to 37.9	Range 23.9 to 35.9	p> .05
McCormick 2020 (31)	All (N2 gene Ct)	26.70 ± 7.61	30.49 ± 9.67	p = 0.73
Miller 2020 (19)	Positive (N1 target Ct)	34.5 (SD 5.0)	33.2 (SD 3.9)	n/a
Rao 2020 (33)	Positive (E-gene Ct)	32.2 ± 3.5	29 ± 4.5	n/a
Vogels 2020 (35)	Positive (N1 gene Ct)	higher using SalivaDirec 3.3 Ct)	et (median difference of	p < 0.01
Yokota 2020 (17)	Six pair positive on s	saliva and negative on NP	S (Ct 33.7 to 37.2)	κ=0.87

IQR =inter quartile range, n/a not available, κ=Kendall's coefficient

Based on the extracted results, most of the studies revealed the lowest Ct values, indicative of higher SARS-Cov-2 nucleic acid concentrations in the reference test samples. However, this was not the case for all (see table 3) and no firm conclusions on SARS-Cov-2 nucleic acid concentration in saliva samples compared to upper airway samples can be made based on the included studies.

Ongoing studies

Based on the database search and a non-comprehensive search in the WHO ICTRP database and Clinical Trials.gov we screened 109 records of registered ongoing studies and identified seven of relevance for the research question of this review. Study ID and details are revealed in table 6. As the search was not comprehensive, we cannot exclude that additional relevant ongoing trials exist. The results reveals that several studies with planned comparisons on saliva as index test will be available in the future. No published results from the studies were identified.

Study ID, Study Country	Status/ Final com- pletion date	Population	N planned	Index	Refer- ence	Main outcomes
<u>NCT04424446.</u> <u>USA</u>	Ongoing-re- cruiting, start July 2020/ June 2021	NIH staff under- going standard NIH COVID-19 screening	5000	Saliva RT PCR	Nasal swab RT-PCR	Saliva SARS-CoV-2 RT-PCR test results; Saliva and nasal swab SARS-CoV-2 RT-PCR test results
<u>NCT04386551.</u> <u>France</u>	Ongoing-re- cruiting, start July 2020/De- cember 2020	Adult ambula- tory patients screened for SARS Cov 19	225	Saliva RT PCR	NPS RT PCR	Detection of SARS-CoV-2 RNA in the saliva sample; Concordance between the saliva and nasopha- ryngeal sample SARS-CoV-2 RT- PCR results

Table 6. Registered ongoing clinical trials

Study ID, Study Country	Status/ Final com- pletion date	Population	N planned	Index	Refer- ence	Main outcomes
<u>NCT04517682.</u> <u>USA</u>	Ongoing, re- cruiting start May 21. 2020, Com- pletion De- cember 2020)	Symptomatic or high risk (un- known and known)	300 planned	Saliva RT PCR	NPS RT PCR	Detection of COVID-19 SARs- CoV-2 in saliva samples versus nasopharyngeal samples
<u>NCT04468217,</u> <u>Chile</u>	Ongoing, start June 2020/ De- cember 2020	Subjects with positive test to SARS-COV2 and Staff with negative test to SARS-COV2 (employees of critical service companies)/	150 planned	Saliva; Oropha- ryngeal swab, Buccal swab, and nasal swab RT- PCR	NPS RT- PCR	Evaluation of samples in AAA- Safe proprietary transport me- dium, alternative method of ex- traction and qPCR
<u>NCT04531501,</u> <u>USA</u>	Recruiting, start June 2020, Sep- tember 2020	Patient sus- pected to have COVID-19; Pa- tients tested positive for COVID-19	400 planned	Chro- nomic sa- liva sam- ple and test work- flow; Chro- nomic NPS sample and test workflow	NHS Sample and test workflow	Test result (positive/negative/ indeterminate)
<u>NCT04578509,</u> <u>France</u>	Recruiting, start October 2020/ April 2021	Ambulatory adults or chil- dren attending screeing	2700 planned	Saliva sample RT-PCR	NPS RT PCR	Positivity of samples
<u>NCT04561102,</u> <u>USA</u>	Enrolling, start Septem- ber 2020/ De- cember 2020	Asymptomatic, adults	2500 planned	Saliva COVID- Seq Test	Nasal swab, EUA Covid test	Diagnostic accuracy (Positive and Negative predictive values of in- dex/comparator)

N= Number of planned participants to include

Discussion and conclusion

In this rapid review of diagnostic accuracy of rRT-PCR testing for SARS-CoV-2 in saliva samples compared to NPS and/or OPS, we included 23 original studies. Using data from the studies, we performed 27 sets of comparative analysis of 7065 paired samples. Based on our findings, the sensitivity of rRT-PCR on saliva as a diagnostic specimen is variable, but in most instances (21 out of 27 analysis) 80% or more compared to NPS or OPS. Specificity was above 88% in 21 out of 27 analysis.

Our review is based on systematic screening of all records in the CDC COVID-19 database concerning SARS-CoV-2/COVID-19 and saliva. To avoid risk of bias in the inclusion process the screening, eligibility assessments, and risk of bias assessments (QUADAS-2 (11)) were performed independently by both authors. Data extraction was performed by one author using a predefined extraction template. All extracted data was checked by the other author. We have reasonable confidence in the completeness and accuracy of the findings up until the search date (August 26th 2020). We also checked for registered ongoing studies and found no results from these published per November 12th, 2020. However, as the review is produced under strict timelines with limited external peer review, we cannot exclude that we have missed some studies and that there might be flaws in our interpretation of the extracted data.

In our first review from May 2020 (1), only two studies (36;38) were identified from which we could extract data to calculate diagnostic accuracy, implicating a considerable rise in evidence in only 4 months. One of the studies included in our first review (38) has been excluded from this review. The reason for this is that it is an FDA EUA assay application not published in other formats. Information on diagnostic accuracy in FDA EUA assays can be found at the FDA web site (38). The clinical evaluation documented on these web pages are in line with the evaluation reported by Miller 2020 (19), as they are generally small studies were samples with known SARS CoV-2 status are re-tested in pairs. Inclusion of further documentation of this kind would not have changed the conclusions of this report. Furthermore, we are uncertain to which extent the FDA EUA assays are available in Norway. However, for those interested in performance of a particular procedure or kit, it might be of value to also search for information in these sources. We have also excluded studies that only reported data to calculate sensitivity (see list of excluded studies). Other rapid reviews, including those checked for references (12;13) updated in June and late May, respectively have included more broadly. This could be because, at the time these were produced, the number of studies were both sensitivity and specificity could be calculated was restricted to four studies with few participants. None of the studies we excluded were large screening studies and most were early clinical validations. Mainly these studies report sensitivities in the upper level, however due to in-particular risk of publication bias associated with these small studies, their inclusion would not have impacted our overall conclusion. Rather there is a need for larger studies investigating the use of a saliva-based screening or testing-strategy with pre-validated procedures. At least three ongoing clinical studies with a high N will be able to address this in the future (see table 5).

We have not calculated predictive values of test results. The predictive value of a test result will depend on the diagnostic accuracy and the prevalence of the disease being studied. As prevalence decreases the absolute number of false negatives decreases and the absolute number of false positives increases (39). Notable, this could be of relevance if saliva diagnostics should be used in a screening setting with relative low numbers of SARS-CoV-2 infected people. Lower sensitivity will influence the predictive value of the test. However, based on our assessment we do not know if the reference test (NPS) or saliva provides the most clinically relevant number of test positives or negatives. If indeed, as some argue, rRT-PCR on NPS provides many clinically irrelevant positives (persons that might have been positives, but are no longer contagious), saliva with a lower sensitivity might be more clinically relevant with regard to detection of those that should be isolated. However, our review does not provide results to conclude regarding this.

We found variations in diagnostic accuracy. The observed variations may theoretically be associated with all process steps ranging from differences in population, sampling, sample preparation to analytical rRT-PCR assays and instruments. We did observe high sensitivity in several small studies and in studies with high prevalence or known COVID-19 status. However, as we cannot exclude that this is relatable to risk of bias, we cannot make any generalizable conclusion about prevalence or testing of symptomatic versus asymptomatic. The result of one study (15), investigating the influence of using different rRT-PCR assays and two studies comparing different extraction procedures (19), or no extraction versus heat inactivation extraction (16), illustrates that any test needs to be carefully validated with regard to all steps. However, based on the included studies we cannot make generalizable conclusions with regard to factors related to extraction that may have influenced the variation. Differences in sampling techniques were not studied in any of the included studies, and since information on the sampling techniques was limited, we are not able make generalizable conclusions on how variations in sampling may have influenced the outcomes.

Based on our findings, the sensitivity of saliva as a diagnostic specimen is variable, but in most instances (21 out of 27 analysis) 80% or more compared to NPS or OPS. The specificity is probably higher (88% or more in 26 out of 27 analysis,). These findings could be relevant in face of shortages of both swabs and personal protective equipment (36). Another advantage is the safety of those performing sample collection. By using saliva as a collection sample HCWs will be safe from the transmission of disease during sampling. A third advantage is sampling comfortability. Saliva collection is quite comfortable for patients as well as being easy and non-invasive. However, one needs to assure that the sample container does not represent a safety risk for laboratory personnel.

However, it should be noted that changing test-procedures requires considering several factors not assessed in this review such as most relevant setting for a potential change, availability of test tubes for saliva self-sampling, compatibility of test tubes with established sample transport, storage procedures, automated laboratory procedures and risks of contamination during sample handling. Before a recommendation can be made to change procedures or implement a new test-strategy, these factors need to be assessed. In addition, each laboratory needs to perform its own validation of any new specimen and change in procedures. It should be noted that this may be substantial work and require substantial costs.

We have not assessed diagnostic accuracy of self-sampling by alternative procedures such as OPS compared to HCW sampling. In some circumstances, this might be equally relevant as saliva self-sampling. In a recently collaborative assessment by the European Network of Health Technology Assessment (EUnetHTA), the diagnostic accuracy of nucleic acid based tests has been assessed (40). In the protocol of this assessment it is stated that sampling techniques if possible, will be subjected to subgroup analysis. During the process of writing this review, we contacted the authors, who could inform that they had not identified studies that allowed sub-group analysis based on self-sampling compared to HCW sampled specimens (personal communication). This is also stated in the publication. In conclusion, there are probably no studies currently available to answer questions regarding self-sampling versus HCW sampling.

It should be noted that other tests for SARS-CoV-2 than rRT-PCR have been developed and are under development. These tests can broadly be grouped into three categories, those aimed at:

- pathogen (virus) RNA detection (acute infection diagnostic) using isothermal procedures such as loop mediated isothermal amplification (LAMP)
- pathogen (virus) antigen detection (acute infection diagnostic) such as antigen lateral flow (LFA) tests
- detection of immune response to the pathogen (past exposure).

The alternatives to rRT-PCR such as LAMP and LFA have as far as we know, mainly been validated using nasopharyngeal sample specimens, and there are still limited studies available to show how these tests perform with saliva as the specimen. The benefit of LAMP and LFA is that they may be deployed as point of care tests. The inclusion of studies to assess the diagnostic accuracy of these tests was out of the scope for this review, and we did exclude some studies that could have been relevant to answer research questions related to these tests. Diagnostic accuracy of nucleic acid based tests including LAMP has recently been in depth assessed (40). We are not aware of any systematic review or recent HTA report on LFA tests, but according to the most recent update of NIPHs web site, several studies have been published revealing lower sensitivity, but comparable specificity of LFA compared to rRT-PCR on upper airway samples (7).

The benefit of using pathogen detection tests and tests to detect an immune response to the virus (development of SARS-CoV-2-specific antibodies) should not be considered competing alternatives. Both testing approaches are clinically relevant, but must be deployed at different time points during the clinical course of infection taking consideration of their relevant diagnostic windows (41).

In conclusion, the results of our analysis indicate that diagnostic accuracy of rRT-PCR on saliva samples compared to NPS and/or OPS probably is slightly lower regarding sensitivity, but high regarding specificity. Notably, variation is expected and may be related to both technical and clinical factors, risk of bias in the included studies, publication bias (more positive results published), and to low prevalence in the largest studies. The included studies do not allow conclusions to be made about what factor may have the largest impact on the results. The results should be considered with caution as further studies may change the estimates. These findings are relevant in setting with a great need for exploring test strategies in testing SARS-CoV-2.

References

- 1. Juvet LKL, V. Saliva sample for testing SARS-CoV-2 infection a rapid review. Rapid review 2020. Oslo: Norwegian Institute of Public Health, 2020.
- COVID-19 testing strategies and objectives. ECDC. 15 November 2020. Available from (checked 08.12.2020): https://www.ecdc.europa.eu/sites/default/files/documents/TestingStrategy _Objective-Sept-2020.pdf
- 3. WHO. In vitro diagnostics for COVID-19[cited]. Available from (checked 08.12.2020): <u>https://www.who.int/medical_devices/priority/COVID-19_Diagnostics/en/</u>
- 4. SARS-COV-2 DIAGNOSTIC PIPELINE[cited]. Available from (checked 08.12.2020): <u>https://www.finddx.org/covid-19/pipeline</u>
- 5. FHI. Molekylær diagnostikk av SARS-Cov-2[cited]. Available from (checked 08.12.2020): <u>https://www.fhi.no/nettpub/coronavirus/testing-og-oppfolging-av-smittede/molekylar-diagnostikk/</u>
- FHI. Prøvetaking praktisk gjennomføring[cited]. Available from (checked 08.12.2020): <u>https://www.fhi.no/nettpub/coronavirus/testing-og-oppfolging-av-smittede/provetaking/?term=&h</u>=
- 7. FHI. Hurtigtester for pavisning av koronavirus[cited]. Available from (checked 08.12.2020): <u>https://www.fhi.no/nettpub/coronavirus/testing-og-oppfolging-av-smittede/hurtigtester-for-pavisning-av-koronavirus/?term=&h=1</u>
- 8. Sri Santosh T, Parmar R, Anand H, Srikanth K, Saritha M. A Review of Salivary Diagnostics and Its Potential Implication in Detection of Covid-19. Cureus 2020;12(4):e7708.
- 9. COVID-19 Research Articles Downloadable Database [webpage]. Atlanta, GA: Stephen B. Thacker CDC Library; 2020. [updated 26. August 2020; cited 27. August 2020]. [cited]. Available from (checked 08.12.2020): https://www.cdc.gov/library/researchguides/2019novelcoronavirus/researc harticles.html
- 10. The EndNote Team. EndNote. EndNote x9 ed. Philadelphia, PA: Clarivate; 2013.
- 11. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155(8):529-36.
- 12. Peeters E, Kaur Dhillon Ajit Singh S, Vandesompele J, Mestdagh P, Hutse V, Arbyn M. Rapid systematic review of the sensitivity of SARS-CoV-2 molecular testing on saliva compared to nasopharyngeal swabs (preprint). medRxiv 2020:2020.08.05.20168716.
- 13. HIQA. Evidence summary for accuracy of salivary samples in SARS-CoV-2 detection compared with nasopharyngeal, oropharyngeal or lower respiratory tract samples. 2020. Available from (checked 08.12.2020): <u>https://www.hiqa.ie/sites/default/files/2020-06/Evidence-summary-for-salivary-detection-of-SARS-CoV-2.pdf</u>

- 14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097.
- 15. Becker D, Sandoval E, Amin A, De Hoff P, Diets A, Leonetti N, et al. Saliva is less sensitive than nasopharyngeal swabs for COVID-19 detection in the community setting. medRxiv 2020:2020.05.11.20092338.
- 16. Fernández-Pittol M, Hurtado JC, Moreno-García E, Rubio E, Navarro M, Valiente M, et al. Assessment of the use and quick preparation of saliva for rapid microbiological diagnosis of COVID-19. bioRxiv 2020:2020.06.25.172734.
- 17. Yokota I, Shane PY, Okada K, Unoki Y, Yang Y, Inao T, et al. Mass screening of asymptomatic persons for SARS-CoV-2 using saliva (preprint). medRxiv 2020:2020.08.13.20174078.
- 18. Griesemer SB, Van Slyke G, Ehrbar D, Strle K, Yildirim T, Centurioni DA, et al. Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing (preprint). medRxiv 2020:2020.06.16.20133041.
- 19. Miller M, Jansen M, Bisignano A, Mahoney S, Wechsberg C, Albanese N, et al. Validation of a Self-administrable, Saliva-based RT-qPCR Test Detecting SARS-CoV-2 (preprint). medRxiv 2020:2020.06.05.20122721.
- 20. Akgun Dogan O, Kose B, Agaoglu NB, Yildiz J, Alkurt G, Kendir Demirkol Y, et al. Does sampling saliva increase detection of SARS-CoV-2 by RT-PCR? Comparing saliva with oro-nasopharyngeal swabs (preprint). medRxiv 2020:2020.07.26.20158618.
- 21. Azzi L, Baj A, Alberio T, Lualdi M, Veronesi G, Carcano G, et al. Rapid Salivary Test suitable for a mass screening program to detect SARS-CoV-2: A diagnostic accuracy study. Journal of cleaner production 2020.
- 22. Byrne RL, Kay GA, Kontogianni K, Brown L, Collins AM, Cuevas LE, et al. Saliva offers a sensitive, specific and non-invasive alternative to upper respiratory swabs for SARS-CoV-2 diagnosis (preprint). medRxiv 2020:2020.07.09.20149534.
- 23. Caulley LC, Martin; Eapen, Libni; Angel, Jonathan B; Antonation, Kym; Manitoba, Winnipeg; Poliquin, Guillaume; Johnson-Obaseki, Stephanie. Salivary Detection of COVID-19. Annals of internal medicine 2020;0(0):null.
- 24. Chen JH, Yip CC, Poon RW, Chan KH, Cheng VC, Hung IF, et al. Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerging microbes & infections 2020:1-14.
- 25. Cheuk S, Wong Y, Tse H, Siu HK, Kwong TS, Chu MY, et al. Posterior oropharyngeal saliva for the detection of SARS-CoV-2. Clinical infectious diseases : an official publication of Infectious Diseases Society of America 2020.
- 26. Hanson KE. Self-Collected Anterior Nasal and Saliva Specimens versus Healthcare Worker-Collected Nasopharyngeal Swabs for the Molecular Detection of SARS-CoV-2. Journal of clinical microbiology 2020.
- 27. Iwasaki S, Fujisawa S, Nakakubo S, Kamada K, Yamashita Y, Fukumoto T, et al. Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva Journal of Infection 2020;81(2):e145 - e7.
- 28. Jamal AJ, Mohammad M, Coomes E, Powis J, Li A, Paterson A, et al. Sensitivity of nasopharyngeal swabs and saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (preprint). medRxiv 2020:2020.05.01.20081026.
- 29. Landry ML, Criscuolo J, Peaper DR. Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal of Clinical Virology 2020.
- 30. Leung EC, Chow VC, Lee MK, Lai RW. Deep throat saliva as an alternative diagnostic specimen type for the detection of SARS-CoV-2. Journal of medical virology 2020.

- 31. McCormick-Baw C, Morgan K, Gaffney D, Cazares Y, Jaworski K, Byrd A, et al. Saliva as an Alternate Specimen Source for Detection of SARS-CoV-2 in Symptomatic Patients Using Cepheid Xpert Xpress SARS-CoV-2. Journal of clinical microbiology 2020.
- 32. Pasomsub E, Watcharananan SP, Boonyawat K, Janchompoo P, Wongtabtim G, Suksuwan W, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2020:S1198-743X(20)30278-0.
- 33. Rao M, Rashid FA, Sabri F, Jamil NN, Zain R, Hashim R, et al. Comparing nasopharyngeal swab and early morning saliva for the identification of SARS-CoV-2. Clinical Infectious Diseases 2020;06:06.
- 34. Skolimowska K, Rayment M, Jones R, Madona P, Moore LS, Randell P. Noninvasive saliva specimens for the diagnosis of COVID-19: caution in mild outpatient cohorts with low prevalence. Clinical microbiology and infection : official publication of European Society of Clinical Microbiology and Infectious Diseases 2020.
- 35. Vogels CBF, Brackney D, Wang J, Kalinich CC, Ott I, Kudo E, et al. SalivaDirect: Simple and sensitive molecular diagnostic test for SARS-CoV-2 surveillance (preprint). medRxiv 2020:2020.08.03.20167791.
- 36. Williams E, Bond K, Zhang B, Putland M, Williamson DA. Saliva as a Noninvasive Specimen for Detection of SARS-CoV-2. Journal of clinical microbiology 2020;58(8):e00776-20.
- 37. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. New England Journal of Medicine 2020.
- 38. Rutgers. Rutgers Clinical Genomics Laboratory TaqPath SARS-CoV-2 Assay EUA Summary. FDA. [cited]. Available from (checked 08.12.2020): https://www.fda.gov/media/136875/download
- 39. Cochrane Reviews of Diagnostic Test Accuracy. Handbook Diagnostic Test Accuracy Reviews[cited]. Available from (checked 08.12.2020): https://methods.cochrane.org/sdt/handbook-dta-reviews
- 40. EUnetHTA. COVID-19 Diagnostics[cited]. Available from (Checked 08.12.2020): <u>https://eunethta.eu/covid-19-diagnostics/</u>
- 41. HIAQ. Evidence Summary for COVID-19 Clinical Samples. The Health Information and Quality Authority (HIQA). 15 April 2020. Irland[cited]. Available from (checked 08.12.2020): <u>https://www.hiqa.ie/reports-andpublications/health-technology-assessment/evidence-summary-covid-19clinical-samples</u>

Appendix 1. Characteristics of included studies

Notably, the table only reveals characteristics extracted as relevant for the research question of this review. Additional information and outcomes are reported in most of the studies.

Study ID [Type of publication]	No pa- tients in- cluded/ No paired samples*	Population	Sampling	Sample prepa- ration	Analytical assay	Outcome re- ported rele- vant for this review
Akgun 2020,	200/	Setting: Hospi-	Index: Saliva	Index: No ex-	Index: rRT PCR,	Test concord-
Turkey	200 at day	talised with mod-	self-collection in-	traction	ORF1ab and N	ance
[Preprint]	0, 56 at	erate Covid-19	structed drooling	Reference: As	gene, Direct De-	
	day 5	symptoms;	technique, 1ml	for index test	tection of SARS-	
		Age: 54.9 (+/-	into Falcon tubes		CoV-2 Detection	
		16.1);	with viral		Kit (Coyote Biosci-	
		Sex: 106/94	transport me-		ence Co., Ltd)	
		(53% Male)	dium (Innomed		Reference: As for	
			VTM001). Sam-		index test	
			ples refrigerated			
			within 1 hour.			
			Reference: NPS			
			dacron swab and			
			OP cotton taken			
			by HCW, refrig-			
			erated within 1h.			
Azzi 2020b,	122 /	Setting:	Index: Saliva	Index: RNA ex-	Index: One step	Diagnostic ac-
Italy	114	Hospitalized pa-	self-collection (in	traction by QI-	rRT-PCR Luna®	curacy of index
[Letter to ed-		tients or HCW	the morning)	Amp Viral	Universal qPCR	compared to
itor]		mixed sympto-	1ml, drooling	RNA mini kit (Qi-	Master Mix	reference
		matic and	technique	agen)	(New England Bi-	
		asymptomatic;	Reference: NPS	Reference: RNA	oLab), QuantStu-	
		Age: Mean 53	taken by HCW,	extraction by Ab-	dio 5 Real-Time	
		+/- 19.8;	refrigerated	bott mSample	PCR System	
		Sex: Male fe-	within 1h.	Preparation Sys-	(ThermoFisher Sci-	
		male ratio 1:2		tem and auto-	entific).	
				mated	Reference:	
				extraction (Ex-	GeneFinderTM	
				traction	COVID19 Plus	
				m2000SP, Ab-	RealAmp PCR kit	
				DOTT MOIECUIAR).	(ELITechGroup),	

Study ID	No pa-	Population	Sampling	Sample prepa-	Analytical assay	Outcome re-
[Type of	tients in-			ration		ported rele-
publication]	cluded/					vant for this
	No paired					review
	samples*					
Becker	88 Diag-	Setting: DC	Index: Saliva	Index: RNA ex-	Index: 1. TaqPath	Diagnostic ac-
2020, USA	nostic Co-	Community set-	self-collection	traction, MagMax	Multiplex RT-PCR	curacy of index
[Preprint]	hort (DC)	ting mixed symp-	using the Or-	Viral/Pathogen	COVID-19 Kit	compared to
	and 24	tomatic and	agene OM-505	RNA purification	(Thermo),	reference,
	Covalese-	asymptomatic,	and OGD-610 kit	kit (Ther-	Quantstudio 7	
	cent Co-	CC confirmed	(DNAgenotek)	moFisher CAT:	qRT-PCR instru-	One rRT-PCR
	hort (CC)/	cases recalled	Reference: NPS	A42352)	ment (Thermo) and	test compared
	DC, 77	Age: ND	in Viral Transport	Reference: As		to another
	and 58	Sex: ND	Media (no further	for Index test	2. PrimerDesign	(TaqPath vs
	two differ-		details)		COVID-19 assay	PrimerDesign
	ent analyt-				on Roche Light-	COVID-19 as-
	ical as-				Cycler 480 II or	say)
	says;				Thermofisher	
	CC, 24				Quantstudio 7	
					Reference: As for	
					index	
Byrne 2020,	110/	Setting: Patients	Index: Saliva,	Index: RNA ex-	Index: rRT-PCR	Proportion of
UK	110 at	with Covid 19	self-collection	traction, QIAamp	Gnesig® Real-	positive and
[Preprint]	Day 0), 14	symptoms;	under instruction	Viral RNA Mini	Time Coronavirus	negative sam-
	at Day2	Age: >18 years	(except one us-	Kit (Qiagen, Ger-	COVID-19 PCR	ples
	and 6 at	Sex: 45% male	ing swab) into a	many) with an	assay (Genesig,	
	Day 7		funnel in sterile	internal extrac-	UK) in a RGQ	
			cryotube collec-	tion control incor-	6000 thermocycler	
	(Day 2		tion tube (SAR-	porated at the ly-	(Qiagen, Ger-	
	and 7,		STEDT, Ger-	sis stage	many).	
	only avail-		many). Trans-	(Genesig, UK).	Reference: As for	
	able from		ported on ice	Stored on ice	index test	
	positive		and frozen at -	during PCR		
	hospital-		80oC until pro-	setup.		
	ised par-		cessing.	Reference: As		
	ticipants)		Reference:	for index test		
			Combined nasal			
			and throat (NT)			
			swabs (Copan,			
			Italy) were taken			
			by a research			
			nurse delegated			
			to the study.			

Study ID	No pa-	Population	Sampling	Sample prepa-	Analytical assay	Outcome re-
[Type of	tients in-			ration		ported rele-
publication]	cluded/					vant for this
	No paired					review
	samples*					
Caulley	1969/	Setting:	Index: Saliva,	Index: Total nu-	Index: rRT-PCR	Diagnostic ac-
2020, Can-	1939	Consecutive,	self-collection	cleic acid extrac-	Allplex 2019-nCoV	curacy index
ada		screening at one	under instruction	tion, STARMag	assay (Seegene)	compared to
[Brief re-		test Centre,	according to kit	Universal car-	to detect the pres-	reference
search re-		mixed sympto-	instructions (OM-	tridge kit (See-	ence of nucleopro-	
port]		matic asympto-	NIgene•ORAL,	gene) on a Nim-	tein (N), envelope	
		matic	OM- 505 [DNA	bus (Seegene)	(E) and	
		Age: >18 years	Genotek]).	or	ribonucleic acid	
		Sex: ND	Reference: NPS	Starlet (See-	(RNA)-dependent	
			(n=272) or OS	gene) extractor.	RNA polymerase	
			collected by	Reference: As	(RdRp) gene tar-	
			HCWs, trans-	for index test	gets of SARS-CoV-	
			ported in univer-		2.	
			sal viral transport		Refrerence: As for	
			medium.		index test	
Chen 2020,	ND/	Setting: Ar-	Index: Saliva,	Index: ND	Index: SARS-CoV-	Diagnostic per-
China	58	chived speci-	self-collection	Reference: ND	2 RNA dependent	formance in-
[Journal ar-		mens	morning spit, 1ml		RNA polymer-	dex compared
ticle]		collected from	in a sterile bottle.		ase/Helicase	to reference
		COVID-19 posi-	2 ml viral		(RdRp/Hel) real-	Ct values in
		tive inpatients	transport media		time	paired sam-
		Age: Median 38	was immediately		RT–PCR assay or	ples
		years, range 31-	added.		Xpert	
		52	Reference: NPS		Xpress SARS-	
		Sex: 48.3%	-HCW collected		CoV-2 assay (Ce-	
		male	with flocked		pheid, Sunnyvale,	
			swab, immersed		CA). GeneXpert	
			in 2 mL of viral		XVI system (Ce-	
			transport		pheid, Sunnyvale,	
			medium		CA).	
					Reference: As for	
					index test	
Cheuk 2020,	95/	Setting: Hospi-	Index: Saliva,	Index: Total nu-	Index: r RT-PCR	Positivity rates
Hong Kong,	229 three	talised COVID-	self-collection	cleic acid extrac-	LightMix® Modular	within 7 days
China	time	19 patients	morning saliva	tion was per-	SARS and Wuhan	of symptom
[Online pub-	points af-	Age:	into a sterile con-	formed using	CoV E-gene kit	onset and
lication]	ter symp-	Median 36	tainer, instructed	MagNA Pure LC	(TIB-MOLBIOL,	more than 7
	tom onset:	years, range 4-	by text and video		Berlin, Germany)	

Study ID	No pa-	Population	Sampling	Sample prepa-	Analytical assay	Outcome re-
[Type of	tients in-			ration		ported rele-
publication]	cluded/					vant for this
	No paired					review
	samples*					
	161 from	92	(Posterior oro-	2.0 (Roche, Swit-	on a Cobas z480	days of symp-
	44 pa-	(> 18 =88)	pharyngeal sa-	zerland) or	real-time PCR ana-	tom onset.
	tients at	Sex: 60% male	liva (POPS)). In-	MagNA	lyzer (Roche Diag-	Ct values in
	day 1;		house patients,	Pure 96 (Roche,	nostics,	paired sam-
	63 from 34		Iml viral transport	Switzerland).	Mannheim, Ger-	ples
	patients		medium /VTM)	Reference: As	many).	
	within 7		added, outpa-	for index test	Reference: As for	
	days;		tients trans-		index test	
	98 from 29		ported neat and			
	patients		VTM added if			
	after one		needed. Pro-			
	week		cessed			
			within 24 hours			
			of collection.			
			Reference: NPS			
Fornéndor			-HCW			
Pittol 2020,	ND/51	Setting: Hospital	Index: Saliva	Index:	Index: One step	Diagnostic per-
Spain [Pre-		emergency, pa-	self-collection	1. RNA extrac-	real time RT-PCR	formance
printj		tients with con-	under HCW in-	tion with MagNA	was performed us-	
		firmed Covid-19	struction. Only	Pure Compact	ing the RNA Pro-	
		Age: ND	samples of 0.5ml	RNA Isolation	cess Control Kit	
			or more were in-	Kit, on MagNA	(Roche, Basel,	
		Sex: ND	cluded. Stored at	Pure Compact	Switzerland)	
			-80 °C.	Instrument	Reference: As for	
			Reference: NPS	(Roche, Basel,	index	
			or OPS, HCW	Switzerland)		
			collected col-	2. Heat inactiva-		
			lected in tube	tion 15 min at 95		
			with 2ml lysis	°C.		
			buffer.	Reference: Ex-		
				traction as for In-		
		• •• •		dex 1.		
Griesemer	I otal of	Setting: Screen-	Index: Saliva	Index: Total nu-	Index: rRT-PCR,	Diagnostic ac-
2020, USA	463 indi-	ing of sympto-	self-collection in	cleic acid extrac-	CDC 2019 nCoV	curacy
[Preprint]	viduals:	matic.	50 ml conical	tion bioMerieux	Diagnostic Panel.	
	Low fre-	Age:	tubes. Speci-	easyMAG® or	Keterence: Same	
	quency	LF, range 3-105	mens were held		as index	
		years				

Study ID	No pa-	Population	Sampling	Sample prepa-	Analytical assay	Outcome re-
[Type of	tients in-			ration		ported rele-
publication]	cluded/					vant for this
	No paired					review
	samples*					
	cohort	(< 18 =17,	at 4°C from col-	EMAG® 128 (bi-		
	(LF) 236;	> 65= 16, Un-	lection to pro-	oMerieux Inc,		
	High fre-	known 2)	cessing. Testing	Durham, NC).		
	quency	HF, range 14-77	was performed	Reference:		
	cohort	years	within 24-72	Same as index		
	(HF) 227 /	(<18 =2,	hours. Excessive			
	LF 236;	>65 = 6, Un-	mucus was di-			
	HF 227	known=11);	gested Snap n'			
		Sex:	Digest 124 (Sci-			
		LF, 47% males;	entific Device La-			
		HF, 60% males	boratory, Des			
			Plaines, IL)			
			Reference: NPS			
			containing 1 ml			
			Molecular			
			Transport media			
			Specimens were			
			held at 4°C pro-			
			cessing. All test-			
			ing performed			
			within 24-72			
			hours.			
Hanson	368/	Setting: Screen-	Index: Saliva	Index: No details	Index: rRT-PCR	Test perfor-
2020, USA	354	ing of sympto-	self-collection	on extraction,	Hologic Aptima	mance
[Preprint]		matic adults	under instruction;	possibly no ex-	SARS -CoV -2	Ct values in
		Age: Mean 35	1ml spit collected	traction.	transcription medi-	paired sam-
		years, range 18-	in a 50 ml Falcon	Reference:	ated amplification	ples
		75	tube. Neat trans-	Same as index	(TMA) assay (Ho-	
		Sex: 53% males	ported at 4 °C.		logic Inc.) using the	
			Stored refriger-		Hologic Panther	
			ated and ana-		Fusion (Hologic	
			lysed within 5		Inc.) platform.	
			days. Samples		Reference: Same	
			were diluted 1:1		as index	
			with ARUP La-			
			boratories uni-			
			versal transport			
			media.			

Study ID [Type of	No pa- tients in-	Population	Sampling	Sample prepa- ration	Analytical assay	Outcome re- ported rele-
publication]	cluded/					vant for this
	No paired					review
	Samples		Reference: NPS			
			HCW collected			
			with flocked mini-			
			tip or foam			
			swabs (Puritan			
			Medical Prod-			
			ucts) placed in 3			
			mL of sterile 1x			
			phosphate-buff-			
			ered saline			
			(ARUP Laborato-			
			ries)			
lwasaki	76/	Setting: Hospital	Index: Saliva	Index: Total	Index: rRT-PCR	Agreement be-
2020, USA	66	admitted pa-	self-collection	RNA extraction	Detection of Patho-	tween NPS
		tients, 10 pa-	under instruction.	by QIAamp Viral	gen 2019-nCoV	and saliva
		tients with con-	Spit was sam-	RNA Mini Kit (QI-	Ver.2.9.1. one-	samples
		firmed COVID-19	pled into a sterile	AGEN, Hilden,	Step Real-Time	Ct values in
		and 66 with sus-	PP Screw cup 50	Germany).	RT-PCR Master	paired sam-
		pected COVID-	(ASIAKIZAI Co.,	Reference:	Mixes (Thermo	ples
		19	Tokyo, Japan).	Same as index	Fisher Scientific,	
		Age: Median 69	Reference:		Waltham, USA),	
		years, range 30-	NPS, HCW col-		analysed on	
		97	lected using		StepOnePlus Real	
		Sex: ND	FLOQSwabs		Time PCR System	
			(COPAN, Mur-		(Thermo Fisher	
			rieta, CA, USA).		Scientific).	
			The swabs were		Reference: Same	
		• • • •	placed in saline.		as index	
Jamal 2020,	53/	Setting: Hospi-	Index: Saliva	Index: ND	Index: rRT-PCR	Test perfor-
Canada	53	talised patients	sampling by	Reference: ND	with Allplex ™	mance
[Preprint]		with confirmed	HCW collecting		2019-nCoV As-	Ct values in
		Covid-19	spit into a saliva		say(1001).	paired sam-
		Age: median	contianer. 2.5ml.		Reference: Same	pies
		age 63 years,	NDC No further		as index	
		range 27-106	NPS, No further			
		Sex: 60% male	data			

Study ID [Type of publication]	No pa- tients in- cluded/ No paired samples*	Population	Sampling	Sample prepa- ration	Analytical assay	Outcome re- ported rele- vant for this review
Landry 2020, USA [Journal arti- cle]	ND (only NPS posi- tive sam- ples)/ 124	Setting: Screen- ing of sympto- matic outpa- tients, (re -) test- ing of NPS posi- tive samples Age: ND Sex: ND	Index: Saliva self-collection of spit into a sterile container. Sam- ples were kept in a cooler and de- livered within 2 h to laboratory and frozen at -70 de- grees C. Sam- ples positive for the first NPS were thawed and tested within 2 weeks. Reference: NPS, HCW col- lected	Index: Viscous saliva specimens were treated with sputasol (Thermo Scien- tific). Nucleic acid was ex- tracted using EasyMag (bi- oMerieux, Durham, NC). Reference: Same as index	Index: rRT-PCR a EUA developed as- say. Cycle thresh- old (Ct) values were recorded for N1, N2 andRNAse P for each sample. Reference: Same as index	Test concord- ance Ct values in paired sam- ples
Leung 2020, Hong Kong, China [Jour- nal article]	62/ 95	Setting: Hospi- talised (29 con- firmed Covid-19 cases, 33 nega- tive cases with airway symp- toms) Age: Mean: 42.0 ± 17.1 years Sex: 42% male	Index: Saliva self-collection under instruction (Deep throat sa- liva) into a sterile sputum con- tainer, sent im- mediately to the laboratory. In house viral transport me- dium added in la- boratory. Reference: NPS, HCW col- lected using flocked swabs placed in a con- tainer with 3ml	Index: Total nu- cleic acid extraction with MagMAX (Ap- plied Biosys- tems, Foster city) or a viral RNA isola- tion kit (Applied Biosystems). Reference: As for index	Index: rRT-PCR lightMix Modular SARS-CoV (COVID19) E-gene detection kit (TIB Molbiol, Berlin, Germany). Reference: As for index	Test concord- ance Ct values in paired sam- ples

Study ID [Type of publication]	No pa- tients in- cluded/ No paired samples*	Population	Sampling	Sample prepa- ration	Analytical assay	Outcome re- ported rele- vant for this review
			viral transport medium.			
McCor- mick-Baw 2020, USA [Letter to editor]	ND/156	Setting: Symp- tomatic sus- pected cases and hospitalized COVID-19 con- firmed patients Age: Mean 47.8 years Sex: 90 Males (58%)	Index: Saliva, self-collection under instruction. Held at 2°C to 8°C for up to 12 h prior to testing. Reference: NPS HCW collected	Index: No ex- traction- Reference: As for index	Index rRT-PCR (Cepheid Xpert Xpress SARS- CoV-2 (Sunnyvale, CA) Xpert Xpress SARS-CoV-2 PCR test) Reference: As for index	Test perfor- mance Ct values in paired sam- ples
Miller 2020, USA [Pre- print]	ND/91	Setting: Mixed symptomatic and asymptomic con- firmed or tested with NPC. Age: >18 Sex: ND	Index: Saliva self-collected. Reference: NPS, HCW col- lected	Index: Three RNA extraction methods were evaluated: MagMAX [™] Vi- ral/Pathogen Nu- cleic Acid Isola- tion Kit (Ther- moFisher Scien- tific); Maxwell® HT Viral TNA Kit (Promega Cor- poration); Maxwell RSC TNA Viral Kit (Promega Cor- poration). Reference: As for index	Index: rRT-PCR targeting SARS- CoV-2 nucleocap- sid (N) gene (N1 and N2), CFX384 Touch Real-Time PCR Detection System with CFX Manager software version 3.1 (Bio- Rad Laboratories). Reference: As for index	Test perfor- mace Ct values in paired sam- ples (Clincal validation for FDA, EUA)
Pasomsub 2020, Thai- land [Pre- print]	200/200	Setting: Screen- ing of sympto- matic adults, with a travel his- tory from an en- demic area or those with a his- tory of contact	Index: Saliva self-collection, void of coughing in a sputum col- lection container containing Uni- versal Transport Medium™	Index: Auto- mated Viral RNA extraction using using MagDEA® Dx reagents (Precision Sys- tem Science, Chiba, Japan).	Index: rRT-PCR using a SARS- CoV-2 Nucleic Acid Diagnostic Kit (Sansure Chang- sha, China), ap- proved by the China Food and	Diagnostic ac- curacy

Study ID [Type of publication]	No pa- tients in- cluded/ No paired samples*	Population	Sampling	Sample prepa- ration	Analytical assay	Outcome re- ported rele- vant for this review
		with a Covid-19	(UTM®; COPAN,		Drug Administra-	
		confirmed or	Brescia, Italy).	Reference: As	tion	
		suspected per-	Reference: NPS	for index test.		
		son	and OS, HCW		Reference: As for	
		Age: 36 (28-48)	collected with		index test	
		years	Copan			
		Sex: 69 (34.5%)	FLOQSwabs®			
		male	inserted in a			
			sterile tube con-			
			taining UTM®			
Rao 2020,	217/217	Setting: Con-	Index: Saliva	Index: Total nu-	Index: One-step	Test concord-
Malaysia		firmed SARS-	self-collection	cleic acid extrac-	RT-PCR of Real-Q	ance
[Accepted		CoV-2 positives	deep throat	tion, MagNA	2019 nCoV detec-	Ct values in
Preprint]		in quarantine	morning saliva	Pure 96 system	tion kit (Biose-	paired sam-
		sampled at day	under instruction.	with the MagNA	woom, Inc, South	ples
		8-10	Stored at room	Pure 96 DNA	Korea)	
		Age: 27(18-36)	temperature until	and Viral NA	Reference: As for	
		Sex: All male	laboratory pro-	Small Volume	index	
			cessing within 5	extraction kit		
			hours Refer-	(Roche Diag-		
			ence: NPS col-	nositc GmBH,		
			lected by HCW	Germany)		
			using sterile	Reference: As		
			flocked swab	for index		
			placed in a ster-			
			ile tube contain-			
			ing Viral			
			transport me-			
Chalimour	120/	Catting: Coroon	lindery Solivo	Index: (2ml	Index: Deebe	Diagnostic ac-
SKUIIIIUW-	132/	ing of sympto		Pocho cobac®		curacy
5Ka 2020,	131	matic HCWs	spit into a con-		ThermoEisber and	
[] etter to ed-			tainer without	added in labora	Abbott (no further	
itor]		(interguartile	preceding	torv	details)	
		range 30-51	coughing	Reference: ND	Reference: As for	
		vears	Reference: NPS		index test	
		Sex: 89/132	and OPS com-			
		(67.4%) female				

Study IDNo pa-[Type oftients in-publication]cluded/No pairedsamples*	Population	Sampling	Sample prepa- ration	Analytical assay	Outcome re- ported rele- vant for this review
		bined, HCW col- lected in 4.3ml Roche cobas® PCR medium			
Vogels 70/ 2020, USA 67 [Preprint]	Setting: Re-test- ing samples from hospitalised pa- tients and HCWs, mixed symptomatic and asymptomatic. Age: ND Sex: ND	Index: Saliva sampling, (Sali- vaDirect proto- col) -further de- tails not pro- vided. Reference: NPS further details not provided.	Index: No ex- traction (Sali- vaDirect proto- col) Reference: Total nucleic extrac- tion (MagMax, ThemoFisher combo kit)	Index: Ther- moFisher Scientific proteinase K, Ther- moFisher Scientific TaqPath RT-PCR kit, a multiplex RT- PCR diagnostic as- say targeting 3 re- gions of the SARS- CoV-2 genome and Bio-Rad CFX96 instrument. Reference: The ThermoFisher Sci- entific TaqPath COVID-19 combo kit, multiplex RT- PCR targeting 3 re- gions of the SARS- CoV-2 genome on the ABI 7500 Fast	Test perfor- mance Ct values in paired sam- ples (Clinical vali- dation of a kit)

Study ID	No pa-	Population	Sampling	Sample prepa-	Analytical assay	Outcome re-
[Type of	tients in-			ration		ported rele-
publication]	cluded/					vant for this
	No paired					review
	samples*					
Williams	622/ 522	Setting: Ambu-	Index: Saliva	Index: Nucleic	Index: rRT-PCR	Diagnostic ac-
2020, Aus-	paired	latory	self-collection	acid extraction	using a multiplex	curacy (?)
tralia [Letter	samples	patients present-	under instruction,	on the Qiagen	RT-PCR test for	
to editor]	collected,	ing to a dedi-	spit 1 to 2 ml of	EZ1 platform (Qi-	SARS-CoV-2 and	
	39 NPS	cated COVID-19	into a 25- ml col-	agen, Hilden,	other seasonal	
	positive	screening clinic	lection pot. In the	Germany).	coronaviruses	
	samples	(mixed symto-	laboratory, 1:1	Reference: As	(coronavirus typing	
	and 50	matic/asympto-	ratio of liquid	for index test	[8-well] assay;	
	NPS neg-	matic)	Amies medium		AusDiagnostics,	
	ative sam-	Age: ND	was added. Me-		Mascot, Australia).	
	ples re-	Sex: ND	dian time from		Reference: As for	
	tested as		sample collection		index	
	paired		to addition of			
	samples		medium was 180			
			min (range, 55 to			
			537 min).			
			Reference: NPS			
			HCW collected			
Wyllie 2020	202/	Setting:	Index: Saliva	Index: Protein-	Index: US CDC	Test poitivity
b [Letter to	70	Hospitalized	self-collection	ase K was added	real-time RT-qPCR	(sensitivity)
the Editor]		confirmed Covid-	under instruction,	to viscous saliva	primer/probe sets	
		19 patients, re-	spit into a sterile	samples. Total	for 2019-nCoV_N1	
		tested	urine cup. Sam-	nucleic acid ex-	and 2019-	
		Age: Range: 13-	ples were stored	traction using	nCoV_N2 and the	
		91 (mean =61.4)	at room tempera-	MagMAX Vi-	human	
		Sex: 56% male	ture	ral/Pathogen Nu-	RNase P (RP) as	
			and tested within	cleic Acid Isola-	an extraction con-	
			12 hours of sam-	tion kit (Ther-	trol. (Positives: CT	
			ple collection. A	moFisher Scien-	<38).	
			stabilizing solu-	tific). Reference:	Reference: As for	
			tion	As for index test	index test	
			was not added to			
			the saliva. Refer-			
			ence: NPS HCW			
			collected added			
			to BD universal			
			vital transport			
			medium			

Study ID	No pa-	Population	Sampling	Sample prepa-	Analytical assay	Outcome re-
[Type of	tients in-			ration		ported rele-
publication]	cluded/					vant for this
	No paired					review
Vakata	1 024 in	Sotting: AT:	Index: Self.col	Index: PNA ex-		Diagnostic ac
	1,924 III-	Second AT.	loctodo solivo	traction using O	One stop gPT	Diagnostic ac-
2020, AQ		asumtomatio	Poforonco:		Dre step qrt -	curacy
[Fiebilit]	horto:		NDS or ODS	Virue/Dethogon	The Japanese No.	Ct volues in
	Agumete	Contact acroon		kit and OlAamn	tional Insitute of In	
	Asympto-					
	olloro	Mga AT Madian				pies
	(AT) 1763			Hildon Cor		
	(AT), 1705	17 AI		many)		
	samples:	AC Median		Reference: As		
	Asympto-			for index test	(TOYOBO Osaka	
	matic con-	66 /1·		IOI IIIUEX (ESt	(101000, 03aka,	
	tacts (AC)	HCW average			Real-time PCR	
	161 naired	37.6 range 22-			Systems (Thermo	
	samples.	44			Fisher Scientific	
	oumpioo,	Sex:			Waltham, USA),	
		AT:832 (47.2 %)			(+RT-LAMP, ex-	
		female:			tracted for this re-	
		AC: 26 (16.1 %)			view)	
		female;			Reference:	
		,			CT Cohort: As in-	
					dex	
					AT Cohort: Either	
					RT-PCR or reverse	
					transcriptase loop-	
					mediated isother-	
					mal amplification	
					(RT-LAMP) using	
					Loopamp® 2019-	
					SARS-CoV-2 De-	
					tection Reagent Kit	
					(Eiken Chemical,	
					Tokyo, Japan).	

Appendix 2 Risk of Bias assessment and GRADE evaluations

Risk of Bias assessment (adapted from QUADA2 tool, https://www.acpjournals.org/doi/pdf/10.7326/0003-

4819-155-8-201110180-00009)

	Risk of Bia	as (RoB)			Applicabil	ity with re	gard to context	Overall RoB/Applicability
Study ID	Patient selection	Index Performance/ Blinding	Reference Performance/ Blinding	Flow and timing	Patient Selection	Index	Reference	
Akgun 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Azzi 2020	Low	Low	Low	A) Low B) Low	Low	Low	Low	Low/Low
Becker 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Byrne 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ² /Low
Caulley 2020	Low	Unclear	Unclear	A) High B) Low	Low	Low	Low	Unclear ³ /Low
Chen 2020	Unclear	Unclear	Unclear	A)Low B) Low	Low	Low	Low	Unclear ² /Low
Cheuk 2020	High	Unclear	Unclear	A) Low B) Unclear	Low	Low	Low	High ⁴ /Low
Fernandez- Pittol 2020	Unclear	Unclear	Unclear	A)Low B) Low	Low	Low	Low	Unclear ¹ /Low
Griesemer 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Hanson 2020	Low	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ⁵ /Low
Iwasaki 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ⁶ /Low
Jamal 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Landry 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ⁶ /Low
Leung 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
McCormick- Baw 2020	High	Unclear	Unclear	A) Low B) Low	Low	Low	Low	High ¹ /Low
Miller 2020	High	Low	Low	A) Low B) Low	Unclear	Unclear	Low	High ⁷ /Unclear
Pasomsub 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Rao 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ⁶ /Low
Skolimowska 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ⁶ /Low
Vogels 2020	Low	Unclear	Unclear	A) Low B)High	Low	Unclear	Low	Unclear ⁸ /Low
Williams 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Wyllie 2020	Unclear	Unclear	Unclear	A) Low B) Low	Low	Low	Low	Unclear ¹ /Low
Yokota 2020	Low	Low	Low	A) High for AT cohort, Low for CT Cohort B) Low	Low	Low	High for AT cohort, Low for CT cohort	Low/High

¹ Exclusion of patients/samples, indeterminate samples and blinding not reported

² Saliva sampled freeze thawed may have influenced the results (noted by the authors); Blinding-not reported

³ Different analytical assays used in index and reference makes it possible that the results could be related to analytical assay; Blinding not reported

⁴ Retrospective. Binding not reported

⁵ Blinding not reported

⁶ Exclusion of indeterminate samples and blinding not reported

⁷ Exclusion of patients/samples, indeterminate samples and blinding not reported. Index test applicability unclear as we don't know the availability of the kit in Norway

⁸ Blinding not reported; Paired samples were collected a maximum 4 days apart; Index test applicability Unclear as we don't know if the kit is available in Norway

Summary of findings and GRADE evaluations

Sensitivity	0.61 to 1.00	Preva-				
Specificity	0.95 to 0.99	lences	0.5%	3%	10%	

Question 1: Should rRT PCR on saliva samples be used to screen for SARS-CoV-2 in mainly asymptomatic persons?

			Facto	Factors that may decrease certainty of evidence					Effect per 1 000 patients tested			
Out- come	№ of studies (№ of patients)	Study design	Risk of bias	Indi- rect- ness	Incon- sistency	Im- pre- ci- sion	Publi- cation bias	pre-test proba- bility of 0.5%	pre- test proba- bility of 3%	pre- test proba- bility of 10%	Test accu- racy CoE	
True	5 stud-	cohort &	not	not	not seri-	seri-	none	3 to 5	18 to	61 to	$\oplus \oplus \oplus \bigcirc$	
posi-	ies	case-	seri-	seri-	ous	ous			30	100	MODER-	
tives	4299	control	ous	ous		а					ATE	
False	patients	type						0 to 2	0 to 12	0 to 39		
nega-		studies						0102	01012	0.000		
tives												
True nega- tives	5 stud- ies 4299	cohort & case- control	not seri- ous	not seri- ous	not seri- ous	not seri- ous	none	945 to 985	922 to 960	855 to 891	⊕⊕⊕⊕ нісн	
False posi-	patients	type studies						10 to 50	10 to 48	9 to 45		
uves												

Explanations

a. Variation and large confidence intervals for sensitivity

Question 2: Should rRT PCR on saliva samples be used to screen for SARS-CoV-2 in mainly symptomatic persons?

Sensitivity	0.55 to 0.97	Preva-				
Specificity	0.44 to 1.00	lences	0.5%	3%	10%	

	Nº of		Fact	Factors that may decrease certainty of evidence				Effect p	patients		
Out- come	studies (№ of pa- tients)	Study design	Risk of bias	Indi- rect- ness	Incon- sistency	Im- pre- ci- sion	Publica- tion bias	pre- test proba- bility of 0.5%	pre- test proba- bility of 3%	pre- test proba- bility of 10%	Test accu- racy CoE
True	12 stud-	cohort &	seri-	not	serious	not	publica-	3 to 5	17 to	55 to	$\oplus \oplus \bigcirc \bigcirc$
posi-	ies	case-	ous ^a	seri-	b	seri-	tion bias		29	97	LOW
tives	1612	control		ous		ous	sus-				
False	patients	type studies					pected	0 to 2	1 to 13	3 to 45	
nega-											
tives											
2)											
True	12 stud-	cohort &	seri-	not	serious	not	publica-	438 to	427 to	396 to	⊕⊕⊖⊖
nega-	ies	case-	ous ^a	seri-	b	seri-	tion bias	995	970	900	LOW
tives	1612	control		ous		ous	sus-				
False	patients	type					pected	0 to	0 to	0 to	
posi-		studies						557	543	504	
tives											

Explanations

a. Unclear blinding in most studies and publication bias suspected

b. Cause of variation is not clear

Question 3: Should rRT PCR on saliva samples be used to diagnose Covid 19 in symptomatic patients?

Sensitivity	0.49 to 1.00	Prev-				
		a-	10%	50%	90%	
Specificity	0.74 to 0.96	lences				

			Facto	Factors that may decrea			tainty of ev-	Effect per 1 000 patients tested			
Out- come	№ of studies (№ of pa- tients)	Study design	Risk of bias	Indi- rect- ness	Incon- sistency	Im- pre- ci- sion	Publica- tion bias	pre- test proba- bility of 10%	pre- test proba- bility of 50%	pre- test proba- bility of 90%	Test accu- racy CoE
True posi- tives False nega- tives	10 studies 1154 patients	cohort & case- control type studies	seri- ous a	not seri- ous	serious ^b	not seri- ous	publica- tion bias strongly sus- pected °	49 to 100 0 to 51	245 to 500 0 to 255	441 to 900 0 to 459	
True nega- tives False posi- tives	10 studies 1154 patients	cohort & case- control type studies	seri- ous a	not seri- ous	serious Þ	seri- ous d	publica- tion bias strongly sus- pected °	666 to 864 36 to 234	370 to 480 20 to 130	74 to 96 4 to 26	

Explanations

a. Unclear risk of blinding in most studies

b. Cause of variation not clear

c. Mainly small studies with high diagnostic accuracy (positive results)

d. Mainly positives tested in the studies

Appendix 3 Excluded records assessed in full-text

Systematic reviews and HTA reports

, ř	*	
Full Refe	rence	Reason for exclusion, comment on use
1.	Boger, B., Fachi, M. M., Vilhena, R. O., Cobre, A. F., Tonin, F. S., & Pontarolo, R. (2020). Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. American Journal of infection control, 10, 10.	Outdated, Search, last updated April 2020.
2.	Bwire, G. M., Majigo, M. V., Njiro, B. J., & Mawazo, A. (2020). Detection profile of SARS-CoV-2 using RT-PCR in different types of clinical specimens: a systematic review and meta-analysis. Journal of Medical Virology.	Only positivity rate, pub- lished July 2020, no in- formation on search date.
3.	Czumbel, L. M., Kiss, S., Farkas, N., Mandel, I., Hegyi, A. E., Nagy, A. K., Varga, G. (2020). Saliva as a Candidate for COVID-19 Diagnostic Testing: A Meta-Analysis (preprint). medRxiv, 2020.2005.2026.20112565.	Outdated, published pre- print 28.05.2020, Search updated 25th of April 2020.
4.	Fakheran, O., Dehghannejad, M., & Khademi, A. (2020). Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infectious diseases of poverty, 9(1), 100.	Outdated Search date May 3rd.
5.	Khurshid, Z., Zohaib, S., Joshi, C., Moin, S. F., Zafar, M. S., & Speicher, D. J. (2020). Saliva as a non-invasive sample for the detection of SARS-CoV-2: a systematic review (preprint). medRxiv, 2020.2005.2009.20096354.	Outdated, Search date April 25th
6.	Mohammadi, A., Esmaeilzadeh, E., Li, Y., Bosch, R. J., & Li, J. (2020). SARS-CoV-2 Detection in Different Respiratory Sites: A Systematic Review and Meta-Analysis (preprint). medRxiv, 2020.2005.2014.20102038.	Outdated, Search date April 20th
7.	Peeters, E., Kaur Dhillon Ajit Singh, S., Vandesompele, J., Mestdagh, P., Hutse, V., & Arbyn, M. (2020). Rapid systematic review of the sensitivity of SARS-CoV-2 molecular testing on saliva compared to nasopharyngeal swabs (preprint). medRxiv, 2020.2008.2005.20168716.	Search date June 6th, in- spected for references of primary studies
8.	Tu, Y. P., & O'Leary, T. J. (2020). Testing for Severe Acute Respiratory Syndrome-Coronavirus 2: Challenges in Getting Good Specimens, Choosing the Right Test, and Interpreting the Results. Critical care medicine.	Not an SR, included as a reference in the discus- sion
9.	Jones, S. (2020). Saliva-Based Tests to Detect Active Severe Acute Respiratory Syndrome Coronavirus 2 Infection (Health Technology Update 27). Ottawa, ON: C. A. f. D. a. T. i. Health. Canadian Agency for Drugs and Technologies in Health. Retrieved from https://cadth.ca/saliva- based-tests-detect-active-severe-acute-respiratory-syndrome- coronavirus-2-infection	Rapid HTA, Not a sys- tematic review,
10.	https://eunethta.eu/wp- content/uploads/2020/07/Project_Plan_RCROT02_Molecular_Methods_3 1.07.2020_final.pdf	Ongoing HTA including a systematic review on Di- agnostic accuracy of (CE IVD labelled) molecular

Full Reference	Reason for exclusion,
	SARS-CoV-2 tests, re-
	vised planned publication
	date November 7th 2020
 <u>https://www.hiqa.ie/sites/default/files/2020-06/Evidence-summary-for-</u> saliyary-detection-of-SARS-CoV-2 pdf 	Rapid HTA, with a sys-
survery detection of or it to over 2.put	tematic review. Search
	date 27th of May 2020,
	Inspected for references

Primary studies

Full Ref	erence	Reason for Exclusion
1.	Azzi L, Carcano G, Gianfagna F, Grossi P, Gasperina DD, Genoni A, et al. Saliva is a reliable tool to detect SARS-CoV-2. J Infect. 2020.	No paired samples (Patient had tested positive at another time point)
2.	Ben-Assa, N., Naddaf, R., Gefen, T., Capucha, T., Hajjo, H., Mandelbaum, N., Geva-Zatorsky, N. (2020). Direct on-the- spot detection of SARS-CoV-2 in patients. <i>Experimental</i> <i>biology and medicine (Maywood, NJ)</i> , 1535370220941819.	Wrong index and reference (Saliva POC RT-Lamp compared to Saliva rRT-PCR
3.	Bosworth, A., Whalley, C., Poxon, C., Wanigasooriya, K., Pickles, O., Aldera, E. L., Beggs, A. D. (2020). Rapid implementation and validation of a cold-chain free SARS-CoV- 2 diagnostic testing workflow to support surge capacity. Journal of Clinical Virology.	<20 paired samples, comparision of two rRT-PCR assays. DA not cal- cauable
4.	Cassinari, K., Alessandri, E., Chambon, P., Charbonnier, F., Gracias, S., Beaussire, L., Frebourg, T. (2020). Assessment of multiplex digital droplet RT-PCR as an accurate diagnosis tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples (preprint). medRxiv, 2020.2008.2002.20166694.	< 20 paired samples This study is a validation study of RT-ddPCR in NPS and Saliva, DA not calcuable
5.	Chau, N. V. V., Thanh Lam, V., Thanh Dung, N., Yen, L. M., Minh, N. N. Q., Hung, L. M., group, O. Cr. (2020). The natural history and transmission potential of asymptomatic SARS-CoV-2 infection. <i>Clinical Infectious Diseases</i> , <i>04</i> , 04.	DA not calcuable (only sensitivity)
6.	Chen L et al. Detection of 2019-nCoV in Saliva and Characterization of Oral Symptoms in COVID-19 Patients. 2020 [Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3557140.	< 20 paired samples, DA not cal- cuable
7.	Chen, J. H., Yip, C. C., Poon, R. W., Chan, K. H., Cheng, V. C., Hung, I. F., To, K. K. (2020). Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. <i>Emerging microbes & infections</i> , 1-14.	Paired samples, but DA not calcua- ble (only sensitivity)
8.	Fang Z, Zhang Y, Hang C, Ai J, Li S, Zhang W. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J Infect. 2020.	DA not calcuable (only positive rate)
9.	Fukumoto, T., Iwasaki, S., Fujisawa, S., Hayasaka, K., Sato, K., Oguri, S., Teshima, T. (2020). Efficacy of a novel SARS-CoV-2 detection kit without RNA extraction and purification. <i>International Journal of infectious diseases : IJID :</i> <i>official publication of International Society for Infectious</i> <i>Diseases</i> .	Comparision of two different extrac- tion system- no directly comparision of saliva and a relevant Rerence standard

Full Refe	erence	Reason for Exclusion
10.	Genetics, A., & Hospital, T. S. (2020). COVID-19 and SARS- CoV-2 Detection in Saliva <i>ClinicalTrials</i> : https://ClinicalTrials.gov/show/NCT04517682.	Ongoing
11.	Helgouach, N., Champigneux, P., Santos-Schneider, F., Molina, L., Espeut, J., Alali, M., Molina, F. (2020). EasyCOV : LAMP based rapid detection of SARS-CoV-2 in saliva (preprint). <i>medRxiv</i> , 2020.2005.2030.20117291.	Index Saliva RT LAMP
12.	Ikeda, M., Imai, K., Tabata, S., Miyoshi, K., Mizuno, T., Murahara, N., Kato, Y. (2020). Clinical evaluation of self- collected saliva by RT-qPCR, direct RT-qPCR, RT-LAMP, and a rapid antigen test to diagnose COVID-19 (preprint). <i>medRxiv</i> , 2020.2006.2006.20124123.	DA not calcuable (Only sensitivity)
13.	Kim, S. E., Lee, J. Y., Lee, A., Kim, S., Park, K. H., Jung, S. I., Jang, H. C. (2020). Viral Load Kinetics of SARS-CoV-2 Infection in Saliva in Korean Patients: a Prospective Multi- center Comparative Study. <i>Journal of Korean medical science</i> , <i>35</i> (31), e287.	DA not calcuable (Only sensitivity)
14.	Kojima N, Turner F, Slepnev V, Bacelar A, Deming L, Kodeboyina S, et al. Self-Collected Oral Fluid and Nasal Swabs Demonstrate Comparable Sensitivity to Clinician Collected Nasopharyngeal Swabs for Covid-19 Detection. medRxiv 2020:2020.04.11.20062372.	Oral fluid swab, DA not calcuable
15.	Lai, C. K. C., Chen, Z., Lui, G., Ling, L., Li, T., Wong, M. C. S., Chan, P. K. S. (2020). Prospective study comparing deep- throat saliva with other respiratory tract specimens in the diagnosis of novel coronavirus disease (COVID-19). <i>Journal of</i> <i>infectious diseases</i> .	DA not calcuable (only positive rate)
16.	Lamb, L. E., Bartolone, S. N., Ward, E., & Chancellor, M. B. (2020). Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. <i>PloS one, 15</i> (6), e0234682.	Wrong population (simulated pa- tient samples)
17.	Liu, R., Yi, S., Zhang, J., Lv, Z., Zhu, C., & Zhang, Y. (2020). Viral Load Dynamics in Sputum and Nasopharyngeal Swab in Patients with COVID-19. <i>Journal of dental research</i> , 22034520946251.	Wrong index (sputum) and wrong outcome (Viral load)
18.	Lu, J., Becker, D., Sandoval, E., Amin, A., De Hoff, P., Diets, A., Grzymski, J. (2020). Saliva is less sensitive than nasopharyngeal swabs for COVID-19 detection in the community setting (preprint). <i>medRxiv</i> , 2020.2005.2011.20092338.	Duplicate Becker 2020 (included), - wrong author listing
19.	Luvira, V., Jittmittraphap, A., Muangnoicharoen, S., Chantawat, N., Janwitthayanan, W., & Leaungwutiwong, P. (2020). Temporal Change of SARS-CoV-2 in Clinical Specimens of COVID-19 Pneumonia Patients. <i>American</i> <i>Journal of Tropical Medicine & Hygiene, 08</i> , 08.	less tha 20 individuals
20.	Ma, H., Pan, J., Li, Y., Ye, Y., Zhang, B., Wang, H., Huang, X. (2020). Real-time RT-PCR for the detection of SARS-CoV-2 nucleic acid. <i>Chinese Journal of Microbiology and Immunology</i> (<i>China</i>).	Language- full-text Chinese
21.	Matic, N., Lawson, T., Ritchie, G., Stefanovic, A., Leung, V., Champagne, S., Lowe, C. F. (2020). Automated molecular testing of saliva for SARS-CoV-2 detection (preprint). <i>medRxiv</i> , 2020.2008.2011.20170613.	Reference not NPS -rRT-PCR, - Saliva samples tested with two dif- ferent RT PCR assays
22.	Nagura-Ikeda, M., Imai, K., Tabata, S., Miyoshi, K., Murahara, N., Mizuno, T., Kato, Y. (2020). Clinical evaluation of self- collected saliva by RT-qPCR, direct RT-qPCR, RT-LAMP, and a rapid antigen test to diagnose COVID-19. <i>Journal of clinical</i> <i>microbiology</i> .	Duplicate Ikeda 2020 (included), - wrong author listing

Full Reference		Reason for Exclusion
23.	Neurognos. (2020). Evaluation of an Alternative Method of Obtaining Viral RNA for the Detection of SARS-CoV-2 Virus Using PCR <i>ClinicalTrials</i> : https://ClinicalTrials.gov/show/NCT04468217.	Ongoing
24.	Perchetti, G. A., Nalla, A. K., Huang, ML., Zhu, H., Wei, Y., Stensland, L., Greninger, A. L. (2020). Validation of SARS- CoV-2 detection across multiple specimen types. <i>Journal of</i> <i>Clinical Virology</i> , 104438-104438.	DA not calcuable (only limit of de- tection)
25.	Perng, CL., Ming-Jr, J., Chih-Kai, C., Jung-Chung, L., Kuo- Ming, Y., Chien-Wen, C., Hung-Sheng, S. (2020). Novel rapid identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by real-time RT-PCR using BD Max Open System in Taiwan. <i>PeerJ</i> .	Validation of different RT-PCR methods. No paired samples of in- dex and reference
26.	Rutgers Clinical Genomics Laboratory TaqPath SARS-CoV-2 Assay EUA Summary. FDA. 2020 [Available from: https://www.fda.gov/media/136875/download	FDA EUA documentation only
27.	SoRelle, J., Mahimmainathan, L., McCormick-Baw, C., Cavuoti, D., Lee, F., Bararia, A., Muthukumar, A. (2020). Evaluation of symptomatic patient saliva as a sample type for the Abbott ID NOW COVID-19 assay (preprint). <i>medRxiv</i> , 2020.2006.2001.20119198.	Index (Abbot ID NOW), Point of Care (POC) with isothermal amplifi- cation (nor rRT-PCR)
28.	Teo, A. K. J., Choudhury, Y., Tan, I. B., Cher, C. Y., Chew, S. H., Wan, Z. Y., Hsu, L. Y. (2020). Validation of Saliva and Self-Administered Nasal Swabs for COVID-19 Testing (preprint). <i>medRxiv</i> , 2020.2008.2013.20173807.	DA not calcuable (only sensitivity)
29.	Tibbetts, R. J., Callahan, K., Rofoo, K., Zarbo, R. J., & Samuel, L. P. (2020). Comparison of the NeuMoDX, Diasorin Simplexa, Cepheid and Roche CDC SARS-CoV 2 EUA assays using nasopharyngeal/nasal swabs in universal transport media (UTM) and sputum and tracheal aspirates (preprint). <i>bioRxiv</i> , 2020.2005.2026.118190.	Not saliva (Index = sputum/tracheal aspirates)
30.	To KK, Tsang OT, Yip CC, et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin Infect Dis. 2020;71(15):841- 843. doi:10.1093/cid/ciaa149	No paired samples (Patient had tested positive at another time point)
31.	Velu, P., Craney, A., Ruggiero, P., Sipley, J., Cong, L., Hissong, E., Rennert, H. (2020). Rapid implementation of SARS-CoV-2 emergency use authorization RT-PCR testing and experience at an academic medical institution (preprint). <i>medRxiv</i> , 2020.2006.2005.20109637.	Sputum and NPS no paired sam- ples, clinical validation of a labora- tory-developed rRT-PCR Test
32.	Vila, J., Fernandez-Pittol, M., Hurtado, J. C., Moreno-García, E., Rubio Garcia, E., Navarro, M., Casals-Pascual, C. (2020). Assessment of the use and quick preparation of saliva for rapid microbiological diagnosis of COVID-19 (preprint). <i>bioRxiv</i> , 2020.2006.2025.172734.	Duplicate of Fernandez-Pittol, (in- cluded), - wrong author listing
33.	Wang, K., Zhang, X., Sun, J., Ye, J., Wang, F., Hua, J., Wu, X. (2020). Differences of SARS-CoV-2 Shedding Duration in Sputum and Nasopharyngeal Swab Specimens among Adult Inpatients with COVID-19. <i>Chest</i> .	<20 paired samples
34.	Wei, S., Kohl, E., Djandji, A., Morgan, S., Whittier, S., Mansukhani, M., Williams, Z. (2020). Field-deployable, rapid diagnostic testing of saliva samples for SARS-CoV-2 (preprint). <i>medRxiv</i> , 2020.2006.2013.20129841.	Spiked samples, HP Lamp no clini- cal validation of saliva with RT-PCR
35.	Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. medRxiv. 2020:2020.04.16.20067835.	DA not calcuable, A continuation of this study (Wyllie 2020) was in- cluded.

Full Reference	Reason for Exclusion
 Ye G, Li Y, Lu M, Chen S, Luo Y, Wang S, et al. Experience of	Wrong index and reference (rRT-
different upper respiratory tract sampling strategies for	PCR on specimens from throat
detection of COVID-19. J Hosp Infect 2020;105(1):1-2.	swab and lingual swab compared)

Published by the Norwegian Institute of Public Health November 2020 P. O. Box 222 Skøyen NO-0213 Oslo Tel: +47 21 07 70 00 www.fhi.no