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A B S T R A C T   

Tick-borne encephalitis virus (TBEV) is a medically important arbovirus, widespread in Europe and Asia. The 
virus is primarily transmitted to humans and animals by bites from ticks and, in rare cases, by consumption of 
unpasteurized dairy products. The aim of this study was to sequence and characterize two TBEV strains with 
amplicon sequencing by designing overlapping primers. The amplicon sequencing, via Illumina MiSeq, covering 
nearly the entire TBEV genome, was successful: We retrieved and characterized the complete polyprotein 
sequence of two TBEV strains, Hochosterwitz and 1993/783 from Austria and Sweden, respectively. In this study 
the previous phylogenetic analysis of both strains was confirmed to be of the European subtypes of TBEV (TBEV- 
Eu) by whole genome sequencing. The Hochosterwitz strain clustered with the two strains KrM 93 and KrM 213 
from South Korea, and the 1993/783 strain clustered together with the NL/UH strain from the Netherlands. Our 
study confirms the suitability and rapidness of the high-throughput sequencing method used to produce complete 
TBEV genomes from TBEV samples of high viral load giving high-molecular-weight cDNA with large overlapping 
amplicons.   

1. Introduction 

Tick-borne encephalitis virus (TBEV) is a medically important 
arthropod-borne virus (arbovirus), which is widespread across large 
parts of Europe and Asia. TBEV is the causative agent of the disease tick- 
borne encephalitis (TBE) in humans and animals (Lindquist and Vapa
lahti, 2008; Suss, 2011). TBEV is mainly transmitted to humans and 

animals through bites from Ixodes ricinus and Ixodes persulcatus ticks, and 
in rare cases through ingestion of unpasteurized dairy products (Balogh 
et al., 2010; Brockmann et al., 2018; Holzmann et al., 2009; Hudopisk 
et al., 2013; Kerlik et al., 2018; Paulsen et al., 2019; Ruzek et al., 2019). 
Some small mammals are proven reservoirs for the TBEV, while 
migratory birds and large mammals are important for distribution of 
ticks and the virus (Carpi et al., 2008; Mlera and Bloom, 2018; Nuttall 
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and Labuda, 2003; Waldenström et al., 2007). 
Taxonomically, TBEV belongs to the genus Flavivirus within the 

family Flaviviridae. The TBEV genome consist of approximately 11 kb 
positive-sense single-stranded RNA. The viral RNA encodes one single 
open reading frame (ORF) of about 3400 amino acids, flanked by 5′ and 
3′ non-coding regions (NCRs), three structural proteins; envelope (E), 
precursor membrane (PrM) and capsid (C), and seven non-structural 
proteins (NS1, NS2A, NS2B, NS3, NS4A-2K-4B complex and NS5) 
(Heinz and Mandl, 1993; Kaufusi et al., 2014; Plaszczyca et al., 2019; 
Ruzek et al., 2019; Slavik et al., 1970). Based on phylogenetic grouping 
and geographical distribution five subtypes of TBEV are known: the 
European, Siberian, Far Eastern, Baikalian and Himalayan subtypes 
(Adelshin et al., 2019; Dai et al., 2018; Ecker et al., 1999; Kovalev and 
Mukhacheva, 2017). These five subtypes are distributed over the 
Eurasian continent from Europe, Russia, Japan, China and South Korea 
(Demina et al., 2010; Dobler et al., 2012; Yoshii et al., 2017). The Eu
ropean TBEV subtype (TBEV-Eu) is prevalent across Europe and Asia, 
from England, France, the Netherlands, to east Sibiria in Russia and 
South Korea (Dekker et al., 2019; Demina et al., 2010; Dobler et al., 
2012; Holding et al., 2019; Ruzek et al., 2019; Velay et al., 2018). Most 
of the available TBEV-Eu sequences originate from ticks. Conversely, 
few sequences are available from clinical TBE cases because they often 
are PCR-negative on the onset of neurological symptoms (Haglund et al., 
2003; Saksida et al., 2005). 

In this work we sequenced two cultured TBEV strains; one origi
nating from a Swedish patient (1993/783) (Haglund et al., 2003) and 
one from an Austrian tick collected in 1971 (Hochosterwitz) (Heinz and 
Kunz, 1981). The aim of this study was to characterize the two TBEV 
strains. We established a high-throughput amplicon sequencing method 
with overlapping primers on Illumina MiSeq, based on a protocol 
developed by Quick et al. (2017). 

2. Materials and methods 

2.1. Virus strains and virus-cultivation 

The Hochosterwitz strain was isolated from an I. ricinus tick collected 
in 1971 near the Hochosterwitz palace in Austria, which is considered a 
highly endemic TBE area. The strain 1993/783 originated from a patient 
hospitalized in 1993 at Kalmar Hospital, Sweden, with a moderate form 
of TBE with symptoms such as fever, malaise, myalgia and headache 
(Haglund et al., 2003). The Hochosterwitz strain had been passaged two 
times in mouse brain and then passaged several times in African green 
monkey kidney Vero E6 cells. Strain 1993/783 had initially been 
passaged once in suckling baby mice and once in Vero E6 cells. Prior to 
the experiments, Hochosterwitz were passaged eight times and 
1993/783 three times in Vero E6 cell culture. The viral titre for 
Hochosterwitz was approximately 6.5 × 106 focus forming units ac
cording to the protocol by Stiasny et al. (2009) per ml, while the titre for 
1993/783 was unknown (Stiasny et al., 2009). 

2.2. RNA extraction and reverse transcription (RT) of viral RNA 

Viral RNA was extracted from the cultivated virus stocks of the 
strains using QIAamp® Viral RNA mini kit (QIAGEN GmbH, Hilden, 
Germany) according to the manufacturer’s recommendations. Immedi
ately after extraction, the viral RNA was reversely transcribed to cDNA 
using SuperScript III reverse transcription kit (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) with random primers and RNase inhib
itor (Applied Biosystems, Foster City, California, USA) according to the 
manufacturers’ protocol. 

2.3. Primer design, polymerase chain reaction and gel electrophoresis 

To recover the complete coding TBEV genome, we followed the 
“Primal Scheme” as described in Quick et al. (2017). Briefly, 54 TBEV 

genomes representing the European TBEV genetic diversity were 
retrieved from NCBI GenBank and aligned using Muscle 3.8.425 (Edgar, 
2004). Primers were designed using the online resource “Primal 
Scheme” (Quick et al., 2017), with amplicon length set to 2000 nt and 
overlap to 200 nt (Table 1). PCR was performed following the protocol 
with the Q5 high fidelity polymerase enzyme described in Quick et al. 
(2017). 

2.4. Library preparation and high-throughput sequencing 

The PCR products were cleaned using 1.8x Ampure XP beads 
(Beckman Coulter Life Sciences, Indianapolis, Indiana) according to the 
Kapa HyperPlus Kit clean-up protocol (KAPA Biosystems, Roche, Basel, 
Switzerland). Library preparation and amplification were performed 
using KAPA HyperPlus (KAPA Biosystems, Roche, Basel, Switzerland) 
and sequenced using a MiSeq using 2 × 300 v3 (Illumina, San Diego, 
California), following to the manufacturers’ recommendations. 

2.5. High-throughput sequence data processing and assembly 

Sequencing reads from the separate products representing each 
strain were concatenated, reads smaller than 50 nt and poor quality 
reads were removed using Trim Galore v0.4.1 (a wrapper by Felix 
Krueger at the Babraham Institute using Cutadapt v1.18 (default quality 
trimming; Q < 30) (Martin, 2011) and FastQC (Simon Andrews also at 
the Babraham Institute)). Reads from each of the two strains were 
mapped to a library of TBEV sequences (Table S1) using BowTie2 
v2.3.4.3 (with the local alignment option) (Langmead and Salzberg, 
2012). Aligned reads were further processed using Samtools v1.9 (Li, 
2011) and weeSAM v1.4 (Centre for Virus Research, Glasgow, UK). The 
highest number of reads from the sequenced Hochosterwitz strain 
mapped to KrM 93 (HM535611.1), and the 1993/783 strain to NL/UH 
(MH021184.1), consequently these two were used as references for a 
second round of reference-based assembly using the same software. 
Consensus sequences of Hochosterwitz and 1993/783 were called from 

Table 1 
Primer pairs used to sequence the two tick-borne encephalitis virus strains 
Hochosterwitz and 1993/783.  

Primer name Position* Sequences (5’ to 3’) Primer pair 

JK_1_Forward 35-57 AGC ATT AGC AGC GGT TGG 
TTT G Primer pair 

1 
JK_1_Reverse 1998-1976 

GAC TGG GAT CCT ACA GGG 
CTT T 

JK_2_Forward 1742-1764 
CGG AGA CCA GAC TGG AGT 
GTT A Primer pair 

2 
JK_2_ Reverse 3770-3748 

AAC ACA GCC TGG AGT AGC 
ATC A 

JK_3_ Forward 3511-3533 TTG CGG ACA ACG GTG AAT 
TAC T Primer pair 

3 
JK_3_ Reverse 5343-5321 

GAA CCT GAC CCG TTT CCC ATT 
C 

JK_4_ Forward 5077-5099 
ATG AGA CCT ACG TCA GCA 
GCA T Primer pair 

4 JK_4_ Reverse 6918-6896 CAT CTC ATT GGC TGC AAC CAG 
T 

JK_5_Forward 6671-6693 CTT CGT CGT CCG GAC TTC AAT 
C Primer pair 

5 
JK_5_ Reverse 8660-8638 

GGC CAG CTG AGA AGT TTC 
ACA A 

JK_6_ Forward 8384-8406 
ACT TTT GGC TCG GTT TGG 
AGA C Primer pair 

6 JK_6_ Reverse 10261- 
10239 

CCC AGA TGT TCT TGG CCC ATT 
C 

JK_7_ Forward 9347-9369 GCA CAA ACA ATT GGC AAC 
CAC A Primer pair 

7 
JK_7_ Reverse 

11197- 
11175 

ATT TCT CTC TTC CCT CCT CCC 
G  

* The positions correspond to the consensus alignment of 54 TBEV genomes, 
representing European TBEV genetic diversity, retrieved from NCBI GenBank. 
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the resulting alignment using the built-in consensus caller in Geneious 
Prime v2020.1, calling bases matching at least 50% of the reads, only 
reads mapping the region corresponding to the amplified products 
JK1–JK7 were considered (entire region had >1000 coverage). 

2.6. Multiple sequence alignment and phylogenetic analysis 

Multiple sequence alignment was performed using Muscle 3.8.425 
(Edgar, 2004) on genomes described in (Table S1) in addition to one 
strain from Denmark (Andersen et al., 2019), and 14 sequences from 
Finland (Smura et al., 2019). 

Nucleotide model selection was performed in ModelFinder inte
grated in IQ-TREE 1.6.11 (Nguyen et al., 2015). The evolutionary his
tory of the complete polyprotein alignment was inferred using the 
maximum likelihood method with the GTR + F+I + G4 model of 
nucleotide substitution using IQ-TREE 1.6.11. Branch support expressed 
as Shimodaira–Hasegawa approximate likelihood-ratio test (SH-aLTR) 
and ultrafast bootstrap were both calculated by computing 1000 repli
cates. The Louping ill virus (GenBank accession number: NC_001809.1, 
strain 369/T2) a closely related flavivirus, was chosen as an outgroup. 

3. Results and discussion 

The use of amplicon sequencing with overlapping primers has pre
viously been documented as a successful approach to sequence the 
whole genome of clinical Zika virus samples (Quick et al., 2017). In this 
study, we designed seven TBEV-Eu primer pairs with fragments of 
approximately 2000 nt based on the protocol of Quick et al. (2017) and 
sequenced two TBEV-Eu strains: Hochosterwitz (GenBank accession 
number MT311861) and 1993/783 (GenBank accession number 
MT311860). Summary of the sequencing coverage and number of reads 
is given in Table S2. Since we were sequencing cultivated viruses with 
high viral load, we designed primers for amplification of longer frag
ments than Quick et al. (2017). The use of shorter amplicon length, such 
as 400 nt may be useful for samples with low viral load and/or degraded 
viral RNA. The amplicon approach allows for multiplexing of samples, 
and affordable sequencing of the low abundance virus RNA in tick and 
patient samples. 

Both the Hochosterwitz and the 1993/783 sequences contained 
10,871 nt, consisting of 76 nt 5’ NCR, 10,245 nt polyprotein, and 551 nt 
3’ NCR. The poly(A) tract was mostly deleted (or truncated) but had 
retained the same pattern of (A)3C(A)6 in both strains. This is identical 
to the short poly(A) tract retained in the Toro 2003 and Habo 2011 
strains. The role of the heterogenic poly(A) tracts in the life cycle of the 
virus is not clear. However, deep sequencing of Toro 2003 clones after 
passaging in cell culture or mouse brain revealed mutations in specific 
genomic regions, indicative of culture driven selection. In addition, 
mutations within the poly(A) tract are suggested to be an important 
virulence determinant for TBEV or related to virus cultivation. A longer 
sequence of the poly(A) tract seemed more common in virus cultivated 
in mice compared to cell culture (Asghar et al., 2016; Asghar et al., 2014; 
Mandl et al., 1991). Our sequence result of the NS5 region of 1993/783 
showed 100% identity with a previously published sequence of the same 
region (GenBank accession number KF991109). 

Phylogenetic analysis of the complete coding region of Hochos
terwitz and 1993/783 confirmed that both strains belong to the TBEV- 
Eu subtype (Fig. 1). The Hochosterwitz strain grouped together with 
two endemic South Korean strains, KrM 93 and KrM 213, both belonging 
to the TBEV-Eu subtype (Yun et al., 2011). This is surprising due to the 
geographical distance from Europe, and the observation that the 
neighbouring countries Japan and China mainly harbour the far eastern 
(TBEV-Fe) subtype (Ko et al., 2010; Yoshii et al., 2017). Migratory birds 
may have introduced TBEV-Eu strains into South Korea (Carpi et al., 
2008; Mlera and Bloom, 2018; Nuttall and Labuda, 2003; Waldenström 
et al., 2007). Tick populations with TBEV-Eu are found both in Western 
and Eastern Siberia of Russia (Demina et al., 2010). Considering the 
relatively short feeding time (five to nine days), it is possible that Ixodes 
ticks may have been acquired by migratory birds at stopovers or trans
ported non-stop over this long-distance (Klaus et al., 2016). There is also 
a possibility of rodent reservoirs being involved in virus distribution 
through international sea trade. 

The phylogenetic analysis demonstrated that the strain 1993/783 
clustered with both the NL/UH strain from the Netherlands, and with 
the strains from Slovenia (Ljubljana) and Finland (Isosaari) (Fig. 1). The 
strain 1993/783 and the Slovenia (Ljubljana) strain both originated 
from human cases. The Swedish patient (1993/783) with a moderate 

Fig. 1. Maximum likelihood tree showing the TBEV-Eu diversity. Node numbers represent bootstrap values (SH-aLRT support (%) / ultrafast bootstrap support (%)). 
Scale bar show number of nucleotide changes. Samples in this study show in red, TBEV-Eu reference strain Neudoerfl shown in blue. 
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TBE disease was presumably infected in the Kalmar municipality in 
Sweden (Haglund et al., 2003), while the strain from Slovenia (Ljubl
jana) originated from a severe human TBE case, most likely infected by 
aerosols while working with TBEV in the laboratory (Avsic-Zupanc 
et al., 1995). 

The various European TBEV strains do generally not display any 
geographical clustering with regards to their host origin. Strains from 
the Netherlands, Sweden and Finland belong to different clusters though 
they all originated from ticks. The 1993/783 strain from the patient did 
not cluster with the other Nordic strains originating from ticks, like the 
Finnish (Sipoo and Espoo) or the Swedish strains (Saringe, Torö, JP-296 
and JP-554) (Fig. 1). The overall genetic variation of TBEV does not 
seem to be host dependent since the strains isolated from patients cluster 
with the tick strains and vice versa (Fig. 1) (Grubaugh et al., 2019). We 
do not find any geographic clustering in this study, confirming previous 
studies suggesting a lack of a distinct phylogeographic pattern in 
TBEV-Eu strains (Heinze et al., 2012). 

We identified 52 and eight ambiguous nucleotide positions in the 
sequence reads of the Hochosterwitz and 1993/783 strains, respectively 
(Table S3). One of the ambiguous nucleotides, at position 1923, were 
primer induced. Exchange of amino acids with different biochemical 
properties affecting polarity or charge due to different folding or protein 
function, might be critical for the survival, transmission and replication 
of TBEV. The main ambiguous nucleotides can be explained by either 
PCR, sequencing induced errors, passage history in laboratory mice and 
mammalian cell lines or indicate sub-populations or quasispecies (Gru
baugh et al., 2019; Romanova et al., 2007). However, the same ampli
fication methods were used for both TBEV strains and, if the minority 
populations detected here were due to polymerase or sequencing errors, 
one might expect similar rates in both TBEV strains (Potapov and Ong, 
2017). It is difficult to explain the higher number of ambiguous sites in 
structural genes of Hochosterwitz strain compared to non-structural 
genes or 1993/783 strain by PCR-errors. We would expect that 
PCR-errors were more or less evenly distributed in the genome. 

In summary, the amplicon sequencing of two TBEV-Eu strains was 
successful. We retrieved and characterized the complete polyprotein 
sequence of Hochosterwitz and 1993/783 from Austria and Sweden, 
respectively. 

4. Conclusions 

Our study confirms a method for high-throughput sequencing of 
TBEV samples of high viral load giving high-molecular-weight cDNA 
with large overlapping amplicons. This offers an improved tool for TBEV 
sequencing and diagnostics of TBE. The multiplex PCR protocol has 
advantages as it reduces the cost of reagents and minimises the possi
bility of laboratory errors. Studying virus populations within naturally 
infected humans and ticks can lead to breakthrough in our under
standing of virus-host interactions and novel approaches for 
surveillance. 
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