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BACKGROUND: Chemical and nonchemical environmental exposures are increasingly suspected to influence the development of obesity, especially
during early life, but studies mostly consider single exposure groups.
OBJECTIVES: Our study aimed to systematically assess the association between a wide array of early-life environmental exposures and childhood obe-
sity, using an exposome-wide approach.
METHODS: The HELIX (Human Early Life Exposome) study measured child body mass index (BMI), waist circumference, skinfold thickness, and
body fat mass in 1,301 children from six European birth cohorts age 6–11 y. We estimated 77 prenatal exposures and 96 childhood exposures (cross-
sectionally), including indoor and outdoor air pollutants, built environment, green spaces, tobacco smoking, and biomarkers of chemical pollutants
(persistent organic pollutants, metals, phthalates, phenols, and pesticides). We used an exposure-wide association study (ExWAS) to screen all expo-
sure–outcome associations independently and used the deletion-substitution-addition (DSA) variable selection algorithm to build a final multiexposure
model.

RESULTS: The prevalence of overweight and obesity combined was 28.8%. Maternal smoking was the only prenatal exposure variable associated with
higher child BMI (z-score increase of 0.28, 95% confidence interval: 0.09, 0.48, for active vs. no smoking). For childhood exposures, the multiexpo-
sure model identified particulate and nitrogen dioxide air pollution inside the home, urine cotinine levels indicative of secondhand smoke exposure,
and residence in more densely populated areas and in areas with fewer facilities to be associated with increased child BMI. Child blood levels of cop-
per and cesium were associated with higher BMI, and levels of organochlorine pollutants, cobalt, and molybdenum were associated with lower BMI.
Similar results were found for the other adiposity outcomes.
DISCUSSION: This first comprehensive and systematic analysis of many suspected environmental obesogens strengthens evidence for an association of
smoking, air pollution exposure, and characteristics of the built environment with childhood obesity risk. Cross-sectional biomarker results may suffer
from reverse causality bias, whereby obesity status influenced the biomarker concentration. https://doi.org/10.1289/EHP5975

Introduction
Rates of childhood obesity are increasing at alarming rates across
the globe, with some leveling-off of this trend reported in Europe
and high-income English-speaking regions [NCD Risk Factor
Collaboration (NCD-RisC) 2017]. Greater body mass index

(BMI) and adiposity in childhood are associated with future risk
of type 2 diabetes, cardiovascular disease, certain cancers, lack of
school achievement, and mental health problems (Park et al.
2012; Quek et al. 2017; Singh et al. 2008). Further, weight gained
during childhood and adolescence is difficult to lose and likely to
lead to adult overweight and obesity (Geserick et al. 2018). The
primary cause of obesity is the imbalance between energy intake
and energy expenditure (McAllister et al. 2009). Exposure to a
wider range of environmental factors may influence this balance,
either at the individual level by chemical exposures that influence
metabolic programming, or at the community level by factors
associated with the urban or built environment (Lichtveld et al.
2018; Trasande et al. 2009; Wilding et al. 2019).

At the individual level, a number of common chemical con-
taminants, including persistent organic pollutants, toxic metals,
pesticides, tobacco smoke, and additives used in plastics and cos-
metics, such as phthalates and phenols, may perturb adipogenesis
and energy storage by interfering with the action of endogenous
hormones, especially when exposure occurs in utero or during
early life (Behl et al. 2013; Braun 2017; Janesick and Blumberg
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2016; Thayer et al. 2012). Maternal exposure to ambient air pol-
lution has convincingly been linked to reduced fetal growth and
lower birth weight (Pedersen et al. 2013), and, as an extension,
air pollution exposure during childhood may also be etiologically
relevant to growth and the risk of obesity (Jerrett et al. 2014; Kim
et al. 2018; McConnell et al. 2015). At the community level, built
environment characteristics, such as walkability and green
spaces, play a potential role in child physical activity habits and
other health behaviors, and consequently in the development of
childhood obesity, as childhood exposure studies have demon-
strated (Gascon et al. 2016; Lachowycz and Jones 2011;
Lichtveld et al. 2018; Saelens et al. 2018). One study has associ-
ated pregnancy traffic noise exposure, but not childhood expo-
sure, with child BMI trajectories (Weyde et al. 2018). Further, in
adults, ambient temperature and noise exposure have been linked
to increased obesity risk, and exposure to ultraviolet (UV) radia-
tion has been linked to reduced obesity risk (Gorman et al. 2017;
Pyko et al. 2017; Voss et al. 2013).

Epidemiological studies on the early-life obesogenic effects
of these environmental chemical and nonchemical stressors have
almost exclusively assessed the risks of single-exposure families
(Lichtveld et al. 2018), with the exception of a few multipollu-
tants studies that included chemicals from three or four different
exposure groups (Agay-Shay et al. 2015; Zhang et al. 2019). The
exposome, described as “the totality of human environmental
exposures from conception onward,” recognizes that individuals
are exposed simultaneously to a multitude of different factors and
takes a holistic and agnostic approach to the discovery of etiolog-
ical factors (Wild 2012). Even in its partial forms, the exposome
provides a useful framework to systematically evaluate many
associations (Wild 2012) and may be used to avoid problems of
selective reporting, publication bias, and, to some extent, con-
founding by coexposures, ingrained in the typical one-by-one
reporting of associations. Consequently, the exposome may help
both in discovery and in setting priorities for prevention.
Exposome-wide discovery approaches have recently been used to
systematically assess many environmental exposures and repro-
ductive and child health outcomes (e.g., lung function, semen
quality, birth weight) (Agier et al. 2019; Chung et al. 2019;
Nieuwenhuijsen et al. 2019).

In our study, we used an exposome approach to systemati-
cally assess the associations between a wide array of ubiquitous
environmental exposures measured prenatally and during child-
hood with obesity indicators in children at primary school age.

Methods

Study Population
The HELIX (Human Early Life Exposome) project (Vrijheid et al.
2014) is a collaborative project across six established, ongoing,
longitudinal population-based birth cohort studies in Europe: Born
in Bradford (BiB) in the United Kingdom (Wright et al. 2013),
�Etude des Déterminants pré et postnatals du développement et de
la santé de l’Enfant (EDEN) in France (Heude et al. 2016),
INfancia y Medio Ambiente (INMA) in Spain (Guxens et al.
2012), Kaunas cohort (KANC) in Lithuania (Grazuleviciene et al.
2009), the Norwegian Mother and Child Cohort (MoBa) (Magnus
et al. 2016), and the Rhea Mother Child Cohort in Greece (Chatzi
et al. 2017). These cohorts contributed to the HELIX subcohort of
z mother–child pairs who participated in a common, completely
harmonized, follow-up examination between December 2013 and
February 2016, when the children were between 6–11 y old, as
fully described elsewhere (Maitre et al. 2018). Eligibility criteria
for inclusion in the subcohort were: a) age 6–11 y at the time of
the visit, with a preference for ages 7–9 y; b) sufficient stored

pregnancy blood and urine samples available for analysis of prena-
tal exposure biomarkers; c) complete address history available
from first to last follow-up point; and d) no serious health problems
that may affect the performance of the clinical testing or affect the
volunteer’s safety (e.g., acute respiratory infection). In addition,
the selection considered whether data on important covariates
(diet, socioeconomic factors) were available. Each cohort selected
participants at random from the eligible pool in the entire cohort
and invited them to participate in this subcohort until the required
number of participants was reached. Our comparison of the subco-
hort with the entire group of cohorts (Maitre et al. 2018) showed
that basic characteristics of the subcohort were somewhat different
from those of the entire cohort, probably reflecting selective par-
ticipation of families in the intensive subcohort follow-up visit
and data completeness requirements. Compared with the entire
cohort, the subcohort contained a greater percentage of boys,
fewer children whose parents were born abroad, a lower per-
centage of mothers with low education, a lower percentage of
primiparous mothers, and more older mothers. The work was
covered by ethics approvals from each cohort, and all partici-
pants signed an informed consent form for the specific HELIX
work, including clinical examination and biospecimen collec-
tion and analysis.

Environmental Exposures
We included 77 environmental exposures assessed during preg-
nancy and 96 exposures assessed during childhood at age 6–11 y
(Table 1). The exposures were selected at the start of the HELIX
project, because they were of concern for more than one of the
health outcomes under study and because population exposure
was widespread (Vrijheid et al. 2014). Some exposure variables
available in the project (Tamayo-Uria et al. 2019) were not
included in the current analysis for the following reasons: a)
They had <30 subjects in one exposure category without possi-
bility to recode [this was the case for diethyl dithiophosphate
(DEDTP) in pregnancy and childhood, and dimethyl dithiophos-
phate (DMDTP) in pregnancy]. b) They had a correlation of 0.9
or higher with another similar variable of the same exposure
group, in which case we selected one exposure variable represen-
tative for the group or a sum variable as described below under
the specific exposures. c) They were calculated for several expo-
sure time windows, in which case we included only the longest
exposure window (e.g., pregnancy average instead of trimester
averages).

Urban Environment
Urban environment exposures (built environment, surrounding
natural spaces, meteorology, UV radiation, outdoor air pollution,
traffic, and road traffic noise) were estimated as part of the
HELIX project using geospatial models, monitoring stations, sat-
ellite data, and land use databases and were assigned to study par-
ticipants according to their geocoded home and school addresses
using GIS platforms [described in detail by Robinson et al.
(2018), Nieuwenhuijsen et al. (2019), Tamayo-Uria et al.
(2019)]. Sources of data for each exposure are summarized in
Table S1. Exposures were averaged over the entire pregnancy
(prenatal exposures) and over the year before the child examina-
tion (childhood exposures), with the exception of UV radiation
and meteorological variables (temperature, humidity), which
were averaged over the month before the child examination. If
the family moved during those periods, exposures were calcu-
lated for each address and then averaged over the period (preg-
nancy, year before child examination).
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Built environment factors were calculated from topological
maps obtained from local authorities or from Europe-wide sour-
ces. Buffers of 100 and 300 m were used, but in this study only
the 300-m buffer estimates were included due to the high corre-
lations between variables. Building density was calculated within
the 300-m buffer by dividing the area of building cover (m2)
by the area of the buffer (km2). Population density was calculated
as the number of inhabitants per square kilometer surrounding
the home address. Street connectivity was calculated as the num-
ber of street intersections inside the 300-m buffers, divided by the
area (km2) of the buffer. A facility richness index was calculated
as the number of different facility types present divided by the
maximum potential number of facility types specified, in a buffer
of 300 m, giving a score of 0 to 1. Facilities included businesses,
community services, educational institutions, entertainment, fi-
nancial institutions, hospitals, parks and recreation, restaurants,
shopping, and transport (Smargiassi et al. 2009; European
Environmental Agency 2010). A facility density index was calcu-
lated as the number of facilities present divided by the area of the
buffer (number of facilities=km2). Due to the high correlation
between facility richness and density (r>0:9) in the childhood
exposure data set, only facility density was retained. Land use
Shannon’s Evenness Index (SEI) was calculated to provide the
proportional abundance of each type of land use within the buffer,
giving a score between 0 and 1 (Shannon 2001). It was calculated
by multiplying each proportion of land use type by its logarithm
and dividing the sum of all land use type products by the loga-
rithm of the total possible land use types. We developed an indi-
cator of walkability, adapted from the previous walkability
indices (Duncan et al. 2011; Frank et al. 2006; https://www.
walkscore.com), calculated as the mean and sum of the deciles of
population density, street connectivity, facility richness index,
and land use SEI within 300-m buffers, giving a walkability score
ranging from 0 to 1. Accessibility was measured by bus public
transport lines (meters of bus lines inside the buffer) and stops
(number of bus stops inside the buffer), using maps from local
authorities and OpenStreetMap® (https://www.openstreetmap.org/#
map=4/38.01/-95.84) (Table S1).

Surrounding natural space indicators included the Normalized
Difference Vegetation Index (NDVI) and presence of major green
and blues spaces. The NDVI was used to measure surrounding
vegetation (trees, shrubs, and park) (Weier and Herring 2000)
and calculated following the protocol developed in the Positive
Health Effects of the Natural Outdoor Environment in Typical
Populations in Different Regions in Europe (PHENOTYPE)
study (Nieuwenhuijsen et al. 2014). Satellite images were derived
from the Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI/
TIRS satellites with 30 m×30 m resolution. We selected images
for 1 y relevant to the pregnancy period and for 1 y relevant to
the subcohort follow-up, according to the following criteria: a)
cloud cover less than 10%; b) Standard Terrain Correction (Level
1T); and c) greenest period of the year. This study uses the
100-m buffer for NDVI. The presence of major green spaces
(parks or countryside) or blue spaces (bodies of water) was calcu-
lated by dichotomous variables, which indicate whether a major
(area greater than 5,000m2) green/blue space was present or not
within a 300-m buffer from Europe-wide or local topographical
maps (Table S1) (Smargiassi et al. 2009; European Environmental
Agency 2010).

Meteorological variables were calculated using daily meas-
ures of temperature and humidity obtained from local weather
stations in each study area. Pressure data were obtained from the
ESCAPE project (Giorgis-Allemand et al. 2017), and were avail-
able only for the pregnancy period. In this study, we used values
averaged over the pregnancy period and over the month before

the subcohort visit, and we used childhood exposure calculated
for the home, not the school, address.

UV radiation was estimated from daily measurements of ultra-
violet (UV) radiation obtained from the Global Ozone Monitoring
Experiment on board the European Remote Sensing satellite 2
(ERS-2) (http://www.temis.nl/uvradiation/archives) at 0:5 × 0:5-
degree resolution. These were averaged over the month before the
subcohort visit and were not available during pregnancy.

Outdoor air pollution estimates were calculated for nitrogen
dioxide (NO2), particulate matter with an aerodynamic diameter
of less than 2:5 lm (PM10) and particulate matter with an aerody-
namic diameter of less than 10 lm (PM10), as well as absorbance
of PM10 filters (PM2:5abs—a marker of black/elemental carbon
originating from combustion). As part of the HELIX study, expo-
sure estimates were calculated using existing land use regression
models developed in the context of the ESCAPE project (Beelen
et al. 2009, 2013; Cyrys et al. 2012; Eeftens et al. 2012a, 2012b;
Schembari et al. 2015; Wang et al. 2014), except the EDEN
cohort [where we applied existing NO2 and PM10 dispersion mod-
els developed specifically for that cohort (Rahmalia et al. 2012)]
(Table S1). These estimates were temporally adjusted to measure-
ments made at the local background monitoring stations and aver-
aged over the periods of interest for the HELIX study. Back-
extrapolation based on other available pollutants was used when
data on a pollutant were not available. In particular, daily PM10
was used to adjust NO2; daily NO2 or PM10 to adjust PM10; daily
NO2 to adjust PM10; and daily NOx to adjust PM2:5abs.

Traffic density indicators were calculated from road network
maps following the ESCAPE protocol (Beelen et al. 2013;
Eeftens et al. 2012a), using a 100-m buffer. For Rhea, a fieldwork
campaign was conducted in Heraklion in 2015 to assess multiple
exposures, including traffic, as previously described (van Nunen
et al. 2017). For the analyses in this paper, we selected the total
traffic load on all roads, the traffic density on nearest road, and
inverse distance to nearest road for the pregnancy and childhood
home address, as well as the total traffic load on major roads for
the childhood home and school address.

Noise levels were derived from noise maps produced in each
local municipality under the European Noise Directive (Directive
2002/49/EC of the European Parliament and of the Council of 25
June 2002 relating to the assessment and management of environ-
mental noise 2002) calculated as the annual average sound pres-
sure level of a 24-h period (day, evening, and night) with a 5-dB
penalty for evening noise (1900–2300), and a 10-dB penalty
added to nighttime noise (2300–0700), and the annual average
sound pressure level of the night period. Values were categorized
into four categories (<55; 55–59.9; 60–64.9; and >65) for analy-
sis. For Rhea, estimates on noise were newly modeled following
the new fieldwork campaign in 2015, which gave a model R2 of
45% (van Nunen et al. 2017). We included the annual average of
noise levels of 24-h periods during pregnancy and during child-
hood for the home and school address, as well as the annual aver-
age of nighttime noise levels during childhood for the home
address.

Indoor Air Pollution
Indoor air concentrations of NO2, PM10, PM2:5abs and benzene,
as well as toluene, ethylbenzene, xylene (TEX) were estimated
through a prediction model that combined measurements in the
homes of a subgroup of children with questionnaire data from the
subcohort. Measurements of indoor NO2, benzene, and TEX
were conducted in the living rooms of the homes of 157 children
from the subcohort (12%) for 1 wk in two seasons using passive
samplers. The TEX variable was created by summing the concen-
trations of each TEX compound. PM10 and PM2:5abs were
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measured in 92 homes (7%) for 24 h in two seasons using active
PM10 cyclone pumps. Details of the sampling methods are
described elsewhere (Tamayo-Uria et al. 2019). Housing and par-
ticipant characteristics for input into the prediction model were
selected from the main HELIX subcohort questionnaire, which
asked about characteristics of the current residence (Maitre et al.
2018). These characteristics included secondhand smoke (SHS),
cooking and heating methods at the home, cleaning products, out-
door NO2, presence of a garage connected to the house, and cal-
endar month (Table S2). The variables that yielded a p value
lower than 0.2 in bivariate analyses (Kruskal-Wallis or Wilcoxon
rank sum tests) were selected into a multivariable linear regres-
sion model. A supervised forward stepwise procedure was
employed to build multivariable linear regression models, starting
with the variable that yielded the highest adjusted R2 in bivariate
models and then adding other predictors one by one until none of
the variables increased the adjusted R2 by more than 1%. R2 val-
ues for the prediction models were 57% for NO2, 50% for
PM2:5abs, 47% for PM10, and 31% for benzene and TEX (Table
S2). These prediction models were then used to estimate these
five indoor air pollutants in the entire subcohort.

Tobacco Smoking
Tobacco smoking was assessed during pregnancy and childhood
based on urine concentrations of cotinine (see below), and via
questionnaires for active and secondhand smoking. Questions on
tobacco smoking during pregnancy were harmonized across the
cohorts. Maternal tobacco smoking at any point during pregnancy
was placed one of in three categories: no exposure, only SHS ex-
posure, and active smoking. Active smoking was also measured
by the number of cigarettes per day on average during pregnancy.
Childhood exposure to SHS was based on two variables: a) over-
all exposure of the child to SHS with two categories [“no expo-
sure” (no exposure at home nor in other places) and “exposure”
(exposure in at least one place, at home or outside)]; and b) active
smoking of the parents (“1” neither parent, “2” one parent, or “3”
both parents). For maternal cotinine levels during pregnancy, a
categorical variable was created based on the urine concentration
of cotinine distinguishing nonsmokers [values below the limit of
detection (LOD) or cotinine levels <18:4 lg=L], secondhand
tobacco smokers (cotinine levels ≥18:4 and ≤50 lg=L), and
smokers (cotinine levels >50 lg=L) (Sunyer et al. 2012). In the
children, a categorical variable was created categorizing urinary
cotinine levels as detected or not detected considering the limit of
detection of 3:03 lg=L.

Chemical Exposures
Exposure to chemical pollutants [organochlorine compounds
(OCs), polybrominated diphenyl ethers (PBDEs), perfluoroalkyl
substances (PFAS), metals and elements, phthalate metabolites,
phenols, organophosphate (OP) pesticide metabolites, and coti-
nine] was measured as part of the HELIX project in biological
samples collected previously by the individual cohorts during
pregnancy, and in samples newly collected from the children dur-
ing the common HELIX subcohort follow-up at age 6–11 y
(Table 1). Details on the sample selection, laboratory methods,
limits of quantification, LOD and quality control, including inter-
lab comparison for already analyzed maternal samples, are fully
described in Haug et al. (2018).

Maternal samples used to measure pregnancy exposures were
those stored in the cohort biobanks, including: plasma and serum
to measure OCs and PBDEs; plasma, serum, and whole blood to
measure PFAS; whole blood and cord blood to measure metals and
elements; and spot urine samples for all other compounds (see

sample matrix in Table S3). Measurements of maternal samples
were performed at the Department of Environmental Exposure and
Epidemiology at the Norwegian Institute of Public Health (NIPH)
in Norway, or in the case of metals and cotinine, in collaboration
with their contract laboratories. Measurements had already been
completed for some compounds in INMA (OCs, PFAS, mercury,
phthalate metabolites, cotinine (Aurrekoetxea et al. 2013; Goñi
et al. 2007;Manzano-Salgado et al. 2015; Ramon et al. 2011; Valvi
et al. 2015), EDEN (phenols) (Philippat et al. 2011), and Rhea
[OCs; 2,20,4,40-Tetrabromodiphenyl ether (PBDE47)] (Koponen
et al. 2013). Thesemeasurements were not repeated in HELIX, and
instead the results were made available for this study and were
used in statistical analyses (Table S4). Because different samples
matrices were used for the analyses of maternal samples, some
conversion factors were applied (Haug et al. 2018). For OCs and
PBDEs, the concentrations in serum and plasma were assumed to
be comparable (1:1 ratio) (Grimvall et al. 1997); for the PFAS, 1:1
ratios were assumed for serum and plasma, and 1:2 ratios were
used for whole blood vs. serum/plasma (Poothong et al. 2017),
multiplying all whole-blood concentrations by two; finally, cord-
blood mercury concentrations were divided by 1.7 to be compara-
ble with maternal whole-blood concentrations (Stern and Smith
2003).

The sample collections for the children were performed in a
completely harmonized way, using the same protocols and equip-
ment for sample collection and processing in all the six cohorts
(Maitre et al. 2018). OCs and PBDEs were measured in serum,
PFAS in plasma, metals and elements in cord blood, and all other
compounds in urine (see Table S3 for sample matrix). The urine
sample analyzed was a pool of equal amounts of two spot urine
samples collected at bedtime the day before and in the morning
on the day of the clinical examination. The children’s samples
were randomized into batches before chemical analyses, aiming
at a minimum of three cohorts to be included in each batch. As
with the maternal samples, the child samples were analyzed at
the NIPH in Norway, or, in the case of metals and cotinine, in
collaboration with their contract laboratories.

For all determinations conducted by NIPH or their contract
laboratories, concentrations were reported below the limit of
quantification (LOQ) whenever a signal was observed on the
instrument. These results were used. For samples where no con-
centrations had been generated (concentrations below LOD), indi-
vidually imputed values were obtained using a quantile regression
approach for the imputation of left-censored missing data imple-
mented in the imputeLOD function available in the rexposome
package in the R software (version 3.4.0; R Development Core
Team (Jin et al. 2011).

Concentrations of OCs and PBDEs were adjusted for serum
lipid concentrations; phthalate metabolites, phenols, OP pesticide
metabolites, and cotinine were adjusted for urinary creatinine.
High correlations coefficients (>0:9) were observed for correla-
tions within the individual polychlorinated biphenyl (PCB) con-
geners and within the individual metabolites of bis(2-ethylhexyl)
phthalate (DEHP). For these, sum variables were created to com-
bine the individual compounds into one variable. We then used
the individual variables in single exposure models and sumPCB
and sumDEHP variables in multiple exposure models (see
below).

Water Disinfection By-Products
Routine measurements of disinfection by-product (DBP) concen-
trations in tap water were collected from water companies for all
the cohorts for the pregnancy period, as described in detail in
Tamayo-Uria et al. (2019). For KANC, BiB, INMA, and Rhea,
we used the water DBP concentrations obtained for these cohorts
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as part of the HiWate project (Jeong et al. 2012). As part of
HELIX, routine water DBP measurements were acquired for
MoBa and EDEN. Water trihalomethane (THM) exposure levels
were then modeled for each residence, following the protocol
developed in HiWate, which predicted average THM levels from
conception until delivery for each participant’s residential water
supply (Jeong et al. 2012). We estimated exposure to total water
THMs, and for water chloroform and water brominated THMs,
and used the pregnancy average herein.

Social and Economic Capital
Questions related to social capital were included in the HELIX
questionnaire to capture different aspects of social capital, relat-
ing both to the cognitive (feelings about relationships) and struc-
tural (number of friends, number of organizations) dimensions
and to bonding capital (close friends and family), bridging capital
(neighborhood connections, looser ties), and linking capital (ties
across power levels; for example, political membership). Two
summary variables were selected for the exposome analysis:
social participation (membership of organizations: 0, 1, or 2) and
contact with friends and family (daily, once a week, less than
once a week). We also calculated the Family Affluence Score
(FAS) as a measure of the family’s economic capital, with levels
low (score= <2), middle (score 3–5), and high (score> = 6)
(Boyce et al. 2006; Liu et al. 2012). The FAS was calculated
based on the responses to four items: a) Does your family own a
car, van or truck? b) Do you have your own bedroom for your-
self? c) During the past 12 months, how many times did you
travel away on holiday with your family? d) How many com-
puters does your family own?

The exposure levels and distributions of each exposure vari-
able are described elsewhere (Tamayo-Uria et al. 2019) as are the
correlation patterns between exposure variables (Haug et al.
2018; Robinson et al. 2018; Tamayo-Uria et al. 2019). In our sup-
plemental material we provide the correlation matrix for prenatal
and childhood exposure variables (Supplemental Excel Files
Table E1 and E2).

Childhood Obesity Outcomes
During the subcohort examination at age 6–11 y, height and
weight were measured using regularly calibrated instruments and
converted to BMI age-and-sex–standardized z-scores (zBMI)
using the international World Health Organization (WHO) refer-
ence curves (de Onis et al. 2007). Children who were overweight
and obese were defined as those above the age-and-sex–standar-
dized z-scores 1 and 2, respectively, as recommended by the
WHO (de Onis and Lobstein 2010; de Onis et al. 2007). We
measured waist circumference as an indicator of visceral fat in
duplicate to the nearest 0:1 cm in a standing position, at the high
point of the iliac crest at the end of a gentle expiration, with the
use of a measuring tape (Seca 201; Seca Corporation). Skinfold
thickness was measured at two anatomic sites (subscapular and
triceps) on the right side of the body in triplicate to the nearest
0:1 mm with a calibrated caliper following the protocols from the
National Health and Nutrition Examination Survey III (NHANES
III Body Measurements 1988). We then calculated the sum of
these two skinfolds as an index of subcutaneous fatness.
Bioelectric impedance analyses were performed with the
Bodystat 1500 (Bodystat Ltd.) equipment after 5 min of lying
down. The proportion of fat mass was calculated using published
age- and race-specific equations validated for use in children
(Clasey et al. 2011). For all measures, we used common standar-
dized protocols and the same instruments across the cohorts. For
waist circumference, skinfold thickness, and proportion fat mass,

we calculated age-and-sex–standardized z-scores using the distri-
bution of the full study population combining all cohorts.

The outcomes were correlated, with correlation coefficients
between 0.59 (between overweight and obesity status and fat mass)
and 0.79 (between zBMI and waist circumference z-scores). Our
main analyses focused on zBMI and overweight and obesity status,
to ensure comparability with existing literature, and the other out-
comeswere included to evaluate consistency of results.

Covariates
Information on key covariates was collected during pregnancy
and in the subcohort follow-up examination and included mater-
nal sociodemographic variables, maternal prepregnancy zBMI,
maternal diet, maternal physical activity, birth weight, breastfeed-
ing duration, child physical activity, child sleeping patterns, and
the Mediterranean diet quality index (KidMed) questionnaire
(Serra-Majem et al. 2004). The KidMed index consists of 16
questions, with questions denoting a negative connotation with
respect to the Mediterranean diet assigned a value of −1 and
questions with a positive aspect scored +1. In children, a “moder-
ate-to-vigorous physical activity” variable was created based on
the HELIX questionnaire data to define the amount of time chil-
dren spent doing physical activities with intensity above three
metabolic equivalent tasks (METs). Physical activity overreport-
ing was corrected based on the correlation between accelerometer
data (Actigraph) and questionnaire answers, using data from
three nested panel studies in which participants wore accelerome-
ters for 2 nonconsecutive wk (Maitre et al. 2018). Sleep duration
in childhood corresponded to the average sleep duration at night
during an entire week (weighted average of weekdays and week-
end sleep duration). This variable was calculated based on the
questionnaire taking the average bedtime and wake-up time (ear-
liest and latest bedtime and wake-up times available) during
weekdays and weekends. The questionnaire asked about usual
sleep patterns.

Statistical Analysis
Skewed exposure and covariate variables were transformed to
achieve normality; when normality could not be achieved with a
transformation, the variable was categorized. Missing values for
all exposures and covariates were imputed using the method of
chained equations (White et al. 2011), as described in detail else-
where (Tamayo-Uria et al. 2019). Twenty imputed data sets were
generated to take into account the uncertainty resulting from the
imputation. After imputation, continuous exposure variables
were standardized by the interquartile range (IQR). In all subse-
quent regression models, Rubin’s rules were used to combine the
results from the 20 imputed data sets (White et al. 2011). We
used linear regression models for the four continuous outcome
variables (zBMI, z-scores of waist circumference, skinfolds, and
fat mass) and logistic regression models for overweight and obese
status. All analyses were applied separately to the set of prena-
tally measured exposures and the set of childhood exposures. We
followed a two-tiered analysis strategy, based on our earlier
methodological work (Agier et al. 2016):

ExWAS (exposure-wide association study) as a screening
analysis of single exposures.We first estimated associations with
each exposure variable individually using independent regression
models. To account for multiple comparisons, a family-wise error
rate correction was used to correct the p-value threshold (5% di-
vided by the effective number of tests) (Li et al. 2012); the multi-
ple testing corrected p-value thresholds were 0.001 for prenatal
exposures and 0.0009 for childhood exposures.
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DSA (deletion/substitution/addition) algorithm. Subsequently,
we used the DSA variable selection algorithm to select a reduced
number of statistically significant exposures, each adjusted for
the other exposures (Sinisi and van der Laan 2004); this resulted
in our final multiexposure model. We selected the DSA algorithm
as our main analysis because it showed better model selection ef-
ficiency, in particular a lower false positive rate, in comparison
with other linear regression-based methods, including ExWAS,
in our simulations of a similar exposome data set (Agier et al.
2016).

TheDSAmethod is an iterative process that starts with an empty
model and uses deletion (removing variables from those selected),
substitution (replacing selected variables by unselected ones), or
addition (selecting new variables) to select a final model by mini-
mizing the value of the root mean squared error of predictions using
5-fold cross-validated data. Cross-validation results were stabilized
by fitting the DSA 50 times on the data using different seeds, and
exposures were retained in a final multiexposure regressionmodel if
theywere selected in at least 10% of theDSA runs. In thefinalmulti-
exposure models we checked whether any exposure variables
showed evidence formulticollinearity with other exposure variables.
In this case, the variable with the most stable results compared with
the ExWAS single exposure model was included in the final model.
In our analysis, multicollinearity occurred only for 2,20,4,40,5,50-
Hexabromodiphenyl ether (PBDE153) and PBDE47, and PBDE47
was excluded from the final childhood multiexposure models. We
applied DSA to the 20 imputed data sets stacked one after the other
usingweights (Wood et al. 2008), allowed no polynomial or interac-
tion terms, and consideredmodels including up to 25 covariates.

All above regressionmodels were adjusted for a common set of
potential confounders, decided on the basis of a Directed Acyclic
Graph (Figure S1), which included: sex, cohort, maternal educa-
tion level (low, middle, high), maternal age (continuous), maternal
prepregnancy BMI (continuous), parity (nulliparous, primiparous,
multiparous), and parental country of birth (both parents native,
none or one native parent). In the childhood exposure models, we
also included birth weight and breastfeeding duration as adjust-
ment factors (Figure S2).

We performed sensitivity analyses for the final zBMI multiex-
posure model: a) We computed cohort-specific estimates and eval-
uated between-cohort heterogeneity of associations using the I2

statistic as guidance (Higgins and Thompson 2002); b) The model
was stratified by sex to obtain sex-specific estimates and sex inter-
actions tested were tested by including an interaction term in the
model, because of the sex-specificity of some environmental obes-
ogens reported in the literature (Braun 2017); c) The model was
stratified bymaternal education (low tomedium and high) to obtain
education-specific estimates, and interactions were tested by
including an interaction term in the model, to highlight any differ-
ences between socioeconomic classes; d) The models were addi-
tionally adjusted for social and lifestyle factors: The pregnancy
exposure model was additionally adjusted for consumption of fast
food, fruits, and vegetables during pregnancy (in tertiles) andmod-
erate and vigorous physical activity during pregnancy (in minutes
per day). The childhood exposure model was additionally adjusted
for the FAS, for the KidMed, for child physical activity (moderate-
to-vigorous, in minutes per day), and for child sleep duration
(weighted average of weekday andweekend sleep hours per night).
Diet, physical activity and sleep were not included in the main set
of potential confounders (above), but only in these sensitivity anal-
yses, because they may act as mediators for some exposures (e.g.,
physical activity may mediate an effect of green space on obesity);
and e) Possible confounding by prenatal exposures in the child-
hood models was evaluated by including statistically significant
exposure variables from the prenatal DSAmodel.

Results
Our study population included 1,301mother–child pairs from the 6
cohorts (Table 2). Children were on average 8 years old at the ex-
amination (25th–75th percentile 6.5–8.9 y), with some variation by
cohort (Table S5). The prevalence of overweight status and obesity
combined was 28.8%, with 9.9% of children being obese (Table 2).
The percentage of overweight and obese children was highest in
the Spanish (42.6%) and Greek (37.2%) cohorts and lowest in the
Norwegian cohort (15.8%) (Table S5). Maternal BMI and birth
weight were strongly positively associated with child zBMI and
overweight and obese status (Table S6).

Out of the 77 prenatal exposures studied, maternal smoking
and maternal urinary cotinine concentration were the only two
associated with a higher child zBMI in the ExWAS analysis at
p<0:05; these associations did not pass the multiple testing cor-
rected p-value threshold of 0.001 (Figure 1; see Table S7 for
ExWAS results). The DSA model identified maternal smoking as
the only prenatal exposure contributing to zBMI (Table 3):
Maternal active smoking was associated with an increase in the
child’s zBMI score of 0.28 [95% confidence interval (CI): 0.09,

Table 2. Description of the study population (total N =1,301).

N (%)
Percentiles: 25th;

50th; 75th
N

missing

Cohort
BiB, UK 205 (15.8) 0
EDEN, France 198 (15.2) 0
INMA, Spain 223 (17.1) 0
KANC, Lithuania 204 (15.9) 0
MoBa, Norway 272 (20.9) 0
Rhea, Greece 199 (15.3) 0

Age of the child at
examination (y)

6.5; 8.1; 8.9 0

Sex of the child 0
Male 711 (54.7)
Female 590 (45.3)

Birthweight (g) 3,050; 3,380; 3,714 14
Maternal age at delivery (y) 27.2; 31.0; 34.0 16
Maternal prepregnancy

BMI, kg=m2
21.3; 23.9; 27.2 24

Maternal education level 44
Low (primary school) 173 (13.8)
Middle (secondary school) 433 (34.5)
High (university degree
or higher)

651 (51.8)

Parental country of origin 30
Both parents native 1,068 (84.0)
None or one native parents 203 (16.0)

Parity 31
Nulliparous 583 (45.9)
Primiparous 460 (36.2)
Multiparous 227 (17.9)

Breastfeeding duration (wk) 353
<10:8 313 (33.0)
10.8–34.9 314 (33.1)
>34:9 321 (33.9)

Child overweight/obese
status

0

Normal or underweight 937 (71.3)
Overweight and obese 374 (28.8)
Obese 129 (9.9)

BMI z-score −0:39; 0.28; 1.10 0
Waist circumference

z-score
−0:69; −0:25; 0.48 4

Skinfolds z-score −0:68; −0:32; 0.34 13
Fat mass percentage z-score −0:75; −0:15; 0.65 11

Note: BiB, Born in Bradford study cohort; BMI, body mass index; EDEN, Etude de
cohorte généraliste, menée en France sur les Déterminants pré et post natals précoces du
développement psychomoteur et de la santé de l’Enfant study cohort; INMA, INfancia y
Medio Ambiente study cohort; KANC, Kaunas study cohort; MoBa, Norwegian Mother
and Child Cohort; Rhea, Rhea Study Mother and Child Cohort.
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0.48], and maternal secondhand smoking with an increase of
0.16 (95% CI: −0:002, 0.32), in comparison with nonsmoking.
Identification of active and secondhand smoking through mater-
nal urinary cotinine levels gave similar associations (zBMI
increase of 0.25 and 0.09, respectively) (Table S7). Maternal
cotinine levels for active smoking and facility density were

borderline associated with an increased and decreased over-
weight and obesity risk, respectively (p=0:05; Figure 2), but
not selected by the DSA model.

In the childhood exposome, out of the 96 environmental
exposures, 27 exposure variables showed associations with zBMI
in the ExWAS at the p<0:05 level, and 18 exposures remained

Figure 1. Association between prenatal and childhood exposures and zBMI in single-exposure ExWAS model. Volcano plot showing significance (p-value)
against beta coefficient. [(A) Prenatal exposome and (B) childhood exposome]. Black dashed horizontal line at p-values of 0.05; red solid horizontal line at
TEF of 0.001 (prenatal) and 0.0009 (childhood). Beta estimates for all exposures are shown in Table S17. Note: Beta coefficient for change in zBMI compared
with reference category for the categorical variables. For continuous variables, beta estimates are calculated per interquartile range increase in exposure. TEF,
threshold for effective number of test (i.e., p-value correction for multiple testing).

Table 3. Association between prenatal exposures (assessed during pregnancy) and childhood exposures (assessed at age 6–11 y) and zBMI or overweight and
obesity in DSA multiexposure models (N =1,301).

Exposure variable (IQR or reference categorya) Exposure group

zBMI Overweight and obesity status

Beta for zBMI changea (95% CI) ORa (95% CI)

Prenatal exposuresb

Smoking in pregnancy Tobacco smoking
Secondhand smoking (vs. none) 0.16 (−0:02, 0.32)
Active smoking (vs. none) 0.28 (0.09 to 0.48)

Childhood exposuresc

Facility density (school) (38:9=km2) Built environment −0:21 (−0:33, −0:08) 0.57 (0.40, 0.81)
Population density (home) (6,160=km2) Built environment 0.16 (0.07 to 0.25) 1.34 (1.04, 1.72)
Outdoor PM2:5abs (0.41 10−5m−1) Outdoor air pollution 1.31 (0.97, 1.76)
Road traffic load (11,38,814 vehicles/day) Traffic 1.39 (1.02, 1.89)
Indoor PM2:5abs (0.50 10−5m−1) Indoor air pollution 0.08 (0.01, 0.15)
Indoor NO2 (92:8 lg=m3) Indoor air pollution 0.15 (0.01, 0.28)
Cotinine detected (vs. not) Tobacco smoking 0.20 (0.04, 0.37) 1.93 (1.28, 2.90)
DDE (34:0 ng=g lipids) OCs −0:20 (−0:30, −0:09)
HCB (5:1 ng=g lipids) OCs −0:35 (−0:46, −0:25) 0.36 (0.25, 0.51)
Sum of PCBs (27:6 ng=g lipids) OCs −0:30 (−0:46, −0:15) 0.36 (0.22, 0.60)
PBDE153 (0:39 ng=g lipids) PBDEs −0:23 (−0:34, −0:13) 0.63 (0.47, 0.85)
Copper (186 lg=L) Metals and elements 0.14 (0.07, 0.21) 1.37 (1.13, 1.66)
Cesium (0:73 lg=L) Metals and elements 0.15 (0.06, 0.25) 1.57 (1.21, 2.04)
Cobalt (0:09 lg=L) Metals and elements −0:08 (−0:13, −0:02) 0.75 (0.63, 0.90)
Molybdenum (0:43 lg=L) Metals and elements −0:08 (−0:13, −0:04)
DEP (4:04 lg=g) OP Pesticides 0.74 (0.59, 0.92)
Social participation Social/economic capital
1 organization (vs. none) 0.82 (0.57, 1.18)
>1 organizations (vs. none) 1.74 (1.10, 2.74)

aReference category as indicated inside brackets for the categorical variables. For continuous variables, estimates are calculated per interquartile range (IQR) increase in exposure, as
indicated inside brackets; IQRs calculated on the first imputed dataset after back transforming the variables. BMI, body mass index; CI, confidence interval; DDE,
4,4 0dichlorodiphenyldichloroethylene; DEP, diethyl phosphate; OCs, organochlorine compounds; HCB, hexachlorobenzene; OP, organophosphate; PBDEs, polybrominated diphenyl
ethers; PBDE153, 2,2 0,4,4 0,5,5 0-Hexabromodiphenyl ether; PCBs, polychlorinated biphenyls; zBMI, BMI z-scores.
bAdjusted for cohort, sex, maternal BMI, maternal education, maternal age at conception, parity, and parental country of origin.
cAdjusted for cohort, sex, maternal BMI, maternal education, maternal age at conception, parity, parental country of origin, breastfeeding, and birth weight.
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statistically significant when correcting for multiple testing
(Figure 1; Table S7). The final multiexposure DSAmodel selected
13 variables (Table 3): population density near the home; absorb-
ance of indoor PM2:5abs; indoor NO2 concentrations; and cotinine,
copper, and cesium concentrations were associated with increased
zBMI; in contrast, density of facilities near the school, and
4,40dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene
(HCB), sum of PCBs, PBDE153, cobalt, andmolybdenum concen-
trations were associated with reduced zBMI in children.

Results for overweight and obesity status were similar (Table
3; Figure 2; Table S8), but the final model notably included out-
door PM10 absorbance and road traffic load instead of indoor air
pollutants, as well as social participation, which were each posi-
tively associated with overweight and obesity status, and diethyl
phosphate (an OP pesticide metabolite) which was negatively
associated with overweight and obesity status (Table 3). Findings
for waist circumference, skinfolds, and fat mass closely mirrored
the zBMI and overweight and obesity status results, with some
small differences in the ranking of statistical significance and in
the composition of the final multiexposure models (Tables S9–
S11, and Figures S3–S5).

The observed associations were mostly consistent between
cohorts and between sexes. No strong between-cohort heterogene-
ity (i.e., I2 > 25) was observed in the zBMI multiexposure models
for prenatal or childhood exposure, with the exception of HCB
(I2 = 81), sumPCBs (I2 = 43), and molybdenum (I2 = 38) (Figure
S6). We observed little evidence for sex interactions (similar risk
estimates and p value for interaction >0:1; Table S12). When
results were stratified by maternal education (Table S13), the esti-
mate for childhood cotinine level was stronger positive, and the esti-
mates for DDE and HCB stronger negative in the low- or medium-
education category; the estimates for indoor NO2 and for copper
were stronger positive in the higher education class (each with p
value for interaction<0:2). When we added additional potential
confounding variables to themodels for prenatal exposure (maternal
fast-food, fruits, and vegetables consumption, maternal physical ac-
tivity) and childhood exposure (family affluence score, KidMed

score, child physical activity, and child sleep duration) in sensitivity
analyses, effect estimates did not change by more than a few hun-
dredths (Tables S14 and S15).Whenwe added the prenatal maternal
smoking to the main childhood multiexposure model, effect esti-
mates did not change (Table S16).

Discussion
This study is, to our knowledge, the first systematic analysis of
associations between many environmental exposures and child-
hood obesity. Our findings suggest that exposure to maternal
smoking during pregnancy, childhood exposure to indoor and out-
door air pollutants, childhood passive smoke exposure, childhood
residence in more densely populated areas, and attendance at
school in areas with fewer facilities were associated with an
increase in child BMI. Child blood levels of copper and cesium
were associated with higher BMI; and levels of organochlorine
pollutants, cobalt, and molybdenum were associated with lower
BMI. Similar results were found for the other adiposity outcomes.

Maternal active smoking during pregnancy is a well-
documented chemical obesogen associated with childhood obe-
sity (Oken et al. 2008). Our findings are also in line with the ma-
jority of animal studies, which have shown that prenatal nicotine
exposure is related to larger offspring fat mass and weight gains
(Behl et al. 2013). Additionally, we observed an association with
childhood exposure to SHS exposure. Previous studies also
pointed toward this association (McConnell et al. 2015; Raum
et al. 2011; Robinson et al. 2016) but found it difficult to disen-
tangle effects of child SHS from correlated maternal smoking
during pregnancy. In our study, adjustment of the childhood asso-
ciations for maternal pregnancy smoking did not change results.
We note also that the association between child cotinine levels
and BMI was observed exclusively in the low and medium mater-
nal education categories, where detectable child cotinine levels
were far more prevalent (30% vs. 6% in high maternal education
category). Preventive action to reduce SHS exposure of children
should be aimed particularly at such families.

Figure 2. Association between prenatal and childhood exposures and overweight and obesity status in single-exposure exposure-wide association study (ExWAS)
model. Volcano plot showing significance (p-value) against odds ratio (OR). [(A) prenatal exposome and (B) childhood exposome]. Black dashed horizontal line at p-
values of 0.05; red solid horizontal line at TEF of 0.001 (prenatal) and 0.0009 (childhood). Note: OR, Odds-ratio for being overweight or obese in comparison with
normal weight. OR for overweight and obesity status in comparison with reference category for the categorical variables. For continuous variables, ORs are calculated
per interquartile range increase in exposure. TEF, threshold for effective number of test (i.e., p-value correction for multiple testing).
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Regarding air pollution, a few previous studies suggested an
association among traffic density, roadway proximity, or ambient
air pollutant concentrations and childhood obesity (Jerrett et al.
2014; Kim et al. 2018; Lichtveld et al. 2018; McConnell et al.
2015). A few studies in animals also suggest that air pollutants
such as PM10 can alter metabolism and increase weight gain
(Bolton et al. 2012; Xu et al. 2010). In our study, home indoor air
pollution exposure to PM10 absorbance (a marker of black or ele-
mental carbon originating from combustion) and NO2 were associ-
ated with increased BMI, whereas outdoor PM10 absorbance
exposure was associated with increased overweight status and obe-
sity risk. These findings were adjusted for correlated exposures
such as SHS exposure. The association between indoor NO2 and
BMI was stronger in higher education categories, indicating that
this association is not a lower social class result. We note that our
estimates of indoor air pollution relied on prediction models using
indoor measurements in 7%–12% of our study population, which
may have introduced uncertainty in these estimates. However, the
prediction models for indoor NO2 and PM2:5abs had a reasonable
explanatory value (R-squared 57% and 50%), similar to those
reported for other indoor air pollution prediction models (Tong
et al. 2019). Children spendmuch of their day at home indoors, and
our study is the first to highlight the importance of assessing indoor
air pollutionwhen studying environmental obesogens.

The built environment may be an important driver of obeso-
genic behaviors, lifestyles, and exposures. We found that children
living in densely population areas had higher BMI and body fat
mass. Previous studies in children have reported both positive and
negative associations (Schwartz et al. 2011; Yang et al. 2018), and
results may be related to other constructs of the built environment,
such as the food environment or area social deprivation (Schwartz
et al. 2011), which we did not measure. The density of facilities
around the school was associated with a reduction in BMI. Our fa-
cility density variable counted the number of facilities, such as
businesses, community services, educational institutions, restau-
rants, and shops in an area. Facility density is an indicator of how
walkable an area may be and indeed was highly correlated with
the walkability index in our data (correlation coefficient 0.72), so
this finding is in line with other studies on walkability effects
(Gascon et al. 2016; Lichtveld et al. 2018). We should also note
that our findings for childhood exposures are based on cross-
sectional data, which require follow-up in prospective settings to
examine longer term impacts.

Experimental studies indicate that certain chemical contami-
nants may act as obesogens, but epidemiological evidence
remains inconclusive (Braun 2017; Thayer et al. 2012). In our
study, the largest to date for several compounds (e.g., parabens,
triclosan), we did not observe associations with increased obesity
outcomes for most of the chemical groups under study. Null asso-
ciations observed for the highly variable nonpersistent chemicals
(phthalates, phenols, OP pesticides) may be explained by attenua-
tion bias related to the high levels of measurement error in spot
urine measurements (Casas et al. 2018), even though our pooling
of two urine samples in the childhood biomarker analysis would
have alleviated this bias somewhat. Attenuation bias would par-
ticularly apply to our results for bisphenol A, some phthalate
metabolites, such as DEHP metabolites, and OP pesticide metab-
olites; for these compounds, the attenuation bias for a single spot
urine measurement may be as high as 70%–90% (Perrier et al.
2016; Rappaport et al. 1995).

We observed associations of reduced BMI with increased
childhood serum concentrations of most persistent organic pollu-
tants, especially DDE, HCB, PCBs, and PBDE153. In the litera-
ture, cross-sectional associations between persistent organic
pollutant (POP) levels in serum and BMI in adults and children

have been highly inconsistent, showing negative, positive, or no
associations (Iszatt et al. 2015; Jackson et al. 2017; Rönn et al.
2011; Windham et al. 2010; Wood et al. 2016). POPs are highly
lipophilic (they store in fat tissue), and the amount of body fat in an
individual is expected to affect the toxicokinetics of POPs (Jackson
et al. 2017; Wood et al. 2016). It has been reported that the equilib-
rium between the storage of POPs in fat tissue and their circulation
in bloodwould be disturbed in particular during times of increasing
or decreasing exposure and during weight gain or weight loss
(Jackson et al. 2017). Studies have shown, for example, that weight
loss leads to increasing circulating POP serum levels (Dirinck et al.
2015;Malarvannan et al. 2018). It is not clear how complex toxico-
kinetics would influence the POPs–BMI associations in growing
children by obesity status, but this is expected to depend on growth
rates, amount of fat tissue, type of fat tissue (visceral or subcutane-
ous), age, and exposure dose and timing (Jackson et al. 2017;
Wolff et al. 2007; Wood et al. 2016). The possibility of nonmono-
tonic (e.g., inverted U-shaped) dose–response relationships for
endocrine-disrupting chemicals has also been proposed as an ex-
planation for the findings of greater health effects at lower doses of
exposure (Jackson et al. 2017; Schug et al. 2016). We examined
the shape of the dose–response relationships for all our exposures
and did not find evidence of nonmonotonic shapes (not shown); in
fact, dose–response curves declined linearly for the all childhood
POP exposures. Our results highlight the need for longitudinal
follow-up of these findings, as well as for a better understanding of
POPs toxicokinetics during childhood growth years in general.

We observed consistent associations between concentrations
of metallic elements measured in blood and obesity outcomes,
with positive associations (higher BMI with higher blood concen-
tration) for copper and cesium, and negative associations (lower
BMI with higher blood concentration) for cobalt and molybde-
num. With the exception of cesium, these are essential trace ele-
ments in humans that play a role in the synthesis and activation
of many enzymes and in the regulation of glucose and lipid me-
tabolism (Li and Yang 2018; Morrell et al. 2017). At the same
time, the toxicity of each has been documented at high (occupa-
tional level) exposure levels. Other cross-sectional studies based
on the large NHANES child population (6–19 y) have pointed to-
ward strongly positive associations between copper and manga-
nese and obesity status (Fan et al. 2017) and negative associations
for cobalt (Shao et al. 2017), similar to associations in our results.
Raised copper levels in obese children have also been documented
in other cross-sectional studies (Azab et al. 2014; Lima et al. 2006)
and in adult obesity patients (Yang et al. 2019). These associations
may indicate a role of these elements in fat accumulation, or they
may indicate that physiological changes in overweight and obese
children result in altered blood levels of these elements, but there
is currently little information on the mechanisms behind any rela-
tionship between elements such as copper and obesity (Yang et al.
2019; Li and Yang 2018). Our cross-sectional results observed for
the metals and elements are novel and require further follow-up in
longitudinal studies.

The main strengths of our study are first, the comprehensive
assessment of environmental exposures in two critical develop-
mental time periods (pregnancy and childhood) and inclusion of
highly sensitive biomarkers for many chemical exposures and
wide-ranging geospatial modeling of the outdoor and built envi-
ronment. We note that most of the associations we observed were
related to childhood exposures, whereas very few associations
were apparent for pregnancy exposures. It is unclear from the liter-
ature when the strongest associations would be expected, and dif-
ferent exposures may act during different developmental periods,
making it important to cover multiple periods (Lichtveld et al.
2018). Second, our study included a relatively large sample size for
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whichwe were able to measuremany exposures. Others have dem-
onstrated that an ExWAS approach combined with FDR multiple
testing correction would require sample size of z-2000 subjects to
deal with 100 exposures and achieve a power of 80% in the setting
of a study on male fertility–related outcomes (Chung et al. 2019).
Third, our study included a comprehensive assessment of obesity
and adiposity outcomes, which allowed evaluation of the consis-
tency of associations between BMI as a fairly crude obesity mea-
sure and more specific measures of abdominal, subcutaneous, and
total body fat mass. Indeed, these different outcomes showed very
similar results. Future studies may consider the inclusion of better
estimation of body fat mass distribution, such as magnetic reso-
nance imaging. Fourth, our study included the use of an optimal
combination of a priori selected statistical approaches based on
results of simulation studies (Agier et al. 2016; Barrera-Gómez
et al. 2017). We used the ExWAS screening method that is charac-
terized by its low false-negative rate and high sensitivity and the
DSA that has a low false-positive rate and allowed adjustment for
confounding bymultiple exposures.

We also acknowledge several limitations. First, the part of
our study that focused on childhood exposures was cross-
sectional in nature. This aspect particularly limited our interpreta-
tion of results for chemical contaminants because they may suffer
from reverse causation bias, whereby obesity status would influ-
ence a biomarker’s toxicokinetics and thus its circulating concen-
tration, instead of vice versa. For other cross-sectionally assessed
exposures found to be associated with child BMI in our study
(childhood exposure to indoor and outdoor air pollutants, child-
hood passive smoke exposure, childhood residence in more
densely populated areas, and facility density near school), reverse
causality bias is of less of concern, because it is unlikely that the
obesity status of the child influenced these exposures. Still, a
clear temporal sequence between exposure and health outcome
would strengthen any causal interpretation of associations.

Second, the different exposures are measured with different
types and levels of measurement error. For example, as explained
above, urine levels of nonpersistent chemicals have a high intra-
individual variability (Casas et al. 2018) and are expected to suf-
fer particularly from classical-type measurement error. Exposures
measured by models and questionnaires are expected to suffer
from other types of measurement errors; for example, modeled
outdoor air pollutants estimated at the residential address are not
well correlated with short-term personal air pollution levels
(Nieuwenhuijsen et al. 2015). Although some estimates of
classical-type error are available from intraclass correlation coef-
ficients published in the literature (Casas et al. 2018; Perrier et al.
2016), this information was not available for the majority of our
exposure variables, and we did therefore not attempt to correct
for measurement errors. As a result, we cannot directly compare
the effect size and significance levels between exposures, and we
advise against using our results to rank the importance of expo-
sure in terms of their influence on obesity risk.

Third, we focused on many environmental chemical and non-
chemical exposures that are suspected to play a role in the develop-
ment of childhood obesity (Lichtveld et al. 2018), but we could not
include all factors and do not cover a complete exposome.

Fourth, we cannot exclude unmeasured residual confounding,
in particular with respect to unmeasured social factors related to
childhood obesity. We note though that most results were robust
to stratification by maternal education and to adjustment by fam-
ily affluence score, diet quality, sleep, and physical activity.
Residual confounding by further social or lifestyle factors would
therefore be expected to have minimal effects.

Last, we recognize that the small HELIX subcohort (N around
200 in each country) may not be representative of the general

population in each country; overweight status and obesity prevalence
rates in some of our cohorts were similar to those reported for their
country by the large comprehensive NCD-RisC study [NCD Risk
Factor Collaboration (NCD-RisC) 2017] in the 5–19 y age group
(Rhea andEDENcohorts), but lower than theNCD-RisC prevalence
found inBiB andMoBa, and higher in INMAandKANCcohorts.

The exposome approach we adopted aimed at systematically
publishing all exposure–outcome associations, independently of
their magnitude or statistical significance, thus avoiding publica-
tion bias. Further, this approach corrected for multiple testing to
reduce false-positive results, which is not done when studies pub-
lish results in a series of papers with each focusing on a single ex-
posure or exposure group. Last, confounding by other exposures
is usually not tackled in single-exposure studies. Exposome stud-
ies, by including many exposure variables, can account for this.
Indeed, we were able to include many components of the expo-
some in relatively large populations, rather than studying its com-
ponents in isolation. Ultimately, once challenges such as multiple
exposure measurement errors, reverse causality, and confounding
have been sufficiently tackled, the exposome approach may have
value both in discovery of new risk factors and in the setting of
priorities for prevention. We specifically note that any increase
the number of exposures considered in future exposome studies
should not be done at the cost of a decrease in the accuracy of
estimation of each exposure.

In conclusion, this first systematic analysis of many suspected
environmental obesogens during critical early-life periods,
strengthens evidence of the contribution of exposure to tobacco
smoke and air pollution and characteristics of the built environ-
ment to the development of childhood obesity. These results may
help to identify targets for prevention and intervention early in
life, leading to better science-based regulation of environmental
obesogenic exposures.
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