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Background
Despite the recent surge of interest in functional association analysis of various types 
of high-dimensional data, e.g., those from biomechanical research [1], quantitative 
trait loci (QTL) mapping [2], genome-wide association studies (GWASes) [3], and 
epigenome-wide association studies (EWASes) [4, 5], the majority of genome-wide 
screenings are still largely based on testing one SNP or one CpG at a time (single-
point analysis). Single-point analyses are limited because they incur a substantial 
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multiple-testing burden and ignore the genomic context of the association. Bump-
hunting methods [4, 6] can, to some extent, alleviate these issues by detecting a pre-
determined difference in the spatially ordered variables (e.g., SNPs or CpGs) that 
correlate with the trait or disease under scrutiny. However, as the name implies, 
bump-hunting methods can only analyze a single bump at a time, failing to consider 
the combined effect of multiple bumps in a given region. Besides the lack of power 
[5], bump-hunting methods also rely on a re-sampling procedure, such as bootstrap-
ping or permutation, which makes them computationally more intensive (for details, 
see [4]).

To help address these methodological shortcomings, we developed a wavelet-based 
method to enable the detection of more complex signals than those present in a single 
bump. Although several methods are now available for functional association analy-
sis based on wavelets [5, 7–9], they do not scale well in terms of computational time 
when the sample size (n) or the number of regions (R) becomes exceedingly large 
(e.g., when n ≈ 1000 or R > 1000 ). As wavelet coefficients are not independent, Lee 
and Morris [5] and Ma and Soriano [9] proposed searching for associations between a 
trait and a function by using wavelet regression that takes into account the dependen-
cies between the wavelet coefficients. However, this requires the use of a re-sampling 
procedure such as Markov Chain Monte Carlo (MCMC) (exemplified in [5, 7]) or the 
computation of complex analytical posterior distributions as in Ma and Soriano [9]. 
To address these issues, Shim and Stephens [8] proposed simplifying the modeling by 
omitting the dependencies and using a likelihood ratio test to search for associations 
between a trait and a function. This simplification is, however, still limited because of 
the need for permutations to evaluate the significance of the likelihood ratio.

In our current approach, which we call “Fast Functional Wavelet” (FFW), we com-
bine the framework of Shim and Stephens [8] with recent results on the theoretical 
null distribution of Bayes factors by Zhou and Guan [10]. Our approach allows a fast 
emulation of the test statistic in Shim and Stephens [8] and reduces the computa-
tional time considerably. The main difference between FFW and WaveQTL is that 
FFW requires regressing the trait of interest on the wavelet coefficients, regardless 
of the application. Hence, the design matrix for association is kept constant across 
all the screened regions. This simple modification enables the null distribution of the 
test statistic to be simulated using only a χ2

1  distribution, thereby circumventing the 
need for extensive permutations to assess the significance of a region. By keeping the 
design matrix for association constant across the screened regions, and using the 
results of Zhou and Guan [10], we can show that the same distribution can be used to 
emulate the null distribution of each regional test. This null distribution depends on 
a single parameter that is easily computed. Keeping the design matrix constant across 
the screened regions can lead to a reverse regression, resulting in shrunken estimates 
and a potential loss of power (see Fuller, Chapter  1 [11]). Besides making the null 
distribution easier to emulate, reverse regression also allows the analysis of a wider 
variety of traits (continuous, binary, or count).

Although the focus of the current paper is on DNAm data, we describe FFW more 
broadly to highlight its utility for other types of high-dimensional data, such as those 
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from a GWAS [3], dsQTL analysis [2], and functional data from biomechanical research 
[1].

Description of our wavelet‑based approach
There are different types of wavelets, and readers interested in a more comprehensive 
introduction to wavelets are referred to Nason [12]. In our application here (FFW), 
we only consider the simplest type of wavelet—the Haar wavelet.

Processing

For simplicity, we consider genetic regions composed of evenly-spaced variables of 
length 2J  . As the assumption of evenly-spaced variables rarely holds in practice, we 
use the approach of Kovac and Silverman [13] to handle this limitation in our soft-
ware implementation. Their approach mainly consists of using an interpolation on the 
observed data to obtain evenly-spaced variables of length 2J .

A given region is defined as a compound of X1, . . .X2J , with 2J  spatially-ordered var-
iables. Suppose we observe these 2J  variables for n individuals; we then denote Xi,k as 
the kth observation of the ith variable. The wavelet coefficients for the individual k are 
defined as follows. For wavelet coefficients corresponding to the highest scale or reso-
lution (i.e., J), and for i ∈ �1, 2J−1�

These wavelet coefficients correspond to local differences between adjacent variables. 
For a lower scale (i.e., j < J  ), the corresponding wavelet coefficients are computed as 
follows:

where X̌j,2i,k , is defined as:

X̌j,2i,k correspond to the scaled average of the adjacent variables for individual k (for fur-
ther details, see Nason [14]). Finally, the wavelet coefficients for the lowest scale (i.e., 0) 
are computed as follows:

The procedure described above is known as Mallat’s pyramid algorithm for signal 
processing [15]. To ease comprehension, we denote X̃jl as the random variable repre-
senting the wavelet coefficient at the scale j, with 1 ≤ j ≤ J  , and at the location l, with 
1 ≤ l ≤ 2j−1.

X̃J ,i,k = X2i,k − X2i−1,k

X̃j,i,k = X̌j+1,2i,k − X̌j+1,2i−1,k

(1)X̌j,2i,k =

{

∀i ∈ �1, 2J−1�,X2i,k + X2i−1,k , if j = J

∀i ∈ �1, 2j−1�, X̌j+1,2i,k + X̌j+1,2i−1,k , if 1 ≤ j < J

X̃0,1,k =

2J
∑

i=1

Xi,k
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Modeling

We first summarize the work of Shim and Stephens [8] before presenting our main 
methodological contributions in the “Significance of a region” section further below.

To identify associations between a region and a phenotype (denoted as � hereafter), 
we assess whether specific scales are associated with � at different locations. Let π be 
a vector of length J, where ∀j ∈ [0 : J ],πj ∈ [0, 1] and πj represents the proportion of 
wavelet coefficients at scale j associated with � . To assess the significance of a given 
genetic region, we test the following hypothesis:

In the next sections, we describe the test statistic (likelihood ratio), how its different 
components are computed, and how its significance is tested.

Bayes factors

To test for associations between � and the wavelet coefficient X̃jl for a given region, 
we use the Normal-Inverse-Gamma (NIG) prior to perform a regression between 
each wavelet coefficient and � . Note that our framework easily allows confounders 
to be incorporated into the regression models. We quantile-transform each wavelet 
coefficient across the individuals to reduce the proportion of spurious associations 
due to distribution-related issues.

The association models for each scale and location are defined as follows:

where C is a matrix of dimension c × n , βjl,C is a matrix of dimension 1× c and 
ǫ ∼ N (0, σ 2) , where σ 2 is unknown. Next, we compute the Bayes factors of the wavelet 
regression jl using the closed form provided by Zhou and Guan [10] for the NIG prior.

Ratio statistic

Our goal is to assess the significance of the vector π = (π0, . . . ,πj , . . . ,πJ ) , where πj 
represents the proportion of wavelet coefficients at scale j associated with � , and X̃ 
is the wavelet representation of the individual functions. To test the significance of π , 
we construct a test statistic by computing the following likelihood ratio:

Following the approach of Shim and Stephens [8], we denote γjl as the random variable 
with support {0, 1} . Thus, γjl = 1 if the wavelet coefficient X̃jl is associated with � , and 0 
if not. We consider π as a hyperparameter of γjl ; i.e.,

(2)H0 : π = (0, . . . , 0)vsH1 : ∃j ∈ [0 : J ],πj �= 0

(3)
M0 : X̃jl = βjl,0 + βjl,CC + ǫ

M1 : X̃jl = βjl,0 + βjl,1�+ βjl,CC + ǫ

(4)�(π , X̃ ,�) =
p(X̃ |π ,�)

p(X̃ |π ≡ 0,�)

(5)p(γjl = 1|π) = πj
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Shim and Stephens [8] assume independence between the wavelet coefficients. How-
ever, this may not to hold in practice [16]. Under the assumption of independence of the 
wavelet coefficients, we can rewrite 4 as:

We denote BFjl(x̃,�) =
p(x̃jl |γjl=1,�)

p(x̃jl |γjl=0,�)
 as the Bayes factor of the association between the 

wavelet coefficient at scale s and location l. Using this notation, we can rewrite 7 as:

We then compute the likelihood ratio statistic by maximizing the lambda statistics over 
π and estimating π̂ using the EM algorithm.

Significance of a region

As the distribution of � is unknown, we simulate � under H0 by simulating BFjl under 
H0 . Recently, Zhou and Guan [10] showed that, under H0 and a wide spectrum of priors, 
the Bayes factors (including the NIG prior) follow a specific distribution for a Gaussian 
model. More precisely,

where Q1 is a non-central chi-squared random variable with df = 1, and ǫ = O(1) and its 
non-centrality parameter has a closed-form. The parameter �1 is the largest eigenvalue of 
X
(

XtX + V−1

b

)−1

Xt , where X is the design matrix. Specifically, X =
(

1,Y ,Ct
)

 and 

Vb = diag(σ 2
b ) ( σb is the prior effect size of the NIG prior for the intercept and the covar-

iates). By keeping the design matrix constant across the regions, �1 stays the same for all 
the regions and only needs to be computed once. The non-centrality parameter is 
region-dependent in general, but it is exactly zero when the null hypothesis of the Bayes 
factor is βjl,1 = 0 . Zhou and Guan [10] showed that, for df = 1, Q1 is asymptotically equal 
to the likelihood ratio test statistic for Gaussian linear models. In other words, Q1 is 
equal to a simple chi-squared statistic with one degree of freedom. Therefore, we use the 
approximation in Eq. (11) for the distribution of the Bayes factors. Note also that Zhou 
and Guan [10] showed that this approximation is exact when using a Normal prior.

By using this approximation, it is only necessary to compute a single parameter for all 
the regions. We can then perform M independent simulations of the vector of Bayes 

(6)�(π , x̃,�) =
∏

j,l

p(x̃jl |πj ,�)

p(x̃jl |πj = 0,�)

(7)=
∏

j,l

πjp(x̃|γjl = 1,�)+ (1− πj)p(x̃|γjl = 0,�)

p(x̃|γjl = 0,�)

(8)�(π , x̃,�) =
∏

j,l

[

πjBFjl + (1− πj)
]

(9)�̂(x̃,�) = maxπ∈[0,1]J�(π , x̃,�)

(10)2log(BF) = �1Q1 + log(1− �1)+ ǫ

(11)2log(BF) ≈ �1χ
2
1 + log(1− �1)
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factors under H0 . This corresponds to M vectors of length 2J , corresponding to the num-
ber of wavelet coefficients. Next, for each simulated vector of Bayes factors BFm , we 
compute the simulated likelihood ratio �̂m = maxπ∈[0,1]J�(π ,BFm) using the procedure 
described above. Monte Carlo methods for p value estimation can then be applied to the 
set of observed statistics.

Simulations and application
We performed a set of simulations to evaluate the gain in computational time with FFW 
and to assess the significance of the test statistic. We also evaluated the statistical power 
of FFW using a realistically simulated dataset. Lastly, we ran a sensitivity analysis for 
the priors to assess the sensitivity of FFW according to the choice of prior. All the sim-
ulations were performed on an ordinary laptop, equipped with an Intel(R) i7-700HQ 
2.80 GHz processor and 8 GB of RAM.

Gain in computational time

We performed separate EWASes using FFW and WaveQTL, and report the run time 
for different sample sizes. Figure 1 illustrates the substantial gain in computational time 
with FFW. The green and orange curves represent the total time it took to perform an 
EWAS based on DNAm data generated on the Illumina 450K platform (using the same 
pre-processing steps as in the “Power and prior sensitivity analysis” section).

The data used to estimate the computational time were generated as follows. First, 
we simulate each individual’s DNAm profile using independent and identically distrib-
uted (iid) uniform random variables on [0, 1]. More precisely, we simulate each indi-
vidual’s DNAm as being generated by the Illumina 450K array, by simulating the value 
of each probe on the array using a random variable on [0, 1]. Next, we apply the same 
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Fig. 1  Comparison of the computational time under H0 when performing an EWAS with FFW and WaveQTL 
for different sample sizes. The y-axis has been log-transformed. The green curve indicates the computational 
time using the permutation procedure described by Besag and Clifford [29], which is based on a maximum of 
10 permutations being larger than the observed test statistics (the set up is according to Shim and Stephens 
[8]). The orange curve indicates the computational time using FFW. The blue line indicates the computational 
time of the simulations required in FFW, which remains constant with increasing sample size
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pre-processing steps as in the “Power and prior sensitivity analysis” section, resulting in 
4731 regions to test for association.

Finally, in the “Computational cost” section of the Appendix, we derive the theoretical 
computational cost for WaveQTL and FFW.

Type I error

We estimated the type I error for four distinct scenarios and performed simulations under 
the assumption of no association, using the test functions block, bump, heaviSine, and dop-
pler as previously described in Donoho and Johnstone [17]. The different functions are 
illustrated in Fig. 2 (adapted from Donoho and Johnstone [17]).

For each simulation s, we propose the following model of association. For each test func-
tion T, we perform the following simulation, and using T, we generate a population of 
observed functions as follows:

 where ak is the individual amplitude of the test function, with a ∼ N (0, 1) and 
ǫ ∼ N (0, 1) . We denote F as the set of observed functions. We then generate 
Yk ∼ N (0, 1) , which represents a continuous trait not associated with the considered test 
function. Next, we wavelet-transform each individual function fk and quantile-trans-
form each wavelet coefficient in the population. We then compute the likelihood ratio 
�̂(F̃ ,Y )s , as well as �1s , which is the largest eigenvalue of X

(

XtX + V−1

b

)−1

Xt , where 

X = (1,Y ) and Vb = diag(σ 2
b ) ( σb is the prior effect size of the NIG prior for the inter-

cept and the covariate). We simulate �̂(F̃ ,Y )s M = 106 times using

These simulations are denoted as �̂(F̃ ,Y )ms  . We compute the Monte Carlo p value as

fk(x) = ak × T (x)+ ǫ

(12)2log(BF) ≈ �1sχ
2
1 + log(1− �1s)
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This procedure is repeated 75,000 times for each sample size and type of test function 
(block, bump, heaviSine, and doppler). Table 1 summarizes the estimated type I errors 
for different sample sizes and test functions. These results show that the type I errors are 
handled satisfactorily for all the function types and sample sizes.

Power and prior sensitivity analysis

To evaluate the power and performance of FFW on DNAm data, we used the same data-
set as in Lee and Morris [5]. This dataset is a combination of 26 methylation profiles on 
chromosome 3, containing a total of 75,069 probes. Every patient’s methylation profile 
was measured twice, once in cancer cells and once in control cells. The phenotype (Y) is 
thus a binary indicator corresponding to a cancer (Y = 1) or control (Y = 0) cell.

The simulations are designed as follows. The true mean methylation level is kept iden-
tical for all the probes except the 1901 loci that were previously found to be differen-
tially methylated in Irizarry et  al. [18]. For these 1901 probes, the mean methylation 
levels were made to be different between cases and controls according to the difference 
reported by Irizarry and colleagues [18].

The above simulations are designed to ensure that the two groups have the same 
DNAm profile for all CpGs except the 1901 loci reported to be differentially methylated 
in Irizarry et al. [18]. For further information regarding the simulated data, readers are 
referred to the Supporting Information section in Lee and Morris [5].

The dataset itself is available at http://​odin.​mdacc.​tmc.​edu/​~jmorr​is/​simul​ated_​data.​
Rdata.
Pre-processing As CpG sites are not evenly spaced in the genome, the wavelet trans-

form is well-suited for modeling such sites as a function, provided there is a sufficiently 
large number of measurements. We pre-processed the DNAm data by dividing the 
genome into smaller regions containing at least 10 CpGs, with any two adjacent CpGs 
separated by a maximum distance of 500 base pairs. This criterion is similar to the one 
used by Jenkinson et al. [19], where the authors studied regions of 3 Kb containing at 
least 10 CpGs.

The above pre-processing step resulted in a total of 1213 regions, containing 1875 of 
the 1901 CpGs in Irizarry et al. [18] that were scattered across 89 of the 1213 defined 
regions. For each region, we investigated whether the CpG patterns varied between case 
(n = 13) and control (n = 13) cells. As each region contains at least 10 CpGs, we used a 
depth of analysis of 3. We then ran FFW and WaveQTL for different values of the stand-
ard deviation of the prior on the previously defined regions. Finally, for each method and 
standard deviation of the prior, we computed the p value for each region and the cor-
responding false discovery rate (FDR) using the Benjamini–Hochberg procedure [20]. 
Figure 3 shows the consistency of FFW according to different standard deviations of the 
prior. This figure also shows that FFW and WaveQTL have similar power.

To evaluate the type I error of FFW for various standard deviations of the prior, we 
used the above dataset of cancer and control cells to generate the test statistics under 

(13)p̂s =
Card

(

m, �̂(F̃ ,Y )s ≥ �̂(F̃ ,Y )ms

)

+ 1

M + 1

http://odin.mdacc.tmc.edu/%7ejmorris/simulated_data.Rdata
http://odin.mdacc.tmc.edu/%7ejmorris/simulated_data.Rdata
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Table 1  Estimated type I error for different sample sizes and test functions

Test function n α level

0.5000 0.0100 0.0010 0.0001

Block 100 0.49980 0.00992 0.00111 0.00017

Block 500 0.50048 0.00978 0.00105 0.00009

Block 1000 0.49950 0.01028 0.00090 0.00014

Bump 100 0.50040 0.01026 0.00111 0.00004

Bump 500 0.50182 0.01040 0.00080 0.00009

Bump 1000 0.50050 0.00961 0.00098 0.00008

HeaviSine 100 0.50007 0.00982 0.00085 0.00009

HeaviSine 500 0.49956 0.00975 0.00091 0.00007

HeaviSine 1000 0.49965 0.01026 0.00103 0.00009

Doppler 100 0.50054 0.01014 0.00097 0.00009

Doppler 500 0.50089 0.01007 0.00100 0.00008

Doppler 1000 0.49916 0.01037 0.00095 0.00013
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Fig. 3  Assessing the sensitivity of the standard deviations of the prior. Each curve represents the number of 
DNAm regions detected at a given FDR and according to different standard deviations of the prior. The solid 
curves are the output of FFW; the dashed curves are the output of WaveQTL

Table 2  Estimated type I error for different standard deviations of the prior

Prior σb α level

0.0500 0.0100 0.0010 0.0001

0.1 0.0416 0.0183 0.0016 0.0008

0.2 0.0451 0.0145 0.0019 0.0012

0.5 0.0451 0.0236 0.0020 0.0010

1 0.0478 0.0119 0.0019 0.0009

2 0.0500 0.0110 0.0017 0.0009

5 0.0522 0.0210 0.0017 0.0008
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the null. We performed 50 screenings of the dataset by permuting the phenotype in each 
screening. This corresponds to 56,500 observations of the test statistics under the null 
for different standard deviations of the prior. Table 2 summarizes the estimated type I 
errors for different standard deviations of the prior. The calibration is slightly worse than 
the one displayed in Table  1, which might be because the approximation used here is 
only valid asymptotically (see Eq. 11). Moreover, only 26 individuals were available for 
analysis in the case-control dataset, and we only considered independent samples in our 
modeling. Even though the dataset contained repeated measurements, the estimations 
were similar across the different priors. As was the case with statistical power, Fig. 3 also 
shows that FFW and WaveQTL have a similar performance.

We assessed the power of FFW according to the number of differentially methyl-
ated CpGs per region (Table 3). We computed the average proportion of truly associ-
ated regions across different standard deviations of the prior for each FDR level and the 
number of differentially methylated CpGs per region. FFW had higher power for regions 
containing a large number of differentially methylated CpGs (Table  3). We also com-
puted the power according to the number of differentially methylated CpGs per region 
using WaveQTL. We found the same power estimates as those shown in Table 3. This is 
unexpected, considering the relatively small number of truly associated regions (n = 89). 
Figure 3 also shows slight differences between FFW and WaveQTL in relation to FDR. 
Still, these discrepancies are negligible and indicate that the two approaches have 
similar power (Additional file 1).  Figure 4 shows matching ROC curves for FFW and 
WaveQTL, which indicate that the two methods have the same power. We suspect that, 
since WaveQTL estimates the p value using an early-stopping Monte Carlo approxima-
tion based on 10,000 permutations, the estimated FDR might be slightly more conserva-
tive than the one obtained based on simulations. However, when we rank the regions 
by FDR, we obtained the same ranking for WaveQTL as for FFW. As ROC curves are 
invariant if the ranking of the regions does not change, we obtain the same ROC curves 
as a result.

To compare FFW with another wavelet-based method, we repeated the same analyses 
using the “Wavelet-based Functional Mixed Models” (WFMM) method by Morris and 
Carrol [7] on the same dataset as above. WFMM can be used to detect DMRs [5], and, 
more generally, to detect signals via wavelet regression. The authors used an empirical 
Bayes approach to perform a regularization of the estimated effects. Their model can 

Table 3  Estimated power according to the number of differentially methylated CpGs per region

FDR Number of CpGs

1–10 11–20 21–30 ≥ 30

0.01 0.000 0.101 0.094 0.385

0.05 0.117 0.182 0.254 0.58

0.10 0.150 0.256 0.348 0.564

0.15 0.233 0.291 0.370 0.564

0.20 0.300 0.302 0.370 0.577
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thus take into account a larger range of correlations between the observed DNAm pro-
files in each individual. WFMM is thus able to handle repeated measures of DNAm.

WFMM processed all the 75,069 CpG sites in one go and computed the posterior 
probability for each of the CpGs being above a set threshold (here 0.05) for being associ-
ated with cancer. We ran WFMM by specifying the correlation structure between the 
observations. Following the approach of Lee and Morris [5], we transformed the pos-
terior probabilities of the CpGs into Bayesian FDR [5]. To compare the performance of 
WFMM against that of FFW, we first need to provide a regional significance criterion for 
WFMM. We used the minimum Bayesian FDR value for all the CpGs within a region of 
interest to assign a regional significance criterion. After running WFMM on the entire 
dataset, we used the minimum Bayesian FDR value for each of these regions to assess 
significance.

The results showed that WFMM had higher power than FFW, detecting all the 89 
regions with an FDR below 0.01. This difference in power might be due to the refined 
modeling proposed by Morris and Carrol [7], which takes advantage of the correlations 
between DNAm profiles. Notably, Lee and Morris [5] showed that taking these corre-
lations into account resulted in a systematic gain in power. In terms of computational 
time, however, WFMM took more than 6 h to complete the screening of 1213 regions, 
whereas FFW took a minute.

Discussion
This paper reports on a computational shortcut for improving the wavelet-based 
approach proposed by Shim and Stephens [8]. We drew inspiration from the work of 
both Shim and Stephens [8] and Zhou and Guan [10] to develop a faster functional mod-
eling that is applicable to a wider variety of functions and phenotypes. The approach of 
Shim and Stephens [8] was designed to identify dsQTL. Here, we show that wavelet-
based approaches can also be used to detect differentially methylated regions (DMRs). 
Both WaveQTL by Shim and Stephens [8] and FFW offer a more flexible approach to 
modeling functions than conventional single-point testing. By keeping the design matrix 
constant across the screened regions and using simulations instead of permutations, we 
show that FFW is faster than WaveQTL. In addition, FFW controls the type I error satis-
factorily for large sample sizes.

Reverse regression is a very useful tool for reducing the overall computational burden. 
However, the downside of reverse regression is that the coefficients from the analysis 
may become less interpretable. If the objective of a study is to estimate the effect of a 
particular wavelet in a given DNAm region, then one needs to rerun the procedure using 
individual wavelet coefficients as exposures. Therefore, FFW might function better as 
an initial screening tool to gain important biological insights from the DNAm data. For 
other types of data, such as those from biomechanical research, the wavelet coefficients 
are more directly interpretable. For example, if a researcher is interested in studying the 
effect of a particular treatment on motor function, e.g., leg function in the strength-dex-
terity test [21], FFW would lend itself easily to such an analysis.

An additional methodological constraint is the need to assign a given value for J in 
the applications of FFW. We chose a cutoff of J = 3 because of the requirement for 
the screened regions to contain least 10 CpGs, with any two adjacent CpGs separated 
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by a maximum distance of 500 base pairs. In general, we advise choosing as large of a 
J as possible, while restricting 2J < κ , where κ is an integer larger than 4. This can be 
written as J = maxj{2

j < κ} when analyzing regions containing at least κ CpGs. In our 
current application, this corresponded to J = 3. Nevertheless, it is possible to choose 
a different J for each region. Given the test statistic depends on J, choosing a different 
J for each genetic region would require the test statistic to be simulated for different 
values of J. As shown in Fig. 1, one can quickly simulate the test statistic. Therefore, 
simulating different values of J is likely to have a negligible impact on the overall run 
time.

FFW is well-powered to detect DMRs containing more than 10 CpGs, even when 
the CpGs only have small effects. However, FFW has lesser power for detecting DMRs 
containing only a few CpGs ( ≤ 10 ). Although it is less powerful than WFMM [5], 
FFW has the advantage of being significantly faster in terms of computational time. 
WFMM took more than 6 h to process one chromosome for 26 individuals, whereas 
FFW took a minute. We thus expect WFMM to become exceedingly slow if there is a 
need to scale up the analysis to include hundreds of individuals and data from denser 
DNAm platforms, such as the Illumina 850K, or those from whole-genome bisulfite 
sequencing [22]. Therefore, FFW is a useful complementary tool for the rapid scan-
ning of EWAS datasets to detect DMRs that can subsequently be used in downstream 
fine-mapping efforts. An attractive application of FFW would be to re-analyze DNAm 
data from previously published EWASes that are publicly available through, e.g., the 
Gene Expression Omnibus (GEO) database [23].

In future developments, we plan to extend FFW to also include phenotypes on 
non-ordered scales, e.g., blood types and psychiatric phenotypes. Such phenotypes 
are routinely treated in a case-control fashion and analyzed using multinomial regres-
sion owing to the prohibitively large computational burden. However, by exploit-
ing reverse regression, as we do here, the phenotypes can be re-coded and readily 
included in the predictor matrix. Reverse regression also enables FFW to easily adapt 
to the setting of a phenome-wide association study (PheWAS), in which multiple phe-
notypes are interrogated simultaneously ([24–26]). As highlighted by our analyses, 
this development is further simplified by the results of Zhou and Guan [10], showing 
that the parameter of the Bayes factors law depends primarily on the singular val-
ues of the regression matrix and the number of parameters tested. As the regression 
matrix remains constant across all loci, locations, and scales, these parameters only 
need to be computed once, thus enabling a fast computation of p values. This makes 
FFW a highly versatile method for analyzing phenotypes that do not lend themselves 
easily to either single-point or bump-hunting methods.

FFW is distributed as an R package. The package contains the analysis code and a data 
visualization tool to enable a more detailed inspection of the detected regions. The full 
R package is freely available on GitHub (https://​github.​com/​willi​am-​denau​lt/​ffw), and a 
comprehensive example run of the package is provided in the help function ffw.

https://github.com/william-denault/ffw
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Appendix
Computational cost

Here, we discuss the improvement in computational cost using FFW. Let R be the num-
ber of regions to screen for associations (i.e., the number of tests to be performed). 
When considering a Bonferroni correction for R tests, the number of permutations or 
simulations needed to obtain sufficiently precise p values for a multiple testing correc-
tion of 0.05R  is of the order O

(

R2
)

 (see Knijnenburg et al. [27]). The computational cost of 
performing a linear regression is O

(

np2 + p3
)

 , where n is the number of observations 
and p is the number of variables. For every screened region, we perform 2J linear regres-
sions. The complexity of the wavelet transform is equal to the number of observed var-
iables, which is 2J in our case. It follows that the combined computational cost using 
WaveQTL for a full screening of R regions and the permutation procedure is:

where e is the average number of iterations of the EM algorithm. Using early-stopping 
methods described by Gandy [28] and Besag and Clifford [29] for deriving Monte Carlo 
p values, the computational cost can be further reduced to:

where S is the expected number of steps of the early-stopping Monte Carlo p values 
method, with S ≤ R2 . The first term in Eq. (15) is the number of regressions to be per-
formed, including the ones for the permutation as well as for the cost of the EM algo-
rithm. The second term is the overall cost of the wavelet transform.

Early-stopping methods, such as the methods of Gandy [28] or Besag and Clifford [29], 
are algorithms that estimate p values in a sequential fashion. As in most applications, the 
interesting p values are the small p values. Early-stopping methods aim at avoiding using 
a lot of computational power on large p values. Therefore, when it is likely that the test 
p value is large, such algorithms stop and move on to the next p value to be estimated. 
Early-stopping methods thus aim at focusing only on the interesting tests and allocat-
ing most of the computational power to those. The simctest R package contains most of 
recent early-stopping algorithms, and include the method of Gandy [28].

Using FFW, and neglecting the cost of simulations, we obtain a computational cost of:

where the first term is the computational cost of all the regressions performed, the sec-
ond term is the overall cost of the wavelet transform, and the third term is the number 
of iterations performed by the EM algorithm. The R term is for running the EM algo-
rithm for each region, and the R2 term is for running the EM algorithm for each simula-
tion used to assess the significance of each region. Using early-stopping rules for Monte 
Carlo p values, this can be further reduced to:

(14)O
(

2
J
(

np2 + p3 + e
)(

1+ R2
)

R+ 2
J R
)

(15)O
(

2
J
(

np2 + p3 + e
)

(1+ S)R+ 2
J R
)

(16)O
(

2
J
(

np2 + p3
)

R+ 2
J R+ e

(

R+ R2
))

(17)O
(

2
J
(

np2 + p3
)

R+ 2
J R+ e

(

R+ S′
)

)
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where S′ is the number of iterations needed to assess the significance of the smallest p 
value using the early-stopping rules for Monte Carlo p values ( S′ ≤ R2 ). In essence, this 
procedure reduces the degree of the polynomial cost of the region by one. In addition, 
the term 

(

np2 + p3
)

 , which carries part of the computational burden, is now only associ-
ated with a first-order polynomial in R and no longer associated with a third and second-
degree polynomial. In a scenario in which all the regions have 2J variables, the first term 
would thus represent the overall cost corresponding to the single-point testing strategy.
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