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Abstract

The genetic background of childhood body mass index (BMI), and the extent to which the

well-known associations of childhood BMI with adult diseases are explained by shared

genetic factors, are largely unknown. We performed a genome-wide association study

meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five indepen-

dent loci reached genome-wide significance in the combined discovery and replication anal-

yses. Two of these, located near NEDD4L and SLC45A3, have not previously been

reported in relation to either childhood or adult BMI. Positive genetic correlations of child-

hood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and

type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative

genetic correlation of childhood BMI with age at menarche was observed. Our results sug-

gest that the biological processes underlying childhood BMI largely, but not completely,

overlap with those underlying adult BMI. The well-known observational associations of BMI

in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap,

but in light of previous evidence, it is also likely that they are explained through phenotypic

continuity of BMI from childhood into adulthood.

Author summary

Although twin studies have shown that body mass index (BMI) is highly heritable, many

common genetic variants involved in the development of BMI have not yet been identi-

fied, especially in children. We studied associations of more than 40 million genetic vari-

ants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified

25 genetic variants that were associated with childhood BMI. Two of these have not been

implicated for BMI previously, located close to the genes NEDD4L and SLC45A3. We also

show that the genetic background of childhood BMI overlaps with that of birth weight,

adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menar-

che. Our results suggest that the biological processes underlying childhood BMI largely

overlap with those underlying adult BMI. However, the overlap is not complete.
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Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phe-

notypes are overlapping. This may mean that the associations of childhood BMI and later

cardio-metabolic outcomes are partially explained by shared genetics, but it could also be

explained by the strong association of childhood BMI with adult BMI.

Introduction

Childhood obesity is a major public health problem with impact on health in both the short

and the long term [1]. Besides the well-established lifestyle and behavioral factors, genetics

influence the risk of obesity, with reported heritability estimates from twin studies for body

mass index (BMI) ranging from 40 to 70% [2,3]. An estimated 17 to 27% seems to be explained

by common variants [4–6]. Large genome-wide association studies (GWAS) have identified

941 loci associated with adult BMI, accounting for 5% of the phenotypic variation [7]. Less is

known about the genetic background of childhood BMI. A previous GWAS of BMI among

35,668 children identified 15 associated loci, accounting for 2% of the phenotypic variance [8].

Of these loci, 12 were also associated with adult BMI [9,10]. The remaining 3 identified genetic

loci, specifically associated with childhood BMI, suggest possible age-specific differences

between the two stages of life or could indicate stronger effects for these genetic loci in child-

hood BMI than in adult BMI [11–13]. Thus far, most common variants explaining the genetic

variability of childhood BMI remain undetected. It is well known that obesity in early-life

tends to track into later life [14]. Furthermore, childhood obesity has been associated with a

lower age at menarche and with non-communicable diseases in later life, including hyperten-

sion, dyslipidemia, type 2 diabetes, neurodegenerative disease and asthma [15–19]. Findings

from recent studies suggest a shared genetic background for BMI in childhood and adulthood

[8,20,21]. To which extent the associations of childhood BMI with common adult diseases are

genetically explained, has not been explored in detail.

We aimed to study the genetic background of childhood BMI by performing a two-stage

GWAS meta-analysis consisting of 41 studies with a total sample size of 61,111 children of

European ancestry. We also examined the genetic correlations of childhood BMI with anthro-

pometric, cardio-metabolic, respiratory, neurocognitive and endocrinological traits in adults,

using GWAS summary statistics from various consortia.

Results

Identification of genome-wide significant loci for childhood BMI

Sex- and age-adjusted Standard Deviation Scores (SDS) were created for BMI at the latest time

point (oldest age, if multiple measurements were available) between 2 and 10 years using the

same software and external reference across all studies (LMS growth; Pan H, Cole TJ, 2012;

http://www.healthforallchildren.co.uk). Individual study characteristics are shown in S1 Table.

The discovery meta-analysis included data from 26 studies (Ndiscovery = 39,620) with data

imputed to the 1000 Genomes Project or The Haplotype Reference Consortium (HRC). We

performed a fixed-effects inverse variance-weighted meta-analysis and performed conditional

analyses based on summary-level statistics and Linkage Disequilibrium (LD) estimation

between SNPs in Genome-wide Complex Trait Analysis (GCTA) to select independently asso-

ciated SNPs at each locus on the basis of conditional P-values [22]. Seventeen independent

SNPs reached genome-wide significance (P-values <5 × 10−8) and thirty SNPs showed sugges-

tive association with childhood BMI (P-values >5 × 10−8 and<5 × 10−6). A Manhattan plot of
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the discovery meta-analysis is shown in Fig 1. No evidence of inflation due to population strat-

ification or cryptic relatedness or other confounders was observed (genomic inflation factor

(lambda) = 1.05; LD-score regression intercept = 1.0) (S1 Fig) [23]. All 47 independent SNPs

identified in the discovery meta-analysis were taken forward for analysis in 15 replication

cohorts (Nreplication = 21,491) and results of the two stages were then combined. Results of the

discovery, replication and combined meta-analyses are shown in Table 1 and S2 Table and S3

Table. Results of the discovery analysis for SNPs with P-values <5 × 10−6 are shown in S4

Table. As the replication stage might lack power to replicate SNPs from the discovery analysis,

we consider the joint analysis as the primary analysis.

In total, 25 loci achieved genome-wide significance in the combined meta-analysis. We

defined a SNP as representing a known BMI-locus if it was within 500 kb of and in LD (r2�

0.2) with a previously reported BMI-associated signal. Of the 25 SNPs, two were novel and had

not been previously associated with BMI in either adults or children: rs1094647 near SLC45A3
and rs184566112 near NEDD4L. Per additional risk allele (G, allele frequency = 0.55) of

rs1094647 (SLC45A3), childhood BMI increased by 0.04 SDS (Standard Error (SE) = 0.01, P-

value = 7.20 × 10−10), equal to 0.09 kg/m2. Per additional risk allele (A, allele frequency = 0.84)

of rs184566112 (NEDD4L), childhood BMI increased by 0.06 SDS (SE = 0.01; P-

value = 4.24 × 10−8), equal to 0.11 kg/m2. Regional plots of the 2 novel SNPs are shown in Fig 2.

Despite the fact that these novel SNPs were not associated with either childhood or adult

BMI previously, they have been reported to be associated with other anthropometric pheno-

types. Rs1094647 (SLC45A3) has been associated with both height and whole-body fat-free

mass in adulthood [24–26]. Additionally, rs708724, which is in high LD with rs1094647 (r2 =

0.70) was associated with adult weight [24–26]. Rs184566112 (NEDD4L) is located in the same

Fig 1. Manhattan plot of results of the discovery meta-analysis of 26 single study GWAS. On the x-axis the chromosomes are shown. On the y-

axis the–log 10 of the P-value is shown. Novel SNPs are shown in green. Independent SNPs are shown in blue. Known SNPs are shown in black. The

genome wide significance cutoff of 5 × 10−8 is represented by the grey dotted line.

https://doi.org/10.1371/journal.pgen.1008718.g001
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Table 1. Results of the discovery, replication and combined analyses for the 47 loci with P-values<5 x 10−6 in the discovery phase.

SNP CHR Position Nearest gene EA/

non_EA

P-value

discovery

P-value

replication

EAFa Beta

combined

SE

combined

P-value

combined

rs11676272b,c 2 25141538 ADCY3 G/A 2.37 x 10−21 1.88 x 10−10 0.46 0.071 0.006 3.79 x 10−30

rs7138803b,c 12 50247468 BCDIN3D A/G 7.12 x 10−20 7.39 x 10−12 0.37 0.072 0.006 4.23 x 10−30

rs939584b,c,d 2 621558 TMEM18 T/C 8.85 x10-26 2.52 x 10−6 0.83 0.092 0.008 3.73 x 10−29

rs17817449b,c 16 53813367 FTO G/T 1.69 x 10−17 3.21 x 10−11 0.40 0.069 0.006 2.98 x 10−27

rs12042908b,c 1 74997762 FPGT-TNNI3K,

TNNI3K
A/G 2.77 x 10−14 2.01 x 10−12 0.46 0.064 0.006 6.37 x 10−25

rs543874b,c 1 177889480 SEC16B G/A 1.61 x 10−15 6.96 x 10−8 0.19 0.075 0.008 6.02 x 10−22

rs56133711b 11 27723334 BDNF A/G 2.00 x 10−10 3.69 x 10−6 0.24 0.056 0.007 3.75 x 10−15

rs2076308b,c 6 50791640 TFAP2B C/G 1.59 x 10−12 0.01 0.19 0.058 0.008 3.07 x 10−13

rs4477562b,c,e 13 54104968 LINC00558 T/C 8.29 x 10−13 0.01 0.13 0.065 0.009 5.81 x 10−13

rs571312b,c 18 57839769 MC4R A/C 2.00 x 10−10 4.84 x 10−4 0.23 0.052 0.007 8.80 x 10−13

rs12641981b,c 4 45179883 GNPDA2 T/C 4.19 x 10−8 7.12 x 10−6 0.44 0.045 0.006 1.29 x 10−12

rs62107261f 2 422144 FAM150B T/C 3.17 x 10−7 6.64 x 10−6 0.95 0.121 0.018 9.93 x 10−12

rs114285994b 16 19935763 GPRC5B G/A 1.41 x 10−10 5.98 x 10−3 0.87 0.063 0.009 1.11 x 10−11

rs144376234b,c 1 110114504 GNAI3 T/C 1.35 x 10−8 2.21 x 10−3 0.04 0.111 0.017 1.38 x 10−10

rs1094647 1 205655378 SLC45A3 G/A 2.46 x 10−6 7.45 x 10−5 0.55 0.038 0.006 7.20 x 10−10

rs76227980f 18 58036384 MC4R C/T 1.71 x 10−6 1.19 x 10−4 0.98 0.140 0.023 8.68 x 10−10

rs13107325b 4 103188709 SLC39A8 T/C 3.51 x 10−8 4.84 x 10−3 0.07 0.082 0.014 1.38 x 10−9

rs62500888c 8 28061823 ELP3 A/G 6.91 x 10−10 0.09 0.57 0.037 0.006 1.81 x 10−9

rs114670539c 2 207064335 GPR1 T/C 3.16 x 10−8 0.01 0.05 0.088 0.015 1.92 x 10−9

rs61765651b 1 72754314 NEGR1 C/T 9.50 x 10−9 0.03 0.83 0.047 0.008 4.99 x 10−9

rs7719067b 5 153538241 GALNT10 A/G 3.96 x 10−7 4.36 x 10−3 0.43 0.036 0.006 6.54 x 10−9

rs11030391f 11 28644626 METTL15 A/G 4.73 x 10−7 6.49 x 10−3 0.63 0.036 0.006 1.51 x 10−8

rs184566112 18 55943926 NEDD4L A/T 4.40 x 10−6 1.24 x 10−3 0.84 0.057 0.011 4.24 x 10−8

rs116664060 6 31592524 PRRC2A C/G 3.03 x 10−6 3.28 x 10−3 0.18 0.049 0.009 4.63 x 10−8

rs11215427c 11 115093438 CADM1 G/C 1.25 x 10−7 0.05 0.74 0.039 0.007 4.64 x 10−8

rs1336980c 9 129377855 LMX1B C/G 6.61 x 10−7 0.03 0.36 0.033 0.006 1.17 x 10−7

rs146823532f 1 74979126 FPGT-TNNI3K,

TNNI3K
A/G 4.09 x 10−7 0.03 0.97 0.114 0.022 1.33 x 10−7

rs79386556 13 71229046 LINC00348 A/G 1.84 x 10−6 0.04 0.04 0.095 0.019 4.83 x 10−7

rs9942489 6 35323709 PPARD A/T 3.62 x 10−6 0.02 0.04 0.081 0.016 5.56 x 10−7

rs17086809 9 86708695 RMI1 C/T 3.06 x 10−6 0.05 0.33 0.038 0.007 9.30 x 10−7

rs80332495 5 19191677 CDH18 A/G 3.78 x 10−7 0.26 0.94 0.090 0.019 1.14 x 10−6

rs4594227 15 84497207 ADAMTSL3 A/G 4.46 x 10−6 0.07 0.56 0.030 0.006 1.75 x 10−6

rs2457463 10 70315687 TET1 G/T 1.79x 10−7 0.43 0.04 0.159 0.034 2.69 x 10−6

rs11865086b 16 30130493 MAPK3 C/A 2.23 x 10−7 0.47 0.53 0.029 0.006 3.31 x 10−6

rs1565356 6 34046065 GRM4 C/A 1.76 x 10−6 0.25 0.92 0.057 0.012 4.01 x 10−6

rs2952863b 4 130759647 C4orf33 T/G 3.10 x 10−6 0.15 0.30 0.031 0.007 4.27 x 10−6

rs2358954 12 66379504 HMGA2 T/G 3.07 x 10−6 0.17 0.68 0.031 0.007 4.77 x 10−6

rs7652876 3 179831733 PEX5L A/C 3.22 x 10−6 0.19 0.25 0.033 0.007 6.93 x 10−6

rs4923207 11 24757325 LUZP2 T/G 1.07 x 10−6 0.86 0.81 0.040 0.009 7.05 x 10−6

rs7757288 6 55205502 GFRAL G/A 6.64 x 10−7 0.47 0.39 0.028 0.006 1.03 x 10−5

rs6876477 5 50878621 ISL1 A/T 3.03 x 10−6 0.35 0.76 0.032 0.007 1.31 x 10−5

rs28599560 5 91791853 FLJ42709 A/G 3.99 x 10−7 0.85 0.61 0.027 0.006 3.48 x 10−5

rs117281273 8 42981400 SGK196 C/G 2.17 x 10−7 0.94 0.97 0.081 0.020 3.48 x 10−5

rs9695734 9 96407983 PHF2 C/T 1.12 x 10−6 0.81 0.84 0.035 0.009 4.99 x 10−5

rs72833479 17 45960449 SP2 A/G 7.96 x 10−7 0.99 0.25 0.029 0.007 6.54 x 10−5

(Continued)
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region as rs6567160 (distance = 448 kb, r2 <0.2), previously associated with adult body fat

[27]. In the current study, we did not observe evidence for association between rs184566112

(NEDD4L, effect allele = G, allele frequency = 0.84) and body fat percentage measured by Dual

energy X-ray Absorptiometry (age range 24 to 120 months) in 2,698 children from 4 cohorts

(0.03 SDS (SE = 0.04, P-value = 0.51)). Individual study characteristics of studies with data on

body fat percentage are shown in S5 Table. No evidence of association with childhood obesity

was found for the two novel SNPs (P-values >0.11) [28].

We additionally identified 2 independent SNPs (METTL15 and PRRC2A) within 500 kb of

previously reported SNPs associated with adult BMI, but only in weak LD with prior reported

signals (r2 <0.2). Similarly, we found 2 independent SNPs in regions that are known for both

childhood and adult BMI (FAM150B and MC4R) [7,8,10]. Regional plots of the 4 independent

SNPs at known loci are shown in S2 Fig. Of the remaining 19 SNPs, 6 mapped to loci previ-

ously associated with adult BMI (BDNF, GPRC5B, SLC39A8, NEGR1, GALNT10, and

CADM1), 2 mapped to loci previously associated with childhood BMI only (ELP3 and GPR1)

and 11 SNPs mapped to loci known to be associated with both adult and childhood BMI

(ADCY3, BCDIN3D, TMEM18, FTO, FPGT-TNNI3K/TNNI3K, SEC16B, TFAP2B, LINC00558,

MC4R, GNPDA2, and GNAI3) [7,8,10].

Overall, there was low heterogeneity between studies for the 25 SNPs, except for FTO (S2

Table) [29]. The broad age range included in the discovery meta-analysis of this study may

conceal age-specific effects. Therefore, we performed a sensitivity analysis excluding studies of

children aged<6 years (remaining Nsensitvity analysis = 55,354), which showed similar results (S6

Table) [30]. Additionally, we ran a sensitivity analysis excluding case-control studies and one

excluding studies with a sample size <n = 500, showing similar results (S7 Table).

Functional characterization

We used several strategies to gain insight into the functional characterization of the 25 SNPs

leading the association signals with childhood BMI. A summary of relevant information from

all strategies can be found in S8 Table.

First, we examined gene expression profiles of the nearest genes to the 25 SNPs from the

combined meta-analysis with GTEx v7 in 53 tissues, using the tool FUMA [3,31]. We found

differential expression of the 25 nearest genes in brain and salivary gland. In a second analysis

of gene expression profiles in GTEx, we considered all genes in a region of 500 kb to either

Table 1. (Continued)

SNP CHR Position Nearest gene EA/

non_EA

P-value

discovery

P-value

replication

EAFa Beta

combined

SE

combined

P-value

combined

rs142367753 2 128938956 UGGT1 C/G 4.03 x 10−6 0.24 0.98 0.088 0.027 1.34 x 10−3

rs6896578 5 76423090 ZBED3-AS1 C/T 3.52 x 10−6 0.17 0.84 0.025 0.009 4.1 x 10−3

CHR, chromosome; EA, effect allele; EAF, effect allele frequency; SE, standard error.

Bolded P-values indicate genome-wide significance in the combined analysis.

Detailed information on beta and SE of the discovery and replication stage separately can be found in S2 Table

a From combined analysis

b Locus previously reported for adult BMI

c Locus previously reported for childhood BMI

d Locus previously reported for adult body fat

e Locus previously reported for childhood obesity

f Independent SNP at the same locus selected by conditional analysis

https://doi.org/10.1371/journal.pgen.1008718.t001
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Fig 2. Locus zoom plots of the 2 novel SNPs Regional association plot of the 2 novel SNPs in the 26 childhood

BMI discovery studies. SNPs are plotted with their P-values (as–log10; left y-axis) as a function of genomic position

(x-axis). Estimated recombination rates (right y-axis) taken from 1000 Genomes, March 2012 release are plotted to
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side of the 25 SNPs. Using this strategy, we additionally found differential expression in liver,

heart, kidney, pancreas, muscle, skin and adipose tissue [31].

Second, we assessed whether the 25 SNPs were associated with gene expression in whole

adipose tissue, isolated adipocytes, and isolated stroma-vascular cells from the Leipzig Adipose

Tissue Childhood Cohort [32]. Full results can be found in S9 Table. We observed differential

gene expression associated with multiple SNPs. Rs1094647 (nearest gene: SLC45A3) was asso-

ciated with gene expression of PM20D1 (PFDR <0.05) in whole adipose tissue. We additionally

found associations of rs114285994 (nearest gene: GPRC5B) with expression of C16orf88 in iso-

lated adipocytes. Rs115181845, which is in moderate LD (r2 = 0.47) with rs144376234 (nearest

gene: GNAI3), was associated with expression of GSTM1 and GSTM2 in whole adipose tissue,

isolated adipocytes and isolated stroma-vascular cells (S8 Table and S9 Table). No associations

with gene expression were observed for any of the other 22 SNPs.

Third, we used Bayesian colocalization analysis to examine evidence for colocalization

between GWAs and eQTL signals and to identify additional candidate genes for the 25 SNPs

(GTEx v7). Briefly, GWAS summary statistics were extracted for each eQTL for all SNPs that

were present in the meta-analysis and that were in common to both GWAS and eQTL studies.

In most pairs, no evidence for association was found with either trait. To define colocalization

we used restriction to pairs of childhood BMI and eQTL signals with a high posterior probabil-

ity for colocalization (See Methods and Materials for details) [33]. We found significant colo-

calizations at 6 loci (ADCY3, DNAJC27-AS1, CENPO, ADAM23, LIN7C, TFAP2B) across a

range of tissues (S8 Table and S10A and S10B Table) [8].

Fourth, to explore biological processes, we used DAVID, with the 25 nearest genes as input,

using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [34,35]. Pathway anal-

ysis revealed one enriched biological process, cAMP signaling (P-value = 0.03).

Fifth, we performed a look-up in mouse-knockout data of the 25 nearest genes and, addi-

tionally, the genes that were indicated by colocalization and gene expression analysis. Mice in

which NEDD4L was knocked out displayed neuronal abnormalities [36]. No related pheno-

types were shown for SLC45A3 or any of the 4 independent loci (METTL1, PRRC2A,

FAM150B, and MC4R). Of the 19 known loci, ADCY3 showed an association with increased

total body fat in female heterozygous knockout mice, whereas NEGR1 was associated with

decreased lean body mass in male and female homozygous knockout mice (S8 Table). Full

results can be found in S8 Table.

Sixth, among the 25 top SNPs, combined annotation-dependent depletion (CADD) scores

>12.37, indicating potential pathogenicity of a SNP, were observed for rs13107325 (SLC39A8),

rs56133711 (BDNF) and rs17817449 (FTO) (CADD scores of 34, 15.3 and 15.3, respectively)

(S8 Table) [3,37].

Genetic correlations of childhood BMI with adult phenotypes

First, to estimate the SNP heritability and the genetic correlations between childhood BMI and

other traits from external GWAS meta-analysis data, we used LD-score regression [20]. SNP

heritability was 0.23. There were positive genetic correlations of childhood BMI with several

anthropometric and cardio-metabolic traits, including adult BMI (Rg = 0.76, P-

value = 1.45 × 10−112), waist-to-hip ratio (Rg = 0.39, P-value = 1.57 × 10−20), body fat percent-

age (Rg = 0.46, P-value = 7.99 × 10−44), diastolic blood pressure (Rg = 0.11, P-value = 0.002),

type 2 diabetes (Rg = 0.19, P-value = 0.002), and coronary artery disease (Rg = 0.14, P-

reflect the local LD-structure around the top associated SNP (indicated with purple color) and the correlated proxies

(indicated in colors). A. rs1094647 B. rs184566112.

https://doi.org/10.1371/journal.pgen.1008718.g002

PLOS GENETICS Genetic background of childhood body mass index

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008718 October 12, 2020 10 / 26

https://doi.org/10.1371/journal.pgen.1008718.g002
https://doi.org/10.1371/journal.pgen.1008718


value = 0.001) (Fig 3 and S11 Table). For birth weight, there were positive genetic correlations

with childhood BMI, both when using fetal genetic effects on birth weight and when using

maternal genetic effects on birth weight (Rg = 0.20, P-value = 3.19 x 10−5 and Rg = 0.12, P-

value = 0.002 for fetal and maternal effects, respectively). Negative genetic correlations were

observed between childhood BMI and total cholesterol (Rg = -0.15, P-value = 0.001), high-den-

sity lipoprotein (HDL) (Rg = -0.22, P-value = 8.65 x 10−6), and age at menarche (Rg = -0.42, P-

value = 1.03 x 10−32). We did not find genetic correlations with any of the respiratory and neu-

rocognitive phenotypes. Genetic correlations of childhood BMI with a selection of phenotypes

that show evidence of association in observational studies are shown in Fig 3. Full results can

be found in S11 Table.

Second, we did a look-up of the 25 SNPs in the adult BMI GWAS [7]. In total, 12 SNPs and

8 proxy SNPs (r2� 0.87) were available in the adult BMI study comprising ~700,000 individu-

als. No information was available on five loci, FAM150B, GPR1, NEGR1, NEDD4L, and

PRRC2A. The directions of effect of all 20 SNPs were the same in adults as in children. Of

these, 18 were genome-wide significantly associated with adult BMI (P-value <5 x 10−8) and

the other 2 SNPs, SLC45A3 and METTL15, showed suggestive evidence of association (P-

values< 2.1 × 10−6) (S12 Table). Effect sizes of these 20 SNPs for adult BMI were highly corre-

lated with those for childhood BMI (r2 = 0.86).

Third, we calculated a combined childhood BMI genetic risk score (GRS) of the 25

genome-wide significant SNPs, summing the number of BMI-increasing alleles weighted by

their effect sizes from the combined meta-analysis. The GRS was associated with childhood

BMI (P-value = 2.84 × 10−11) in 1,169 children from the Tracking Adolescents’ Individual

Lives Survey (TRAILS) Cohort, aged 7 years, one of the largest replication cohorts (Fig 4). For

each additional average risk allele in the GRS, childhood BMI increased by 0.06 SDS

(SE = 0.009). This GRS explained 3.6% of the variance in childhood BMI. When calculating

the risk score for the TRAILS cohort, effect estimates from the combined meta-analysis were

used after excluding TRAILS from the meta-analysis. We additionally tested the GRS for

Fig 3. Genome-wide genetic correlations between childhood BMI and adult traits and diseases. On the x-axis the

traits and diseases are shown. On the y-axis the genetic correlations (Rg) and corresponding standard errors, indicated

by error bars, between childhood BMI and each trait were shown, estimated by LD score regression. The genetic

correlation estimates (Rg) are colored according to their intensity and direction. Red indicates positive correlation,

blue indicates negative correlation. References can be found in S11 Table.

https://doi.org/10.1371/journal.pgen.1008718.g003
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association with adult BMI in the three sub-cohorts of the Rotterdam Study [38] (RS-I-1;

n = 5,957, RS-II-1; n = 2,147 and RS-III-1; n = 2,998). We found the GRS to be associated with

adult BMI in all study samples (P-values = 5.09 × 10−9, 0.02, and 1.49 × 10−10, respectively).

Per additional average risk allele, adult BMI increased by 0.03 SDS (SE = 0.005), 0.02 SDS

(SE = 0.009) and 0.04 SDS (SE = 0.007), explaining 0.6%, 0.2%, and 1.3% of the variance in

adult BMI, respectively. No association was found of the GRS with birth weight and cardio-

metabolic phenotypes, including insulin, triglycerides, low-density lipoprotein, HDL, total

cholesterol, diastolic blood pressure and systolic blood pressure in 2,831 children aged 6 years

from the Generation R Study if considering a Bonferroni corrected P-value of 0.00625 (S13

Table).

Discussion

In this large GWAS meta-analysis of childhood BMI among >60,000 children aged 2–10

years, we identified 25 genome-wide significant loci. Two of these loci, rs1094647 near

SLC45A3 and rs184566112 near NEDD4L had not been associated with BMI before. We

observed moderate to strong genetic correlations of childhood BMI with several anthropomet-

ric, cardio-metabolic, and endocrinological traits in adulthood, suggesting a shared genetic

background.

Fig 4. Associations of the weighted risk score with childhood BMI. Along the x-axis, categories of the risk score are shown together with the

mean SDS BMI on the y-axis on the right and a line representing the regression of the mean SDS childhood BMI values for each category of the

risk score. Along the y-axis on the left a histogram represents the number of individuals in each risk-score category. P-value is based on the

continuous risk score. Analysis was performed in the TRAILS cohort (N = 1,169).

https://doi.org/10.1371/journal.pgen.1008718.g004
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The closest genes to the two novel loci, SLC45A3 and NEDDL4, have not been strongly

linked to obesity in previous studies and databases, indicating that functional studies are

needed to identify possible biological pathways. SLC45A3, encoding the solute carrier family

45, member 3 protein, also known as prostate cancer-associated protein 6, has been related to

prostate-specific antigen serum concentrations and prostate cancer [39–42]. NEDD4L, ubiqui-

tin protein ligase Nedd4-like, known for its role in the regulation of ion channel internaliza-

tion and turnover, is suggested to play a role in the regulation of respiratory, cardiovascular,

renal, and neuronal functions [36,43–45]. The independent SNPs identified at loci known

from previous studies on adult or childhood BMI may represent fully independent signals,

although due to the low LD, these SNPs might still tag the same causal variant as the previously

identified SNPs.

Since there is no strong previous evidence supporting the closest genes to the 25 SNPs as

the causal genes, we took multiple approaches for further functional characterization. As many

different tissues have been implicated to play a role in body composition we chose to include

all available tissues in the gene expression analysis. Using GTEx, we found differential expres-

sion of the 25 nearest genes in brain. This may be of interest as appetite regulation might play

a role in the development of obesity [46–48]. Gene expression data revealed an association

between one of the novel SNPs, rs1094647 (nearest gene: SLC45A3), and expression of

PM20D1 in whole adipose tissue. PM20D1, Peptidase M20 domain-containing 1, previously

identified as a factor secreted by thermogenic adipose cells, is known for its association with

insulin resistance, glucose intolerance and enhanced defense of body temperature in cold

when knocked out in mice. Furthermore, increased circulating PM20D1, together with adeno-

associated virus-mediated transduction, leads to a higher energy expenditure and reduced adi-

posity in mice [49,50]. We used colocalization analysis to further identify candidate causal

genes. This did not identify specific potential causal genes for rs1094647 (SLC45A3) and

rs184566112 (NEDD4L). However, we identified ADCY3, DNAJC27-AS1, CENPO, ADAM23,

LIN7C, TFAP2B as candidate genes for known loci across different tissues, including tibial

nerve tissue, tibial artery tissue and the skin. No candidate genes were detected in biologically

more relevant tissues, including subcutaneous or visceral adipose tissue.

Information on rs184566112 near NEDD4L was available in 24 out of 26 discovery cohorts

that primarily used 1000 Genomes phase 1 imputed data (N = 37,104), thus clearly surviving

our pre-set filter of having information in at least 50% of the number of studies and at least

50% of the total sample size in the discovery analysis. However, it was available in only less

than half of the replication studies, mainly using 1000 Genomes phase 3 or HRC imputed data

(N = 5,518) as this SNP was not included in these more recent reference panels. No other

SNPs in high LD were available as proxy for this SNP in the replication analysis. Therefore,

this signal needs to be interpreted with caution. However, no heterogeneity of this SNP

between the discovery stage studies (I2 = 0; P-value for heterogeneity = 0.98), a high imputa-

tion quality (weighted mean R2 = 0.89) and the known association of another locus in the

same region with adult body fat percentage might lends credibility to this signal, although fur-

ther work is needed to unravel the details [27]. Previous studies have shown that variants

might have strong age-dependent effects across childhood [15,51]. We performed a sensitivity

analyses excluding children aged<6 years, as the approximate age of the adiposity rebound

[30]. However, no difference in main results with the full meta-analysis were observed.

Observational studies suggest that childhood obesity is not only related to several anthropo-

metric and cardio-metabolic phenotypes in later life, such as type 2 diabetes, but also to respi-

ratory and neurocognitive traits, including asthma and Parkinson’s disease and to a lower age

at menarche [14–18,52–58]. In observational studies, effect estimates may be influenced by

confounding factors and reverse causation, potentially evoking spurious associations [59,60].
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Genetic studies can provide more insight into the etiology of complex diseases. We observed a

strong positive genetic correlation of childhood BMI with adult BMI. This is in line with previ-

ous studies [8,20,21]. We additionally observed positive genetic correlations between child-

hood BMI and several cardio-metabolic phenotypes in later life, including waist-to-hip ratio,

diastolic blood pressure, type 2 diabetes, and coronary artery disease. Negative genetic correla-

tions were found between childhood BMI and HDL-C and age at menarche. These results may

suggest that the associations reported in observational studies are partly explained by genetic

factors [15–17,58,61]. However, there is also evidence from previous work to support that the

associations of childhood BMI with cardiometabolic phenotypes in adulthood are explained

by the continuity of a high BMI from childhood until later ages, rather than by an independent

effect of childhood BMI on adult cardiometabolic phenotypes [15,62]. From our data, we are

not able to distinguish this. Childhood BMI was not genetically correlated with asthma and

Parkinson’s disease. This may indicate that the observational associations between childhood

BMI and these phenotypes are not strongly explained by shared genetics [18,56,57,63].

The GRS combining the 25 top SNPs was not associated with cardiometabolic phenotypes in

children aged 6 years. This may indicate that there is no shared genetic basis between childhood

BMI and these phenotypes in childhood. However, the GRS analyses in children had a much

lower sample size than the LD score regression analyses in adults and phenotypic variation in

these phenotypes is more limited in children, leading to a much lower power to detect associa-

tions in these analyses. Additionally, the GRS was composed of the top-associated SNPs,

whereas the genetic correlation estimated from the LDSR examined variation genome-wide.

We observed a SNP heritability of 0.23 which is consistent with previous findings [4–6].

Secular trends in obesity across populations and age groups can influence the heritability

estimates across distinct population settings, requiring careful interpretation. This contention

is also relevant for the interpretation of the genetic correlations estimated between traits. Envi-

ronmental influences like those giving rise to the increase obesity in the last decades, can influ-

ence heritability estimates and hence, the power to identify significant genetic correlations.

Before concluding unequivocal absence of some degree of “shared heritability” between child-

hood BMI and some of the adult traits, genetic correlations should be interpreted in the con-

text of power limitations. Increasingly larger environmental influences along the life-course

can result in lower heritability, but recent work has also shown that the increase in phenotypic

variance accompanying increasing prevalence of obesity occurs alongside an increase in

genetic variance [64–67]. This results in relatively stable (broad sense) heritability estimates

across measurement years, as recently shown by a large-scale meta-analysis of adult twin data.

The 25-SNP GRS was positively associated with both childhood and adult BMI, showing

slightly larger effect estimates in children suggesting that these specific genetic variants affect

BMI in both childhood and adulthood, but with stronger effects at younger ages. A recent

study, using genome-wide polygenic scores of 2.1 million common variants, found that the

overall effect of those variants on weight starts in early childhood and increases over time [4].

Two previous studies also describe specific genetic variants associated with BMI in infancy

only, and overlapping patterns of genetic variants with those in adults emerging from child-

hood onwards. Three SNPs associated with infant BMI from these studies were not genome-

wide significantly associated with childhood BMI in our data (P-values >0.02), which supports

their infancy-specific effects [68,69].

Although many of the associated variants from the current study overlap between children

and adults, the relative order of the signals differs. Additionally, SLC45A3, one of the novel loci

did not show genome-wide association in adult data [7]. However, suggestive association of

this locus with adult BMI was observed (P-value = 2.7 x 10−5). Overall, the effect estimates of

the 25 SNPs in childhood were highly correlated with those in adulthood (r2 = 0.86). Taken
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together, evidence from the current and previous studies suggests that biological processes

underlying BMI are similar from childhood onwards, but their relative influence may differ

depending on the life stage.

Conclusions

In conclusion, we identified 25 loci for childhood BMI, together explaining 3.6% of the vari-

ance in childhood BMI. Two of these are novel and four represent independent SNPs at loci

known to be associated with adult or childhood BMI. A strong positive genetic correlation of

childhood BMI with adult BMI and related cardio-metabolic phenotypes was observed. Our

results suggest that the biological processes underlying childhood BMI largely, but not

completely, overlap with those underlying adult BMI. The well-known observational associa-

tions of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial

genetic overlap, but in light of previous evidence, it is also likely that they are explained

through phenotypic continuity of BMI from childhood into adulthood.

Materials and methods

Ethics statement

All individual studies got approval by their medical ethics review committees. All participants

gave written informed consent. Study-specific ethics statements are given in S1 Text.

Study design

We conducted a two-stage meta-analysis in children of European ancestry to identify genetic

loci associated with childhood BMI. Sex- and age-adjusted standard deviation scores were cre-

ated for BMI at the latest time point (oldest age, if multiple measurements were available)

between 2 and 10 years using the same software and external reference across all studies (LMS

growth; Pan H, Cole TJ, 2012; http://www.healthforallchildren.co.uk). In the case of twin pairs

and siblings, only one of each twin or sibling pair was included, either randomly or based on

genotyping or imputation quality.

In the discovery stage, we performed a meta-analysis of 26 studies (N = 39,620), including

the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 6790), the Bone Mineral

Density in Childhood Study (BMDCS, N = 543), BRain dEvelopment and Air polluTion ultra-

fine particles in scHool childrEn (BREATHE, N = 1633), the Children’s Hospital of Philadel-

phia (CHOP, N = 5488), the Copenhagen Prospective Studies on Asthma in Childhood 2000

(COPSAC2000, N = 327), the Copenhagen Prospective Studies on Asthma in Childhood

2010 (COPSAC2010, N = 571), the Danish National Birth Cohort- preterm birth study

(DNBC-PTB, N = 1007), the French Young Study (French young, N = 304 cases and N = 144

controls), the Generation R Study (GenerationR, N = 2071), the Genetics of Overweight

Young Adults (GOYA Male, N = 319), the Helsinki Birth Cohort Study (HBCS, N = 1575), the

INfancia y Medio Ambiente [Environment and Childhood] Project, with two subcohorts that

were entered into the meta-analysis seperately (INMA-Sabadell and Valencia subcohort,

N = 650, and INMA-Menorca subcohort, N = 300), German Infant Study on the influence of

Nutrition Intervention PLUS environmental and genetic influences on allergy development &

Influence of life-style factors on the development of the immune system and allergies in East

and West Germany (GINIplus&LISA, N = 1471), the Manchester Asthma and Allergy Study

(MAAS, N = 784), the Norwegian Mother, Father and Child Cohort (MoBa, N = 522), the

Northern Finland Birth Cohort 1966 (NFBC 1966, N = 3949), the Northern Finland Birth

Cohort 1986 (NFBC 1986, N = 1056), the Netherlands Twin Register (NTR, N = 1767), the
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Physical Activity and Nutrition in Children Study (PANIC, N = 374), The Danish Childhood

Obesity Data and Biobank (TDCOB, N = 158 controls), the Raine Study (the Raine Study

(Generation 2), N = 1458), the Special Turku Coronary Risk factor Intervention Project

(STRIP, N = 551), the Young Finns Study (YFS, N = 1134), the TEENs of Attica: Genes and

Environment (TEENAGE, N = 252), and the British 1958 Birth Cohort Study

(1958BC-T1DGC, N = 2081 and 1958BC-WTCCC, N = 2341).

In the replication stage, we included 14 studies (n = 21,491), which did not have genome-

wide association data available at the time of the discovery analysis: 888 additional children

from the Danish National Birth Cohort- Goya offspring (N = 407 offspring from obese moth-

ers, N = 481 offspring from randomly selected mothers), 294 additional children from the

INfancia y Medio Ambiente [Environment and Childhood] (INMA) Project (INMA- Gipuz-

koa subcohort, N = 314), 6,828 additional children from the Norwegian Mother, Father and

Child Cohort (MoBa, N = 6828), 753 additional children from TDCOB (N = 344 controls and

N = 409 cases), the Amsterdam Born Children and their Development- Genetic Enrichment

(ABCD, N = 1154), The European Childhood Obesity Project (CHOP Study, N = 369), the

Family Atherosclerosis Monitoring In earLY life (FAMILY) study (the FAMILY study,

N = 543), the Etude des Déterminants pré- et postnatals précoces du développement et de la

santé de l’Enfant (EDEN) mother-child cohort (EDEN, N = 821), the Exeter Family Study of

Childhood Health (EFSOCH, N = 542), the Leipzig Research Center for Civilization Diseases

—Child study (LIFE-Child, N = 1318), the Prevention and Incidence of Asthma and Mite

Allergy study (PIAMA, N = 1958), the Screening of older women for prevention of fracture

Study (SCOOP, N = 685), the Småbørns Kost Og Trivsel study (SKOT1, N = 236), the Twin

Early Development Study (TEDS, N = 3933), the Tracking Adolescents’ Individual Lives Sur-

vey cohort (TRAILS-population cohort, N = 1169). In the EDEN mother-child cohort, infor-

mation was available about three SNPs only (rs7138803, rs13107325, and rs987237).

Characteristics of discovery and replication studies can be found in S1 Table and S1 Text.

Study-level analyses

Genome-wide association analyses were first run in all discovery cohorts separately. Studies

used high-density Illumina or Affymetrix SNP arrays, followed by imputation to the 1000

Genomes Project or HRC. Before imputation, studies applied study specific quality filters on

sample and SNP call rate, minor allele frequency and Hardy–Weinberg disequilibrium (see S1

Table for details). Linear regression models assuming an additive genetic model were run in

each study to assess the association of each SNP with BMI SDS, adjusting for principal compo-

nents if this was deemed needed in the individual studies. As BMI SDS is age and sex specific,

no further adjustments were made. Before the meta-analysis, we applied quality filters to each

study, filtering out SNPs with a minor allele frequency (MAF) below 1% and SNPs with poor

imputation quality (MACH r2_hat�0.3, IMPUTE proper_info�0.4 or info�0.4).

Meta-analysis

We performed fixed-effects inverse-variance weighted meta-analysis of all discovery samples

using Metal [70]. Genomic control was applied to every study before the meta-analysis. Indi-

vidual study lambdas before genomic control ranged from 0.993 to 1.036 (S1 Table). The

lambda of the discovery meta-analysis is shown in S1 Fig. After the meta-analysis, we excluded

SNPs for which information was available in less than 50% of the studies and less than 50% of

the total sample size. We report I2 and p-value for heterogeneity for all findings.

The final dataset consisted of 8,228,795 autosomal SNPs. Genome-wide Complex Trait

Analysis (GCTA) was used to select the independent SNPs for each locus [22]. We performed
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conditional analyses based on summary-level statistics and LD estimation between SNPs from

the Generation R Study as a reference sample to select independently associated SNPs based

on conditional P-values [22]. Forty-seven genome-wide significant or suggestive loci (P-values

<5 × 10−8 and <5 × 10−6, respectively) were taken forward for replication in 14 replication

cohorts. Fixed-effects inverse variance meta-analysis was performed for these 47 SNPs com-

bining the discovery samples and all replication samples, giving a combined analysis beta, stan-

dard error and P-value (Table 1). SNPs that reached genome-wide significance in the

combined analysis were considered to be genome-wide significant.

Functional mapping and annotation of genetic associations (FUMA)

To obtain predicted functional consequences for our 25 SNPs, we used SNP2FUNC in FUMA,

a web-based platform to facilitate and visualize functional annotation of GWAS results (http://

fuma.ctglab.nl) [3]. By matching chromosome, position, and reference and alternative alleles,

combined annotation-dependent depletion (CADD) scores were annotated, indicating the del-

eteriousness of a SNP [37].

To annotate the nearest genes of the 25 SNPs in biological context, we used the GENE2-

FUNC option in FUMA, which provides hypergeometric tests of enrichment of a list of genes

in 53 GTEx tissue-specific gene expression sets (GTEx v 7) [3,31]. We used GENE2FUNC for

two sets of genes: 1. Nearest genes of 25 SNPs; 2. Genes located in a region of 500 kb to either

side of the 25 SNPs.

Look-up of the 25 SNPs in expression data

We studied the associations of the 25 SNPs associated with childhood BMI with gene expres-

sion levels in adipose tissue samples from the Leipzig Adipose Tissue Childhood Cohort [32].

These associations were examined in the following tissues: whole adipose tissue, isolated adi-

pocytes and isolated stroma-vascular cells using genome- wide expression analysis (Illumina

HumanHT-12 v4 arrays). Gene expression raw data of all 47,231 probes was extracted by Illu-

mina GenomeStudio without additional background correction. Data was further processed

within R / Bioconductor. Expression values were log2-transformed and quantile-normalised

[71,72]. Batch effects of expression BeadChips were corrected using an empirical Bayes

method [73].Within pre-processing, gene-expression probes detected by Illumina GenomeS-

tudio as expressed in less than 5% of the samples were excluded as well as probes still found to

be significantly associated with batch effects after Bonferroni-correction. Furthermore, gene-

expression probes with poor mapping on the human trancriptome [74] were also excluded. In

summary, these filters resulted in 23354, 21258, and 22637 valid gene-expression probes from

which 20672, 18956, and 20230 probes corresponded to 14455, 13518, and 14256 genes map-

ping to a unique position in the human genome (hg19) for whole adipose tissue, adipocytes,

and stroma/vascular cells, respectively. Three criteria were used to remove samples of low

quality: First, the number of detected gene-expression probes of a sample was required to be

within ± 3 interquartile ranges (IQR) from the median. Second, the Mahalanobis distance of

several quality characteristics of each sample had to be lower than median + 4 x IQR. Third,

Euclidean distances of expression values as described [71] had to be lower than median + 4 x

IQR. Overall, of the assayed samples, 2, 4, and 2 samples were excluded for quality reasons

leaving 203, 63 and 69 unique individuals having also valid data for eQTL analysis for whole

adipose tissue, adipocytes, and stroma/vascular cells, respectively. Associations between the

genotype and gene expression of genes in cis (respective gene area +/- 1 Mb regarding tran-

scription start and transcription end) were analyzed using a gene-dose based linear regression

model adjusted for age and sex as implemented in MatrixEQTL [75]. Analysis of variants
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within one haplotype were done through analyses of linkage-disequilibrium using 1000

Genomes Phase 1 Version 3 and HapMap r28 hg19 CEU as references.

Colocalization analysis

We used Bayesian colocalization analysis to examine evidence for colocalization between

childhood BMI and eQTL signals (GTEx v7).Colocalization analyses were conducted using the

R package coloc, hht://cran.r-project.org/web/packages/coloc, as described previously [33].

Briefly, in each of the GTEx v7 tissues, all cis-eQTLs at FDR<5% were identified. For each

eQTL, GWAS summary statistics were extracted for all SNPs that were present in >50% of the

studies and>50% of the total sample size and that were in common to both GWAS and eQTL

studies, within 1 MB of the transcription start site of the gene. For each such locus, colocaliza-

tion analyses were done with default parameters, testing the following hypotheses [33]:

H0: No association with either trait;

H1: Association with childhood BMI only;

H2: Association with gene expression only;

H3: Association with childhood BMI and gene expression, two distinct causal variants;

H4: Association with childhood BMI and gene expression, one shared causal variant.

Support for each hypothesis was quantified in terms of posterior probabilities, defined at

SNP level and indicated by PP0, PP1, PP2, PP3 or PP4, corresponding to the five hypotheses

and measuring how likely these hypotheses were. S10B Table shows the above-mentioned pos-

terior probabilities for all pairs. In most pairs, no evidence for association was found with

either trait. In case association was observed, it was mostly with a single trait. To define coloca-

lization we used restriction to pairs of childhood BMI and eQTL signals with a high posterior

probability for colocalization, indicated by a PP4/(PP3+PP4) >0.9 (S10A Table).

DAVID

To explore biological processes, we used DAVID, with the 25 nearest genes as input, using the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database [34,35].

Linkage-disequilibrium score regression

The use of LD score regression to estimate genetic correlations between two phenotypes has

been described in detail previously [20]. Briefly, LD score is a measure of how much a genetic

variation is tagged by each variant. A high LD score indicates that a variant is in high LD with

many nearby polymorphisms. Variants with high LD scores are more likely to contain true sig-

nals and have a higher chance of overlap with genuine signals between GWAS. To estimate LD

scores, summary statistics from GWAS meta-analysis are used to calculate the cross-product

of test statistics per SNP, which is regressed on the LD score. The slope of the regression is a

function of the genetic covariance between traits [20]:

E z1jz2jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2rg

p

M
ljþ

rNs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2
p

where Ni is the sample size of study i, ρg is the genetic covariance, M is the number of SNPs in

the reference panel with a MAF between 5% and 50%, lj is the LD score for SNP j, Ns quantifies

the number of individuals that overlap both studies, and ρ is the phenotypic correlation

amongst the Ns of overlapping samples. A sample overlap or cryptic relatedness between
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samples will only affect the intercept from the regression but not the slope. Estimates of genetic

covariance will therefore not be biased by overlapping samples. Similarly, in case of population

stratification, the intercept will be affected but it will have only minimal impact on the slope

since population stratification does not correlate with LD between variants.

Because of the correlation between the imputation quality and LD score, imputation quality

is a confounder for LD score regression. Therefore, SNPs were excluded for the following rea-

sons: MAF <0.01 and INFO�0.9. The filtered GWAS results were uploaded on http://ldsc.

broadinstitute.org/ldhub/, a website with many GWAS meta-analyses available on which LD

score regression has been implemented by the developers of the LD score regression method.

In case multiple GWAS meta-analyses were available for the same phenotype, the genetic cor-

relation with childhood BMI was estimated using the most recent meta-analysis. Genetic cor-

relations are shown in Fig 2 and S11 Table.

Genetic risk score and percentage of variance explained

We combined the 25 genome-wide significant SNPs from the combined meta-analysis into a

GRS by summing up the number of BMI SDS-increasing alleles, weighted by the effect sizes

from the combined meta-analysis. The GRS was rescaled to a range from 0 to 50, which is the

maximum number of BMI SDS increasing alleles and rounded to the nearest integer. Linear

regression analysis was used to examine the associations of the risk score with childhood and

adult BMI. For these analyses data from the TRAILS cohort (N = 1169), one of the largest rep-

lication cohorts, and data from the Rotterdam Study (RS-I-1; n = 5,957, RS-II-1; n = 2,147 and

RS-III-1; n = 2,998) were used. Additionally, linear regression analysis was used to examine

the associations of the GRS with birth weight and childhood metabolic phenotypes in Genera-

tion R in which detailed information on these phenotypes was available. When calculating the

risk score for the TRAILS cohort and Generation R, effect estimates from the combined meta-

analysis were used after excluding TRAILS and Generation R, respectively, from the meta-

analysis. The variance explained was estimated by the adjusted R2 of the models.
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Øyvind Helgeland, Mohammed H. Zafarmand, Barbara Heude, Christian T. Have, Theresia

PLOS GENETICS Genetic background of childhood body mass index

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008718 October 12, 2020 20 / 26

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008718.s016
https://doi.org/10.1371/journal.pgen.1008718


M. Schnurr, Klaus Bønnelykke, Lawrence J. Beilin, Marie-Aline Charles, Bo Chawes, Karine

Clément, Ricardo Closa-Monasterolo, Adnan Custovic, Johan G. Eriksson, Joaquin Escri-

bano, Veit Grote, Dariusz Gruszfeld, Hakon Hakonarson, Torben Hansen, Andrew T. Hat-

tersley, Mette Hollensted, Jouke-Jan Hottenga, Elina Hyppönen, Stefan Johansson, Mika

Kähönen, Wieland Kiess, Bridget A. Knight, Berthold Koletzko, Kathrin Landgraf, Jean-
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