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Abstract

This manuscript extends the definition of the Absolute Standardized
Mean Difference (ASMD) for binary exposure (M = 2) to cases forM > 2 on
multiple imputed data sets. The Maximal Maximized Standardized Differ-
ence (MMSD) and the Maximal Averaged Standardized Difference (MASD)
were proposed. For different percentages, missing data were introduced in
covariates in the simulated data based on the missing at random (MAR)
assumption. We then investigate the performance of these two metric defi-
nitions using simulated data of full and imputed data sets. The performance
of the MASD and the MMSD were validated by relating the balance metrics
to estimation bias. The results show that there is an association between
the balance metrics and bias. The proposed balance diagnostics seem there-
fore appropriate to assess balance for the generalized propensity score (GPS)
under multiple imputation.



1 Introduction
It is impossible in observational studies to control how subjects are assigned into treatment groups,
and this may potentially result in biased effect estimates caused by confounding (Rubin (2004),
Hernán, Alonso, Logan, Grodstein, Michels, Stampfer, Willett, Manson, and Robins (2008)). The
application of weights derived from the propensity score (the conditional probability of receiv-
ing treatment given observed covariates) aims to balance characteristics between treatment groups
(Rubin (2004)). When this is achieved, the result is reduced bias effect in the estimates (Austin
(2011)). For binary exposures, a common approach to checking whether balance between treat-
ment and control group has been achieved is to calculate the Absolute Standardized Mean Differ-
ence (ASMD, d). For a continuous covariate x, the ASMD is defined as

d =
|x̄treatment− x̄control|√

s2
treatment+s2

control
2

,

where x̄treatment and x̄control denote respectively, the sample mean of the covariate in the treated
and control groups, while s2

treatment and s2
control represent the sample variance in the respective

treatment groups (Austin (2018), McCaffrey, Griffin, Almirall, Slaughter, Ramchand, and Burgette
(2013)). When defining d for categorical variables, mean values (x̄) are replaced with proportions
and variances (s2) become functions of proportions (Austin (2018)).

If balance has been achieved, the ASMD value should be below a pre-defined threshold
after propensity score analysis has been performed (Austin (2018), McCaffrey et al. (2013)).

There is however inconsistency in balance thresholds across the literature, where values
vary between 0.1 and 0.25 for d (Stuart, Lee, and Leacy (2013), Nguyen, Collins, Spence, Daurès,
Devereaux, Landais, and Le Manach (2017), Austin (2011)). Given these differences, a recent
study investigated the effectiveness of pre-defined thresholds for propensity score matching with
binary exposure (Nguyen et al. (2017)). The authors concluded that if balance was below 0.1
on most variables, and if variables with balance above 0.1 are included in the outcome model as
adjustment variables, bias was small. Yet, a specific threshold for the generalized propensity score
(GPS) has not been tested.

The GPS is the generalization of the propensity score for binary exposure. The GPS makes
it possible to estimate the effect of multiple treatment exposure on the outcome (Lechner (2001),
Imai and Van Dyk (2004)). The GPS has been applied in various studies on observational data,
for example, (Spreeuwenberg, Bartak, Croon, Hagenaars, Busschbach, Andrea, Twisk, and Stijnen
(2010), Feng, Zhou, Zou, Fan, and Li (2012), Jiang and Foster (2013), Sugihara (2010)).

A common problem of observational data is missing information due to non-response, es-
pecially where data collection is performed via questionnaires (Pandis (2014)).

Multiple imputation techniques are often applied to fill the information gaps (Miri, Hassan-
zadeh, Rajaeefard, Mirmohammadkhani, and Angali (2016)). For binary exposure, several studies
have combined imputation techniques with propensity score analysis (Eulenburg, Suling, Neuser,
Reuss, Canzler, Fehm, Luyten, Hellriegel, Woelber, and Mahner (2016), Rosenbaum and Rubin
(1984), Lavori, Dawson, and Shera (1995), Mitra and Reiter (2016), Kupzyk and Beal (2017),



Doidge (2018), Hsu and Yu (2018), Qu and Lipkovich (2009), Hill (2004), Hayes and Groner
(2008)). A systematic review by Malla, Perera-Salazar, McFadden, Ogero, Stepniewska, and En-
glish (2018) summarizes how missing data are combined with propensity score analysis on actual
patient data. The authors showed that the majority of reviewed articles performed propensity score
analysis in combination with complete case data (Malla et al. (2018)).

Unlike for propensity score analysis, only one recent study, by De Vries, Van Smeden,
and Groenwold (2018), considered the combination of missing data and the GPS (De Vries et al.
(2018)). The authors found that multiple imputation of data, followed by propensity score esti-
mation using classification and regression trees resulted in least biased estimates (De Vries et al.
(2018)). However, no previous study has assessed balance for the GPS under multiple imputations,
partly due to the computational burden involved (De Vries et al. (2018)).

This paper proposes an approach for balance assessment of GPS under multiple imputa-
tion. It uses simulated data to evaluate the proposed diagnostics. The article is organized in the
following way. Section 2, the methodology section, defines the quantitative concepts applied in
this study, such as the GPS, its estimation, a multiple treatment definition and multiple imputation.
Existing balance diagnostics are reviewed for binary propensity score models and finally extended
to the multiple treatment case under multiple imputation. Section 3, the simulation study section,
describes the data-generation process and details about the implementation. The results of simu-
lated data example are presented in Section 4, followed by the discussion of the results in Section 5
and finally the conclusions in Section 6.

2 Methodology
In this section we describe, the methodological concepts and ideas that are later applied to simu-
lated data examples.

2.1 Generalized propensity score

The aim of propensity score analysis is to reduce the dimension of observed pre-treatment variables
X and bias, due to confounding, by re-weighting them.

For multiple treatments, this can be achieved by using the GPS (Imbens (2000)) In the
present study, we will estimate GPS using generalized boosted models (GBM), and combine it
with inverse probability of treatment weights (IPTW) to obtain the average treatment effect (ATE)
(McCaffrey, Ridgeway, and Morral (2004), McCaffrey et al. (2013)).

We applied IPTW based on the results by Nian, Yu, Ding, Wu, Dupont, Brunwasser, Ge-
bretsadik, Hartert, and Wu (2019), who showed that this approach had preferred performance
compared to other approaches, such as matching, stratification or GPS adjustment. In addition
propensity score methods may differ in the population where an overall treatment estimate shall
be calculated Kurth, Walker, Glynn, Chan, Gaziano, Berger, and Robins (2005). The results in
Kurth et al. (2005) have shown that IPTW is well suited to calculate the treatment effect of the
total population.



Following, Imbens (2000) and Feng et al. (2012), for the subject index i = 1, . . .N, let
T = {1,2, . . . ,M} denote the set of M multiple treatments, and Yi(m) denote the potential outcome
of subject i, if subject i has been assigned to treatment m ∈T (Imbens (2000), Feng et al. (2012)).
Let Ti be the treatment that subject i received and the indicator that subject i receives treatment m
is

Im(Ti) = I(Ti = m). (1)

Definition 2.1. (Generalized Propensity Scores (GPS) (Imbens (2000), McCaffrey et al. (2013)))
Let Xi be the set of observed pre-treatment variables of subject i. The GPS r(m,Xi) is the condi-
tional probability of receiving a particular level of the treatment m given Xi:

r(m,Xi) = Pr(Ti = m|Xi) = E[Im(Ti)|Xi]. (2)

Hence, for the set T of M different treatment groups, we obtain M GPSs, for all subjects i.
Given r(m,Xi), the empirical expected outcome Ê(Y (m)) is estimated by the weighted

mean (McCaffrey et al. (2013)), i.e.

Ê(Y (m)) =

N
∑

i=1
Im(Ti)Yi(m)wi(m)

N
∑

i=1
Im(Ti)wi(m)

, (3)

where Ti = m, wi(m) =
1

r(m,Xi)
. (4)

Then, the average treatment effect (ATE) is estimated, comparing treatment t ∈ T versus
treatment ` ∈T (t 6= `) across the subjects

ÂTEt` = Ê[Y (t)]− Ê[Y (`)], (5)

under the condition that treatment (Ti) is independent of the outcome Yi(Ti), and that the compared
groups are representatives of the population (Feng et al. (2012)). The latter condition does not
hold in general, but can be achieved by the key assumption that treatment assignment is weakly
unconfounded given observed covariates X . For multi-valued treatments, without missing data,
the weak unconfoundedness assumption was defined by Imbens (2000), see Definition S1.1 in the
Supplementary material section S1. This definition means that treatment and potential outcome are
independent given the observed covariate (Imbens (2000)). It was shown in Leyrat, Seaman, White,
Douglas, Smeeth, Kim, Resche-Rigon, Carpenter, and Williamson (2019a), that this assumption
holds for a binary exposure under multiple imputation. However, to be able to define the ATE for
the present situation, the following assumptions have to hold for the GPS after multiple imputation:

For a proof of these assumptions, see the Supplementary material sub-section S1.1.
Previous studies estimated GPS with multinomial and ordinal logistic regression models

(Feng et al. (2012), Bray, Dziak, Patrick, and Lanza (2018)). However, these parametric ap-
proaches have been shown to lead to less robust ATE estimates than non-parametric approaches,



such as generalized boosted models, which we describe briefly below (McCaffrey et al. (2004,
2013)).

2.1.1 Generalized boosted models

Firstly, we describe how GBM are applied to estimate the propensity score for binary treatment,
i.e. T ∈ {0,1} (McCaffrey et al. (2004, 2013)). Then the GBM algorithm is generalized to the
multiple treatment case analogous to McCaffrey et al. (2004, 2013).

Let X be the set of observed pre-treatment variables and let Xi be the set of observed
pre-treatment variables for subject i. For the binary treatment case, the treatment indicators for
subject i in equation (1) is given by Ti = 1, simplified with I1(Ti) = 1− I0(Ti) and r(1,Xi) =
1−r(0,Xi). Instead of directly estimating the propensity scores, the algorithm finds the maximum-
likelihood estimate of the function g(X), which is the log-odds of treatment assignment, i.e.
g(X) = log(r(1,X)/(1− r(1,X))). Therefore, the GBM algorithm iteratively adds regression trees
together to fit a non-linear logistic regression model to treatment indicator I1(Ti) (McCaffrey et al.
(2004)). Initially, the algorithm sets g0(X) := log(Ī/(1− Ī)), where Ī is the average treatment
assignment indicator for the whole sample. Then to improve the propensity score fit to the data,
at each new iteration j ( j = 1, . . .J), a new regression tree h(X) is added to the current model
g j−1(X), if it is the best fit to the residuals I1(Ti)−g j−1(Xi) and provides the greatest increase in
the log-likelihood for the data. When the regression trees are combined a shrinkage coefficient
α is introduced to improve smoothness of the resulting piecewise constant model. In order to
avoid overfitting of the data, GBM selects a number of trees in order to minimize imbalance on
pre-treatment covariates across “treatment” and “control” groups. More details about the boosting
algorithm can be found in McCaffrey et al. (2004).

2.1.2 GBM extension to more than two treatment groups (M > 2)

The approach in Section 2.1.1 can be extended to more than two treatment groups in the following
way (McCaffrey et al. (2004, 2013)): Firstly, we define indicator functions for each of the M
treatment groups as in equation (1). The GBM algorithm is then applied respectively to all M
treatment indicator functions Im(Ti), resulting in M propensity scores r(m,Xi) = Pr(Ti = m|Xi).
The respective IPTW wi(m) = 1

r(m,Xi)
are then applied in equation (3).

As mentioned previously, missing data are common in observational data. Therefore, tech-
niques, which fill information gaps have been invented, such as multiple imputation by chained
equations, which we describe below (Van Buuren and Groothuis-Oudshoorn (2011)).

2.2 Multiple imputation by chained equations

Let S be a data set and let Z be the subset for the elements that are missing in S . Multiple
imputation by chained equations (MICE) consists of three main steps (Van Buuren and Groothuis-
Oudshoorn (2011)): Firstly, there is imputation of the missing data component Z , using chained
equations. After an initial random filling of all missing data, a MCMC algorithm draws iteratively



from the conditional distributions based on a collection of observed and missing variables (Chen
and Ip (2015), Van Buuren and Groothuis-Oudshoorn (2011).) This results in Q multiple imputed
data sets S (q), where q = 1, . . . ,Q, that are identical on each observed element, but differ on the
initially missing entries. On each of the q imputed data sets, propensity score analysis is performed,
and leads to Q effect estimates of the propensity score analysis. Finally, all Q effect estimates and
their variance are pooled into one estimate. Following Murray et al. (2018), as many variables
as possible, including the outcome variable, should be incorporated into the imputation model
(Murray et al. (2018), Leyrat et al. (2019a)).

Initially, the literature recommended that 5 ≤ Q ≤ 10 imputed sets are sufficient (Azur,
Stuart, Frangakis, and Leaf (2011)). However more recent developments showed that in order to
also detect small effect sizes a minimum of Q = 40 imputed sets are needed (this however depends
on percentage of missing data), see Graham, Olchowski, and Gilreath (2007).

There are three approaches to combine multiple imputation and propensity score analy-
sis (Leyrat, Seaman, White, Douglas, Smeeth, Kim, Resche-Rigon, Carpenter, and Williamson
(2019b)): After multiple imputation, one approach averages the estimated propensity scores to
generate one outcome analysis (Mitra and Reiter (2016), Leyrat et al. (2019b)). Another approach,
calculates the propensity score based on the pooled covariates over all imputed data sets. A third
approach averages the Q treatment effects, which were estimated based on the propensity score on
each imputed data set. Leyrat et al. (2019b) compared all three approaches and concluded that the
third one leads to least biased results. This approach was therefore applied in the below illustrative
example (see Section 3).

Next we review and extend the definition of balance.

2.3 Balance assessment

In order to assess if the propensity score analysis was able to balance treatment groups across
observed pre-treatment variables X , balance is calculated. Previous studies extended balance diag-
nostics to GPS for continuous and multiple treatment for complete data (Zhu, Coffman, and Ghosh
(2015), Fong, Hazlett, and Imai (2018), Austin (2018), Bray et al. (2018), McCaffrey et al. (2013)).
We first review the definition of balance for binary and multiple treatment groups and finally ex-
tend this definition for the case under multiple imputation. In addition to previous notations, let
k = 1, . . . ,K denote the covariate index and let C =

(M
2

)
denote the total number of pairwise com-

parisons of M treatments and let c be an index over comparison pairs, i.e. c = 1, . . . ,C.

2.3.1 Balance assessment without multiple imputation

Definition 2.2. (Absolute Standardized Mean Difference (ASMD) (McCaffrey et al. (2013))) For
each covariate k and binary treatment m, the ASMD equals the absolute value of the difference
between the weighted mean of the covariate in the treatment group (m = 1) minus the weighted
mean of the covariate in the control group (m = 0), divided by the unweighted standard deviation



of the pooled population for the ATE (see equation (5)). Given covariate k,

ASMDk =
|X̄k,1− X̄k,0|

σ̂k
,

where X̄k,m is the weighted mean for covariate k and treatment (m = 1) or control (m = 0) group,
and σ̂k is the unweighted averaged (pooled) within standard deviation for all treatment groups.

For GPS, Burgette, Griffin, and McCaffrey (2017) suggest that, balance shall be assessed,
via the ASMD, for all pairwise comparisons when determining the ATE.

Definition 2.3 extends Definition 2.2 to M treatment groups m = 1, . . . ,M, which will result
in C-pairwise comparisons (Burgette et al. (2017), McCaffrey et al. (2004)).

Definition 2.3. (Multiple ASMD (McCaffrey et al. (2013))) For M multiple treatment groups, and
given the set of K covariates and treatment pairs (t, `), t 6= `,

ASMDk,c =
|X̄k,t− X̄k,`|

σ̂k
.

X̄k,t denotes the weighted mean for covariate k for treatment group t, while X̄k,` is the weighted
mean for covariate k for treatment group `. The denominator σ̂k is the unweighted averaged
(pooled) standard deviation of all treatment groups (same as in Definition 2.2).

A similar definition holds for categorical variables, where the mean is replaced by weighted
proportions.

Except for McCaffrey et al. (2013), two recent articles (Li and Li (2019), Yang, Imbens,
Cui, Faries, and Kadziola (2016)) included discussions on balance assessments for more than two
treatment arms: The Multiple ASMD is a special case of the pairwise absolute standardized dif-
ferences (ASD) defined by Li and Li (2019), with wi(m) = 1

r(m,Xi)
and tilting function h(X) = 1.

In addition, from McCaffrey et al. (2013), Li and Li (2019) extended the population standardized
difference (PDS) for varying weight functions (wi(m)). Instead of comparing weighted covariate
means pairwise between treatment groups, the PDS compares weighted covariate means between
the treatment group and the target population. The balance metric in Yang et al. (2016) are defined
for matching and stratification, therefore wi(m) = 1. Another major difference is that covariate
means for each treatment group m are not compared pairwise, but with the covariate mean of all
other treatment groups combined, except m (i.e., mc = T ). Finally, Yang et al. (2016) also pro-
posed a metric that allows the assessment of balance in covariate distributions, where the GPS are
considered instead of the covariates directly.

In the next section, Definition 2.3 is extended to multi-treatment exposure under multiple
imputation.



2.3.2 Balance assessment for GPS under multiple imputation

Definition 2.4. (Maximal Maximized Standardized Difference (MMSD)) For each covariate k, the
MMSD is defined by,

MMSDk = max
c

max
q=1,...,Q

ASMDq,k,c, (6)

where ASMDq,k,c refers to the ASMD for covariate k and pairwise comparison c on the multiple
imputed set q.

Definition 2.5. (Maximal Averaged Standardized Difference (MASD)) Similarly, for each covari-
ate k, the MASD is defined by,

MASDk = max
c

1
Q

Q

∑
q=1

ASMDq,k,c, (7)

where ASMDq,k,c is defined as above in Definition 2.4.

It is assumed that balance is obtained when, after weighting, the MMSD or the MASD are
below a pre-defined threshold. If all covariates are balanced under MMSD then they are automati-
cally balanced under MASD. The reverse argument does not hold.

Pre-defined thresholds have been reported to vary between 0.1 and 0.25 for balance assess-
ment in the literature (Stuart et al. (2013)). For validation of the balance diagnostic, we follow a
similar approach as Franklin, Rassen, Ackermann, Bartels, and Schneeweiss (2014), which creates
a summary score of balance diagnostics over all covariates. Therefore, for the balance summary
score, we decided to consider a threshold of 0.1 appropriate.

It is also important to assess, if the positivity assumption is fulfilled. The positivity assump-
tion states that each treatment group has a positive probability of receiving the treatment (Austin
and Stuart (2015), McCaffrey et al. (2013, 2004)). Across all imputed data sets, we therefore select
the minimum and maximal weights, in order to make sure that there are no extreme values. Oc-
currence of extreme values could be indicative of a violation of the positivity assumption. Hence
in cases they occur, the weights are truncated or stabilized weights are used as alternatives (Austin
and Stuart (2015)).

Besides checking that the positivity assumption is fulfilled, we also checked that the se-
lected GPS model was well specified by quantifying the standard deviation of the weights (Austin
and Stuart (2015), McCaffrey et al. (2013, 2004)).

3 Simulation study
The aim of this simulation study is to evaluate balance metrices, MASD and MMSD, in their ability
to detect imbalances in confounders after IPTW based on the GPS on multiple imputed data sets.
We will compare the imbalance after weighting with the biased estimates of a continuous outcome.



Motivation of simulated data: Clinical problem

The simulation example for this study is motivated by observational studies investigating the asso-
ciations between prenatal exposure to medications on pregnancy outcomes (Nordeng, Van Gelder,
Spigset, Koren, Einarson, and Eberhard-Gran (2012), Lupattelli, Wood, Lapane, Spigset, and Nor-
deng (2017), Nezvalová-Henriksen, Spigset, Brandlistuen, Ystrom, Koren, and Nordeng (2016)).
Such studies are necessary as clinical studies are rarely ethical among pregnant women (Blehar,
Spong, Grady, Goldkind, Sahin, and Clayton (2013)). As many diseases have three or more thera-
peutic options, we decided to focus on a multi-group comparison of three medication alternatives.
For example, hyperthyroidism during pregnancy can be treated with methimazole/carbimazole
(MMI/CMZ), propylthouracil (PTU) or left untreated (Moleti, Di Mauro, Sturniolo, Russo, and
Vermiglio (2019), Alexander, Pearce, Brent, Brown, Chen, Dosiou, Grobman, Laurberg, Lazarus,
Mandel et al. (2017)). Although, we motivated the generation of simulation data on the above
mentioned clinical example, the main focus of this manuscript is of primary methodological na-
ture and allows no clinical implications and conclusions. The manuscript uses simulated data and
has therefore no ethical issues.

3.1 Data generation

Data sets of sample size n = 1000 were generated, in order to mirror an observational study
comparing three treatment options (M = 3), T = (T1,T2,T3), with T2 as reference treatment, on
a fully observed continuous outcome Y (birth weight in gram) with five measured covariates
X = (X1,X2,X3,X4,X5). The covariates represent, respectively Body Mass Index (BMI), maternal
educational level and age, marital status and parity. The covariates X1,X2 and X3 were categorical,
and X4 and X5 binary. While the variables X1 and X2 were partially observed, the other covariates
were fully observed. Simulation details on covariates are outlined in Table 1. The data generation
process is summarized in a directed acyclic graph (DAG) (see Figure 1).

Table 1: Simulation details for covariates1

Covariates Categories Properties (%)

X1 BMI2≤ 18, 19−29, ≥ 30 2.0%, 82.0%, 16%
X2 Education in years < 9, 9-12, 13-16, and > 16 1.4%, 25.2%, 42.5% and 30.9%
X3 Age in years ≤ 24, 25-29, 30-34 and ≥ 35 45.0%, 17.0%, 30.0% and 8.0%
X4 Married/Cohabiting vs Other 94.6 vs 5.4%
X5 Primiparity vs Multiparity 42.3 vs 57.7%

1 Numbers were inspired by real world data in Frank (2019), Frank, Lupattelli, Matteson, and
Nordeng (2018)

2 BMI categories (kg/m2), 19 ≤ BMI ≤ 24 (normal weight) and 25 ≤ BMI < 29 (overweight)
are merged into one category in this dataset
Abbreviations: µ, mean, σ , standard deviation



Figure 1: Diagram of data generation

TR

Xobs

Y

Xmis

Figure 1 summarized the data generation in a directed acyclic graph (DAG). T represents the treatment and
Y the outcome, while the blue arrow from T to Y represents the treatment effect. Xobs and Xmiss represent,
respectively, the completely and partially observed covariates, and R the missing data indicator.



Treatment assignment

For each subject i, the probability of treatment assignment was determined from a multinomial
logit function for M > 2 based on a linear combination of all five covariates X and with treatment
reference T2 = 2 via (Menard (2002), Borooah (2002)):

ln
(
P(T = m)

P(T = 2)

)
= αm +

C

∑
c=1

βm,cXi,c = Zm,i

With M > 2 treatment classes, there are M−1 predicted log-odds, one for each treatment category,
with respect to the reference category. For our simulation example with M = 3, Z1,i and Z3,i were
defined as follows:

Z1,i = log(0.2)+ log(1.4)X1 + log(2.0)X2 + log(1.25)X3 + log(1.3)X4 + log(0.2)X5,

Z3,i = log(0.5)+ log(1.4)X1 + log(1.2)X2 + log(1.25)X3 + log(1.3)X4 + log(0.8)X5

The coefficients in models Z1,i and Z3,i were chosen empirically, such that pm > 0,m= 2, ..,M and p1 >
0. Then, for m ∈ {1,3}, treatment assignment probabilities were calculated the following way:

pm := P(T = m) =
exp(Zm,i)

1+∑m∈{1,3} exp(Zm,i)

The reference group probability was calculated, as

p2 := P(T = 2) =
1

1+∑m∈{1,3} exp(Zm,i)
= 1− ∑

m∈{1,3}
pm,

since p2 + ∑
m∈{1,3}

pm = 1.

Treatment was assigned to all subjects by simulating random categorical treatment groups using
the probabilities pm, m ∈ {1,2,3}.

Continuous outcome

The continuous outcome was simulated via a linear model based on the five covariates and the
treatment,

Yi = βT Ti +β1X1 +β2X2 +β3X3 +β4X4 +β5X5 + ε (8)

with ε ∼ N (µ = 3000,σ = 250), coefficients β =(log(2.4), log(4), log(1.25), log(1.3), log(1.1))
and with treatment effect of βT = 200. This means that we modeled a linear mean effect of treat-
ment. The above models define the full data situation. Next we will generate missing data with
difference missing percentages in covariates the X1 and X2.



Missing data mechanism

In this simulation study, we assume that data are Missing At Random (MAR). Hence, the missing
information in the variables, X1 and X2, depends on the fully observed covariates X3 and X4 (but
not X5, the treatment assignment variable T , as well as the outcome Y . To introduce missing
information, we defined missing indicators R, respectively, for X1 and X2 via logistic models:

logit(p(R1= 0|T,X3,Y )) = γ0 + γ1T + γ2X3 + γ4Y (9)
logit(p(R2= 0|T,X3,X4,Y )) = η0 +η1T +η2X3 +η3X4 +η4Y (10)

The values were set to NA when the missing indicators were equal to zero. Parameters describing
the missing indicators are presented in Table 2. We varied several factors at-a-time, in order to
generate several missing percentages.

Table 2: Missing percentages and parameter values for equ. (9) and (10)

Missing (%) γ0,η0 γ1,η1 γ2,η2 γ3,η3 γ4,η4

14.9 log(0.2), log(0.3) log(1.75), log(1.5) log(4.0), log(2.0) −, log(0.8) log(1.0), log(1.001)
31.8 log(0.2), log(0.3) log(1.25), log(1.0) log(3.0), log(2.0) −, log(0.8) log(1.0), log(1.001)
57.5 log(0.2), log(0.2) log(1.12), log(1.0) log(2.0), log(1.1) −, log(0.5) log(1.0), log(1.001)
83.1 log(0.2), log(0.2) log(1.12), log(1.0) log(1.1), log(0.9) −, log(0.5) log(1.0), log(1.001)

Missing data percentages of 14.9%, 31.8% and 57.5% are well within empirically observed
values, which vary between 2-65% (Karahalios, Baglietto, Carlin, English, and Simpson (2012),
Marston, Carpenter, Walters, Morris, Nazareth, and Petersen (2010), Dong and Peng (2013)).
Though the 83.1% level of missing data falls outside the empirical range, it was chosen to test
ability of the methodology to accommodate the extreme values, because the literature documents
evaluation of imputation techniques for 80% missing information (Lee and Huber Jr (2011)). For
missing percentages larger than 10%, it is assumed that the analysis is potentially biased and im-
putation analysis are therefore recommended (Dong and Peng (2013)).

3.2 Estimates

We estimated the mean treatment effects β̂ , intercepts β̂0 and approximate 95% confidence in-
tervals (CIs) on the full data set, and the imputed data sets. Over the Q imputed data sets, the
effect estimates and CIs were averaged applying Rubin’s rule (Murray et al. (2018), Leyrat et al.
(2019b)).

3.3 Methods

For all missing scenarios, we imputed Q = 10 data sets via chained equations (using R package
“MICE” from Van Buuren and Groothuis-Oudshoorn (2011)), due to the computational burden



involved when calculating the GPS (Azur et al. (2011)). The imputation model included the out-
come, all covariates and the treatment (Murray et al. (2018), Frank (2019)). For each scenario,
we then estimated the GPS based on all five covariates, and calculated the MMSD and MASD for
each covariate separately, before and after IPTW. Then similar to the approach in Franklin et al.
(2014), we created balance summary scores, that average the balance metrics over all covariates.
To evaluate whether the balance metrics describe appropriately imbalance in covariates after IPTW,
we plotted the estimated bias versus the balance summary score, after IPTW. Balance assessment
was based on the function “bal.table” in R package “TWANG” (Burgette et al. (2017), Ridgeway,
McCaffrey, Morral, Burgette, and Griffin (2017)). The GPS and IPTW were calculated based on
GBM using the R function “mnps” in the R package “TWANG” (Burgette et al. (2017), Ridgeway
et al. (2017)). With help of the “SURVEY” R package, IPTW was performed on each imputation
set by using the “imputationList”-tool from the package “MITOOLS” (Lumley (2018, 2015)). The
pooled effect estimates and CIs across the multiple imputed data sets were obtained by applying
Rubin’s rule via the function “MIcombine” from the “MITOOLS” R package (Lumley (2015)).

3.4 Performance measures

For each scenario, and the treatments, T1,3, we estimated bias, coverage, and relative percent error
in the model standard error (RelError), together with the Monte Carlo standard error (MCSE) for β̂ .
These performance measures were calculated with help of the R package “rsimsum” (Gasparini and
Lang (2018)). Based on conservative estimates from an initial small simulation run, we assumed
that SD(θ̂) ≤ 1676, and that the MCSE of the bias should be lower than 52g (Morris, White,
and Crowther (2019)). Using equations for the MCSE of the bias and coverage, as well as the
maximized MCSE of the coverage, as provided by Morris et al. (2019), we are required to simulate
nsim = 1053 repetitive runs (see Figure S1 in Supplementary Material Section S2). The MCSE of
the bias estimate of 52g is very conservative, as this was based on initial runs. It is therefore likely
that the required nsim value may be higher in reality. Figure S1 was created in MATLAB (Version
9.4.0.813654 (R2018a)).

Given the computational burden involved in calculating the GPS (De Vries et al. (2018)),
we were unable to perform analysis over all required Monte Carlo simulations (nsim = 1053). We
therefore iteratively reduced the number of nsim, and used the number of simulated sets for which
we had enough memory capacity (that was the case for nsim = 10). These 10 sets were randomly
selected out of the 1053 simulated data sets and statistical analysis was performed on them. Since,
for each of the 10 selected data sets, we imputed 10 data sets for the missing data cases, we
analyzed the full data set over nsim = 100 Monte Carlo runs.

The results of the analysis and balance assessment are presented next.

4 Results of simulation study
For all simulation scenarios, Figure 2 shows the bias on the x-axis versus the balance summary
score on the y-axis, respectively for the MASD and MMSD. For high imbalance, we would expect



Table 3: Balance summary scores

Balance metric Full data set Imputed data sets1with missing values of

14.9% 31.8% 57.5% 83.1%

Unweighted [MASD] 0.096 0.108 0.107 0.113 0.115
Weighted [MASD] 0.035 0.032 0.037 0.034 0.039

Unweighted [MMSD] 0.122 0.138 0.141 0.165 0.149
Weighted [MMSD] 0.040 0.058 0.066 0.069 0.063

1 The balance summary scores are the averaged MASD and MMSD over all co-
variate values.

Table 4: Performance measures per treatment group

Treatment Full data set Imputed data sets with missing values of

T1 14.9% 31.8% 57.5% 83.1%

Bias1(MCSE) 0.22 (3.05) 3.35 (8.96) 4.76 (8.79) 1.07 (8.74) 5.7 (8.71)
Coverage (MCSE) 0.96 (0.02) 0.90 (0.09) 0.90 (0.09) 0.90 (0.09) 0.90 (0.09)
RelError (MCSE) -2.32 (7.60) 6.19 (25.69) 8.96 (26.2) 11.69 (27.04) 8.71 (25.94)

T3 14.9% 31.8% 57.5% 83.1%

Bias1(MCSE) -0.70 (2.75) -11.01 (12.64) -12.17 (13.21) -8.97 (13.14) -13.71 (13.52)
Coverage (MCSE) 0.96 (0.02) 0.90 (0.09) 0.90 (0.09) 0.90 (0.09) 0.90 (0.09)
RelError (MCSE) 9.68 (8.28) -26.47 (17.66) -29.45 (16.87) -27.60 (17.40) -31.60 (16.25)

1 Bias is measured in grams (g).
Abbreviations: MCSE, Monte Carlo standard error, ModSE, Model standard error, RElError, Relative
% error in ModeSE



Figure 2: Bias vs Balance summary scores after IPTW.

a. Bias vs Balance summary score (MASD) for T1

b. Bias vs Balance summary score (MMSD) for T1

c. Bias vs Balance summary score (MASD) for T3

d. Bias vs Balance summary score (MMSD) for T3

In the panels a-d, each line represents a missing data level setting. The line indicated with label “Full”
represents the results obtained from the full data set, before missing values were introduced. Similarly, the
lines notated with labels “14.9%”, “31.8%”, “57.5%” and “83.1%”, represent results of the imputed data
sets with missing values of respectively, 14.9%, 31.8%, 57.5% and 83.1%.



a high (i.e.,≥ 0.1) balance summary score, and for low imbalance, a low (i.e.,< 0.1) balance
summary score. In Figure 2a-2d, the full data set had consistently low bias and balance summary
score, for each treatment case (T1 and T3), when estimated over both, the MASD and MMSD.
Compared to the imputed data scenarios, the confidence intervals of the full data set analysis were
narrow. For the imputed data sets, we see higher bias together with larger balance summary scores
(Figure 2a.-2d.), and larger variation in bias, as compared to the full data set. In total, we find a
non-linear, but consistent association between the balance measures, and covariate imbalance, due
to multiple imputation. For this illustrative example presented, the low balance summary scores
(Table 3) reflected low imbalance in covariates. Table 3 also shows a clear reduction of balance
summary scores from unweighted to the weighted sets.

The estimates of the full and imputed data sets are presented in Table S1 in Supplementary
Material Section S2. Table 4 presents performance measures for all simulated scenarios. The mean
coverage rate was above the 95% rate for the full data set, however slightly lower in the imputed
case scenarios. For all scenarios, we see low MCSE of the coverage rate. The relative percentage
error in the model standard error (Table 4) shows that the results are conditioned on adequate
number of simulated Monte Carlo runs. However, even for 10 Monte Carlo simulations (due to
computational burden of the GPS algorithm), we can see in Table 4 that the relative percentage
error is still relatively low.

For all imputed sets, diagnostic tools, considering the distribution of the observed and
imputed data, as well as convergence of the MICE algorithm for multiple imputations, indicated
that the imputed values were plausible. Given that the multiple imputations seemed plausible, the
GPS for each scenario was calculated and balance assessed. Furthermore, on each imputed data
set, and for each missing case, the maximal standard deviation of the weights were small (i.e.
≤ 1.5), indicating that the propensity score model was well specified (Xu, Ross, Raebel, Shetterly,
Blanchette, and Smith (2010)).

5 Discussion
This study extended the definition of balance diagnostic to include multiple treatment exposure
under multiple imputation. It has used simulations to investigate the performance of the proposed
approach. Results from the analysis show that the mean differences after multiple imputation were
unbiased for 14.9% to 83.1% missing data. The results were in accordance with the MASD and
the MMSD balance summary scores after weighting, which indicate that covariates were balanced
between groups.

The significance of this study can be appreciated when one considers the preponderance
of data with missing covariates, especially in pharmacoepidemiological studies involving multiple
treatment exposure (Bandoli, Kuo, Sugathan, Chambers, Rolland, and Palmsten (2018), Franklin,
Shrank, Pakes, Sanfélix-Gimeno, Matlin, Brennan, and Choudhry (2013)). Specifically, the current
approach allows incorporating external validation data, as suggested by Webb-Vargas, Rudolph,
Lenis, Murakami, and Stuart (2017), and for multiple treatment exposure. A recent study by Frank,
Lupattelli, Matteson, Meltzer, and Nordeng (2019), combined the incorporation of validation data
and multiple treatment exposure after multiple imputation. For balance assessment, the authors



applied the MASD balance metric. In contrast to the present study, where the balance summary
score of the metrics was calculated for validation purposes, the authors in Frank et al. (2019)
assessed the balance of each covariate separately. This approach seems appropriate when the
balance metrics are applied to real world data. When analyzing and interpreting balance metrics
for each covariate separately, it should be taken into account that propensity score methods cannot
balance covariates with small sample sizes (Rubin (1997)). Hence, when there are small sample
sizes within treatment groups among a specific covariate, the balance metrics might fail to reduce
balance for that covariate.

Each propensity score method (i.e., weighting, stratification, matching or adjustment), has
its own merits and limitations. Our choice of IPTW in combination of GPS has been confirmed in
the recent published article by Nian et al. (2019). However, the simulation results by Yang et al.
(2016), identified IPTW with multiple exposures as the worst performing approach. Although,
more research is needed to identify under which condition, a GPS approach performed best, such
a methodological comparison exceeds the scope of this current study.

With the illustrative example presented, we could validate the proposed balance metric for
multiple treatment groups under multiple imputation. However, we did not see a linear relationship
(as proportional to the missing data percentage) between the summary scores and bias of imputed
data sets. One explanation could be that we were not able to perform analysis on the required
number of Monte Carlo runs, and therefore the result might be more prone to noise due to multi-
ple imputations. Although, we cannot rule out some influence of chance, it should be noted that
low imbalance and low balance summary scores were consistent for all presented data cases. The
results were also in accordance with the data-generation process. Nevertheless, the conclusions
made, based on the simulation data example presented, should be considered taking into account
the drawbacks of the data generation, as well as the low number of Monte-Carlo runs. The latter
limitation should however be attributed to the method applied. In the present study the MASD and
MMSD diagnostics resulted in the same conclusion. It seems however that the MMSD diagnostic
maintains the balance characteristics better than the MASD for small percentages of missing data
(i.e, < 30%). Therefore, when MASD should be applied versus MMSD needs further investiga-
tion. A recently published article considered the use of GPS under multiple imputation of missing
covariates (De Vries et al. (2018)). The authors found that bias was introduced when the Clas-
sification and Regression Trees (CART) algorithm was applied directly for multiple imputation.
However the authors concluded that the CART approach worked fine, when multiple imputation
was applied before the estimation of the propensity score. Results presented in this paper confirm
the finding.

The results reported come with some limitations. The determination of GPS and balance
assessment are based on algorithms by McCaffrey et al. (2013), Burgette et al. (2017), McCaffrey
et al. (2004). Therefore, limitations and strength of their approach will also hold for the present
study. One such limitation is the improper confidence intervals, while a strength of the determina-
tion of GPS via boosted regression models is the relatively small weights. Another limitation, is
that our proposed balance diagnostic does not assess interaction and higher order terms (De Vries
et al. (2018)). Based on our results, this however did not seem to be a major problem, as long as
the imputation and propensity score models are well-specified.



Furthermore, in this illustrative simulation example, we assumed that for missing data the
missing at random (MAR) assumption holds. However, future studies need to investigate how
balance diagnostics perform under the missing completely at random and missing not at random
assumptions, as well as when the missing data process is complex, i.e. linear and non-linear
dependents on more than two observed variables. In addition, our example assumed that there are
no unmeasured confounders. For real data, this assumption is unrealistic. Therefore, one could
evaluate the effect of bias due to unmeasured confounders with trimming methods for the IPTW,
as presented in Yoshida, Solomon, Haneuse, Kim, Patorno, Tedeschi, Lyu, Franklin, Stürmer,
Hernández-Dı́az et al. (2018). There was not time varying confounding present in the illustrative
example presented. However, if this should be the case, methods, such as proposed by Jackson
(2016), Imai and Ratkovic (2015) chould be implemented in the analysis.

In this study, we choose to propose and evaluate the diagnostic based on the standardized
difference, as this is most commonly used in the pharmacoepidemiology literature, although other
diagnostics exist, such as the Kolmogorov-Smirnov test statistic or the C-statistic (Austin and Stu-
art (2015), Franklin et al. (2014)). As other balance measures (e.g., C-statistic), showed promising
results in assessing imbalance in covariates (Franklin et al. (2014)), the MASD and MMSD could
be alternated based on these balance measures. Such alternations however require separate vali-
dation. The different scenarios of missing data percentages investigated can be considered as a
strength.

Different methods exist, which combine propensity scores and multiple imputation for a
binary exposure as presented in Leyrat et al. (2019a). Such approaches should also be applied to
the GPS in future studies, in order to better understand the effect of balance and missing data on
causal effect estimates.

Given that, to our knowledge, no previous study has proposed or analyzed balance diag-
nostics for the GPS under multiple imputed data, this study is the first of its kind and will hopefully
influence future research.

6 Conclusion
Based on simulation data, the proposed balance diagnostics seemed appropriate for balance assess-
ment of the GPS after multiple imputation. Further research is needed to validate the results of the
present study under different assumptions and conditions, and to apply the proposed diagnostics to
real world data.
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Supplementary material

S1 Proof of weak unconfoundedness and balance property for
the GPS under Multiple Imputation

The proofs and notations were adapted from Leyrat et al. (2019b), Bia et al. (2007).

Notations

We adopt the following notations, for the subject index i = 1, ...,N.

• Let T = {1,2, ...,M} denote the set of M multiple treatments.
• Let Ti be the treatment that subject i received and the indicator that subject i received treat-

ment m is

Im(Ti) = I(Ti = m). (11)

• Let Yi(Ti = m) denote the potential outcome of subject i, if subject i has been assigned to
treatment m ∈ T . Only when the factual treatment happens to be m, then equivalence of
Yi(Ti = m) and Y obs

i can be considered true.
• Xi, the vector of covariates is split into observed Xobs,i, and ’partially missing’ Xmiss,i com-

ponents, Xi = (Xobs,i,Xmiss,i).
• Xq

miss,i be the imputed value for Xmiss,i in the qth imputed data set (q = 1, ...,Q),
• α(q) be the true propensity score (PS) parameters in the qth imputed data set (with α(q) = α ,

as the overall true propensity score (PS) parameters, q = 1, ...,Q).

Assumptions

We also make the following assumptions (Rosenbaum and Rubin (1983), Rubin (1986), Reardon
and Raudenbush (2009), Leyrat et al. (2019b), Li and Li (2019)):

• Positivity, i.e., 0 < r(m,Xobs,i,X
(q)
miss,i)< 1

• Manipulability assumption, i.e.,
– the potential outcome of each subject i is assigned to each of the M treatment groups,

ensuring that each subject i has at least one potential outcome per treatment group (i.e.,
Yi(1), ...,Yi(M))



• Stable Unit Treatment Value Assumption (SUTVA) (a.k.a consistency assumption)
– SUTVA assumption implies that each subject i possesses one and only one potential

outcome in each treatment group. Hence the observed outcome for subject i (Y obs
i )

is the potential outcome corresponding to the treatment received, i.e., Yi(Ti = m) ≡
Y obs

i (Ti = m) = Y obs
i,m .

• Ignorable treatment assignment (SITA) (a.k.a exchangeability assumption):
– There are no unmeasured confounders, and
– For full data sets, Definition S1.1 holds.

Definition S1.1 (Weak unconfoundedness assumption (Imbens (2000))). Assignment
to treatment Ti is weakly unconfounded, given the pre-treatment variables Xi, if

Yi(m)⊥ Ti|Xi (12)

• Missing At Random (MAR) assumption
– Missing information in covariates (Xmiss,i) depends on observed variables (Ti,Y obs

i ,Xobs,i)
• The imputation model is correctly specified.
• Temporal aspect with three stages: 1) Pre-treatment variables are measured, 2) treatment is

assigned or selected, and 3) the outcomes is measured. This implies that a sequence

(T1,X1,Y1(1), ...,Y1(M)), ...,(TN ,XN ,YN(1), ...,YN(M))

is i.i.d, so that the sequence of realized values

(T1,X1,Y obs
1 (1), ...,Y obs

1 (M)), ...,(TN ,XN ,Y obs
N (1), ...,Y obs

N (M))

is also i.i.d.

Basic definitions

The basic definitions are taken from Billingsley (2008) and they are applied in the proofs of sub-
section S1.1.

Definition S1.2 (Bayes Theorem). Suppose E,F ⊂Ω with P(E),P(F)> 0. Then

P(E|F) =
P(F |E)P(E)

P(F)
(13)

Extension of Definition S1.2 (Ex. Def. S1.2): If E1, ...,Ek are disjoint with P(Ei) > 0 for i =
1, ...,k and form a partition of F ⊂Ω, then

P(Ei|F) =
P(F |Ei)P(Ei)

∑k
j=1P(F |E j)P(E j)

(14)



Definition S1.3 (Theorem of total probability). Let E1, ...,Ek be a finite partition of Ω, and let
F ⊆Ω, then

P(F |Ei) =
k

∑
i=1

P(F |Ei)P(Ei) (15)

S1.1 Derivation of Proofs

With help of the above notations, assumptions and definitions, we show that

1. the weak unconfoundedness assumption holds, in each imputed data set, i.e.,
(a) r(m,Xobs,i,X

(q)
miss,i) = E[Im(Ti)|Xobs,i,X

(q)
miss,i] , and

(b) Yi(m)⊥ Im(Ti)|Xobs,i,X
(q)
miss,i, ∀ Ti = m, m ∈T

Then, we show that
2. the GPS balances covariates on the complete and imputed data sets (balance property), in

each imputed data set q:
(a) Xobs,i ⊥ Im(Ti)|r(m,Xobs,i,X

(q)
miss,i),

(b) X (q)
miss,i ⊥ Im(Ti)|r(m,Xobs,i,X

(q)
miss,i)

For the following proofs, we will neglect the subject indices i, to enhance readability.
Given the assumptions, Y obs =Y (T ), hence Y obs

t =Y (T = t), t ∈T . Let Y be a continuous
outcome.

1 (a): E[Im(T )|Xobs,X
(q)
miss] = r(m,Xobs,X

(q)
miss;α(q))

Proof. Due to the extension of Definition S1.2, it holds, that

E[Im(T )|Xobs,X
(q)
miss] = P(T = m|Xobs,X

(q)
miss) (16)

Ex.De f .1.2
=

P(X (q)
miss|T = m,Xobs)P(T = m|Xobs)

∑M
t=1P(X

(q)
miss|T = t,Xobs)P(T = t|Xobs)

.

Next express P(X (q)
miss|T = t,Xobs) in terms of (unobserved) missing values Xmiss:

P(X (q)
miss|T = t,Xobs)

De f 1.3
=

∫

R
fXq

miss|T=t,XObs=x,Y obs
t =y(X

q
miss = x|t,x,y) · fY obs

t |T=t,Xobs=x(y|t,x)dy (17)

MAR
=

∫

R
fXmiss|T=t,XObs=x,Y obs

t =y(Xmiss = x|t,x,y) · fY obs
t |T=t,Xobs=x(y|t,x)dy

= P(Xmiss|T = t,Xobs),



if values are imputed from the true distribution. Substituting this back into equ (16), yields

E[Im(T )|Xobs,X
(q)
miss = x] = P(T = m|Xobs,X

(q)
miss = x) (18)

=
P(X (q)

miss = x|T = m,Xobs)P(T = m|Xobs)

∑M
t=1P(X

(q)
miss = x|T = t,Xobs)P(T = t|Xobs)

Subst. eq. (17)
=

P(Xmiss = x|T = m,Xobs)P(T = m|Xobs)

∑M
t=1P(Xmiss = x|T = t,Xobs)P(T = t|Xobs)

MI b.o. α
= P(T = m|Xobs,Xmiss = x;α)

De f . PS
= r(m,Xobs,x;α)

α(q)

= r(m,Xobs,X
(q)
miss = x;α(q)).

Equality 1(a) shows that r(m,Xobs,X
(q)
miss) is a generalized propensity score in each imputed

data set.

1 (b): Y obs
m ⊥ Im(T )|Xobs,X

(q)
miss

Proof.

P(T = m|Y obs
m = y,Xobs,X

(q)
miss)

Bayes thm.
=

P(X (q)
miss|T = m,Y obs

m = y,Xobs)P(T = m|Y obs
m = y,Xobs)

P(X (q)
miss|Y obs

m = y,Xobs)
(19)

MAR
=

P(Xmiss|T = m,Y obs
m = y,Xobs)P(T = m|Y obs

m = y,Xobs)

P(Xmiss|Y obs
m = y,Xobs)

Ym=Y when T=m
=

P(Xmiss|T = m,Y obs
m = y,Xobs)P(T = m|Y obs

m = y,Xobs)

P(Xmiss|Ym = y,Xobs)

= P(T = m|Y obs
m = y,Xobs,Xmiss)

Y obs
m ⊥Im(T )|X

= P(T = m|Xobs,Xmiss)

eq. (17)
= P(T = m|Xobs,X

(q)
miss)

1(b) shows independence of the potential outcome and the treatment at the level of interest,
given observed and imputed covariate values.

Together, the proofs of 1(a) and 1(b) show that the weak unconfoundedness assumption
holds for imputed data.

Next it needs to be shown that the true PS, r(m,Xobs,X
(q)
miss), is a balancing score in each

imputed data set.



2 (a): Xobs ⊥ Im(T )|r(m,Xobs,X
(q)
miss)

Proof. Needs to be shown that

P(T = m,Xobs|r(m,Xobs,X
(q)
miss)) = P(T = m|r(m,Xobs,X

(q)
miss))P(Xobs|r(m,Xobs,X

(q)
miss)).

It holds that

P(T = m,Xobs|r(m,Xobs,X
(q)
miss)) = P(Xobs|r(m,Xobs,X

(q)
miss))P(T = m|Xobs,r(m,Xobs,X

(q)
miss))(20)

= P(Xobs|r(m,Xobs,X
(q)
miss))P(T = m|Xobs),

because r(m,Xobs,X
(q)
miss) is a function of Xobs, conditioning on Xobs is equivalent to conditioning

on Xobsr(m,Xobs,X
(q)
miss). Rewrite

P(T = m|Xobs) = P(T = m|Xobs,Y obs
m = y)P(Y obs

m = y|Xobs) (21)

Y obs
m ⊥Im(T )|Xobs,X

(q)
miss= P(T = m|Xobs,X

(q)
miss,Y

obs
m = y)P(Y obs

m = y|Xobs,X
(q)
miss)

= P(T = m|Xobs,X
(q)
miss)

Substituting eq. (22) in eq. (21), yields

P(T = m,Xobs|r(m,Xobs,X
(q)
miss)) = P(Xobs|r(m,Xobs,X

(q)
miss))P(T = m|Xobs,X

(q)
miss). (22)

It was previously shown that P(T = m|Xobs,X
(q)
miss) = E[Im(T )|Xobs,X

(q)
miss] = r(m,Xobs,X

(q)
miss). Then

P(T = m|r(m,Xobs,X
(q)
miss)) = E[Im(T )|r(m,Xobs,X

(q)
miss)] (23)

= E[E[Im(T )|Xobs,X
(q)
miss]|r(m,Xobs,X

(q)
miss)]

= E[r(m,Xobs,X
(q)
miss)|r(m,Xobs,X

(q)
miss)]

= r(m,Xobs,X
(q)
miss).

Hence, eq. (21) becomes

P(T = m,Xobs|r(m,Xobs,X
(q)
miss)) = P(Xobs|r(m,Xobs,X

(q)
miss))P(T = m|Xobs,X

(q)
miss) (24)

De f PS
= P(Xobs|r(m,Xobs,X

(q)
miss))r(m,Xobs,X

(q)
miss)

eq.(23)
= P(Xobs|r(m,Xobs,X

(q)
miss))P(T = m|r(m,Xobs,X

(q)
miss)).

2 (b) X (q)
miss ⊥ Im(T )|r(m,Xobs,X

(q)
miss), can be shown in a similar manner as 2 (a).



Independences 2 (a) and (b) show that in each imputed data set, the propensity score bal-
ances respectively the observed and imputed values of the covariates across treatment groups.



S2 Additional information

Figure S1: Simulation run plots of performance measures
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Figure S1 plots the estimated MCSE of the bias and coverage, as well as the maximized MCSE of the
coverage, against the number of repetitive simulation runs, nsim. Given that bias is the key measure of
performance, we choose nsim = 1053, such that the MCSE of the bias estimate is below 52, which is indicated
by the blue vertical line in the left graph. In the middle and right graph, the blue horizontal lines indicate
nsim = 1053.

Table S1: Estimates of full data and imputed data sets

Treatment Full data set Imputed data sets with missing values of

groups 14.9% 31.8% 57.5% 83.1%

β̂ , 95% CI β̂ , 95% CI β̂ , 95% CI β̂ , 95% CI β̂ , 95% CI

T1 -205 (-262,-149) -207 (-263,-150) -205 (-261,-148) -204 (-261,-146) -201 (-257,-145)

T2
1(β̂0) 3413 (3363,3463) 3418 (3367,3468) 3416 (3365,3466) 3416 (3364,3467) 3413 (3362,3463)
T3 194 (137,251) 185 (128,243) 188 (129,246) 188 (129,247) 190 (133,248)

1 Treatment group T2 is the reference group, with respect to which the other groups are compared to. Its estimate
is the intercept β̂0.
Abbreviations: CI, confidence intervals, IPTW, inverse probability of treatment weighting


