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Key Points

•Mutations in ARID1A
and CSF1R are recur-
rently gained at relapse
in AML and represent
novel therapeutic
options for patients
with relapsed AML.

• Recurrent somatic
mutations in H3F3A
and UBTF are age
specific in relapsed
AML, detected solely in
adult and pediatric
AML, respectively.

Relapse is the leading cause of death of adult and pediatric patients with acute myeloid

leukemia (AML).Numerousstudieshavehelped toelucidate thecomplexmutational landscape

at diagnosis of AML, leading to improved risk stratification and new therapeutic options.

However,multi–whole-genome studies of adult and pediatric AML at relapse are necessary for

further advances. To this end, we performed whole-genome and whole-exome sequencing

analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult

and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in

ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives.

Further, we report specific differences in the mutational spectrum between adult vs pediatric

relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in

adults, whereas internal tandem duplications in UBTF were identified solely in children.

Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All

of the mentioned genes have either never been reported at diagnosis in de novo AML or

have been reported at low frequency, suggesting important roles for these alterations

predominantly in disease progression and/or resistance to therapy. Our findings shed further

light on the complexity of relapsed AML and identified previously unappreciated alterations

that may lead to improved outcomes through personalized medicine.

Introduction

Acute myeloid leukemia (AML) arises from malignant transformation of myeloid progenitor cells,
overgrowing functional blood cells in the bone marrow (BM) before infiltrating peripheral blood and
possibly other organs. AML is primarily a disease of elderly people, with an average age at onset of
68 years,1 but the disease also occurs in children. Most patients achieve complete remission after
intensive chemotherapy, sometimes followed by allogeneic hematopoietic stem cell transplantation.
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However, 40% to 60% of adults and 35% of children relapse within
3 years,2-5 with most of the relapse patients not responding to
conventional treatment, resulting in a 5-year overall survival of 28%
and 65%, respectively.1,6

During the past decade, the AML inter- and intratumor heteroge-
neity have been investigated, resulting in improved classification2

and novel treatment alternatives.7-9 Further, age-specific character-
istics indicate differences in the landscape and tumorigenesis of
adult vs pediatric AML.10 Mutational studies of AML relapses have
mainly been performed with gene panels11-13 or whole-exome
sequencing (WES),14-16 whereas the largest published longitudinal
whole-genome sequencing (WGS) study to date interrogated only
8 AML diagnosis-relapse pairs.17 More recently, a gene panel–based,
single-cell DNA-sequencing study including AML cells from relapsed
patients was published, but comprised relapse/refractory specimens
from only 25 patients.18 Thus, a further increased understanding of
the biological characteristics of the disease and genomic alterations
occurring in relapsed and primary resistant (R/PR) AML is needed to
improve personalized treatment and patient survival.

In this study, we performed WGS and WES of R/PR samples from
73 cases of AML, including 52 patient-matched diagnosis samples.
We report specific mutational differences between our R/PR AML
cohort and newly diagnosed cases in previous studies, but also in
comparison with former non–WGS-based relapse studies. Finally,
we identify unreported differences in the mutational landscape of
adult vs pediatric relapsed AML.

Patients and methods

Cohort

Included in the study were primary sequential specimens from 48
adult and 25 pediatric patients with AML from the Nordic countries,
all of whom had relapsed or PR disease. All patients were
diagnosed according to World Health Organization criteria.19 Only
cases with relapse or PR specimens of sufficient quality and yield
available via the Uppsala Biobank or Karolinska Institute Biobank,
collected from 1995 through 2016, were included. Cases of the
clinically distinct acute promyelocytic leukemia (APL) subtype were
excluded. Sixty-six patients had de novo AML, whereas the remaining
7 had a prior diagnosis of a myelodysplastic syndrome (MDS) or
other malignancy. Associated clinical characteristics are summarized
in Table 1, Figure 1, supplemental Tables 1-3, and supplemental
Figures 1 and 2. Informed consent was obtained according to the
Declaration of Helsinki, and study approval was acquired from the
Uppsala Ethical Review Board (Sweden) and the Regional Ethics
Committee South-East (Norway).

Sample preparation

Mononuclear cells were enriched through Ficoll gradient centrifugation
and cryopreserved or stored as frozen pellets until they were used.
Cryopreserved AML specimens with leukemia cell content,80%were,
if applicable, purified by immune-based depletion of nontumor cells
(supplemental Table 4). Normal BM-derived stromal cells were cultivated
from leukemic BM according to a published method20 as a source of
germline DNA. Genomic DNAwas obtained with Qiagen extraction kits.

NGS

Library preparation and next-generation sequencing (NGS; WGS:
HiSeq X, Illumina [San Diego, CA];WES: Ion Proton, Thermo Fisher

Table 1. Patient cohort

Data

Patients 73 (100)

Adult cases 48 (65.8)

Elderly ($60 y) 25 (34.2)

Adult (40-59 y) 17 (23.3)

Young adult (19-39 y) 6 (8.2)

Pediatric cases 25 (34.2)

Adolescent (15-18 y) 3 (4.1)

Child (3-14 y) 15 (20.5)

Infant (,3 y) 7 (9.6)

Sex, female 38 (52.1)

Background

De novo AML 66 (90.4)

Potential t-AML 3 (4.0)

MDS-AML 2 (2.7)

t-MDS-AML 2 (2.7)

Tumor samples 138 (100)

Diagnosis samples 52 (37.7)

Relapse samples 80 (58.0)

R1 and R1-P 60 (43.5)

R2 and R2-P 16 (11.6)

R3 4 (2.9)

Primary resistant samples 6 (4.3)

Matched normal controls 61 (100)

BMS cells 43 (70.5)

Complete remission samples 17 (27.9)

BMS/complete remission cell combination 1 (1.6)

Average age at onset, y

Adult cases 59.3 (range, 20.5-83.1; median, 61.7)

Pediatric cases 8.2 (range, 0.4-18.2; median, 7.7)

Average length of EFS, d (D>R1)

Adult relapse cases 624 (range, 34-5958; median, 306)

Pediatric relapse cases 365 (range, 69-1110; median, 312.5)

Average WBC

Adult cases* 100 (range, 1-395; median, 80)

Pediatric cases 104 (range, 11-232; median, 50)

NK-AML

Adult cases† 21 (46.7)

Pediatric cases 7 (28.0)

Sample purity 86% (.80% tumor cells; range, 41-100)

Cell viability‡ 61% ($75% viable cells; range, 6-94)

Sampling duration 1995 through 2016

Data are number of patients (% of total group), unless otherwise stated. Detailed
biological and clinical data for each patient/sample are presented in supplemental Tables 2
and 3.
BMS, bone marrow–derived stromal cells; D, diagnosis; NK-AML, normal karyotype AML

at diagnosis; R1/2/3, sequential relapses; R1/2-P, persistent relapse specimen; t-AML,
treatment related AML; WBC, white blood cell count (at diagnosis).
*Information lacking for 6 adults.
†Information lacking for 3 adults.
‡Accounts only for cryopreserved cells.
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Figure 1. Event timeline of the study cohort. The time from diagnosis to longitudinal events for each patient is shown. Cases are depicted from top to bottom, grouped

based on age at onset. Stars indicate occurrence of an allogeneic HSCT. Samples included in the current study as well as the next-generation sequencing method applied are

indicated by filled circles (WGS, 903), open circles (WGS, 303), and diamonds (WES). Patients in remission at the latest follow-up are indicated with an ellipsis at the end of

the respective bar. R1/2/3/4, sequential relapses; HSCT, hematopoietic stem cell transplantation.
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Scientific [Waltham, MA]) were performed at the Science for
Life Laboratory (SciLifeLab), National Genomics Infrastructure
(Uppsala, Sweden). Detailed information, including variant
calling, filtering, and validation, is provided in supplemental
Methods.

Statistics

Kaplan-Mayer curves and associated statistical tests were generated
in GraphPad Prism 7.02. Other statistical tests were performed in
R,21 as detailed in supplemental Methods.

Results

We studied diagnosis (n 5 52), relapse (n 5 80), and PR
specimens (n 5 6) from 48 adult and 25 pediatric patients with
R/PR AML, including 52 diagnosis-R/PR pairs (Table 1; Figure 1;
supplemental Tables 1-3).

WGS of 111 leukemia samples from 60 of the patients (37 adults; 23
children) reached a mean coverage of 1143 (n 5 99; aim, $ 903),
and 393 (n 5 12; aim, $303), whereas WGS of patient-matched
normal DNA from those patients reached 383 (aim, $303;
supplemental Table 5). An average of 2063 somatic single-
nucleotide variants (SNVs) and small insertion/deletion muta-
tions (indels) were detected per sample, with higher mutational
frequencies in adults than in children at both diagnosis and
relapse (supplemental Figure 3), correlating with previous
findings.10,17,22 Investigation of substitutional patterns in
adults revealed a significant increase of transversions over
the course of the disease (P 5 2.1 3 1025; supplemental
Table 6; supplemental Figure 4), concordant with former
studies.14,17 Children had a significantly higher fraction of
transversions at diagnosis than did adults (P 5 4.1 3 1023),
underlining accumulation of transition mutations with age,23

leading up to diagnosis. Relapse-specific mutations, however,
were dominated by transversions independent of age, strength-
ening the assertion that chemotherapy affects the mutational
landscape at relapse.14,17,24

WES was performed for an additional 27 leukemia samples from
20 patients with a mean coverage of 1313 (supplemental Tables 1
and 7).

Copy number alterations and structural variants in

R/PR AML

The presence of somatic DNA copy number alterations (CNAs) and
copy-neutral loss-of-heterozygosity (CN-LOH) was investigated in
all samples. The most common aberrations were trisomy 8 (n 5 11
cases; 15.1%), and gains, losses, and CN-LOH involving chromo-
some 17 (n 5 10; 13.7%; supplemental Table 8). Monosomy 5 or
7 or del7q were found at relapse in 2 adult cases and in 2 adult PR
cases (8.3% of adults), but were not seen in children.

Various types of structural variants (SVs) can be detected byWGS,
whereas they are often impossible to identify by WES. In the 60
cases of AML that were subjected to WGS, we identified an
average of 2.0 somatic SVs per sample, including translocations
leading to the gene fusion RUNX1-RUNX1T1 (8 of 60; 13.3%) and
NUP98 fusions (4 of 60; 6.7%; supplemental Tables 9 and 10). In
addition, various translocations rendering dysfunctional ETV6
transcripts were found in 5 cases (8.3%). Of note is that common
AML-associated gene fusions were overrepresented in pediatric

AML (11 of 23; 47.8%), compared with adult AML (7 of 37; 18.9%).
SVs and CNAs were mainly stable or gained during progression of
leukemia (Figure 2).

Overview of recurrent protein coding mutations in

R/PR AML

Next, we mined our NGS data for somatic nonsynonymous SNVs
and indels, identifying mutations in 1205 different genes. Of these,
41 genes were mutated at diagnosis and/or in R/PR specimens in
at least 3 cases (supplemental Table 11). We found differences
in mutational patterns between adult and pediatric cases (Figure
3A-B) and in a comparison of (patient-matched) diagnosis and
R/PR specimens (Figures 2 and 4).

In cases with available patient-matched diagnosis and relapse
samples (27 adults; 20 children; supplemental Table 12), 843
SNVs and indels were found at diagnosis or relapse (supplemental
Table 11). Of those, 109 (12.9%) were present only at diagnosis,
whereas 283 (33.6%) were gained at relapse (Figure 3C),
emphasizing the importance of plasticity within leukemogenesis.
Highly similar findings were seen when adult and pediatric cases
were examined separately.

Recurrent UBTF-ITDs identified in pediatric

relapsing AML

We found heterozygous in-frame internal tandem duplications
(ITDs) in UBTF at diagnosis and relapse in 3 of 25 pediatric cases
(12.0%; Figure 2; supplemental Table 10), whereas no UBTF
alterations were identified in the adults. UBTF encodes upstream
binding transcription factor, which has an essential role in facilitating
ribosomal RNA transcription.25 All UBTF-ITDs involved exon 13,
encoding 1 of 6 DNA-binding domains in UBTF. Reverse transcriptase-
polymerase chain reaction onUBTF-ITD1 samples showed expression
of both the mutated and wild-type (WT) UBTF allele (supplemental
Figure 5).

Loss-of-function mutations in MGA in adult

relapsing AML

Loss-of-function mutations inMGA were identified at relapse in 4 of
48 adult cases and at diagnosis in 1 adult (subclonal), but were lost
at relapse in this adult case (10.4%; Figure 2). MGA encodes
a transcription factor that suppresses binding of MYC to its target
sites.26 It has been found to be recurrently inactivated in 5% of
cases of AML that have partial tandem duplications (PTDs) in
KMT2A.27 However, none of our cases with MGA mutations had
KMT2A-PTDs, suggesting overrepresentation ofMGA mutations at
relapse in adult KMT2A-PTD2 AML.

H3F3A p.Lys28Met mutations and alterations in genes

encoding chromatin modifiers

We discovered clonal p.Lys28Met mutations in H3F3A, encoding
histone H3.3, at relapse in 3 adult cases (6.3%), whereas
alterations of this gene were not seen at diagnosis in adults or at
any disease stage in children (Figure 2; supplemental Table 10).

Further, we found mutations in various genes involved in chromatin
modification at diagnosis and/or R/PR in 16 adult (33.3%) and 5
pediatric (20.0%) cases, with 14 of the patients being.60 years of
age at diagnosis (56.0% of 25 elderly cases), consistent with
previous findings28-30 (Figure 2; supplemental Table 10). These
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included ARID1A (3 adults [6.3%]), ASXL1/2 (5 adults [10.4%]; 3
children [12.0%]), BCOR/BCORL1 (6 adults [12.5%]), KANSL1
(2 adults [4.2%]) and KMT2A (4 adults [8.3%]; 2 children [8.0%];
Figure 3A-B). These mutations were mainly mutually exclusive.
Further, all KMT2A-PTD1 cases had sequence mutations in
RUNX1 and altered FLT3 (Figures 2 and 5). KANSL1 encodes
a histone acetylation complex member.31 The KANSL1 muta-
tions were either missing or subclonal at diagnosis, but were
clonal at relapse. In addition, 2 of 3 mutations in ARID1A
appeared at relapse (Figure 2; supplemental Figures 6 and 7). Of
note is that half of our PR cases had mutations in chromatin
modification–associated genes, altogether leaving an overrep-
resentation of alterations in these genes in R/PR specimens.

RTK-associated mutations are recurrently gained at

relapse, whereas RAS signaling-related mutations

commonly are lost

Recurrent somatic mutations were identified in receptor tyrosine
kinase (RTK) or RAS signaling-related genes at diagnosis and/or at
R/PR in 31 adults (64.6%) and 18 children (72.0%; Figure 3A-B;
supplemental Table 10). Among those, ITDs and SNVs were
identified in FLT3 (13q12.2) in 18 adults (37.5%) and 8 children
(32.0%). Half of the cases with FLT3 mutation co-occurred with
amplification or CN-LOH on 13q, leading to biallelic FLT3
alterations. In at least 5 of the cases with aberrant 13q (38.5%),
the CN-LOH appeared at relapse (Figure 2).

KRAS and NRAS were mutated in adult (n 5 4 [8.3%] and n 5 7
[14.6%], respectively) and pediatric (n 5 4 [16.0%] and n 5 9
[36.0%], respectively) cases of AML. These mutations frequently
were subclonal, and commonly co-occurred within the same patient
(Figure 5A). In 10 of 19 cases with KRAS and/or NRAS mutations,
the mutation disappeared during progression of leukemia (Figure 4C;
supplemental Figures 6-8).

We identified inactivating alterations in NF1 in 3 adult cases (6.3%;
including 1 PR patient) and 2 pediatric cases (8.0%). A recent
study32 reported NF1 alterations in 5.1% of adult cases, with an
association with poor outcome, correlating with our findings for
adult R/PR AML.

One-fifth of pediatric cases (n 5 5 [20.0%]) had KIT mutations,
compared with 8.3% of adults (n 5 4). With 1 exception, these
mutations were stable during progression of the leukemia (supple-
mental Figures 6-8). Furthermore, 6 of 9 KIT-mutated cases
(66.7%) co-occurred with RUNX1-RUNX1T1.

CSF1R and CSF3R encode transmembrane RTKs for CSF1
and CSF3, respectively, which are cytokines that control
production, differentiation, and function of macrophages and
granulocytes, respectively.33,34 CSF3R frameshift mutations
were found in 1 adult PR case, and in 1 infant. For CSF1R, 1 in-
frame deletion in the juxtamembrane domain and a missense
mutation in the activation loop appeared at relapse in 1 adult
and 1 infant, respectively.

Recurrent gain of mutations that affect

transcription regulation

We identified recurrent somatic mutations in genes encoding
(myeloid) transcription regulators at diagnosis and/or R/PR in 16
adults (33.3%) and 12 children (48.0%; Figure 3A-B; supplemental
Table 10). Missense, frameshift, and nonsense mutations in RUNX1
were found in 8 adult (16.7%) and 3 pediatric (12.0%) cases, with 4
of the 11 patients (36.4%) having PR AML.

Mutations in GATA2 were identified in 5 adult cases (10.4%). The
mutation was subclonal at diagnosis in 2 of these, whereas it was
clonal at relapse and appeared at relapse in at least 1 case (Figures
2 and 4C). In pediatric AML, mutually exclusive mutations were
found in GATA1 (n 5 2; 8.0%) and GATA2 (n 5 3; 12.0%;
appearing at a refractory relapse in 1 case). In previous studies of
diagnostic and/or relapse specimens, 1% to15%of adult and only 4%of
pediatric cases of non-APL AML hadGATA1/2mutations,10,14,16,22,35,36

implying an overrepresentation of mutations within these genes in our
pediatric cohort with relapsing AML.

IKZF1 (7p12.2) was mutated in 2 adult (4.2%) and 2 pediatric
(8.0%) cases, with 2 of these mutations appearing at relapse.
IKZF1 encodes an important transcription factor in leukocyte
differentiation.37 This gene is rarely found to be mutated in AML (eg,
0.5%-2.7% of pediatric cases10,38), whereas loss of 1 IKZF1 allele
occurs as part of monosomy 7. Further, focal deletion of IKZF1
occurs infrequently in pediatric AML.39 In our cohort, 1 pediatric
case had a 7p14.2-p11.2 deletion involving IKZF1. Further, 2 adult
PR cases had monosomy 7, resepectively focal IKZF1 deletion,
whereas monosomy 7 appeared at relapse in another adult case,
leaving the IKZF1 alteration frequency at 10.4% and 12.0% in
R/PR adult and pediatric AML, respectively (Figure 2; supple-
mental Table 10).

Alterations of tumor suppressor genes are commonly

gained at relapse

Various tumor suppressor genes were mutated at diagnosis and/or
R/PR in 18 adults (37.5%) and 12 (48.0%) children. These
mutations were frequently gained or showed an increase in variant
allele frequency at relapse, but were never lost (Figures 2, 3A-B,
and 4; supplemental Figures 6-8). Among these, truncating
mutations were found in PHF6 (adults, n 5 2 [4.2%]; children, n
5 3 [12.0%]), with the mutation appearing at relapse in 1 child,
whereas another child had it in PR AML. Further, mutually exclusive
alterations were identified in TP53 (adults, n5 6 [12.5%]; children,
n 5 3 [12.0%]) and WT1 (adults, n 5 11 [22.9%]; children n 5 7
[28.0%]). For at least 4 of 11 (36.4%) WT1-mutated adult cases
and 3 of 7 (42.9%) WT1-mutated pediatric cases, the mutation
appeared during progression of the leukemia (Figure 4C). Of note
is that 75% of the mutations in WT1 co-occurred with FLT3
alterations (Figure 5).

TP53 alterations have been linked to chromothripsis40 and
aneuploidy.41 No severe aneuploidy was found in our AML samples

Figure 2. (continued) copy number deletion; *, CN-LOH; EFS, event-free survival; NGS, next-generation sequencing; D, diagnosis; R, relapse; LOY, loss of chromosome

Y. Digits within individual boxes refer to the number of alterations within the gene or the number of altered genes within a functional group at D/R or D/PR; DS, Down

syndrome; AB, ABCA12; AR, ARHGAP31; DN, DNAH3; FA, FAT3; NI, NIPBL; NR, NRXN3; RA, RAD21; SF, SF3B3; SM, SMC1A/3; SR, SRSF1/2/6; ST, STAG1/2; SY,

SYNE1; U2, U2AF1; ZN, ZNF91; and ZR, ZRSR2. See supplemental Table 12D for details regarding samples included in this figure.
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with TP53 mutations. However, leukemia cells with TP53 mutations
from 4 patients had complex interchromosomal translocations,
indicative of chromothripsis (supplemental Table 10). For at least
2 of these events, the rearrangements appeared at relapse, with
the TP53 alteration acquired during progression of leukemia in
one of them.

Mutations in cohesin-associated genes recurrently

appear during the progression of leukemia

We identified mutations in several genes encoding proteins associated
with the cohesin complex, which regulates the separation of sister
chromatids during cell division.42 Five adult (10.4%) and 5 pediatric

(20.0%) cases had mutually exclusive mutations in 1 of these genes at
diagnosis and/or R/PR (NIPBL [1 adult, 2.1%, and 1 child,
4.0%], RAD21 [3 children; 12.0%], SMC1A [2 adults; 4.2%],
SMC3 [1 child; 4.0%], and STAG2 [2 adults; 4.2%]; Figures 2
and 3A-B; supplemental Table 10). In at least 4 of these 10
cases (40%), the mutation appeared during disease progres-
sion, and 2 had PR AML (supplemental Figures 6-8).

Alterations in spliceosome-related genes in

relapsing AML

Seven adult (14.6%) and 2 pediatric (8.0%) cases had somatic
mutations at diagnosis and/or R/PR in at least 1 spliceosome-related

Figure 3. Variant frequencies in R/PR AML. (A) Recurrent SNVs and small indels discovered in the R/PR AML cohort. Displayed are the frequencies of recurrent gene

mutations at diagnosis and R/PR stages among all adult (n 5 48) and pediatric (n 5 25) cases. (B) Mutational frequencies of indicated functional gene groups at diagnosis

and R/PR stages in adult and pediatric AML. (C) Variants lost and gained during leukemic progression. Shown are the proportions of protein coding SNVs and small indels

identified in the 27 adult and 20 pediatric AML cases (total n 5 47) for which patient-matched diagnostic and relapse specimens were available, according to their presence at

diagnosis and/or relapse. Total variants, n 5 843 (adult, n 5 519; pediatric, n 5 324). Detailed information regarding samples used for generating this figure is present in

supplemental Table 12E-F. D, diagnosis.
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gene (SF3B1/3,SRSF1/2/6,U2AF1, and ZRSR2; Figures 2 and 3A-
B; supplemental Table 10). Most common were missense- and in-
frame indel mutations in SRSF2, found at relapse in 4 adults
(8.3%), all lacking diagnostic specimens. However, missense
mutations were shown to appear at relapse in SRSF1 and
U2AF1 in 1 adult case each. Previous studies of adult AML
report mutations in spliceosome-related genes in ;22% of

relapsed AML,14,15,35 whereas they are less frequent in pediatric
AML (2% to 5%).10,22

Highly recurrent mutated genes in adult R/PR AML

The most frequent alteration found in adult R/PR AML was
a frameshift mutation in NPM1 in 41.7% of cases (n 5 20),
consistent with a previous relapse study,14 whereas 30% to 35%
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were seen in former studies of diagnostic cohorts, irrespective of
outcome32,36 (Figures 2 and 3A). These mutations were stable
during progression of leukemia (supplemental Figure 6). Surpris-
ingly, no NPM1 mutations were found in our pediatric cases,
whereas previous pediatric AML studies, including relapsed cases,
reported NPM1 mutations at 11% to 24%.10,12

Another striking difference between adult and pediatric AML
involved a high frequency of mutations in DNA methylation-related
genes in adult AML (60.4%), with complete absence of these in our
pediatric cases, correlating with previous studies10,36 (Figure 3A-
B). The mutated genes included DNMT3A (n 5 16; 33.3%), IDH1
(n 5 8; 16.7%), IDH2 (n 5 6; 12.5%), and TET2 (n 5 8; 16.7%).
These mutations were stable during progression to relapse
(supplemental Figure 6).

Very late relapses in adult AML are associated with

H3F3A p.Lys28Met mutations

Two adult patients (AML027 and AML039) had their first relapse at
10.5 respectively 16 years after presentation (supplemental Tables
2 and 10). All alterations described in the clinical information at
diagnosis for AML027 (FLT3-SNV; t(2;9)(q?21;q?22); 14)
remained at a second relapse, with, for instance, an H3F3A
p.Lys28Met mutation also found at this stage. For AML039,
identical somatic mutations in IDH1, PHF6, and SMC1A and
trisomy 8 were identified at diagnosis and relapse, whereas clonal
mutations in, for instance, H3F3A, IKZF1, NF1, and TP53, were
gained at relapse. These cases indicate the silent survival of
diagnostic clones for more than a decade.

Discussion

We report the first multigenome sequencing study of longitudinal
diagnosis, relapse, and/or PR specimens from adult and pediatric
patients with AML (n 5 73 cases), comprising 52 patient-matched
diagnosis-R/PR pairs. By exploiting changes in variant composition in
patient-matched diagnostic and relapse samples, we found that 53.5%
of the mutations were present at both stages, suggesting clones that
evade chemotherapeutic treatment (Figure 3C). The remaining variants
were either lost or gained during progression of leukemia, implying that
some variants are necessary for formation of leukemia but not for
maintaining the leukemia clone(s), whereas others are advantageous
during progression of leukemia and/or resistance of treatment.

UBTF-ITDs/indels are recurrent in pediatric R/PR AML. These were
found in 12.0% of our pediatric cases (Figure 3A), as well as in 2
former studies43,44 that also identified the mutation solely in
pediatric patients who eventually relapsed or had PR disease. The
ITDs have a length known to be problematic for most current NGS-
variant callers to detect (;40-150 bp). One of our UBTF-ITDs was
identified through manual review of the NGS reads. Further, some
of the previously identified UBTF-ITDs were not found in the original
analysis of the cohort,10 but after reanalysis by other scientists.43

Finally, most gene panels exclude this gene. Altogether, these
difficulties in identification imply thatUBTF-ITDs may be a previously
unappreciated lesion in pediatric AML that is associated with
progression of the disease and/or resistance of treatment. All ITDs
were heterozygous, and that UBTF interacts with DNA as a dimer25

suggests that these mutations are either gain-of-function mutations
or have a dominant negative function. Further studies are needed to
elucidate the role of UBTF-ITDs in leukemogenesis.

One-third of mutations in genes encoding chromatin-modifying
proteins were gained at relapse or were subclonal at diagnosis and
emerged as clonal at relapse, pointing toward a central role for
disturbed gene regulation via aberrant chromatin modification in
progressing disease (supplemental Figure 6). For instance, 2 of 3
mutations in ARID1A appeared at relapse in adult AML. ARID1A
mutations have been reported to be enriched in APL and in 1 study of
FLT3-ITD1 AML (5% in both studies),24,45 but are otherwise rare in
AML (,1% of cases10,16,36). Our cohort, however, excluded cases of
APL, and both cases that gained anARID1Amutation at relapsewere
FLT3-WT, suggesting enrichment of ARID1A mutations at relapse in
adults with other AML subtypes. Further, truncating mutations in
KANSL1 have been described in acute megakaryoblastic leukemia
(AMKL),46 but sequencemutations have not been found in non-AMKL
AML. In our KANSL1-mutated cases (4.2% of adults, non-AMKL
subtype), the mutations emerged as clonal at relapse.

To our knowledge, there are no previously identified somatic,
nonsynonymous CSF1R mutations in de novo AML, whereas we
identified recurrent CSF1R alterations appearing at relapse (supple-
mental Table 10). Based on their structure and locality, thesemutations
are thought to cause aberrant activation of CSF1R,47 suggesting an
important role for this receptor at relapse. Moreover, CSF1R inhibition
has been proposed as an alternative treatment approach for AML.48

Very late relapse, defined as relapse after more than 5 years of
remission, occurs in 1% to 3% of patients.49,50 Two adults in our
cohort relapsed after 10.5 and 16 years, both with a subset of
identical genomic lesions at relapse, as identified in their respective
founder clone (supplemental Table 10). Of note is that both of these
patients had p.Lys28Met mutations in H3F3A at relapse. The same
mutation also emerged at relapse in a third adult case. An identical
mutation has been found in MDS,51 in 1 patient with secondary
AML,52 and in 1 patient with relapsed de novo AML.16 That it has
not been reported at diagnosis in de novo AML suggests an
important role for this mutation at AML relapse. Two of our H3F3A-
mutated patients had de novo AML, whereas the third had
suspected MDS-AML. In this latter case, however, the mutation
appeared at relapse and is thus not expected to be associated with
the initial onset of a potential secondary AML. The p.Lys28 amino
acid is the target of (tri)methylation and acetylation associated with
transcription repression and activation, respectively, of targeted
genes,53,54 which suggests that more dramatic alterations to the
chromatin state may aid in resistance to chemotherapy.

The mutational frequency in tumor suppressor genes, including
PHF6, TP53, andWT1, was substantially higher in our R/PR cohort
(adults, 37.5%; children, 48.0%) than previously reported in
diagnosis-only cohorts (15% to 16%),10,36 as well as in various
non–WGS-based R/PR AML studies (adult, 18%-27%; pediatric,
8% to 39%),14,15,22,24,35,38,44 with a frequent gain of variants in
those genes during disease progression (Figures 2 and 3A-B). In
line with former studies,14,15 mutations inWT1 commonly appeared
at relapse, with remarkably high frequencies of 22.9% and
28.0% in adult and pediatric R/PR cases, respectively, but was
reported at only 6.1% and 13.8% in adult and pediatric non-APL
AML, respectively, in diagnostic cohorts.10,36 Furthermore, TP53
and PHF6 alterations, which have been reported in only 1.1%
to 7.1%10,44 and 1.9% to 7.1%44,55 of children, respectively,
were both seen in 12.0% of our pediatric cases, with no survivors
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among the patients, corroborating the association between
TP53 alterations and poor outcome.2

Studies of pediatric AML have reported mutations in cohesin-
associated genes in 0% to 8.3% of cases.10,22,38 Our pediatric
R/PR cases, however, had a substantially higher mutational
frequency, with 20.0% of cases with mutated NIPBL, RAD21, or
SMC3 (Figures 2 and 3A-B). Our findings for adult AML, though,
correlated with those in other studies of adult AML.14,15,35 The
protein encoded byNIPBL is an important cohesin-loading factor.56

Mutations in this gene in AML are rare (0.6% in adults36; none
reported in children), whereas recurrent mutations have been found
in colorectal cancer.57 Low NIPBL expression has been associated
with NPM1 mutations in AML,58 but our NIPBL-mutated cases were
WT for NPM1. The majority of mutations in cohesin-associated
genes appeared during disease progression or were found in PR
AML. All of those patients died, highlighting a putative role for altered
cohesin regulation in chemotherapy resistance in AML.

In summary, this investigation further elucidated the mutational
landscape of R/PR AML. We identified the emergence at relapse of
recurrent mutations in genes not previously reported in de novo
AML (CSF1R) or identified at low frequency (eg, ARID1A, IKZF1,
KANSL1, and NIPBL). Further, our results indicated specific
differences in genes mutated in adult vs pediatric R/PR AML,
exemplified by recurrent UBTF-ITDs exclusively in pediatric AML
and H3F3A and MGA mutations only in adult AML. Our findings,
showing great plasticity during progression of leukemia, support
previous studies investigating relapsing AML, which mainly used
WES and/or gene panels.11,14,15,17,18,22,24,35,38,45 The current
study points out the limitations of gene panels when attempting to
investigate the repertoire of relapse specific mutations, as many of
the herein identified recurrently mutated genes commonly are
excluded (eg, ARID1A, CSF1R/3R, H3F3A, MGA, and UBTF).
Further, structural variants usually cannot be detected byWES and/
or gene panels. Together, this highlights the importance of applying
WGS in mutational studies of relapsed AML.

Although the frequency of several of the potentially actionable
mutations identified in our study is relatively low, their identification
is of great importance in the setting of personalized medicine. For
instance, RTK inhibitors could be used for CSF1R-mutated
cases,48 and bromodomain and extraterminal domain inhibitors
have been suggested as a therapeutic option for ARID1A-mutated
tumors.59 To fully understand this complex disease, however, more
studies incorporating various multiomics analyses are necessary.
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