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• We studied simultaneous effect of pre-
natal exposure to several compounds
on child behaviour.

• 47 exposure biomarkers from 8 chemi-
cal exposure families were studied in 5
European cohorts.

• Bisphenol A and mono-n-butyl phthal-
ate were associated with increased be-
havioural problems in children.

• Copper was associated with decreased
behavioural problems.
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Background: Studies looking at associations between environmental chemicals and child behaviour usually con-
sider only one exposure or family of exposures.
Objective: This study explores associations between prenatal exposure to a wide range of environmental
chemicals and child behaviour.
Methods:Westudied 708mother-child pairs from five European cohorts recruited in 2003–2009.We assessed 47
exposure biomarkers from eight chemical exposure families in maternal blood or urine collected during preg-
nancy. We used the Strengths and Difficulties Questionnaire (SDQ) to evaluate child behaviour between three
and seven years of age. We assessed associations of SDQ scores with exposures using an adjusted least absolute
.fr (P. Jedynak).
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shrinkage and selection operator (LASSO) considering all exposures simultaneously and an adjusted exposome-
wide association study (ExWAS) considering each exposure independently.
Results: LASSO selected only copper (Cu) as associated with externalizing behaviour. In the ExWAS, bisphenol A
[BPA, incidence rate ratio (IRR): 1.06, 95% confidence interval (95%CI): 1.01;1.12] and mono-n-butyl phthalate
(MnBP, IRR: 1.06, 95%CI: 1.00;1.13) were associated with greater risk of externalizing behaviour problems. Cu
(IRR: 0.90, 95%CI: 0.82;0.98), perfluoroundecanoate (PFUnDA, IRR: 0.92, 95%CI: 0.84;0.99) and organochlorine
compounds (OCs) were associated with lower risk of externalizing behaviour problems, however the associa-
tions with OCs were mainly seen among women with insufficient weight gain during pregnancy. Internalizing
score worsen in association with exposure to diethyl thiophosphate (DETP, IRR: 1.11, 95%CI: 1.00;1.24) but the
effect was driven by the smallest cohort. Internalizing score improved with increased concentration of
perfluorooctane sulfonate (PFOS, IRR: 0.92, 95%CI: 0.85;1.00), however the association was driven by the two
smallest cohorts with the lowest PFOS concentrations.
Discussion: This study added evidence on deleterious effects of prenatal exposure to BPA and MnBP on child be-
haviour. Other associations should be interpreted cautiously since theywere not consistentwith previous studies
or they have not been studied extensively.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Child neurodevelopmental disorders are associated with long-term
functional impairments which cause substantial social and financial
costs for the affected individuals, their families and society as a whole.
The annual cost (including medical and non-medical costs) of child
neurodevelopment disorders in Europe has been estimated at €21 bil-
lion (Gustavsson et al., 2011). This makes the identification of modifi-
able risk factors for these disorders a priority target for public health.
The root causes of most childhood neurodevelopmental disorders are
multifactorial and only partly understood. In addition to genetic factors,
exposure to environmental contaminants during periods of high sensi-
tivity of the brain, such as pregnancy and early childhood, is suspected
to play a role in the origin of neurodevelopmental disorders (Bellinger,
2009; Grandjean and Landrigan, 2014). In a review focusing on
human studies, Grandjean and Landrigan identified 12 environmental
chemicals or families of chemicals as neurodevelopmental toxicants
(Grandjean and Landrigan, 2006, 2014), including several metals and
inorganic compounds (lead, methylmercury, inorganic arsenic, manga-
nese, fluoride), polychlorinated biphenyls (PCBs), some solvents (tolu-
ene, ethanol), certain pesticides [organophosphate (OP) pesticides]
and polybrominated diphenyl ethers (PBDEs). The authors listed over
200 additional chemicals, including some phthalates, bisphenols, and
cotinine, that are potentially neurotoxic in humans based on data
from the US National Library of Medicine, the US Agency for Toxic Sub-
stances and Disease Registry, and the US Environmental Protection
Agency.

With few exceptions (e.g., Braun et al., 2014; Kim et al., 2018;Maitre
et al. submitted to journal; Tanner et al., 2020), epidemiological studies
analysing the effects of environmental contaminants on child
neurodevelopment have considered only one exposure or family of ex-
posures, while in real life individuals are exposed to a wide range of en-
vironmental compounds that could simultaneously affect development
and health (Haug et al., 2018). Studies considering several exposures si-
multaneously are needed to improve the understanding of the potential
effects of environmental risk factors on neurodevelopmental disorders
and ameliorate their prevention (Siroux et al., 2016). The aim of this
study was to assess the associations between prenatal exposure to a
wide range of environmental chemicals (n = 47) and child behaviour.

2. Methods

2.1. Study design and population

This study is a part of the HELIX project which includes six European
mother-child cohorts: Born in Bradford (BiB, UK), Étude des Détermi-
nants Pré et Postnatals du Développement et de la Santé de l'Enfant
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(EDEN, France), Infancia y Medio Ambiente (INMA, Spain), Kaunas Co-
hort (KANC, Lithuania), Norwegian Mother, Father and Child Cohort
Study (MoBa, Norway) and Mother-Child Cohort in Crete (RHEA,
Greece). The study design is described in detail elsewhere (Maitre
et al., 2018; Vrijheid et al., 2014). Out of the 1301 children originally in-
cluded in the HELIX sub-cohort (Maitre et al., 2018; Vrijheid et al.,
2014), we relied on a sub-sample of 708 mother-child pairs for which
child behaviour was assessed using the Strengths and Difficulties Ques-
tionnaire (SDQ) at three to seven years of age (Appendix Fig. 1). Chil-
dren from the MoBa cohort were not included because the SDQ was
not implemented in this group.

2.2. Assessment of prenatal exposure to environmental chemicals

We assessed 54 biomarkers of exposure to a broad spectrumof envi-
ronmental chemicals (Appendix Table 1, Appendix Table 2). Briefly, in
blood we assessed biomarkers of exposure to eight organochlorine
compounds (OCs), two PBDEs, five per- and polyfluoroalkyl substances
(PFASs) and 15 metals and non-metals (essential and toxic elements).
In urine, we assessed biomarkers of exposure to 10 phthalate metabo-
lites, seven phenols, six OP pesticide metabolites, and cotinine. Out of
those, we excluded five essential elements not considered to be neuro-
toxic as well as thallium and diethyl dithiophosphate due to their low
frequency of detection (1.5% and 2.1%, respectively). This left 47 bio-
markers for further analyses.Methods of biomarker assessment and de-
scriptive statistics and correlation patterns between the biomarkers are
described elsewhere (Haug et al., 2018; Tamayo-Uria et al., 2019).

2.3. Behavioural outcomes

We evaluated child behaviour using the SDQ (Goodman, 1997),
which was completed by the mothers between three and seven years
of child's age. SDQ scores were collected as part of the individual cohort
initiatives and harmonized and pooled a posteriori. In this analysis we
relied on the combined externalizing and internalizing scores only,
since they have been shown to be more consistent across informants
(e.g., parents, teachers) and more discriminant with respect to clinical
disorders in low-risk community samples, like the one examined in
our study, compared to the five sub-scales (Goodman et al., 2010)
(Appendix Table 3). Moreover, given our limited sample size and the
large number of studied exposure biomarkers, combining the SDQ
sub-scales limited the number of performed tests.

2.4. Statistical analysis

We singly imputed biomarker concentrations below the limit of de-
tection using a quantile regression approach for the imputation of left-
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censored missing data (Nadarajah and Kotz, 2006). We divided urinary
biomarker concentrations by creatinine concentration. Haemal lipo-
philic biomarker concentrations were standardized and expressed in
ng/g of total lipids in serum or plasma. Concentrations were then ln-
transformed (cotinine) or log2-transformed (all other biomarkers) to
approach normality and standardized for the interquartile range (IQR)
by dividing biomarker concentration observed for each individual for a
given exposure by the IQR calculated for this exposure.

We selected the following adjustment factors based on a priori
knowledge: cohort, season of conception, child's sex and age at the
SDQ assessment, parity, maternal age and education level, maternal
working and active smoking status during pregnancy and maternal
pre-pregnancy body mass index (see Appendix Table 4 for details).
Missing data for exposure biomarker concentrations (see Appendix
Table 5 for details) and adjustment factors were multiply imputed
(100 imputed datasets) via a chained equations algorithm (White
et al., 2011). To explore the associations between 47 biomarkers and ex-
ternalizing and internalizing behaviour scoreswe applied two statistical
approaches. First, we used a least absolute shrinkage and selection oper-
ator (LASSO) algorithmwith log link function. LASSO considers all expo-
sures simultaneously (Tibshirani, 1996) and performs variable selection
through estimates' shrinkage (i.e., the lowest regression coefficients
corresponding to the least informative predictors are assigned a zero
value).We determined the range of penalty parameterλ bymaximizing
the prediction log-likelihood using 10-fold cross-validation. To prevent
overfitting, we defined the optimal λ as the one providing the sparsest
model (as measured by the number of nonzero regression coefficients)
among those yielding a log-likelihood within one standard error of the
maximum log-likelihood (Krstajic et al., 2014). To stabilise estimates,
LASSO was fit on each of the 100 imputed datasets and an exposure
was retained only if it was selected in at least 50% of runs (Wood
et al., 2008). Second, to compare with previous single-pollutant studies,
we also performed an exposome-wide association study (ExWAS): we
fit a negative binomial regression model on each of the 100 imputed
datasets for each exposure biomarker and SDQ score, then aggregated
the results using Rubin's rule for multiply imputed data (Patel et al.,
2010). To control for multiple comparisons, we applied a family-wise
error rate (FWER) correction to the p value threshold. The correction
uses a Bonferroni procedure extended to handle correlated tests: the ac-
tual number of exposures being tested (M) is replaced by a smaller
value called the effective number of independent exposures (Me). Me

is estimated by∑i=1
M [I(λi>1)(λi− 1)], where I(x) is an indicator func-

tion and λi are the eigenvalues of the matrix of correlations between M
exposures. The p value threshold to control FWER to α, using Me in a
Bonferroni procedure, is then α / Me (adapted from Li et al., 2012).

To test the robustness of the associations between SDQ scores and
exposure biomarkers identified by the LASSO (selected in at least 50%
of runs) and ExWAS (those with uncorrected p values <0.05) we per-
formed further sensitivity analyses.We evaluated the linearity of the as-
sociations using generalized additive model (GAM) with restricted
cubic splines function. Then we ran a regression simultaneously ad-
justed for all biomarkers associated with the SDQ scores in the main
ExWAS (p values <0.2). We additionally adjusted our main model for
breastfeeding and fish and seafood consumption during pregnancy
(since fish and seafood may accumulate persistent organic contami-
nants and heavy metals). We explored sex-specific effects by adding
an interaction term between each biomarker of exposure and child
sex and performed an ExWAS restricted to the participants with no
missing biomarker concentrations. For the biomarkers associated with
the SDQ externalizing score we ran an ExWAS after exclusion of the
BiB cohort, as we had noted that children from this population had
markedly lower externalizing score (median = 0.5) compared to the
other cohorts (medians ≥5, Table 1). Apart from the mentioned analy-
ses, for all measured exposure biomarkers we evaluated the between-
cohort heterogeneity of the adjusted association using the I2 statistic
(Higgins and Thompson, 2002). We relied on the following threshold
3

for the I2 interpretation: I2 < 0.3: low heterogeneity, 0.3 ≤ I2 < 0.6:mod-
erate heterogeneity, I2 ≥ 0.6: substantial to high heterogeneity (Deeks
et al., 2019). Finally, because excessive maternal weight gain during
pregnancy could lead to decreased blood concentrations of lipophilic
compounds due to their storage in the adipose tissue (Kim et al.,
2011; Lee et al., 2014; Verner et al., 2013) and to behavioural problems
in the offspring (Pugh et al., 2016), we ran an additional analysis strati-
fied on gestational weight gain for all the biomarkers from the OCs
family.

All analyses were conducted using R v. 4.0.2 (R Core Team and R
Foundation for Statistical Computing, 2020) and RStudio v. 1.3.1056
(RStudio Team, 2020) using packages: mice (van Buuren and
Groothuis-Oudshoorn, 2011) for multiple imputation, mpath (Wang
et al., 2015) to fit LASSO, MASS (Venables and Ripley, 2002) for the
ExWAS analysis, metaplus (Beath, 2016) to estimate between-cohort
heterogeneity and gam (Hastie, 2020) and rms (Harrell Jr, 2020) to eval-
uate linearity of associations between biomarkers of exposure and SDQ
scores.

Data used in this study is confidential and can only be provided upon
request and after approval of the HELIX consortium. The code is
available in the public repository of the Team of Environmental Epide-
miology applied to Reproduction and Respiratory Health (https://
gricad-gitlab.univ-grenoble-alpes.fr/iab-env-epi).

3. Results

3.1. Characteristics of the study population and prenatal exposure to envi-
ronmental contaminants

Characteristics of the study population and exposure biomarker dis-
tributions are detailed in Table 1 and Appendix Table 5, respectively.
Median child age at the SDQ assessment was 5.6 years. Median SDQ ex-
ternalizing and internalizing scores were 5 and 3 points, respectively.
Heterogeneity was observed between cohorts for most covariates as
well as for the SDQ scores, with parents from the BiB cohort reporting
behaviour scores of their children to be better than of those from
other cohorts (p value of the Kruskal-Wallis test <0.001, Table 1).
High frequency of detection was observed for most of the 47 exposure
biomarkers, with 39 detected in at least 89% of the tested samples (Ap-
pendix Table 5). Heterogeneity was observed between cohorts for most
exposures (p values of the Kruskal-Wallis test<0.05, Appendix Table 5).

3.2. Association between prenatal chemical exposome and SDQ scores

3.2.1. Externalizing score
Among the 47 exposures studied, the adjusted LASSO for the exter-

nalizing score selected only copper (Cu). Cu was also detected in the
ExWAS analysis as associated with lower externalizing score, meaning
decreased risk of behavioural problems [Incidence rate ratio (IRR):
0.90, 95% confidence interval (CI): 0.82;0.98 for an IQR change in the
log2-transformed Cu concentration, Table 2]. In addition to Cu, the
ExWAS identified five other associations. Bisphenol A (BPA, IRR: 1.06,
95%CI: 1.01;1.12) and mono-n-butyl phthalate (MnBP, IRR: 1.06, 95%
CI: 1.00;1.13) were positively associated with the externalizing score,
while perfluoroundecanoate (PFUnDA, IRR: 0.92, 95%CI: 0.84;0.99)
and two OCs [dichlorodiphenyltrichloroethane (DDT, IRR: 0.92, 95%CI:
0.84;1.00) and PCB-138 (IRR: 0.88, 95%CI: 0.79;0.99)] were negatively
associated with this score. While not significant (p values ranged be-
tween 0.065 for PCB-153 to 0.253 for PCB-180), all the other compounds
from the OCs family tended to be negatively associated with the exter-
nalizing score (Appendix Table 6).

3.2.2. Internalizing score
The adjusted LASSO did not retain any exposure biomarker as being

associated with the internalizing score, while the ExWAS identified a
positive association with diethyl thiophosphate (DETP) concentration
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Table 1
Population characteristics for the mother-child pairs included in the study: overall and by cohort.

Overall
distribution

Cohort-specific distribution p value of equality
between
cohortsa

BiB EDEN INMA KANC RHEA

46 (6.5%) 193 (27.3%) 218 (30.8%) 83 (11.7%) 168 (23.7%)

Season of conception ·· ·· ·· ·· ·· ·· <0.001
January-March 208 (29.4%) 21 (45.7%) 65 (33.7%) 47 (21.6%) 26 (31.3%) 49 (29.2%)
April-June 159 (22.5%) 5 (10.9%) 41 (21.2%) 49 (22.5%) 10 (12.0%) 54 (32.1%)
July-September 174 (24.6%) 11 (23.9%) 34 (17.6%) 61 (28.0%) 29 (34.9%) 39 (23.2%) ··
October-December 164 (23.2%) 9 (19.6%) 53 (27.5%) 61 (28.0%) 16 (19.3%) 25 (14.9%) ··
Missing 3 (0.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (2.4%) 1 (0.6%) ··

Active smoking during pregnancy ·· ·· ·· ·· ·· ·· <0.001
No 553 (78.1%) 35 (76.1%) 147 (76.2%) 162 (74.3%) 77 (92.8%) 132 (78.6%) ··
Yes 145 (20.5%) 6 (13.0%) 46 (23.8%) 54 (24.8%) 4 (4.8%) 35 (20.8%) ··
Missing 10 (1.4%) 5 (10.9%) 0 (0.0%) 2 (0.9%) 2 (2.4%) 1 (0.6%) ··

Parity ·· ·· ·· ·· ·· ·· <0.001
Nulliparous 317 (44.8%) 20 (43.5%) 89 (46.1%) 117 (53.7%) 27 (32.5%) 64 (38.1%) ··
1 child 268 (37.9%) 15 (32.6%) 70 (36.3%) 90 (41.3%) 26 (31.3%) 67 (39.9%) ··
≥ 2 children 114 (16.1%) 10 (21.7%) 34 (17.6%) 10 (4.6%) 28 (33.7%) 32 (19.0%) ··
Missing 9 (1.3%) 1 (2.2%) 0 (0.0%) 1 (0.5%) 2 (2.4%) 5 (3.0%) ··

Maternal level of education ·· ·· ·· ·· ·· ·· <0.001
Primary school 89 (12.6%) 18 (39.1%) 12 (6.2%) 52 (23.9%) 2 (2.4%) 5 (3.0%) ··
Secondary school 292 (41.2%) 8 (17.4%) 71 (36.8%) 91 (41.7%) 32 (38.6%) 90 (53.6%) ··
University degree or higher 317 (44.8%) 17 (37.0%) 108 (56.0%) 74 (33.9%) 47 (56.6%) 71 (42.3%) ··
Missing 10 (1.4%) 3 (6.5%) 2 (1.0%) 1 (0.5%) 2 (2.4%) 2 (1.2%) ··

Maternal work status ·· ·· ·· ·· ·· ·· <0.001
Unemployed 128 (18.1%) 13 (28.3%) 31 (16.1%) 18 (8.3%) 13 (15.7%) 53 (31.5%) ··
Employed 560 (79.1%) 22 (47.8%) 162 (83.9%) 197 (90.4%) 68 (81.9%) 111 (66.1%) ··
Missing 20 (2.8%) 11 (23.9%) 0 (0.0%) 3 (1.4%) 2 (2.4%) 4 (2.4%) ··

Maternal pre-pregnancy BMI ·· ·· ·· ·· ·· ·· <0.001
Underweight 28 (4.0%) 0 (0.0%) 16 (8.3%) 9 (4.1%) 1 (1.2%) 2 (1.2%) ··
Normal weight 426 (60.2%) 13 (28.3%) 120 (62.2%) 149 (68.3%) 29 (34.9%) 115 (68.5%) ··
Overweight 158 (22.3%) 17 (37.0%) 39 (20.2%) 41 (18.8%) 28 (33.7%) 33 (19.6%) ··
Obesity 87 (12.3%) 14 (30.4%) 16 (8.3%) 19 (8.7%) 23 (27.7%) 15 (8.9%) ··
Missing 9 (1.3%) 2 (4.3%) 2 (1.0%) 0 (0.0%) 2 (2.4%) 3 (1.8%) ··

Gestational weight gain based on maternal
pre-pregnancy BMIb

·· ·· ·· ·· ·· ·· <0.001

Insufficient 186 (26.3%) 7 (15.2%) 51 (26.4%) 76 (34.9%) 14 (16.9%) 38 (22.6%) ··
Adequate 199 (28.1%) 10 (21.7%) 63 (32.6%) 62 (28.4%) 14 (16.9%) 50 (29.8%) ··
Excessive 263 (37.1%) 10 (21.7%) 59 (30.6%) 74 (33.9%) 45 (54.2%) 75 (44.6%) ··
Missing 60 (8.5%) 19 (41.3%) 20 (10.4%) 6 (2.7%) 10 (12.0%) 5 (3.0%) ··

Child sexc ·· ·· ·· ·· ·· ·· 0.860
Female 313 (44.2%) 18 (39.1%) 83 (43.0%) 102 (46.8%) 35 (42.2%) 75 (44.6%) ··
Male 395 (55.8%) 28 (60.9%) 110 (57.0%) 116 (53.2%) 48 (57.8%) 93 (55.4%) ··
Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) ··

Child age at SDQ assessment (years)c 5.6 [4.2;6.4] 5.4 [5.1;5.5] 5.6 [5.5;5.7] 6.8 [6.5;6.9] 4.5 [4.1;4.9] 4.1 [4.1;4.2] <0.001
Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) ··

Maternal age (years)
30.9

[27.7;34.1]
29.5

[22.2;34.0]
30.0

[27.6;34.0]
32.1

[29.5;34.7]
29.8

[26.8;32.7]
31.0

[27.3;34.0]
<0.001

Missing 4 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (2.4%) 2 (1.2%) ··
SDQ externalizing scorec 5.0 [2.8;7.0] 0.5 [0.0;3.8] 5.0 [2.0;7.0] 5.0 [3.0;8.0] 6.0 [4.0;8.5] 5.0 [3.0;7.0] <0.001
Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) ··

SDQ internalizing scorec 3.0 [1.0;5.0] 2.0 [0.0;4.0] 3.0 [1.0;5.0] 3.0 [1.0;4.8] 3.0 [2.0;5.0] 3.0 [1.0;4.0] 0.012
Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) ··

Distributions are reported as number and percentage for categorical variables and as median, 1st and 3rd quartiles for continuous variables. All values are before imputation.
a Kruskal-Wallis test was applied on continuous variables and χ² or exact Fisher test was applied on categorical variables.
b Gestational weight gain based on maternal pre-pregnancy BMI was categorized into 3 categories: insufficient, adequate and excessive according to the recommendations of the US

Institute of Medicine (Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines 2009). For BMI < 18.5 kg/m2 recom-
mended total weight gain was 12.5-18.0 kg, for BMI = 18.5-24.9 kg/m2: 11.5-16.0 kg, for BMI = 25.0-29.9 kg/m2: 7.0-11.5 kg and for BMI ≥ 30.0 kg/m2 recommended weight gain
was 5.0-9.0 kg.

c Child sex, child age at the SDQ assessment and SDQ scores were not imputed. Abbreviations: BiB = Born in Bradford. EDEN = Étude des Déterminants Pré et Postnatals du
Développement et de la Santé de l’Enfant. INMA= Infancia y Medio Ambiente. KANC=Kaunas Cohort. RHEA=Mother-Child Cohort in Crete. BMI= bodymass index. SDQ= Strengths
and Difficulties Questionnaire.

P. Jedynak, L. Maitre, M. Guxens et al. Science of the Total Environment 763 (2021) 144115
close to the significance level (IRR: 1.11, 95%CI: 1.00;1.24) and a nega-
tive association with perfluorooctane sulfonate concentration (PFOS,
IRR: 0.92, 95%CI: 0.85;1.00, Table 2 and Appendix Table 7).

3.2.3. Sensitivity analyses
After correction for multiple testing (corrected p value of 0.0017),

none of the exposure-SDQ score associations passed the significance
threshold. All exposure-SDQ score associations detected in our main
analysis were linear (Appendix Fig. 2). Compared to the main ExWAS
4

where each exposure biomarker was studied separately, adjustment
for coexposures (i.e., exposures associated with the SDQ scores with a
p value below 0.2) led to similar effect estimates except for PCB-138
(IRR: 0.95, 95%CI: 0.82;1.11) and PFOS (IRR: 0.94, 95%CI: 0.81;1.08)
for which the negative association with SDQ scores was attenuated
and the confidence intervals widened (Table 2). Effect estimates for
analyses additionally adjusted for fish and seafood consumption (not
shown) and breastfeeding (not shown) were similar to those observed
in the main analysis. For the complete case analysis, while the effect
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estimates were similar to those of our main analysis, their confidence
intervals were wider and the p values increased (e.g., p value = 0.212
and 0.141 for PFUnDA and DETP, respectively), likely because of the
smaller sample size (n ranged from 314 for Cu to 646 for PFOS). No in-
teractions with child's sex were detected for the associations
highlighted in our main analysis (lowest p value for an interaction
was 0.28 for DDT). Exclusion of the BiB cohort (new sample size n =
662, Table 2) did not strongly affect our results for the SDQexternalizing
score, except of widening of the confidence interval for DDT (IRR: 0.92,
95%CI: 0.84;1.00 for the main ExWAS and IRR: 0.94, 95%CI: 0.86;1.03
after BiB cohort exclusion). We observed low heterogeneity across co-
horts (I2 < 0.001) for most exposure-SDQ score associations (Fig. 1, Ap-
pendix Table 6, Appendix Table 7), except for BPA (I2 = 0.348,
association mainly observed in EDEN and RHEA cohorts), DDT (I2 =
0.417, association mainly observed in BiB and EDEN cohorts), DETP
(I2=0.612) and PFOS (I2=0.569). For PFOS, the associationwas driven
by BiB and KANC, the two cohorts with the smallest sample size (n=46
and 83 for BiB and KANC, respectively) and the lowestmedian value for
PFOS concentration. Similarly, the association between DETP and SDQ
internalizing score was mainly observed in BiB, the cohort with the
smallest sample size. For the lipophilic compounds from the OCs family,
stratification for gestational weight gain showed that the negative asso-
ciation was mainly observed among women with insufficient weight
gain (Fig. 2).

4. Discussion

Among the 47 exposures tested, only seven were associated (uncor-
rected p values <0.05) with either externalizing or internalizing SDQ
score in children between three and seven years of age. Association
with one additional exposure biomarker was close to significance (un-
corrected p value = 0.053). Cautious interpretation of the results is re-
quired since none passed the significance threshold after the FWER
correction of the p values obtained in the ExWAS. For this reason, in
the discussion we focused on the associations that were detected by
both the LASSO and the ExWAS or that were consistent with previous
human literature. The other associations should be treated as hypothe-
sis generating.

Cu was detected by LASSO and by ExWAS as negatively associated
with SDQ externalizing score, suggesting lower risk of behavioural prob-
lems. Cu is essential for many biological processes, including brain de-
velopment during the foetal period (Scheiber et al., 2014), and an
excess or insufficiency of Cu may lead to health problems (Gaetke
et al., 2014). Our finding of a negative association between Cu and SDQ
score (suggesting decreased risk of behavioural problems) needs to be
replicated as, to our knowledge, the only study that assessed prenatal
Cu and externalizing behaviour relied on the older children of the
HELIX cohort (6–11 years) and did not report any effect (IRR: 1.00,
95%CI: 0.91;1.09, (Maitre et al. submitted to journal)). Cu concentrations
in our study population (geometric mean = 1440 μg/L of blood, 95%CI:
1410;1471) were slightly higher than those reported among non-
pregnant females in the most recent US NHANES study (geometric
mean = 1270 μg/L, 95%CI: 1240;1300, Centers for Disease Control and
Prevention, 2019). However, this may be due to the fact that serum Cu
concentrations tend to increase during pregnancy (Vukelic et al., 2012).

Prenatal BPA urinary concentration was associated with higher
(worse) scores on the externalizing behaviour sub-scale. Such associa-
tion has also been suggested by another study assessing behaviour at
older age on a similar population (IRR: 1.07, 95%CI: 0.99;1.16, Maitre
et al. submitted to journal), suggesting that the associationwe observed
between three and seven years of age might persist when the children
get older. Previous studies coherently reported positive associations be-
tween prenatal BPA and externalizing behaviour scores (Braun et al.,
2009, 2017b; Evans et al., 2014; Li et al., 2020; Perera et al., 2012;
Philippat et al., 2017; Roen et al., 2015; Stacy et al., 2017) or the
hyperactivity-inattention score (Casas et al., 2015), an item included



(A) 

(B) 

Fig. 1. Sensitivity analysis (n = 708. BiB n = 46; EDEN n = 193; INMA n = 218; KANC n = 83; RHEA n = 168). Cohort-specific associations between prenatal exposures and SDQ
externalizing (A) and internalizing (B) scores detected by the ExWAS (p value of association <0.05 except of diethyl thiophosphate for which the p value = 0.053). Regression models
were adjusted for cohort, season of conception, child sex and age at SDQ assessment, parity, maternal: education level, work status, age, pre-pregnancy BMI and prenatal active
smoking status. The “All cohorts” estimates are those obtained in the main ExWAS. IRRs are reported with 95%CIs and correspond to the change in the probability of the SDQ scores
increasing by one unit for an IQR change in the log2 of the biomarker concentration in maternal blood or urine. We relied on the following threshold for I2 interpretation: I2 < 0.3 low
heterogeneity, 0.3 ≤ I2 < 0.6 moderate heterogeneity, I2 ≥ 0.6 substantial to high heterogeneity. The black squares display the IRRs (size of the square reflects the relative size of each
cohort) and the horizontal lines their 95%CIs. Abbreviations: BiB = Born in Bradford. EDEN = Étude des Déterminants Pré et Postnatals du Développement et de la Santé de l'Enfant.
INMA = Infancia y Medio Ambiente. KANC = Kaunas Cohort. RHEA = Mother-Child Cohort in Crete. CI = confidence interval of the IRR estimate. ExWAS = exposome-wide
association study. IQR = inter-quartile range. IRR = incidence rate ratio. BMI = body mass index. SDQ = Strengths and Difficulties Questionnaire.
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in our externalizing SDQ score sub-scale. All the mentioned studies, ex-
cept for those relying on the HOME mother-child cohort (Braun et al.,
2009, 2017b; Stacy et al., 2017), reported these associations among
boys, while we did not observe a sex-specific effect. Previous studies
also reported higher scores on the internalizing behaviour sub-scale in
association with the prenatal exposure to bisphenol A (Braun et al.,
6

2011, 2017a; Evans et al., 2014; Grohs et al., 2019; Harley et al., 2013;
Li et al., 2020; Perera et al., 2012, 2016; Philippat et al., 2017; Roen
et al., 2015). While not significant (p value = 0.21), effect estimate for
our study population also suggested a positive association between
BPA and internalizing SDQ score (IRR: 1.04, 95%CI: 0.98;1.12). The ani-
mal research literature is also consistent here: numerous studies in



Fig. 2. Sensitivity analysis for exposure-SDQ externalizing score associations stratified on
gestational weight gain. We stratified on three categories of gestational weight gain as
defined in the revised recommendations of the US Institute of Medicine (Institute of
Medicine (US) and National Research Council (US) Committee to Reexamine IOM
Pregnancy Weight Guidelines 2009): adequate (in black), excessive (in green) and
insufficient (in blue). For pre-pregnancy BMI < 18.5 kg/m2 recommended total weight
gain was 12.5–18.0 kg, for BMI = 18.5–24.9 kg/m2: 11.5–16.0 kg, for BMI =
25.0–29.9 kg/m2: 7.0–11.5 kg and for BMI ≥ 30.0 kg/m2 recommended weight gain was
5.0–9.0 kg. We ran one negative binomial regression model per exposure and outcome
for each sub-population. IRRs are reported with 95%CIs and correspond to the change in
the probability of the SDQ scores increasing by one unit for an IQR change in the log2 of
the biomarker concentration in maternal blood. Each point represents the IRR estimate
and the vertical line its 95%CI. Regression models were adjusted for cohort, season of
conception, child sex and age at SDQ assessment, parity, and maternal factors: education
level, work status, age and prenatal active smoking status. Abbreviations: BMI = body
mass index. CI = confidence interval of the IRR estimate. IQR = inter-quartile range.
IRR = incidence rate ratio. SDQ = Strengths and Difficulties Questionnaire. DDE =
dichlorodiphenyldichloroethylene. DDT = dichlorodiphenyltrichloroethane. HCB =
hexachlorobenzene. PCB = polychlorinated biphenyl.
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rodents have reported a link between exposure to BPA and behaviour
(Anderson et al., 2013; Ishido et al., 2011; Komada et al., 2014;
Nakagami et al., 2009; Palanza et al., 2008; Rochester et al., 2018; Tian
et al., 2010). Moreover, in vitro and in vivo studies provide evidence
that BPA can affect biological pathways crucial for normal brain devel-
opment by binding oestrogen receptors or interacting with the thyroid
hormone and hypothalamic-pituitary-adrenal axis (Mustieles et al.,
2015; Mustieles and Fernández, 2020; Nesan et al., 2018).

Maternal urinary MnBP concentration was associated with worse ex-
ternalizing behaviour score. MnBP is a metabolite of dibutyl phthalate
(DBP), a compound that exerts anti-androgenic activity (National
Academies of Sciences, Engineering, and Medicine, 2017). Two previous
human studies of prenatal MnBP concentration and child behaviour re-
ported an association with externalizing behaviour among boys (Engel
et al., 2010; Lien et al., 2015) and one reported an association with con-
duct problems, an item included in our externalizing behaviour sub-
scale (Kobrosly et al., 2014). Other studies reported associations with
other components of child behaviour (i.e., internalizing behaviour,
Philippat et al., 2017; Whyatt et al., 2012) or no association for this
phthalate metabolite (Engel et al., 2018; Gascon et al., 2015; Minatoya
et al., 2018). Experimental studies in rodents also support a behavioural
effect of MnBP (Farzanehfar et al., 2016; Hoshi and Ohtsuka, 2009; Yan
et al., 2016). The heterogeneity of the epidemiological literature supports
further investigation of the potential effect of MnBP on child behaviour.

DETP, a nonspecific dialkyl phosphate (DAP) metabolite, was the
onlyOP pesticidemetabolite associatedwithworse internalizing behav-
iour score. This associationwas on the verge of significance and showed
a substantial heterogeneity between the cohorts. Moreover, maternal
DETP concentration was the lowest among the OP pesticide metabolite
family. OP pesticides are neurotoxic and there are several studies
7

pointing towards the deleterious associations between prenatal con-
centrations of their metabolites and neurodevelopment in humans
(reviewed in Sapbamrer and Hongsibsong, 2019; and Tessari et al.,
2020). Nevertheless, few epidemiological studies have explored their
potential effects on child behaviour. Results for the CHAMACOS cohort
relying on the Child Behaviour Checklist suggested that the molar sum
of DAP metabolites was associated with attention problems at five
years (Marks et al., 2010) but not at earlier age (Eskenazi et al., 2007,
2010). Another study found no link between DETP prenatal exposure
and child behaviour (van den Dries et al., 2019). Our study is among
the first ones to report the effect of prenatal exposure to DETP on
child behaviour and, since the result was driven by the cohort with
the smallest sample size (BiB, n = 46), it needs to be replicated.

DDT and PCB-138 were associated with lower SDQ externalizing
scores, suggesting a protective effect on behaviour. Our sensitivity anal-
ysis showed that these protective effects were mainly seen among
women with insufficient weight gain during pregnancy. Similar pat-
terns of associations were observed for other compounds from the
OCs family. Excessive gestational weight gain has been associated with
both lower blood concentrations of lipophilic compounds (such as
OCs) due to their storage in fat tissue (Lee et al., 2017), and with higher
risk of behavioural problems in children (Pugh et al., 2016). However,
since previous studies did not report protective effects for DDT and
PCBs on child behaviour (Forns et al., 2016; Rosenquist et al., 2017)
the associations we observed between OCs and SDQ scores should be
interpreted with caution.

We found a negative association between two PFASs (PFOS and
PFUnDA) and child behaviour. The association with PFOS was only ob-
served in the two cohorts with the smallest sample size (BiB and
KANC with n = 46 and 83, respectively) and the lowest median PFOS
concentrations. The associationwith PFOSwas not expected as previous
human studies reported either increased behavioural problems linked
to this exposure (Høyer et al., 2015) or no association at all (Fei and
Olsen, 2011; Forns et al., 2015). The negative association between
PFUnDA and child behaviour was also observed among older children
of the HELIX cohorts (IRR: 0.89, 95%CI: 0.80;0.98, Maitre et al.
submitted to journal) and needs further investigation.

5. Strengths and limitations

Our study is among thefirst to simultaneously consider a large num-
ber of exposures (n=47) frommultiple families in relation to external-
izing and internalizing behaviour scores in children. Its strengths
include the longitudinal design, which allows prospectively assessing
exposure during pregnancy (a critical period for brain development),
and the use of a standardized tool (SDQ) to evaluate child behaviour.
We relied on two complementary statistical approaches: ExWAS pro-
duces effect estimates that are comparable to previous studies and can
be used in meta-analyses, while LASSO considers all exposures
simultaneously, performs variable selection, and is on average less
likely to generate false positives (spurious associations) than ExWAS
(Barrera-Gómez et al., 2017). Moreover, we investigated potential
coexposure confounding: the associations for BPA, Cu, DDT, DETP,
MnBP and PFUnDA remained after adjusting for other exposures. Fi-
nally, relying on five cohorts with differing confounding structure
(e.g., women from the BiB cohort had overall lower education levels)
might improve causal inference: an association seen inmultiple hetero-
geneous cohorts is less likely to result from residual confounding than
an association seen in only one or a few homogenous cohorts
(Richmond et al., 2014). On the other hand, since the cohorts were re-
cruited before the start of the HELIX project, collection of biological
samples during pregnancy was not harmonized leading to different
timings (i.e., different trimester) for exposure assessment across co-
horts. Additionally, for some cohorts the same exposure biomarker
was sometimes assessed by different laboratories (see Appendix
Table 2), which may partly explain the between-cohort heterogeneity
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of the results observed for some exposures. This should not have a
strong impact on our results since the interlaboratory comparisons per-
formed in the framework of the HELIX protocol suggested a high corre-
lation between assessments performed in different laboratories. For
instance, correlation coefficients between phenol urinary concentra-
tionsmeasured by the Norwegian Institute of Public Health and Centers
for Disease Control and Prevention in 12maternal samples of the EDEN
cohort were ≥ 0.90 (Supplementary of Tamayo-Uria et al., 2019). Due to
limited availability of biological samples, some biomarkers of exposure
were not assessed in all cohorts (e.g., metals and semi-metals were not
assessed in INMA, see Appendix Table 5 for details). We used multiple
imputation on the missing values as it has been shown to generate
less bias than exclusion of a variable or a stratum (e.g., exclusion of an
entire cohort for which an exposure biomarker concentration was
fully missing, Held et al., 2016; Jolani et al., 2015). Nevertheless, for
the exposures with many missing values (metals, PBDEs) multiple im-
putation may have widened the confidence intervals of our effect esti-
mates, limiting the ability to detect associations. Moreover, we relied
on spot urine samples to assess exposure to compounds whose urinary
concentration has moderate to high intra-individual variability during
pregnancy (reviewed by Casas et al., 2018). This can potentially lead
to exposure misclassification, attenuation bias and power reduction
(Perrier et al., 2016). It has been shown that the measurement error
and resulting attenuation of the effect estimates varies across exposures
(exposures with the most intra-individual variability have the highest
errors, Perrier et al., 2016). Therefore, we must be cautious when com-
paring exposure-SDQ associations across exposures with differing
intra-individual variability. We decided not to assess all possible
second-order interactions between exposures because, given our lim-
ited sample size and large number of exposures, it could have substan-
tially decreased the power and increased the false positive rate
(Barrera-Gómez et al., 2017). Finally, we focused only on prenatal expo-
sure and did not assess exposure in early postnatal life, a period also rec-
ognized as crucial for brain development.

6. Conclusion

In linewith previous epidemiological studies, our results suggested a
deleterious association between prenatal exposure to bisphenol A,
MnBP (a metabolite of DBP) and child behaviour. According to the tox-
icological literature, the association observed for BPA is biologically
plausible. DETP was also associated with worse behavioural scores,
however this result should be interpreted with caution since it was
driven by the smallest cohort. Cu, DDT, PCB-138, PFOS and PFUnDA
were associated with lower risk of behavioural problems. These associ-
ationswere not reported previously and for lipophilic compounds (DDT
and PCB-138) could even result from changes in body composition dur-
ing pregnancy.
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