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1 Introduction 
Human life expectancy has increased steadily over the last century due to significant improvements 

in public health. Although mortality is markedly lower among youth, an increasing proportion of 

the elderly suffers from age-related diseases such as cancer, cardiovascular disease, dementia, 

diabetes mellitus, hypertension, osteoarthritis, and osteoporosis [1]. These age-related diseases not 

only significantly undermine the quality of life at an individual level, but they also impose an 

enormous economic burden at a societal level [2]. Contemporary medicine has, therefore, focused 

primarily on managing and preventing diseases, including the promotion of well-being and 

longevity among the elderly [3]. 

Aging research is rooted in the science of extending the healthy human life span and has emerged 

as one of the fundamental solutions to the challenges facing contemporary medicine. The US 

National Institute on Aging has long recognized the importance of identifying reliable and 

modifiable biomarkers of aging [4]. At the time of writing, a myriad of candidate biomarkers of 

aging are currently being developed based on known biological hallmarks, including DNA 

methylation (DNAm) [5-8], telomere length [9, 10], CD4+ and CD8+ T cell ratio [11], metabolic 

rate [12], proteomic alterations [13], and gut microbiota [14].  

The scope of aging research has been further broadened to include growth and development in the 

early stages of life. As Raiten et al. [15] stated in their report, there is a pressing need for new 

biomarkers of growth, given that anthropometric measurements such as height, weight, and body 

composition fall short of providing a complete picture of the biological mechanisms underlying 

growth. Accordingly, multiple candidate biomarkers of growth based on DNAm [16, 17], telomere 
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length [18], renal function [19], serum alanine aminotransferase [20], and homocysteine 

concentration [21] have been proposed. 

This thesis is centered on the development of epigenetic biomarkers of aging and growth in humans. 

Paper I proposes blood-based epigenetic estimators of chronological age in adults, based on the 

use of DNAm data from the Illumina MethylationEPIC (EPIC) array, which is, at the time of 

writing, the latest methylation platform developed by Illumina (San Diego, CA, USA). We used 

this array to measure DNAm in 2000 mother-father-newborn trios from the Norwegian Mother, 

Father, and Child Cohort Study (MoBa). Paper II proposes placental tissue-based epigenetic 

clocks to estimate the gestational age of fetuses, using DNAm data from an earlier Illumina 

platform, the Infinium HumanMethylation450 (HM450) BeadChip, containing nearly half the 

number of probes as the EPIC array. Paper III reports an association between two prominent age-

related biomarkers, leukocyte telomere length (LTL) and blood-derived DNAm, using seven 

multi-ethnic cohorts. Leveraging prior evidence that LTL is highly heritable and shortens with 

chronological age, this study identified differentially methylated regions that are associated with 

LTL. 
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2 Background 

2.1 Aging and diseases in adults 

Aging in adults is characterized by the gradual deterioration of biological functions over time. The 

reduced functions indicate an increased vulnerability to environmental challenges that contribute 

to an elevated risk of disease and death [22]. A rich body of literature describes the many physical 

and physiological manifestations of aging in humans [4]. For example, young children gradually 

lose their ability to hear high-frequency sounds as they become teenagers [23]. Adults experience 

hair loss [24] and frailty [25] with advanced chronological age. An increased risk of miscarriage 

is associated with advanced maternal age [26]. 

Advanced chronological age is a long-recognized risk factor for various diseases, the most 

prominent of which are atherosclerosis [27], type 2 diabetes [28], hypertension [29], Alzheimer’s 

disease [30], and Parkinson’s disease [31]. The risk of cardiovascular disease in older males aged 

85 to 94 years is 20-fold higher than in younger males aged 35 to 44 years [32]. The risk of chronic 

obstructive pulmonary disease increases by 94% for each 10-year increment in age [33]. According 

to a 2018-report from the World Health Organization (WHO), ischemic heart disease, stroke, and 

chronic obstructive pulmonary disease were the top three causes of death in 2016 [34]. 

 

2.2 Growth and development in early life 

The process of human growth starts with fertilization. It subsequently spans embryonic and fetal 

development during gestation and continues through infancy into adulthood. A large body of 

research describes physical and developmental changes in the early life course of humans [35]. 
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For example, the sense of hearing in fetuses forms around the 19th week of gestation [36], and the 

canalicular period of lung development ends around the 25th week of gestation [37]. International 

reference curves of fetal birth weight, length, and head circumference are widely used to assess 

gestational age [38, 39]. Postnatally, the child’s weight, height, and body mass index (BMI) are 

used to estimate chronological age [40-42]. Later in the child’s development, specific time 

windows are used to estimate motor and language skill development [43]. 

The growth status in early life has been extensively studied with regard to perinatal morbidity, 

mortality, and health outcomes in adulthood. To the extent that there is a measurably large 

variation in fetal development across individuals [44, 45], gestational age and birth outcomes such 

as birth weight, head circumference, and length have been hypothesized to be useful proxies for 

predicting health status in later life [46-49]. For example, preterm newborns with gestational age 

between 23 and 27 weeks showed a higher risk of infant mortality and autism than those born at 

term [50, 51]. Moreover, individuals whose birth weights are low for gestational age (LGA) are 

more likely to have a higher BMI than those whose birth weights are appropriate for gestational 

age (AGA) [52, 53]. 

The next section elaborates on why chronological (or gestational) age is insufficient in capturing 

individual variation in biological deterioration, growth, and development, and why there is a need 

to develop reliable biomarkers of aging and growth. 

 

2.3 Rationale for biomarkers of aging and growth 

A basic premise of the abovementioned studies in Section 2.1 and 2.2 is that chronological (or 

gestational) age is an effective surrogate for assessing an individual’s aging and growth. To some 
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extent, this is sensible because chronological (or gestational) age readily reflects functional 

differences among individuals with a large age gap, e.g., teenagers versus golden-agers or extreme 

preterm versus term newborns. However, chronological age is not as informative when assessing 

health outcomes in individuals of the same chronological age or groups of individuals with a 

narrow age gap. This is because individuals may exhibit divergent health outcomes, even though 

they have the same chronological age [54, 55]. 

Given that the rate of biological aging varies widely across individuals [56, 57], it is crucial to 

develop a marker of biological aging that captures the variation in functional capacity across 

different age groups and within same-aged peers. For an aging biomarker to be precise and valid, 

two conditions must be met [58-60]. First, it must be highly correlated with chronological age, e.g., 

the Pearson correlation coefficient should be higher than 0.8. Second, it must be highly predictive 

of age-related conditions, including the onset of cancer/cardiovascular diseases, all-cause 

morbidity, mortality, preeclampsia, and neonatal/postnatal death. 

The current consensus views DNAm-based epigenetic clocks and telomere length as the best 

biomarker of aging [61]. The next section explains what these two biomarkers are, how they are 

developed, and to the extent to which they predict chronological age and age-related conditions. 

 

2.4 Candidate biomarkers of aging: DNAm and telomere length 

2.4.1 DNAm 

DNAm refers to the process by which a methyl moiety ( ) is added to specific nucleotides in 

DNA. Of the four DNA nucleotides present in human DNA (cytosine (C), adenine (A), guanine 
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(G), and thymine (T)), methylation occurs predominantly at cytosine and only occasionally at 

adenine. The methylated form of cytosine, commonly referred to as 5-methylcytosine (5mC), has 

a methyl group attached to the fifth carbon of its cytosine 6-atom ring (Figure 1A). The vast 

majority of cytosine methylations are observed in ‘cytosine-phosphate-guanine’ dinucleotide 

motifs, which are commonly referred to as CpG sites [62]. Cytosine methylation has also been 

observed at a cytosine that is followed by either adenine, thymine, or another cytosine (abbreviated 

as CpH, where H is either A, T, or C). This non-CpG methylation is prevalent in human embryonic 

stem [63, 64] and brain [65, 66] cells. The methylated form of adenine, N6-methyladenine (6mA) 

(Figure 1B), is less common than 5mC (~0.05% of the total adenines [67]). 

 
Figure 1. Chemical structure of (A) 5mC and (B) 6mA. 

 

The human genome contains an estimated total of 28 million CpG sites [68]. The observed 

frequency of CpG sites is 25% of the expected frequency if one assumes random nucleotide 

composition, which means that CpG sites are underrepresented across the genome. The CpG sites 

tend to cluster in specific regions of the genome, such as promoters, with 60-70% of the CpGs 

located near transcription start sites [69]. These CpG-dense regions are termed CpG islands (CGIs) 
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if they are 200-2,000 base pair long, have a high GC content (>50%), and show a high ratio (>0.6) 

of observed to expected number of CpG sites [70]. 

Nearly two decades ago, Lander et al. [71] reported the presence of 28,890 CGIs across the human 

genome. The CGIs are typically found in proximal promoters near transcription start sites [72] and 

in distal promoters that regulate transcription factor binding to gene bodies [73, 74]. Most CpG 

sites outside of CGIs are typically methylated, whereas most CpG sites within CGIs tend to be 

unmethylated [74]. 

DNA methyltransferases (DNMTs) are members of an important family of enzymes that catalyze 

the transfer of a methyl group from S-adenosyl-L-methionine to cytosines or adenines [75, 76]. 

These DNMTs belong to two families: DNMT1 and DNMT3. The primary function of DNMT1 is 

to maintain existing DNAm patterns [77, 78]. During cell division, for example, the parent strand 

maintains the methylated sites, whereas the daughter strand does not. DNMT1 binds to the 

daughter strand to maintain the established DNAm of the parent strand [79]. DNMT3 does not 

only preserve existing DNAm, similar to DNMT1, but it also creates de novo changes at non-

methylated CpG sites [78]. The activities of DNMT3 are often found in early embryonic 

development [77, 80]. 

 

2.4.2 Biological mechanisms associated with DNAm 

DNAm regulates gene expression by activating or repressing transcription in differentiated cells. 

Early studies reported correlations between cytosine methylation and gene expression in mammals 

and other vertebrates [81-83]. However, these studies only focused on a limited number of CpG 

sites in a small number of genes. The advent of high-throughput microarrays has subsequently 
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enabled screening for associations between cytosine methylation and gene expression at a genome-

wide level. The current consensus is that methylation in promoter regions suppresses gene 

expression, whereas methylation in gene bodies activates gene expression [84-87]. However, this 

pattern is not completely consistent across the genome because the direction of the association 

between methylation and gene expression may depend on the genomic location of the CpG sites 

[75, 88, 89]. 

Mammalian DNAm patterns show spatiotemporal variation in early development [90]. 

Investigations into the methylation mechanisms underlying genomic imprinting and X-

chromosome inactivation are particularly active areas of research. Genomic imprinting refers to 

the expression or repression of a gene in a parent-of-origin specific manner [91, 92]. Imprinting 

marks are erased and reprogrammed during germline cell development [93]. Differentially 

methylated imprinting control regions are present in both maternal and paternal germline cells [91, 

94]. X-chromosome inactivation is a process by which one of the two X chromosomes in females 

is silenced to maintain a similar gene dosage in males and females [95]. The majority of CGIs 

show higher methylation levels on the inactive X chromosome than the active X chromosome [95, 

96]. 

Alterations in DNAm have also been associated with pathological processes in mammals [97]. For 

example, different types of cancer show promoter hypermethylation, which is also associated with 

reduced expression of tumor-suppressor genes [98]. In immune effector cells, differentially 

methylated regions have been reported to be associated with type 1 diabetes [99] and rheumatoid 

arthritis [100]. Differential DNAm, i.e., hypomethylation in CGIs but hypermethylation in open 

seas, has also been reported in type 2 diabetes [101, 102]. Moreover, associations between DNAm 

and other metabolic traits, including lipoprotein cholesterol [103], triglycerides [104], and 
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coronary artery disease [105], have also been scrutinized [97]. For example, Guay et al. [105] 

reported that lower DNAm levels at the gene coding for ‘troponin T1, slow skeletal type’ (TNNT1) 

were associated with lower high-density lipoprotein cholesterol levels and a higher risk of coronary 

artery disease in men with familial hypercholesterolemia. 

 

2.4.3 Age-related change in DNAm 

A broad range of studies has assessed age-related changes in methylation across the human 

genome. Drinkwater et al. [106] reported that older subjects (mean age 75 years) had reduced 5-

methylated cytosine levels in total peripheral blood DNA compared to younger subjects (mean age 

25 years). Kwabi-Addo et al. [107] found a strong linear relationship between age and DNAm 

levels at the promoter regions of several genes in normal prostate tissue samples.  

Further evidence of an association between DNAm and age has emerged from more recent 

microarray-based studies. For example, Christensen et al. [108] reported an association between 

DNAm and age in several tissues and organs, including the brain, lung, blood, head, and neck. 

Boks et al. [109] examined whole-blood samples of twins and healthy controls and reported similar 

associations. Alisch et al. [110] found 2,078 age-related loci using DNAm data from peripheral 

blood samples of boys aged 3-17 years. These findings add support to the early hypothesis of 

Cooney [111] that somatic cells inherit incomplete DNAm after each cell division, which 

eventually leads to genetic instability and senescence. 

Microarray-based studies in newborns have revealed gestational age-related changes in DNAm 

from cord blood [16, 112-115] and placental tissues [116, 117]. In one of the first studies 

examining gestational age in newborns, Bohlin et al. [16] identified 5,474 CpGs associated with 
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gestational age using DNAm data generated from cord blood samples of 1,753 newborns. In a 

recent meta-analysis of 3,648 newborns from 17 cohorts, Merid et al. [112] found 8,899 CpGs 

associated with gestational age. Novakovic et al. [116] reported differentially methylated regions 

between placental tissues from the 1st and 3rd trimester. Further, using DNAm data from placental 

samples of 170 newborns, Mayne et al. [117] identified 62 CpG sites that were predictive of 

gestational age 

 

2.4.4 Microarrays for measuring DNAm  

Whole-genome bisulfite sequencing (WGBS) is currently the gold standard for distinguishing 

methylated from unmethylated cytosines at a genome-wide level [118]. This method uses sodium 

bisulfite, which converts unmethylated cytosines to uracils but leaves methylated cytosines 

unchanged. Methylation levels are then quantified by contrasting bisulfite-converted DNA reads 

against non-converted reads. Although WGBS has been successful in measuring DNAm in diverse 

cells and tissues at a genome-wide level, it is still relatively expensive. It also requires advanced 

technical expertise to process the resulting sequence data. 

An alternative to WGBS is high-throughput microarrays, such as the Infinium BeadChip® array 

produced by Illumina (San Diego, CA, USA). Microarrays have garnered substantial interest in 

recent years because they are user-friendly and can readily generate a comprehensive DNAm 

dataset for downstream analyses [118]. The Infinium technology is based on sodium bisulfite 

conversion of DNA, similar to WGBS, but instead of whole-genome sequences, this method 

targets CpG sites using specific probes on a microarray. The Infinium BeadChip, Illumina 

HumanMethylation27 BeadChip (HM27), was introduced in 2008 and contained 27,578 probes 
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targeting CpG sites in proximal promoter regions of consensus coding sequence (CCDS) genes 

derived from the latest reference mouse and human genomes [119, 120]. The advent of HM27 

heralded a new era of epigenetic studies by enabling epigenome-wide association studies (EWASs) 

of a wide range of phenotypes, including aging [121], type I diabetes [122], hearing ability [123], 

breast cancer [124], cigarette smoking [125], schizophrenia [126], and Kawasaki disease [127], 

among many others. 

Since HM27 was launched, Illumina has introduced new microarrays by extending the genomic 

coverage of its Infinium BeadChips. HM450 was first introduced in 2011 and contained 485,577 

probes that targeted 482,421 CpGs, 3,091 CpHs, and 65 single-nucleotide polymorphisms (SNPs). 

Subsequently, Illumina introduced EPIC in 2016, raising the number of probes to 865,918. These 

probes targeted 862,927 CpGs, 2,932 CpHs, and 59 SNPs (please refer to the Manifest v1.0 B51 

released by Illumina for further details [128]).  

                                                           
1 The annotations included in the manifest file correspond to the human genome assembly GRCh37 (hg19), unless 
stated otherwise. 
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Figure 2. Illustrative workflow of the Illumina Infinium BeadChip. 

Source: Infinium® HD Assay Methylation Protocol Guide, and Pidsley et al. [118]. 
This figure outlines the laboratory workflow and hybridization of DNA fragments to the probes 

on the BeadChip. The pattern of hybridization, i.e., the binding to the beads and single-base 
extension for each type of probe (Type I and Type II) is outlined in step 3. M=methylated, 

U=unmethylated. 
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Laboratory workflow of the Illumina Infinium BeadChips 

The laboratory workflow of all the three Illumina Infinium BeadChips (HM27, HM450, and EPIC) 

starts with sodium bisulfite conversion of DNA samples (Figure 2). Sodium bisulfite converts 

unmethylated cytosine to uracil but leaves methylated cytosines unaltered. The uracil from the 

bisulfite conversion is then converted to thymine after DNA amplification. 

For HM27, DNA samples are hybridized to the two types of Infinium Type I probes, each of which 

is designed to measure the methylation level at one of the targeted CpGs. Each of the Infinium 

Type I probes has methylated (M) and unmethylated (U) beads (Figure 2). The methylated bead 

has a 5’ to 3’ sequence that ends with the target CpG. By contrast, the unmethylated bead has a 5’ 

to 3’ sequence that ends with a dinucleotide of C followed by A. A 3’ to 5’ fragment that includes 

the target GC site (reversed CpG site) with methylation can only bind to the methylated bead. By 

contrast, a 3’ to 5’ fragment that includes the target GC site without methylation (GT after bisulfite 

conversion and amplification) can only bind to the unmethylated bead.  

If the binding is successful, beads carry out single-base extension by adding one complementary 

nucleotide downstream of the target GC site. This complementary nucleotide is labeled with either 

a green or a red fluorophore. Cytosine and guanine are labeled green, whereas adenine and thymine 

are labeled red. Therefore, the intensity of methylation is quantified either as green or red, 

depending on the nucleotide downstream of each target GC site. HM450 and EPIC also include 

the Infinium Type I probes, the principle of which is identical to that of HM27. 

The remarkable improvement in HM450 and EPIC stems from their use of Infinium Type II probes. 

The Infinium Type II probes carry only one bead consisting of a 5’ to 3’ sequence that ends with 

a cytosine from a target CpG. Therefore, if a 3’ to 5’ fragment including the target GC site with 
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methylation binds to the bead, a complementary guanine labeled green is added to the 3’ end of 

the bead. Conversely, if a 3’ to 5’ fragment including the target GC site without methylation (GT 

after bisulfite conversion and amplification) binds to the bead, a complementary adenine labeled 

red is added to the 3’ end of the bead. Thus, the intensity of methylation is measured by two colors 

(green and red) in Type II probes. 

Bead chips with single-base extension are scanned using the Illumina HiScan or iScan System. 

The scanner generates two high-resolution raw image files (iDAT) for each sample, one with the 

red label and the other with the green label, based on the fluorophores emitted from the bead chips. 

 

Development of a bioinformatics pipeline 

The minfi R package [129] is widely used to process iDAT files because it enables building a fine-

tuned pipeline with automated quality control steps. This includes probe/sample exclusion, 

background noise correction, and normalization. In addition to the minfi package [129], the 

RnBeads package [130] is another popular software for downstream analyses because it provides 

an all-in-one automated quality control procedure. Although the user-friendly interface of these 

bioinformatics packages increases efficiency, it is still important to understand the mechanisms 

behind each function for a fair assessment of the quality of DNAm data. 

The first step in the quality-control pipeline is to read iDAT files and quantify the fluorescence 

intensities at each probe using the read.methylarray.exp function, which produces an 

RGChannelSet object. The RGChannelSet includes ‘manifest’ information in the form of 

two datasets: one for red fluorescence intensities and the other for green fluorescence intensities 

(please refer to Figure 3 for further details regarding each of these datasets).  



22 
 

The next step is to determine the methylated and unmethylated intensity at each locus using 

different background correction and normalization functions (introduced in Section 4.1.2). Given 

these functions are based on different normalization methods, the function proprocessRaw 

assigns the red and green fluorescence intensities to corresponding loci using the probe addresses 

(denoted as AddressA and AddressB in the manifest file in Figure 3). For example, the 

unmethylated intensity of sample 1 at cg00050873 must be obtained from the red intensity of 

sample 1 at nucleotide position 31717405. In contrast, the methylated intensity must come from 

the red intensity at nucleotide position 32735311. The important point here is that the addresses of 

unmethylated beads can be found in AddressA, whereas those of methylated beads can be found 

in AddressB.  

To illustrate, in the case of cg13718664, the methylated intensity of sample 1 must come from the 

red intensity at 32735323, and the unmethylated intensity must come from the green intensity at 

the same address (327353223). Normalization methods are then applied to the methylated and 

unmethylated intensities (please see Section 4.1.2 for further details). 
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Figure 3. Underlying functionality for generating methylated and unmethylated intensities. 

A manifest file contains technical and genomic information on all targeted loci (mostly CpG 
sites). This file includes the type and address of probes, the color of fluorescence, the name of 
neighboring genes, the type of genomic region, and much more. For illustrative purposes, the 

main manifest file is displayed here as two separate excerpts, one for Type I probes and the other 
for Type II probes.  

 

The final step is to compute beta and M values based on the levels of methylation and 

unmethylation at each locus. The beta values are defined as , where  and  are the levels 

of methylation and unmethylation, respectively. The M values are defined as . 

The next section describes the existing biomarkers of aging trained on microarray DNAm data. 
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2.4.5 DNA methylation-based aging biomarkers 

The development of aging biomarkers begins with a search for associations between human 

chronological age and DNAm levels at each CpG site [108-110, 122, 131-133]. Although several 

individual CpG sites show modest correlations with chronological age [134, 135], these individual 

CpG sites are insufficient to obtain a high and robust age correlation across independent cohorts.  

The approach of using a linear combination of DNAm at multiple CpG sites has been proposed to 

increase the prediction accuracy of aging biomarkers [5, 132]. Mathematically, the epigenetic age 

of the th individual can be defined as , where  is the th 

individual’s DNAm level at the th CpG site, and  are the estimated coefficients. 

Penalized regression has been widely used to estimate these coefficients owing to its efficacy in 

selecting variables that are most predictive of an outcome of interest from high dimensional data 

(i.e., data in which the number of predictor variables is much larger than the sample size). The next 

sections will elaborate on the modeling procedures and performance of various existing epigenetic 

clocks. 
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Single-tissue epigenetic clocks: Bocklandt et al. (2011) Saliva Clock and Hannum et al. 

(2013) Blood-based Clock  

Bocklandt et al. [132] developed an epigenetic clock using saliva-based HM27-derived DNAm 

data from 34 identical male twin pairs aged 21-55 years. They used penalized linear regression, 

i.e., Least absolute shrinkage and selection operator (LASSO), together with a regularization 

parameter chosen through a ‘leave-one-out strategy,’ which selected the three strongest predictors 

of chronological age. Their results showed a correlation coefficient of r=0.83 between predicted 

and observed age, and a mean absolute difference (MAD) of 5.2 years between predicted and 

observed age in the training set. However, the Bocklandt et al. [132] Saliva clock was not validated 

in an independent cohort. 

Subsequently, Hannum et al. [5] proposed another epigenetic clock that was trained on blood-

based HM450-derived DNAm data from 656 individuals aged 19-101 years. Like the Bocklandt 

et al. [132] Saliva clock, Hannum and colleagues applied penalized linear regression (i.e., elastic 

net regression – a mixture of LASSO and ridge regression) of chronological age on DNAm levels 

at more than 450,000 CpG sites. The regularization parameter was chosen through 10-fold cross-

validation, resulting in the selection of 71 CpG sites. The Hannum et al. [5] Blood-based clock 

was validated in 174 independent samples (r=0.90, Root Mean Square Error=4.89 years). However, 

later applications of this method showed that this clock was suboptimal for age prediction in 

children [136, 137]. 

The two epigenetic clocks described above were trained on single-tissue DNAm data (saliva or 

blood) that can be obtained from human subjects non-invasively. These single-tissue clocks are 

thus easily applicable to other studies with DNAm from saliva or blood samples. As the Hannum 

et al. [5] Blood-based clock has shown highly accurate age predictions, it has widely been used to 
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estimate the epigenetic age of human blood tissues from healthy controls and subjects with a 

condition [138-140]. 

However, a criticism of these single-tissue clocks was that they were insufficient in reflecting an 

innate aging profile functioning across all human tissues and cells [60]. In an attempt to address 

this limitation, Hannum et al. [5] applied their epigenetic clock to DNAm generated from breast, 

kidney, lung, and skin tissue (Figure 4A in Hannum et al. [5]). As there were substantial linear 

offsets in age predictions, they had to calibrate the offsets using linear regressions. 

Later in 2013, the criticism against single-tissue epigenetic clocks was addressed by the Horvath 

[6] Pan-tissue clock, which was applicable to DNAm generated from various human tissues. 

 

Multi-tissue epigenetic clock: Horvath [6] Pan-tissue Clock 

Horvath [6] developed an epigenetic clock using 82 DNAm datasets (a mixture of HM27 and 

HM450) from 51 healthy tissues2 taken from 8,000 individuals aged 0-100 years. Elastic net 

regression with a mixture parameter of 0.5 resulted in the selection of 353 CpG sites that were 

present on both HM27 and HM450. In a test set comprising DNAm from multiple tissues, the 

Horvath [6] Pan-tissue clock showed a correlation coefficient of 0.96 and a MAD of 3.6 years, 

underscoring its high accuracy in predicting epigenetic age across multiple tissues. As the Horvath 

[6] Pan-tissue clock enables the measurement of epigenetic age across a broad spectrum of tissues, 

it has been used to investigate epigenetic age in a wide variety of age-related conditions (see Table 

1 in the review article by Horvath and Raj [60]).  

                                                           
2 White blood cell, peripheral blood mononuclear cell, cord blood, cerebellum, frontal cortex, prefrontal cortex, 
temporal cortex, breast, buccal, cartilage knee, colon, dermal fibroblast, epidermis, gastric, head, neck, heart, 
kidney, liver, lung, bone marrow, placenta, prostate, saliva, stomach and thyroid. 
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An underlying hypothesis for these association studies was that ‘epigenetic age acceleration’ (EAA) 

might be associated with the risk of age-related conditions. In other words, individuals with a given 

condition might be epigenetically older or younger than same-aged subjects without the condition. 

Note that EAA is obtained from the residuals of a regression of epigenetic age on chronological 

age. As Horvath and Raj [60] highlighted in their review, several studies found modest to strong 

associations between EAA and a variety of health conditions, including cognitive function, frailty, 

Down syndrome, Huntington disease, and insulin level, indicating that EAA might explain why 

people of the same chronological age show different risks of age-related diseases. However, EAA 

derived from the Horvath [6] Pan-tissue clock showed only weak associations with BMI, time to 

death, and markers of immunosenescence, underscoring the need for additional clocks that target 

other traits and tissues. 

 

Levine et al. [8] PhenoAge clock  

Levine et al. [8] proposed a new epigenetic clock by penalized-regressing ‘phenotypic age,’ 

instead of chronological age, on blood-based DNAm. They hypothesized that the phenotypic age 

estimated from clinical biomarkers3 would be better at capturing individual variations in the onset 

of age-related disease, functional deterioration, and death than chronological age. The 

development of the Levine et al. [8] PhenoAge clock comprised two steps. First, phenotypic age 

was estimated using a penalized Cox regression of the time to aging-related mortality on 42 clinical 

biomarkers in 9,926 adult samples. This procedure selected ten clinical biomarkers3. Second, the 

phenotypic age was penalized-regressed on DNAm levels at 20,169 CpG sites that were common 

                                                           
3 Albumin, creatinine, serum glucose, C-reactive protein, lymphocyte percent, mean (red) cell volume, red cell 
distribution width, alkaline phosphatase, white blood cell count, and chronological age. 
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between HM27, HM450, and EPIC. This regression resulted in the selection of a total of 581 CpG 

sites. 

Although the Levine et al. [8] PhenoAge clock was suboptimal at predicting chronological age 

(r=0.62 to 0.89), it substantially improved prediction of age-related conditions compared to the 

earlier Horvath [6] Pan-tissue clock and Hannum et al. [5] Blood-based clock. Based on analyses 

in independent cohorts, the Levine et al. [8] PhenoAge clock showed strong associations with age-

related morbidity (P=1.95E-20), all-cause mortality (P=7.9E-47), smoking (P=0.0033), ethnicity 

(P =5.1E-5), higher education (P=6E-9), higher income (P=9E-5), and blood cell counts (naïve 

CD8+ T cells: P=9.2E-65, naïve CD4+ T cells: P=4.2E-42, and CD4+ helper T cells: P=3.6E-58), 

after adjusting for chronological age.  

There are two important considerations regarding the Levine et al. [8] PhenoAge clock. First, the 

authors could have used a penalized Cox regression of time-to-mortality on DNAm, instead of the 

two-step procedure. Indeed, Zhang et al. [141] published an epigenetic clock where the mortality 

score was estimated from DNAm levels at ten CpG sites, using a penalized Cox regression on the 

58 preselected CpGs from an EWAS of mortality (False discovery rate (FDR)<0.05). However, 

according to the supplementary analyses by Levine et al. [8], the Zhang et al. [141] clock presented 

a weaker association with all-cause mortality than the Levine et al. [8] PhenoAge clock. The Zhang 

et al. [141] clock would have performed better if the authors had included a larger number of CpG 

sites. Second, one can simply use the phenotypic age estimated from the ten clinical biomarkers 

rather than the epigenetic estimator of the estimated phenotypic age. The latter has fundamental 

relevance for the utility of epigenetic biomarkers of aging. Whether epigenetic modification is 

directly responsible for aging is not known, but if this were the case, epigenetic biomarkers of 
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aging would be able to contribute important insights to therapeutic interventions, either by 

attenuating or even reversing biological aging [142]. 

 

Horvath et al. [7] Skin & Blood clock and Lu et al. [143] GrimAge clock 

Horvath et al. [7] recently proposed a novel and accurate epigenetic estimator of chronological 

age, commonly referred to as the Horvath et al. [7] Skin & Blood clock, trained on DNAm data 

from skin, blood, and saliva samples. The authors focused on the CpG sites that were shared by 

HM450 and EPIC. Among these CpG sites, they preselected CpGs that were significantly 

associated with chronological age and those that were only weakly associated with chronological 

age. They then penalized-regressed chronological age on these preselected CpGs. The mixture 

parameter was set to 0.5, and the regularization parameter was selected through cross-validation. 

This clock outperformed both the Horvath [6] Pan-tissue clock and the Hannum et al. [5] Blood-

based clock in predicting chronological age in skin and blood samples. Moreover, it showed high 

age correlations in neurons, glia, brain, liver, and bone tissues. Not surprisingly, therefore, this 

clock was deemed to be highly useful in forensics. 

More recently, Lu et al. [143] published a compelling epigenetic clock, referred to as GrimAge, 

using a DNAm-based surrogate for smoking pack-years and seven DNAm-based surrogates for 

plasma protein levels4. Similar to the Levine et al. [8] PhenoAge clock, a two-step strategy was 

used as follows: First, Lu and colleagues penalized-regressed each of 88 plasma protein levels and 

smoking pack-years on chronological age, sex, and the CpGs in common between 450K and EPIC, 

                                                           
4 Adrenomedullin, beta-2-microglobulin, CD56, ceruloplasmin, cystatin-C, EGF fibulin-like ECM protein1, 
growth differentiation factor 15, leptin, myoglobin, plasminogen activator inhibitor 1, serum 
paraoxonase/arylesterase 1, and tissue Inhibitor Metalloproteinases 1 (those highlighted in bold here in this list 
were selected for the GrimAge clock).  
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and then selected 12 plasma proteins4 that showed a moderate correlation coefficient (r>0.35) 

between observed and imputed values in the test sets. Second, the authors penalized-regressed 

time-to-death (all-cause mortality) on chronological age, sex, the DNAm-imputed smoking pack-

years, and 12 DNAm-imputed plasma proteins. The elastic net Cox regression selected 

chronological age, sex, DNAm pack-years, and the seven DNAm-imputed plasma proteins4. 

The strength of GrimAge, as a second-generation epigenetic clock along with the Levine et al. [8] 

PhenoAge clock, lies in its strong association with age-related conditions. The EAA stemming 

from GrimAge shows a very strong association with time-to-death (P=2.0E-75), time-to-coronary 

heart disease (P=6.2E-24), time-to-cancer (P=1.3E-12), age-at-menopause (P=1.6E-12), and 

comorbidity count (P=3.45E-17). A recent study showed that having a higher GrimAge is also 

associated with cognitive decline [144]. 

Despite its strong associations with mortality and age-related diseases, GrimAge has not yet been 

able to replace existing clinical biomarkers, such as blood glucose and blood pressure, because 

measuring DNAm levels is still not simple or cost-effective. The processing time depends on the 

turnaround of a given core facility, which may range from several weeks to months. Furthermore, 

the price of the EPIC BeadChip Kit for 16 samples is currently at €4,295 (updated quote from 

September 8th, 2020, according to Illumina’s website [128]). 

 

Bohlin et al. [16] Cord Blood clock and Knight et al. [17] Cord Blood clock. 

Bohlin et al. [16] and Knight et al. [17] each developed an epigenetic estimator of gestational age 

trained on DNAm data derived from newborns’ cord blood. Both used penalized regression to 

select the CpG sites that were most predictive of gestational age. Specifically, the mixture 

parameters in  Bohlin et al. [16] and Knight et al. [17]  were 1 and 0.5, respectively. Simpkin et 
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al. [145] validated these two clocks in a publicly accessible population-based resource of DNA 

methylation data known as the Accessible Resource for Integrated Epigenomic Studies (ARIES) 

[146]. The Bohlin et al. [16] Cord Blood clock showed a higher correlation with gestational age 

(r=0.65) than the Knight et al. [17] Cord Blood clock (r=0.37).  

The above epigenetic estimators of gestational age are useful as proxies for assessing 

developmental maturity and gestational age in newborns. According to Khouja et al. [147], greater 

gestational age acceleration by the Bohlin et al. [16] clock was associated with higher maternal 

BMI (P<0.001), birth weight (P<0.001), birth length (P<0.001), and head circumference (P<0.001). 

In addition, Bright et al. [148] reported that newborns with one-week greater gestational age 

acceleration were 0.14 kilograms heavier and 0.55 centimeters taller, and this effect persisted until 

nine months of age but attenuated thereafter. 

 

2.4.6 Telomere length 

Telomeres are the repetitive hexanucleotide sequences (TTAGGG)n that tag the end of each 

chromosome. Their broad function is to prevent genomic instability [149]. Telomeres in somatic 

cells shorten after each cell division due to the repressed activities of the enzyme telomerase whose 

role is to maintain the ends of chromosomes [150-153]. Analyses in large cohorts have shown that 

telomere length (TL) shortening in leukocytes is correlated with advanced chronological age (r=-

0.29 to -0.45 in the blood samples of individuals aged 20-90 years, Lee et al. [154]). TL ranges 

from nine to 11 kilobases at birth [155] but gradually shortens to approximately four kilobases 

around 70-80 years of age [156]. The age-dependent attrition and considerable individual variation 

in TL make it a strong candidate biomarker of aging. To examine the validity of TL as an aging 
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biomarker, there have been many attempts to search for associations between TL, mostly LTL, 

and age-related conditions (e.g., mortality, cardiovascular disease, and cancer) after adjustment for 

chronological age [157]. 

Strikingly, shorter LTL appears to be associated with increased mortality and risk of 

cardiovascular disease. Deelen et al. [158] reported a significant LTL-mortality association using 

data from 870 siblings aged between 90 and 99 (nonagenarians), 1,580 of their offspring, and 725 

spouses from the Leiden Longevity Study [159]. Analyses in twin cohorts corroborated these 

findings (Bakaysa et al. [160] and Kimura et al. [161]). For example, Fitzpatrick et al. [162] 

reported a three-fold elevated risk of myocardial infarction and stroke per one unit decrease in 

LTL (in kilobase of the terminal restriction fragment (TRF)) in 419 subjects from the 

Cardiovascular Health Study [163]. Mwasongwe et al. [164] analyzed 2,518 individuals from the 

Jackson Heart Study [165] and reported that the a higher risk of subclinical atherosclerosis and 

peripheral arterial disease was associated with having shorter LTL. Furthermore, findings from an 

analysis of 3,259 adults showed that the risk of all-cause mortality was three-fold higher per one 

unit decrease in LTL [166]. 

By contrast, the risk of certain types of cancer appears to be lower with shorter LTL [157]. Nan et 

al. [167] found a protective effect of shorter LTL against melanoma in 557 melanoma cases and 

579 age-matched controls. Anic et al. [168] replicated the association between shorter LTL and 

reduced risk of melanoma using the data from 198 melanoma cases and 372 controls. The 

protective effect of shorter LTL was examined in other cancer types, including cancer of the lung 

[169, 170], breast [171, 172], pancreas [173], and prostate [174]. Further, Telomeres Mendelian 

Randomization Collaboration [175] also showed that longer LTL was associated with an increased 

risk of several types of cancers, including glioma (odds ratio (OR) 5.27, 95% confidence interval 
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(CI): 3.15, 8.81), ovarian cancer (OR 4.35, 95% CI: 2.39, 7.94), lung adenocarcinoma (OR 3.19, 

95% CI: 2.40,4.22), neuroblastoma (OR 2.98, 95% CI: 1.92, 4.62), and bladder cancer (OR 2.19, 

95% CI: 1.32, 3.66). 

To explain this apparent cancer-cardiovascular disease trade-off, i.e., shorter TL is associated with 

an elevated risk of cardiovascular disease, whereas longer TL is associated with an increased risk 

of cancer, Stone et al. [157] and Aviv and Shay [176] invoked a hypothesis that involves the rate 

of cellular replications in the association between TL and cancer. Notably, short TL induced by 

repressed telomerase limits the replicative capacity of cells, which lowers the odds of malignant 

transformation in the cell cycle [157]. By contrast, the limited cell replications from having a 

shorter TL also point to a higher risk of degenerative diseases such as myocardial infarction, stroke, 

and atherosclerosis. 

These findings have led to the analysis of several determinants of TL. First, higher oxidative stress 

predicts shorter LTL. The guanines in the TTAGGG tandem repeats in telomeres are particularly 

vulnerable to the hydroxyl radicals produced by oxidative stress. The guanines are oxidized to 8-

oxoguanines [177-179], which interfere with telomerase activity and contribute to telomere 

attrition. The association between oxidative stress and cardiovascular disease [180] supports the 

link between oxidative stress and TL. Secondly, several genome-wide analyses have shown that 

TL is associated with several genetic variants [181-184]. Although 11-14 loci have thus far been 

recognized as genetic determinants of LTL, the exact role of the involved genes remains obscure, 

except for the associations with TERT and TERC [157]. TERT is the catalytic subunit of telomerase, 

while TERC provides the template to synthesize the telomere repeats [149]. 
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3 Aims of the thesis 
 

The overarching goal of this thesis was to develop biomarkers of aging and growth in humans. 

Accordingly, I developed several novel DNA methylation-based estimators of chronological age 

in adults and gestational age in fetuses. Further, I conducted a genome-wide investigation of LTL 

in relation to DNAm.  

 

The specific aims of this thesis were as follows: 

1. Develop EPIC-derived blood-based epigenetic clocks that predict chronological age in adults. 

2. Develop placental epigenetic clocks that predict fetal gestational age. 

3. Conduct an EWAS of LTL in seven large adult cohorts. 
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4 Methods 
This section outlines quality control procedures for microarray-based DNAm data, including the 

calculation of detection p-values, background correction, and normalization. As mentioned in 

Section 2.4.4, both background correction and normalization are crucial steps for processing iDAT 

files because they minimize the impact of non-biological signals and systematic discrepancies in 

the intensities between the Type I and Type II probes. Although a plethora of approaches for 

background correction and normalization have been proposed in the literature, this section only 

covers those that were used in Paper I-III. For illustrative purposes, mathematical reasoning and 

schematic flowcharts will be actively employed to reflect the core idea behind each approach. 

Furthermore, this section describes the methodological underpinnings of telomere length 

measurement (Southern blot analysis of terminal restriction fragment and quantitative polymerase 

chain reaction). Lastly, I elaborate on penalized linear regression and multiple testing that were 

mainly used in Paper I-III. 

This section does not repeat the descriptions of the study populations used in Paper I-III. Relevant 

information can be found in the Methods section of each paper. 

 

4.1 Quality control for microarray DNAm data 

4.1.1 Detection p-values and exclusion criteria for samples and probes  

Quality control in microarray-derived DNAm data is necessary to assess the reliability of each data 

point [185]. It starts with using a detection p-value to evaluate whether the total fluorescence 

intensity ( , Section 2.4.4) at each probe in each sample is strong enough, i.e., whether 
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it deviates enough from the Gaussian distribution of noise signals. Figure 4 displays how the 

detectionP function from the minfi R package computes the detection p-values for the Type I 

and Type II probes in an individual. First, detectionP estimates the two parameters, mean and 

standard error, for the Gaussian distribution of noise signals emitted from negative control probes. 

Second, detectionP calculates  where  and  is a realized value of the 

total intensity ( ). 

 

Figure 4. Calculation of detection p-values for Type I and Type II probes in an individual. 

The DetectionP function from the minfi R package repeats this procedure across all probes 
and all individuals. The number used in this figure has been selected arbitrarily for illustrative 

purposes. 
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Data points with detection p-values>0.01, i.e., the total intensities are as weak as noise signals, are 

left out in the resulting DNAm data. Moreover, samples or probes with a high proportion of large 

detection p-values are also excluded from the data. Here, it is worth noting that laboratory settings, 

e.g., the kit used for bisulfite conversion and the type of scanning instrument used for measurement, 

can influence the detection p-values and probe/sample exclusions. 

A quality control (QC) process also filters out probes near SNPs and those with low bead counts 

or cross-hybridization [186]. This is because the fluorescence intensities measured at these probes 

are unlikely to reflect methylation levels but rather genotypic variant callings or technical noises. 

Additionally, samples with sex mismatch, which are determined using the methylation signals 

from the sex chromosomes, are excluded. Relevant information about these probes can be obtained 

through the minfi-compatible packages5 derived from the released manifest file from Illumina (e.g., 

the RnBeads.hg19 annotation in the case of the RnBeads package [130]). 

 

4.1.2 Background correction and normalization of DNAm data 

The next step after the exclusion of probes and samples is background correction and 

normalization. Although these two terms are often used interchangeably in the literature, they are 

different procedures. Background correction is for minimizing background noise in intensities by 

calculating conditional expectations, whereas normalization is for reshaping the distributions of 

intensities across samples. However, the conceptual difference between these two terms does not 

necessarily mean that they are mutually exclusive. For example, in Paper I, we removed 

background noise using normal-exponential out-of-band probes (Noob) and then applied Beta-

                                                           
5 IlluminaHumanMethylation450kanno.ilmn12.hg19 or IlluminaHumanMethylationEPICanno.ilm10b4.hg19 
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mixture quantile dilation (BMIQ) to the background corrected beta values in the RnBeads package 

[130]. 

 

4.1.2.1 Normal-exponential out-of-band probes (Noob) 

The Noob method is to correct for background noise by deriving conditional expectations of true 

biological signals given the observed signals. Although Triche et al. [187] is widely cited for this 

Noob method, an earlier publication by Xie et al. [188] had already provided all the details of the 

underlying mathematical framework, including the derivation of conditional expectations and 

estimation of parameters. Hence, the mathematical elaborations in the following paragraphs will 

employ the notations of Xie et al. [188]. 

First, the observed intensity at the th locus is assumed to be the sum of the true signal and 

background noise. 

 

 

Then, the observed signal at the th negative control probe is assumed to be identical to the 

background noise. 

 

 

Again, as mentioned above, the purpose of the Noob normalization is to find the conditional 

expectation of the true intensity given the observed intensity, To do this, the conditional 

probability density function of  given , , is defined as follows: 
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To derive the numerator, the joint probability density function of  and  is defined as follows: 

 

Then, the variable transformation of  is applied. Here, the Jacobian is  

 

Next, we integrate  over  to obtain . 

 

Therefore, the conditional probability function of  given  is as follows: 

 

Based on the conditional probability function of  given , the corresponding conditional 

expectation is as follows: 
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where , and  and  are the probability density functions and the 

cumulative density functions of a normal distribution with a mean and variance, respectively. 

The next step is to estimate the distribution parameters ( , and ) used in the . Two 

components are required for this: 1) negative control data and 2) an estimation method. The Noob 

normalization method employs the out-of-band intensities for negative control. The out-of-band 

intensities, a type of negative control from Type I probes, are the intensities of the fluorescence 

opposite to that which each bead pair is supposed to exhibit. For example, the bead pair for 

cg00050873, introduced in Section 2.4.4, is supposed to exhibit a red fluorescence because the 

next base is adenine, labeled red. Nevertheless, we can still retrieve the intensities of green 
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fluorescence from this bead pair, and these out-of-band intensities can be used to estimate the 

distribution parameters (  and ) for the background noise.  

The preprocessNoob function in the minfi package employs the non-parametric approach 

introduced by Xie et al. [188]. First, it estimates the parameters as follows: 

where  

Based on these estimated parameters, the conditional expectation of the true intensity, given the 

observed intensity, is calculated separately for the red and green fluorescence. 

 

4.1.2.2 Quantile normalization 

The quantile normalization [189] starts with the simple idea of forcing the same distribution of 

intensities across samples. Figure 5 details the procedure of the quantile normalization. Step 1 is 

a restructuring of the data by placing samples in columns and probes in rows. Step 2 is determining 

a rank for each column. Step 3 is sorting the intensities from lowest to highest for each column 

and calculating the mean for each row (as red-boxed in Figure 5). Step 4 is assigning the row 

means according to the ranks calculated in Step 2 above. 
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Figure 5. Procedure of the quantile normalization. 

 

The preprocessQuantile function [190] from the minfi package performs the quantile 

normalization in each of multiple subsets of methylated and unmethylated intensities data, 

separately. The subgroup criteria are the type of chromosome (autosomal or sex), the sex of the 

sample, and probe type (Figure 6). The yellow boxes in Figure 6 indicate all the subgroups where 

the preprocessQuantile function performs the quantile normalization. The same subsetting 
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rule is applied to the data of unmethylated intensities. Further details can be found in Hansen and 

colleagues’ GitHub repository for preprocessQuantile [191]. 

 

Figure 6. Subgroups for the quantile normalization. 
* These subsets include probes in the shelf and open sea regions. The subgrouping procedure for 

the methylated intensities is identical to that of the unmethylated intensities. 
 

4.1.2.3 Subset-quantile Within Array Normalization (SWAN) 

Maksimovic et al. [192] scrutinized the different proportions of the two types of probes found in 

CGIs. They found 57% of Type I probes and 21% of Type II probes in the CGIs, which indicates 

that the distribution of the intensities from the two types of probes differs substantially (please 

refer to Figure 1 in Maksimovic et al. [192]). To address this point, the Subset-quantile Within 

Array Normalization (SWAN) method – the preprocessSWAN from the minfi package – has 
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been developed to allow both types of probes on a single array to be normalized together. The 

procedure starts with classifying probes into several subgroups according to the type of probes and 

the number of CpG sites underlying the 50 base pair probe body. Table 2 shows the number of 

probes in each subgroup. From each subgroup, SWAN randomly selects the same number of 

probes (which is the minimum number of probes in the red-colored subgroups in Table 2; 11,303 

in case of HM450) so that the intensities from the selected Type I and Type II probes have similar 

distributions (please refer to Figure 2 in Maksimovic et al. [192]). 

 

Table 2. The number of probes according to the type of probe (Type I and Type II) and the 
number of CpG sites in the probe body on the Illumina HumanMethylation450 Beadchip. 
 

 
Probe Type 

The number of CpG sites in the probe body   
0 1 2 3 4 5 … Total 

Type I 0 11,303* 26,201* 36,401* 33,398 17,519  135,476 
Type II 151,164 111,590* 61,313* 23,362* 2,607 0   350,036 

* SWAN randomly selects 11,303 probes out of each of the red-colored cells. 
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Figure 7. Details of the normalization procedure of SWAN. 

This figure showcases a scale-down procedure of SWAN. In practice, the random selection in 
step 1 occurs on a much larger scale (e.g., 11,303*3 for each probe type). 

 

The next step is to sort the intensities from the selected Type I and Type II probes and create a 

dataset, as illustrated by Step 3 in Figure 7. Based on this dataset, SWAN calculates the row means 

and ranks on a scale of 0-1 (Step 4 in Figure 7) and interpolates between the row means (Step 4 

in Figure 7). The final step is to assign the row means resulting from the interpolation to the 

original data according to the pre-calculated ranks on a scale of 0-1. This procedure is applied to 

the methylated and unmethylated intensities for each sample separately. 
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4.1.2.4 Functional normalization 

The functional normalization procedure proposed by Fortin et al. [193] aims to minimize unwanted 

technical variation across samples. This technical variation is commonly referred to as ‘batch 

effects’ that may confound the variables of interest and increase the chance of false-positive 

findings [194, 195]. To address these issues, the functional normalization extends the quantile 

normalization (Step 3 in Figure 5) by adjusting the empirical quantile distribution for the 

covariates that may explain the technical variation.  

Details of the functional normalization are provided in Figure 8. First, the functional normalization 

extracts background-corrected intensities (by Noob) from the control probes (details are provided 

in the Supplementary material in Fortin et al. [193]) and out-of-band probes (also described in 

Section 4.1.2.1), and computes summary measures, e.g., row means. Second, it applies principal 

component analysis to the computed summary measures and selects the first two principal 

components (PCs). Third, it obtains an empirical quantile distribution by sorting methylated (or 

unmethylated) intensities within each sample, in the same way as the quantile normalization 

described in Section 4.1.2.2. Fourth, it regresses each quantile (from the minimum to the maximum) 

on the first two PCs, i.e., PC1 and PC2. Fifth, it computes the adjusted quantile distribution by 

subtracting the effect of PCs from the original quantile distribution. Finally, it assigns the derived 

adjusted (functional-normalized) quantile distribution to the initial intensity matrix, in the same 

way as the quantile normalization. 
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Figure 8. The workflow of the functional normalization procedure. 
1 This process is identical to the quantile normalization but targets 500 randomly selected probes 
here. 2 This step employs a linear interpolation to fill the gap between the 500 probes selected in 

the earlier step. 
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4.1.2.5 Beta-mixture quantile dilation (BMIQ) 

BMIQ proposed by Teschendorff et al. [196] focuses on the different CpG densities between the 

Type I and Type II probe, similar to SWAN (Section 4.1.2.3). While SWAN attempts to find a 

common quantile distribution between the two types of probes, BMIQ modifies the distribution of 

beta values (ranges 0-1) from the Type II probes based on the beta values from the Type I probes. 

Each step of the modification procedure is explained in great detail in the Methods section in 

Teschendorff et al. [196]. Hence, this section only outlines the fundamental ideas of BMIQ. 

The distributional modification of BMIQ starts with modeling a pair of three-state, unmethylation 

(U), hemimethylation (H) and methylation (M), beta mixtures: one for the beta values from the 

Type I probes and the other for those from the Type II probes. 

 

where  is the probability density function of a beta distribution with the two scale parameters 

 and , and  denotes the type of probes, .  and  are the 

probabilities that a beta value belongs to the respective beta distributions. When we define 

, the parameters, and  are estimated using the expectation-

maximization (EM) algorithm [197]. 

The next step is to transform the beta values from the Type II probes in the U or M states to 

corresponding quantiles using the cumulative density function of the beta mixtures. First, BMIQ 

calculates a cumulative density of a beta value, denoted as . If the beta value belongs to the U 

state, the cumulative density will be . Then, it 

derives a corresponding quantile ( ) for  using the inverse cumulative density function of the beta 
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values from the Type I probes, i.e., . The same procedure is applied to the beta 

values from the Type II probes in the M state, but the cumulative density function must be  

rather than  in this case. 

The final step is to modify the beta values from the Type II probes in the H state using a dilation 

transformation. An important point here is that the beta values in the H state have to fit between 

the minimum of the transformed beta values from the Type II probes in the M state and the 

maximum of the transformed beta values from the Type II probes in the U state. 

 

4.2 Telomere length measurement 

4.2.1 Southern blot analysis of terminal restriction fragment lengths 

Southern blot analysis of TRFs [198], simply known as Southern blot, was the primary method for 

measuring LTL in Paper III. This method is a multi-step procedure that encompasses a check for 

DNA integrity, digestion of DNA, agarose gel electrophoresis of the resulting fragments, transfer 

of DNA to a membrane, hybridization, and X-ray chemiluminescence for band visualization. The 

following bullet points will describe the details of each step. 

1. DNA extraction and evaluation 

DNA was extracted from biospecimens using two methods: 1) phenol-chloroform organic 

extraction, and 2) a commercially available kit based on salting-out. Kimura et al. [198] preferred 

the commercially available DNA kit (Gentra Puregene DNA extraction kit) to the phenol-
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chloroform organic extraction.6 DNA integrity was checked by running samples side by side on 

an agarose gel. An intact DNA sample appears as a single compact band/crown, whereas degraded 

DNA exhibits a fuzzy crown that is shifted forward and is often accompanied by a long smear. 

2. Digestion of genomic DNA 

This step is to cleave DNA into chromosomal fragments and telomeric repeats by using different 

restriction endonucleases (enzymes that cut DNA at specific nucleotide sequences). Kimura et al. 

[198] primarily used two combinations of restriction enzymes: 1) HphI/MnlI and 2) HinfI/RsaI. 

HphI/MnlI cleaves DNA within a subtelomeric region, whereas HinfI/RsaI cuts DNA upstream of 

the subtelomeric region. 

3. Using DNA molecular weight ladders to gauge fragment length 

Molecular weight (MW) ladders are used to determine the approximate size of DNA fragments. 

Kimura et al. [198] used two commercially available MW ladders: a 1-kb ladder ranging from 0.5 

to 12 kb and a collection of  DNA fragments digested with HindIII that span 1.25-23.1 kb. 

4. Agarose gel electrophoresis 

Agarose gel electrophoresis, the core technique behind Southern blotting, is designed to separate 

DNA fragment according to their size (or length). First, the DNA fragments of an individual are 

pipetted into a well located at one edge of the gel. A typical gel contains 30 wells and can thus 

assay 30 individuals on a single electrophoretic run. Second, an electric current flowing from the 

wells (negative terminal) to the opposite edge (positive terminal) causes the DNA fragments to 

migrate through the gel at a specific rate. Electrophoresis is stopped when the band with the lowest 

                                                           
6 Chloform-phenol extraction is labor-intensive, difficult to scale up, and requires a chemical fume hood because 
both phenol and chloroform are hazardous compounds. 
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MW has reached the bottom of the gel. Because they are negatively charged in different amounts 

due to their length, shorter DNA fragments travel further down the gel than longer ones. 

5. Probe design and labeling 

To distinguish between telomeric repeats and chromosomal bodies, Southern blot uses a probe 

consisting of three oligonucleotide repeats that are complementary to the telomeric repeats 

(TTAGGG)3. The probe, often referred to as the telomere probe, is also labeled with digoxigenin 

(DIG) at the 3’ end. This probe can be identified with anti-DIG-AP antibody and 

chemiluminescence after binding to the telomeric DNA fragments. 

6. Analysis of the X-ray film 

The optical density (OD) signal is extracted from the digitalized image of the X-ray film, for each 

vertical position (please refer to Figure 7a and Figure 8 in [198]). The mean TRF is defined as 

. This analysis is implemented in the ImageQuant software. 

 

The next sub-section describes the other method for measuring LTL, quantitative Polymerase 

Chain Reaction (qPCR), that was used in Paper III. 

 

4.2.2 Quantitative Polymerase Chain Reaction (qPCR) 

qPCR was used to measure LTL in the Lothian Birth Cohorts of 1921 and 1936 (LBC1921 and 

LBC1936) that were included in Paper III [199]. This method quantifies relative LTL by 

comparing the copy number of telomere repeats with that of a single copy (or reference) gene. 
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LBC1921 and LBC1936 employed glyceraldehyde 3-phosphate dehydrogenase, abbreviated as 

GAPDH, as the reference gene.  

The method implements two qPCR: one with telomere (T) primer pairs and the other with the 

single-copy gene (S) primer pairs. Apart from the difference in the primer pairs, the two qPCR are 

identical. Each qPCR obtains the , i.e., the number of cycles at which the fluorescence from 

amplified DNA crosses a threshold. Based on the derived , the method determines the relative 

telomere to single-copy gene (T/S) ratio. 

 

4.2.3 Other methods for measuring TL 

The quantitative fluorescent in situ hybridization (Q-FISH) measures TL by quantifying the 

fluorescence intensity from a hybridized peptide nucleic acid (PNA) oligonucleotide probe, i.e., 

(CCCTAA)3 [200]. The PNA probe binds to the telomeric repeats more strongly than the 

complementary sequences in DNA or RNA, because the backbone of the PNA probe lacks charged 

phosphate groups [200]. Once hybridization is complete, an image of a metaphase chromosome 

spread and that of telomeric repeats are obtained and processed using an image analysis software 

[201]. Q-FISH has various modified versions, e.g., interphase [202], high-throughput [203], flow 

cytometric FISH [204], and metaphase Q-FISH [202]. Q-FISH can measure TL at both ends of 

each chromosome in cells (note that the substrate here is not DNA but cells) [205, 206]. However, 

like Southern blot, Q-FISH is labor-intensive and is unable to detect short telomeres that are below 

the threshold of the PNA probe. This can lead to false positives due to the binding of the PNA 

probe to interstitial telomeric sequences [205, 207, 208].  
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Single Telomere Length Analysis (STELA) is a ligation-based method involving PCR 

amplification and Sothern blot analysis [209]. A ‘telorette7’ is ligated to digested (by MseI) 

telomeric regions from a subset of chromosomes (XpYp, 2p, 11q, 12q, and 17p) [209, 210]. While 

TRF and qPCR are designed to measure average TL, this method can measure short telomeres on 

specific chromosomes. The Universal STELA is an improved version of STELA, enabling 

measurements on all the chromosomes. Although STELA does not require a large amount of DNA, 

it is labor-intensive, limited in measuring long telomeres (>8 kilobases) [210, 211], and 

particularly vulnerable to interstitial telomeric sequences (ITSs) [212].  

 

Telomere Shortest Length Assay (TeSLA) is also a ligation-based method followed by PCR 

amplification and TRF analysis for all chromosomes, similar to the Universal STELA, but with 

improved specificity and sensitivity for TL measurement [212]. TeSLA uses a combination of four 

restriction enzymes (BfaI/CviAII/MseI/NdeI that minimizes subtelomeric regions) and newly-

designed telomerettes, i.e., terminal adaptors (TeSLA-T 1 to 6), which ligate to the 3’ C-rich strand 

with increased specificity. Two double-stranded adapters containing 5’ AT or TA overhangs, C3 

spacers, and AP primers increase the efficiency of ligation and the specificity of PCR amplification. 

TeSLA is a highly attractive method because it measures the distribution of the shortest telomeres 

across all chromosomes [205, 212]. This is particularly useful when the focus of a study is to 

compare telomere attrition across groups of individuals, where it is important to determine the 

average length of the shortest telomeres and not just the average length of telomeres at the 96 ends 

of all chromosomes. The coverage of TL measurement is 1 to 18 kb. Although the method does 

                                                           
7 An annealing linker comprising seven oligonucleotides complementary to TTAGGG followed by 20 bases non-
complementary to the 3’ G-rich overhang. 
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not misclassify the ITSs as telomeric repeats and does not require a large amount of DNA (less 

than one microgram), it is labor-intensive and costly [205]. In addition, TeSLA cannot reliably 

measure exceedingly long telomeres (>18 kb), such as those from inbred strains.  

 

4.3 Statistical analyses 

4.3.1 Penalized linear regression 

Penalized linear regression (PLR) has been the main statistical method behind the development of 

epigenetic clocks. The main reason for its popularity is that PLR readily fulfills the statistical aim 

of epigenetic clocks, i.e., the development of a model that is most predictive of an outcome 

(chronological age, phenotypic age, or gestational age) based on a large number of predictors 

(>450,000 CpG sites). Among the many CpG sites, PLR automatically selects a subset of CpG 

sites and determines a coefficient for each CpG site so that their linear combination predicts the 

outcome of interest accurately. The end product of PLR is nothing but a linear regression equation, 

but its distinction lies in the automatic selection of variables and determination of coefficients. 

PLR enables an automatic selection of predictors by introducing a constraint in its log-likelihood 

function as follows: 

 

Where  is the negative log-likelihood function, e.g., this is  for the Gaussian case, 

 is a vector of coefficients,  is an outcome of interest in the th sample, 
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 is a vector of  different exposures in the th sample, and  is a mixture 

parameter. When the likelihood is maximized with respect to  in equivalent Lagrangian form,  

 

The  parameter was set to be 0.5 in Paper I and Paper II, and the  parameter was determined 

through 10-fold cross-validation. The 10-fold cross-validation was performed in a training set, and 

the final model with the determined  was validated in the test set. Accuracy and precision metrics, 

e.g., MAD and the correlation coefficient between the observed and the predicted outcome, were 

calculated in this validation process. Along with scatterplots of the observed against the predicted 

outcome, the metrics are essential quantities for assessing the prediction power of the model. 

 

4.3.2 Multiple testing – the Bonferroni correction 

In Paper III, depending on the DNAm microarray used, roughly 450,000 to 850,000 DNAm-LTL 

associations were tested simultaneously. This vast number of hypotheses being tested 

simultaneously resulted in a substantial increase in the family-wise error rate (FWER, the 

probability of making at least one type I error). To control FWER at the nominal significance level 

of , the Bonferroni correction was applied, which corresponds to a significance level of , where 

 is the number of independent hypothesis tests. Hence, the Bonferroni-controlled FWER can be 

mathematically expressed as 
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where  is the p-value from the th hypothesis test,  is the significance level,  is the number 

of true null hypotheses, and  is the total number of the hypotheses. Although the Bonferroni 

correction suppresses FWER at level , it also raises the type II error and reduces statistical power. 

FDR was not used in Paper III, but this approach is a widely used alternative to the Bonferroni 

correction for multiple testing. These methodological considerations will be elaborated further in 

Section 6.3.8. 
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5 Summary of papers 

5.1 Paper I 

Three blood-based epigenetic clocks for human adults were developed based on EPIC-based 

DNAm data from MoBa and publicly available DNAm data from the Gene Expression Omnibus 

(GEO) repository. 

First, an Adult Blood-based EPIC clock (ABEC) was trained on MoBa samples (n=1,592, age-

span: 19 to 59 years). Although ABEC showed a high overall precision, with the Pearson 

correlation coefficient (r) between the observed and predicted age being above 0.93 in independent 

test sets, it still underestimated the age of individuals older than 45 years. 

To address this shortcoming, an extended ABEC (eABEC) was trained on DNAm data from MoBa 

and GEO (n=2,227, age-span: 18 to 88 years). eABEC largely mitigated the underestimation of 

the age among the individuals older than 45 years and showed a slight but noticeable improvement 

in age prediction (r>0.94).  

Furthermore, to examine whether the additional probes on EPIC improve age prediction of an 

epigenetic clock, a common ABEC (cABEC) was trained on the same training set as eABEC, but 

this time restricting the analysis to only those CpGs that were common to 450K and EPIC. The 

prediction performance of cABEC was as high as that of eABEC, indicating that the additional 

probes on EPIC did not improve age prediction. 

 



59 
 

5.2 Paper II 

Three placental epigenetic clocks were developed, leveraging previous findings that placental 

DNAm changes widely with fetal gestational age.  

A robust placental clock (RPC) was trained on placental DNAm data (n=1,102) from GEO. RPC 

was highly precise (r=0.99, MAD=0.96 weeks) in estimating the gestational age of fetuses from 

all trimesters regardless of their pregnancy conditions, e.g., preeclampsia, gestational diabetes, and 

trisomy 13, 18, or 22. 

Further, a control placental clock (CPC) was developed based on “control” placental samples (i.e., 

those without any reported pregnancy complications, n=963) to assess whether adverse pregnancy 

conditions influence the epigenetic gestational age estimate. CPC was also highly predictive of the 

gestational age of pregnancies across all trimesters (r=0.98, MAD=1.02 weeks). However, it also 

revealed that pregnancy conditions, e.g., gestational diabetes, intrauterine growth restriction, 

trisomy 13, 16, 18, and 21, were not associated with faster or slower epigenetic aging of placentas. 

The second version of RPC, referred to as the refined RPC, was trained on placental samples from 

“uncomplicated term” pregnancies (n=733), i.e., those without any known pregnancy 

complications and with gestational age>36 weeks. Although the training set for the refined RPC 

did not include any preterm births, the refined RPC showed high prediction power (r>0.98, 

MAD=1.49 weeks). 

 

5.3 Paper III 

We conducted a large-scale EWAS of LTL using seven large cohorts (n=5,713) – the Framingham 

Heart Study (FHS), the Jackson Heart Study (JHS), the Women’s Health Initiative (WHI), the 
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Bogalusa Heart Study (BHS), the Lothian Birth Cohorts (LBC) of 1921 and 1936, and the 

Longitudinal Study of Aging Danish Twins (LSADT).  

Using a meta-analysis framework, we identified 823 CpG sites significantly associated (P<1E-7) 

with LTL after adjustment for age, sex, ethnicity, and imputed white blood cell counts. Functional 

enrichment analyses revealed that these CpG sites are located near genes known to play a key role 

in circadian rhythm, blood coagulation, and wound healing.  
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6 Discussion 

6.1 Summary of key findings 

The aims of this thesis were to 1) develop new epigenetic biomarkers of aging and growth with 

high precision, and 2) to conduct an epigenome-wide association study of LTL – a cellular 

replicative aging biomarker – using large-scale multi-ethnic cohorts. In response to the first aim, 

my colleagues and I developed the ABECs in Paper I and the placental clocks in Paper II, which, 

respectively, showed high precision in estimating the chronological age of adults and the 

gestational age of fetuses. The age prediction by the ABECs and placental epigenetic clocks was 

more precise than previously published epigenetic clocks. The EWAS conducted under the second 

aim of this thesis, and reported in Paper III, revealed that 823 CpG sites were associated with 

intrinsic LTL, i.e., LTL adjusted for age, sex, ethnicity, and cell composition. 

 

6.2 Interpretations and implications of key findings 

The ABECs in Paper I revealed that the inclusion of additional 413,743 probes unique to EPIC 

(including 226,915 specifically targeting regulatory regions such as DNase proximal/distal and 

FANTOM5) did not improve the precision of the epigenetic clock. It was shown by the analysis 

that eABEC (including 1,791 CpGs, 1,084 of which were only present on EPIC) and cABEC 

(1,892 CpGs that are present on both HM450 and EPIC) performed equally well when the sample 

size of the training set was the same. The additional probes on EPIC provided no advantage even 

in a reduced training set with fewer samples (Figure 4 in Paper I). This result reinforced the point 

made by Zhang et al. [213] that the sample size of a training set was critical in increasing the 
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precision of an epigenetic clock and implied that the common probes shared by 450K and EPIC 

were sufficient in predicting human chronological age. 

Another key implication stemming from Paper I is that the ABECs are novel blood-based 

epigenetic clocks trained on “EPIC-derived” DNAm data. The ABECs are expected to facilitate 

other EPIC-based research exploring the link between epigenetic age and complex human traits, 

given that EPIC has replaced HM450. The high precision of the ABECs is also attractive to other 

research fields, e.g., forensic research, where accurate age prediction is of particular importance. 

 

The placental epigenetic clocks in Paper II were novel in their use of placental tissues. The 

gestational age estimated by the placental epigenetic clocks possibly reflected the maturity of the 

placenta and the status of fetal growth. Given that preterm placental aging is a recognized 

determinant of adverse pregnancy outcomes [214], it is vital to accurately assess the degree of 

placental epigenetic maturation and understand the biological mechanisms underlying fetal growth 

and placental maturation. In this context, the CpG sites included in CPC and RPC (trained on non-

complicated pregnancies) may provide excellent starting points to guide more in-depth biological 

investigations. 

Paper II also confirmed that the gestational age-related change in placental DNAm across the 

genome was sufficiently evident to allow the development of an epigenetic clock with high 

precision. Although Mayne et al. [117] reported a suboptimal epigenetic clock, it was unknown 

whether the performance of a placenta-based epigenetic clock could reach that of the cord blood-

based epigenetic clock, e.g., Bohlin et al. [16] Cord Blood clock. The results in Paper II showed 
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that the gestational age prediction of RPC in Paper II was as precise as that of the Bohlin et al. 

[16] Cord Blood clock8.  

The EWAS findings in Paper III provided a basis for a better understanding of the genetic 

influence on LTL, along with the genome-wide association study (GWAS) of LTL conducted by 

Codd et al. [184]. Rakyan et al. [215] and Verma [216] proposed that the integration of GWAS 

and EWAS can potentially explain the functional pathway from genetic variation to a phenotype 

of interest. For example, in our case, RTEL1 appeared in the GWAS of LTL by Codd et al. [184] 

(rs755017, P=6.71E-09) as well as in our EWAS of LTL (cg00622799, cg03339910, cg10615591, 

and cg17534029, P<6.43E-07, Supplementary File 1 in Paper III). As suggested in Rakyan et al. 

[215], one can re-analyze the association between LTL and DNAm at the four CpGs in RTEL1, 

stratified by the genetic variants in RTEL1, in other cohorts with genotype and methylation data.  

 

6.3 Potential limitations 

6.3.1 Elastic net regression for epigenetic clocks 

Elastic net regression, a type of penalized linear regression, has been used for developing most of 

the previously published epigenetic clocks (Section 2.4.5), the ABECs (Paper I), and placental 

epigenetic clocks (Paper II). Considering the widespread use of this method, it is worthwhile to 

discuss its strengths and weaknesses. 

                                                           
8 Knight Cord Blood clock (introduced in Section 2.4.5) was developed to estimate gestational age, but the 
performance of this clock was inferior to the Bohlin Cord Blood clock. 



64 
 

Elastic net regression enables selecting a set of CpGs that is most predictive of chronological (or 

gestational) age from a large number of probes (>450,000) in microarray-based DNAm data [217, 

218]. In this CpG selection process, elastic net regression allows a grouping effect9, i.e., the 

combined effect of highly-correlated CpGs on aging [219]. Given that the methylation levels at 

neighboring CpGs are highly correlated, the grouped selection ability helps to increase the 

prediction accuracy [219]. However, it is worth noting that the coefficient estimates, i.e., the effect 

sizes of CpGs on aging, are neither completely unbiased nor statistically testable due to the penalty 

term included in the likelihood function [220, 221]. 

Additionally, the linearity assumption embedded in elastic net regression enables high 

interpretability [219, 222]. For example, a coefficient estimate corresponding to a CpG site is the 

expected change in age for every unit increase in the methylation level at the CpG site when the 

methylation levels at the other CpGs are fixed values. However, the linearity may not be flexible 

enough to reflect the relationship between CpGs and age [217]. The linearity implies that the 

methylation patterns change at a constant rate across the lifespan, but this may not be the case in 

real data. For example, to address the non-linearity problem, Horvath [6] transformed 

chronological age as follows:  

 

where adult.age refers to a specific threshold for adulthood. Horvath [6] then regressed the 

transformed chronological age on CpGs. According to his comments, this transformation was to 

                                                           
9 Unlike elastic net regression, LASSO selects one CpG for each group of neighboring CpGs. 
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reflect the non-linear change in methylation levels throughout childhood, adolescence, and 

adulthood. 

Further, linear models are likely to show a reduced prediction power compared to machine learning 

methods with extensive flexibility [222]. The reduced prediction power, in other words, indicates 

increased random errors in predicted (epigenetic) age, which is often referred to as underfitting. 

Along with measurement errors in a training set, the random errors by underfitting directly 

influence EAA, i.e., the residual from a regression of chronological age on epigenetic age. The 

increased random errors in EAA possibly result in reduced statistical power in an association study 

of EAA with a phenotype of interest. In this respect, more research is needed to distinguish random 

errors from putative biological signals in EAA.  

 

6.3.2 Batch effect correction in training epigenetic clocks 

Correctable batch effects in Paper I and Paper II were the potential technical variation in 

methylation across “cohorts”, whereas batch effects often indicated technical variation across 

chips or plates10. This was because most of the publicly available DNAm data from the GEO 

repository did not include information about the chips or plates used. A relevant methodology for 

batch effect correction is the ComBat method [223] from the sva R package [224]. 

The training sets for the ABECs and placental epigenetic clocks were not corrected for batch 

effects. Rather, the raw beta values after background correction and normalization were used for 

training the epigenetic clocks. The main reason for this was the different (gestational) age 

                                                           
10 In the case of EPIC, eight samples can be placed on a chip, and 12 chips can be mounted on a plate. 
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distributions across cohorts (please refer to Table 1 in Paper I and Table 1 in Paper II). As pointed 

out in previous publications [195, 225, 226], a batch correction might introduce a bias in the 

DNAm data when study samples were not evenly distributed across batches. A batch correction 

method might have removed the methylation difference across batches regardless of whether it is 

due to technical aspects or a genuine aging process. 

 

6.3.3 Selection bias in the epigenetic clocks 

The subjects from MoBa, specifically STudy of Assisted Reproductive Technology (START), in 

Paper I may introduce a selection bias. This is because MoBa is a pregnancy cohort with a small 

number of individuals aged 45 years and above [227]. The different age distribution of mothers 

and fathers and the different sex ratios in the older age groups possibly led to the suboptimal age 

prediction by ABEC (Figure 2 in Paper I). This weakness was addressed by adding publicly 

available DNAm data on older subjects from the study by Curtis et al. [228], which resulted in the 

development of eABEC. However, a selection bias may persist because all the mothers in MoBa 

were pregnant at the time of enrollment into the study. Additionally, the MoBa parents appeared 

to have healthier lifestyles, e.g., a lower rate of diabetes, hypertension, and smoking, compared to 

the general Norwegian population [229]. 

Gruzieva et al. [230] reported that 196 CpG sites showed longitudinal changes in DNAm level 

before pregnancy and in gestational weeks 10 to 15 (FDR<0.05). Although their sample size was 

small (n=21 Swedish women), some of the pregnancy-associated CpGs were still significant after 

the Bonferroni correction. However, it is arguable whether the pregnancy-associated CpGs lower 

the predictive power of the ABECs in Paper I directly. It is thus necessary to verify whether non-
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pregnant women epigenetically age slower or faster than pregnant ones, i.e., testing if epigenetic 

drift11 can be seen at the pregnancy-associated CpGs (see Figure 2 in Teschendorff et al. [231]). 

Given that the ABECs were trained on the MoBa subjects with healthy lifestyles, they may 

overestimate the chronological age, i.e., positive epigenetic age acceleration, of individuals with 

chronic diseases (data not shown). There is previous evidence of patients with cardiovascular 

disease or cancer showing a distinct epigenetic drift compared to healthy individuals [232, 233]. 

The Hannum et al. [5] Blood-based clock, Horvath [6] Pan-tissue clock, Levine et al. [8] 

PhenoAge clock, and the Lu et al. [143] GrimAge clock also reported positive EAA in the diseased 

subjects [60, 234]. 

However, such epigenetic clocks resulting in positive EAA in individuals with chronic diseases 

can be considered as desirable if the research purpose is to develop a valid biomarker of aging. 

The positive EAA in diseased subjects implies that the epigenetic clock captures functional decline 

accurately (satisfying the second condition for being a valid biomarker of aging, Section 2.3). This 

tendency is more apparent when epigenetic clocks are trained solely on healthy individuals (note 

that the Horvath [6] Pan-tissue clock was trained exclusively on healthy tissues). 

With this in mind, Paper II included CPC and the refined RPC in addition to RPC. RPC showed 

high precision regardless of pregnancy conditions, provided that the clock was trained on control 

(uncomplicated) pregnancies as well as complicated pregnancies12. However, the high precision 

of RPC across all pregnancies indicated that RPC might not be successful in differentiating 

pregnancies with and without complications. To increase the predictability of pregnancy 

                                                           
11 Epigenetic drift is a phenomenon whereby two groups (usually healthy and diseased) show different rates of 
methylation change according to chronological age. 
12 Anencephaly, chorioamnionitis, confined placental mosaicism, diandric triploid, gestational diabetes, in-vitro 
fertilization, intrauterine growth restriction, preeclampsia, spinal bifida, and trisomy 16. 
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complications, CPC was trained on the control (uncomplicated) term and preterm pregnancies, and 

the refined RPC was trained on the uncomplicated term (gestational age>36 weeks) pregnancies. 

Nevertheless, the association test between gestational age acceleration (by CPC) and pregnancy 

complications (Figure 3 in Paper II) was not optimal for the following reasons: 1) the small sample 

size for each type of pregnancy complication and 2) the absence of gestational-age-matched 

controls. In particular, it was challenging to find a GEO study that included a large number of 

complicated pregnancies and gestational age-matched controls. Some controls and preeclampsia 

cases were included in several GEO datasets13 and the Robinson Lab data. We would have been 

able to use them in either the association test or the development of CPC (n=963), but opted only 

to include them in the development of CPC to avoid underfitting. 

 

6.3.4 Trade-off between predictability of chronological age and age-related 
conditions 

Another concern about the ABECs is that their high precision in age prediction may reduce the 

predictability of age-related conditions [213]. The high precision in age prediction among all 

individuals means that EAA would only amount to technical noise, i.e., absence of the signals for 

functional decline, and EAA can thus no longer be used to classify individuals with and without 

the age-related disease. However, this is not without exceptions, as exemplified by the Horvath et 

al. [7] Skin & Blood clock. Here, the epigenetic age estimated by this clock was highly correlated 

with not only chronological age (median absolute error=2.5 years, r>0.98 in subjects aged 20-80 

years) but also all-cause mortality, Down syndrome, and multiple lifestyles/dietary factors. 

                                                           
13 GSE100197, GSE98224, and GSE44667 
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It was unclear whether the ABECs in Paper I were predictive of age-related diseases, mortality, 

and morbidity. Considering that our epigenetic clocks were developed on EPIC-based DNAm data 

and that large cohort studies of older subjects have recently migrated from HM450 to EPIC, it may 

take some time before the ABECs are validated in other cohorts with older subjects. 

 

6.3.5 Reliability of methylation measures 

The reliability of methylation measures often refers to the reproducibility of the probes on the 

Illumina arrays [235]. A common way of assessing reproducibility is to compare the methylation 

values quantified twice from each DNA sample [235, 236]. Previous studies have reported high 

correlations (>0.9) between the two quantifications across all the probes included in the Illumina 

array [118, 237, 238]. In contrast, the correlation14 at each probe varied widely (the median 

correlation: 0.3, 25% percentile: 0.11, and 75% percentile: 0.63) [237]. 

However, the probes included in epigenetic clocks appeared to be more reproducible in terms of 

methylation values than ostensibly unrelated probes. The median correlations at the probes for 

published epigenetic clocks were more than 0.49, according to the report by Bose et al. [237]. The 

probes included in the ABECs (Paper I) also showed decent median correlations (>0.46)15. 

The EWAS of LTL in Paper III might be subjected to some probes with not only low 

reproducibility but also low compatibility between HM450 and EPIC. This is because the meta-

analyses were restricted to the loci overlapping HM450 and EPIC, and there is evidence of low 

                                                           
14 Many studies used the intraclass correlation coefficient (ICC) for assessing probe reproducibility. 
15 Here, the probes unique to EPIC were not taken into account because Bose and colleagues provided ICC values 
for the probes on HM450. No study has yet derived ICCs for all the probes on EPIC. 
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correlation across the two platforms at many of the loci [235, 239]. This low reliability might be 

related to the low variability in the methylation measures at the loci, which is merely a reflection 

of random error/noise. Logue et al. [239] thus recommended that loci evaluated in analyses be 

limited to those with sufficient variability. Among the 823 LTL-associated loci in Paper III, there 

were only four loci with low variability in FHS, six in JHS, zero in WHI, six in BHS, two in 

LBC1921, zero in LBC1936, and three in LSADT. No CpGs with low variability across all the 

cohorts were detected. 

 

6.3.6 Selection bias in the EWAS of LTL (Paper III) 

Survival bias might affect the EWAS of LTL (Paper III). All the cohorts except BHS might be 

susceptible to survival bias due to the inclusion of individuals aged 70-90 years (please refer to 

Table 2 in Paper III). As shorter LTL is associated with increased risk of mortality and age-related 

diseases [158, 160, 161, 166], those individuals who managed to reach old age are more likely to 

have longer LTL than those who did not make it to old age. 

 

6.3.7 TL measurement: Southern blot versus qPCR 

The Southern blot analysis of TRF is the current gold standard for LTL measurement. Southern 

blot provides the distribution of absolute LTL in kilobases. It shows high reproducibility across 

laboratories and low inter-assay coefficient of variation (<2%) [205]. For these reasons, many 

cross-sectional studies, such as FHS, JHS, WHI, and BHS in Paper III, have used Southern blot 

for LTL measurement. Despite its popularity, however, Southern blot has several practical 
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shortcomings. Besides requiring a large amount of DNA (>6 micrograms), it is also time-

consuming and labor-intensive [198, 205]. 

The measurement of LTL by qPCR has rapidly gained popularity in recent years [199, 240] due to 

its low cost, low amounts of DNA required, and suitability for high-throughput processing of 

samples [205]. Among the seven cohorts included in Paper III, LBC1921 and LBC1936 used the 

qPCR method. Even though it is a more practical alternative than Southern blot, the qPCR-based 

method has several critical shortcomings. Aside from low reproducibility, the measurement metric 

(the T/S ratio; see Section 4.2.2) precludes a formal comparison across studies/labs [241, 242]. 

The low reproducibility implies a higher likelihood of measurement errors. Moreover, a difference 

in the relative T/S ratio between healthy controls and an at-risk group does not identify any at-risk 

group per se and is therefore not useful clinically. 

The EWAS results from LBC1921 and LBC1936 in Paper III might be influenced by the 

measurement errors of the qPCR. To examine if the EWAS results from the cohorts using Southern 

blot versus qPCR were consistent, we narrowed down the top 823 CpG sites from the global meta-

analysis and compared the Z scores from the cohort-specific meta-analysis (Supplementary Figure 

6, Supplementary File 2, Paper III). We found consistent LTL-DNAm associations across 

LBC1921, LBC1936, and FHS. It may be judicious to compare the Z score from these three cohorts, 

as they comprised individuals of European ancestry. Although the directions of the LTL-DNAm 

associations, i.e., the Z scores, in LBC 1921 mismatched those in FHS at several CpGs, it is 

difficult to conclude that the subtle inconsistency was due to a methodological discrepancy in LTL 

measurement. 
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6.3.8 FDR: Benjamini-Hochberg procedure 

The Bonferroni correction mentioned in Section 4.3.2 was designed to control for FWER, i.e., to 

guard against the probability of reporting at least one false discovery, at a chosen level of . In the 

setting of a contingency table of true/false discovery/non-discovery (Table 3), FWER can be 

denoted as  [243]. A threshold induced by the Bonferroni correction guarantees that 

. Although this simple method effectively controls FWER at a 

specific degree of significance ( , it decreases the statistical power substantially, i.e., it lowers 

the probability of rejecting false null hypotheses. Further, the implication of FWER, i.e., not 

making any Type I errors, might be too stringent for some research questions, e.g., the overall 

decision of whether a new drug outperforms an existing one. 

 

Table 3. The number of true/false and discovery/non-discovery when testing m hypotheses. 

 Not significant Significant Total 

True H0    

False H0    

Total    
Source: the notations from Table 1 in Benjamini and Hochberg [243]. 

 

To address the shortcomings of the Bonferroni method for controlling FWER, Benjamini and 

Hochberg [243] suggested focusing on the expected proportion of false discoveries among the 

rejected (significant) hypotheses, i.e.,  (Table 3). The idea behind FDR 

is that it is less stringent than FWER, as it takes into account the rejected hypotheses rather than 

all the hypotheses tested.  
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Benjamini and Hochberg [243] also elaborated on a procedure controlling the FDR at  Given 

that  null hypotheses,  are tested, the corresponding p-values can be denoted 

as . The first step is to sort the p-values such that  and denote 

the corresponding null hypotheses . The next step is to define 

 and reject all  The detailed proof of how this procedure 

controls FDR at  has been described in great detail in Appendix A of Benjamini and Hochberg 

[243].  

In Paper III, we reported 823 LTL-associated CpGs after the Bonferroni correction, not the 

Benjamini and Hochberg procedure. The reason behind this decision was to minimize the 

likelihood of false positives as much as possible, given that the two molecular measures (DNAm 

and LTL) were possibly exposed to random measurement errors [244]. Furthermore, the risk of 

false positives was higher when it was unclear to what extent false-positive findings would affect 

the functional enrichment analyses. However, for researchers who wish to see the extended list of 

LTL-associated CpGs, we included CpGs that showed moderate (P<1E-05) association with LTL 

in Supplementary File 1 of Paper III.  

 

6.4 Recommendations for the future use of the epigenetic clocks 

As mentioned in the Results section of Paper I, a systematic offset may occur when epigenetic 

clocks are applied to newly-generated DNAm data. Although the systematic offset does not affect 

the association between EAA and an outcome of interest 16 , it can lead to an over- or 

                                                           
16 The definition of EAA is the residual term from a regression of epigenetic age on chronological age. The offset is 
calibrated through the regression model fitting. 
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underestimation of chronological age. Thus, it is crucial to calibrate the systematic offset, 

particularly in forensic research, where accurate age prediction is of utmost importance. 

To avoid the systematic offset, it is advisable to include both target individuals and reference 

individuals whose chronological age is known in the same batch for DNAm measurement. It is 

even better if the chronological age of the reference individuals has a wide range. The likelihood 

of over- or underestimating the epigenetic age of the target individuals can be significantly reduced 

by fitting a linear (or non-linear) regression of epigenetic age on chronological age. 

 

6.5 Future research 

In the field of epigenetic clocks for adults, the focus has shifted from the precise prediction of 

chronological age to that of age-related conditions [217]. Provided that these two components are 

the core conditions for a valid biomarker of aging (also mentioned in Section 2.3), an obvious 

challenge is to find an optimal balance between the two core conditions. Studies such as the Levine 

et al. [8] PhenoAge and Lu et al. [143] GrimAge have, to some extent, found a good balance 

(please refer to Section 2.4.5 for methodological details) and were thus classified as ‘second-

generation clocks.’ These second-generation clocks reduce precision in age prediction but increase 

the predictability of mortality, healthspan, cardiovascular disease, and cancer. 

However, this progress has not yet occurred in the context of epigenetic clocks for newborns, nor 

has the validation of these clocks been carried out widely. Gestational age acceleration has been 

reported to be associated with maternal risk factors in several studies [147, 148, 245, 246] but was 

not associated with critical postnatal conditions such as neonatal death and neurodevelopmental 

disorders. To pursue this validation study, the following data are required: 1) DNAm data from 
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cord blood or placental tissue collected at birth and 2) follow-up information after birth. In this 

regard, MoBa or the Avon Longitudinal Study of Parents and Children (ALSPAC) would be 

valuable data sources.  

For a better understanding of the genetic determinants of LTL, it would be judicious to integrate 

the existing GWAS of LTL [184] and our EWAS of LTL. More specifically, a future study may 

focus on RTEL1 that is featured in both of the GWAS and EWAS of LTL. The relevant SNP 

(rs755017), CpGs (cg00622799, cg03339910, cg10615591, and cg17534029) and SNP-CpG 

interactions can be investigated in relation to LTL. Several large cohorts such as FHS, JHS, WHI, 

and MoBa are suitable candidates for such an in-depth investigation, given that these cohorts have 

already generated all the substrates for such an analysis: genotype, DNAm, and LTL data. 

 

6.6 Conclusion 

Three blood-based epigenetic clocks were developed for the precise estimation of adults’ 

chronological age using EPIC-derived DNAm data. The clocks achieved high precision in age 

prediction in independent cohorts. The highly precise age prediction was not explained by the 

broader genomic coverage of EPIC but rather by the large training set with a wide age-span. 

Three placenta-based epigenetic clocks were subsequently developed for estimating fetal 

gestational age using a mixture of publicly available DNAm data. These placental clocks were 

highly accurate estimators of GA based on placental tissue regardless of pregnancy conditions. 

The EWAS of LTL identified 823 CpG sites significantly associated (P<1E-7) with LTL after 

adjustment for age, sex, ethnicity, and imputed white blood cell counts. Functional enrichment 

analyses revealed that these CpG sites are near genes that play a role in circadian rhythm, blood 
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coagulation, and wound healing. This study revealed significant relationships between the two 

recognized hallmarks of aging: TL and DNAm. 
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Abstract

Background: Epigenetic clocks have been recognized for their precise prediction of chronological age, age-related
diseases, and all-cause mortality. Existing epigenetic clocks are based on CpGs from the Illumina
HumanMethylation450 BeadChip (450 K) which has now been replaced by the latest platform, Illumina
MethylationEPIC BeadChip (EPIC). Thus, it remains unclear to what extent EPIC contributes to increased precision
and accuracy in the prediction of chronological age.

Results: We developed three blood-based epigenetic clocks for human adults using EPIC-based DNA methylation
(DNAm) data from the Norwegian Mother, Father and Child Cohort Study (MoBa) and the Gene Expression Omnibus
(GEO) public repository: 1) an Adult Blood-based EPIC Clock (ABEC) trained on DNAm data from MoBa (n = 1592, age-
span: 19 to 59 years), 2) an extended ABEC (eABEC) trained on DNAm data from MoBa and GEO (n = 2227, age-span: 18
to 88 years), and 3) a common ABEC (cABEC) trained on the same training set as eABEC but restricted to CpGs
common to 450 K and EPIC. Our clocks showed high precision (Pearson correlation between chronological and
epigenetic age (r) > 0.94) in independent cohorts, including GSE111165 (n = 15), GSE115278 (n = 108), GSE132203 (n =
795), and the Epigenetics in Pregnancy (EPIPREG) study of the STORK Groruddalen Cohort (n = 470). This high precision
is unlikely due to the use of EPIC, but rather due to the large sample size of the training set.

Conclusions: Our ABECs predicted adults’ chronological age precisely in independent cohorts. As EPIC is now the
dominant platform for measuring DNAm, these clocks will be useful in further predictions of chronological age, age-
related diseases, and mortality.
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Background
Aging is a biological phenomenon that is characterized by
reduced functional capacity [1, 2]. Because chronological
age is an imperfect surrogate of aging [3–6], the concept of
biological aging that can capture the different rate of func-
tional deterioration across individuals has been suggested
[1]. Given the significance of biological aging, a variety of
predictors of biological age have been constructed based on
known hallmarks of aging [6, 7], including telomere length
[8], metabolic rate [9], DNA methylation (DNAm) [10],
CD4+ and CD8+ T cell ratio [11], proteomic alterations
[12], and gut microbiota [13]. Among these, DNAm-based
estimators of chronological age (referred to as epigenetic
clocks) have garnered the most interest due to their re-
markable precision in estimating chronological age, age-
related diseases, and all-cause mortality [4, 14–18].
Epigenetic age is a linear combination of DNAm levels

at specific CpGs, which are weighted by their respective
coefficients estimated through an epigenetic clock. Most
of the previously published epigenetic clocks (the Han-
num Blood-based clock [19], Horvath Pan-tissue clock
[20], Levine PhenoAge clock [16], and Horvath Skin &
Blood clock [3]) were based on specific CpGs from the
Illumina HumanMethylation450 BeadChip (450 K). This
platform has recently been replaced by the Illumina
MethylationEPIC BeadChip (EPIC). EPIC is a major im-
provement over its predecessor, 450 K (> 450,000 CpGs),
in terms of the number of probes (> 850,000 CpGs) and
the genomic coverage of regulatory elements [21]. To
our knowledge, only one EPIC-based epigenetic clock
has been published (the Alsaleh EPIC clock [22]). This
clock was trained on a relatively small training set and
was not sufficiently validated in independent cohorts.
Thus, it remains unclear to what extent EPIC contrib-
utes to increased precision and accuracy in the predic-
tion of chronological age.
We developed three blood-based epigenetic clocks for

human adults: 1) an Adult Blood-based EPIC Clock
(ABEC) trained on EPIC-derived DNAm data from adult
peripheral blood in a sub-study of the Norwegian
Mother, Father and Child Cohort Study (MoBa) [23]
called the STudy of Assisted Reproductive Technology
(MoBa-START); 2) an extended ABEC (eABEC) trained
on MoBa-START and publicly available DNAm data
from the Gene Expression Omnibus (GEO) with the aim
of improving the performance of ABEC; and 3) a com-
mon ABEC (cABEC) trained on the same training set as
eABEC but restricted to CpGs common to 450 K and
EPIC. The purpose of cABEC was to determine whether
the additional CpGs on EPIC improved predictions of
chronological age. We validated our clocks and the other
published clocks (the Hannum Blood-based clock, Hor-
vath Pan-tissue clock, Levine PhenoAge clock, Horvath
Skin & Blood clock, Alsaleh EPIC clock, and Zhang

clock) in EPIC-derived DNAm data from independent
cohorts, including publicly available DNAm data from
GEO and the Epigenetics in Pregnancy (EPIPREG) study
of the STORK Groruddalen Cohort (STORK) [24].

Results
Peripheral blood-based DNA methylation
We trained an epigenetic clock using elastic net regres-
sion on DNAm data from 1592 adults who were
mothers and fathers in MoBa-START (796 women and
796 men). The chronological age of these adults ranged
from 19 to 59 years (19 to 46 years for women and 19 to
59 years for men). DNAm on these individuals was mea-
sured using EPIC. For the current analyses, we focused
on the 770,586 autosomal CpGs that remained after
quality control (see Methods). Table 1 provides add-
itional details regarding the MoBa-START samples.

Adult blood-based EPIC clock (ABEC)
Figure 1 summarizes our analysis flow.
We developed ABEC using a blood-based DNAm dataset

consisting of adults (training set n = 1592, Table 1, Fig. 1).
We used elastic net regression [32] to select the most pre-
dictive CpGs for chronological age. The resulting regression
comprised 1695 CpGs. The predicted DNAm age was cal-
culated using the following equation:

DNAm Agej ¼ β̂ Interceptð Þ þ Xcg1; jβ̂cg1 þ Xcg2; jβ̂cg2 þ…

þ Xcg1695; jβ̂cg1695;

where DNAm Agej is the epigenetic age of the j th individ-
ual, and Xcgi, j refers to the DNAm level of the j th individ-
ual at the i th CpG site. The estimated intercept and beta
coefficients are provided in Supplementary File 1.
Figure 2 shows the performance of ABEC in the training

set (n= 1592, Fig. 2a) and the test set (n= 424, Fig. 2b). The
prediction precision was quantified using the Pearson correl-
ation coefficient (r) between DNAm age and chronological
age. The prediction accuracy was quantified using the me-
dian absolute deviation (MAD) between DNAm age and
chronological age. ABEC showed high precision and accur-
acy in both of the training (r = 0.999, MAD=0.14, Fig. 2a)
and test set (r = 0.95, MAD=1.13, Fig. 2b). The red line in
Fig. 2a and b represents a perfect correlation between
chronological age and DNAm age, and the dotted line refers
to the regression of the predicted DNAm age on chrono-
logical age.
Despite its overall high precision, ABEC slightly

underestimated the age of the older individuals, particu-
larly those above 45 years of age (Fig. 2c, d). This bias is
expected given that the MoBa-START dataset is a preg-
nancy cohort with few individuals older than 45 years. In
addition, most individuals aged 45 years or older were
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males, which may introduce a sex-bias in the prediction
of chronological age.

Extended adult blood EPIC clock (eABEC)
To reduce the underestimation bias and improve the
precision of ABEC among older individuals in the
MoBa-START dataset, we developed an extended ABEC
(eABEC) by adding a publicly available DNAm dataset,
GSE116339 (n = 635) [25], from the GEO data repository
(https://www.ncbi.nlm.nih.gov/geo/) [33] to the original
training set for ABEC (Fig. 3). This increased the total
sample size of the new training set to 2227. Elastic net
regression was used in the same manner as for ABEC
above, and for this training set, the number of selected
CpGs was 1791.
We validated eABEC in an extended test set consisting

of the test set for ABEC and two independent cohorts
(GSE111165 and GSE115278) from GEO. We selected
these GEO datasets because they were EPIC-derived
blood-based DNAm data with a wide age span (20 to 70

years). The inclusion of GSE116339 substantially im-
proved the prediction in individuals aged 45 years and
above (Fig. 3a, b), but there was a slight underestimation
of age among individuals aged 65 years or older in both
the training and test set (Fig. 3c, d).

Advantage of EPIC in developing epigenetic clocks
One major difference between our epigenetic clocks
(ABEC and eABEC) and the previously published clocks
was the use of EPIC for the training set. The training set
of the other epigenetic clocks was mostly based on 450
K, except for the Horvath Skin & Blood clock which
used both 450 K and EPIC-derived DNAm data. To as-
sess whether EPIC-derived DNAm data yield a more ac-
curate and precise clock, we trained a third epigenetic
clock using the same training set as for eABEC but using
only the 397,473 autosomal CpG sites that are in com-
mon between EPIC and 450 K. We refer to this third
clock as ‘common’ ABEC (cABEC) hereafter. Elastic net
regression selected 1892 CpG sites.

Table 1 Description of the peripheral whole-blood-derived DNAm data on the EPIC platform

Cohort Tissue type Platform GEO submitter N Normalization
Methoda

Probe exclusion
Criteriab

Age range
(years)

ABEC

Training data

MoBa-STAR
T

Peripheral whole
blood

EPIC – 1592 BMIQ SC, CH, DP, SNP 19–59

Test data

MoBa-STAR
T

Peripheral whole
blood

EPIC – 424 BMIQ SC, CH, DP, SNP 20–58

eABEC

Training data

MoBa-STAR
T

Peripheral whole
blood

EPIC – 1592 BMIQ SC, CH, DP, SNP 19–59

GSE116339 Peripheral whole
blood

EPIC Curtis et al. [25] 635 Noob SC 23–88

Test data

MoBa-STAR
T

Peripheral whole
blood

EPIC – 424 BMIQ SC, CH, DP, SNP 20–58

GSE111165 Peripheral whole
blood

EPIC Shinozaki et al.
[26]

15 Noob SC 24–61

GSE115278 Peripheral whole
blood

EPIC Arpon et al. [27] 108 Noob SC 19–66

Other test data

EPIPREG Peripheral whole
blood

EPIC – 470 FunNorm SC, CH, DP, SNP 19–42

GSE132203 Peripheral whole
blood

EPIC Kilaru et al. [28] 795 Noob SC 18–76

a Pre-processing method for quantifying DNAm levels in the range of 0 to 1
Noob Normal-exponential out-of-band [29]
BMIQ Beta-mixture quantile dilation [30]
FunNorm Functional normalization [31]
b Probe exclusion criteria
SC Sex chromosome, CH cross-hybridizing, DP detection P-value < 0.01 and SNP single-nucleotide polymorphism
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cABEC showed a high prediction performance, similar
to eABEC (Supplementary File 2, S-Figure 1). The preci-
sion metric (r) of cABEC was identical to that of eABEC.
However, compared to eABEC, the accuracy of cABEC in
the test set was slightly diminished (MAD= 1.25→ 1.3).
We hypothesized that the denser EPIC array might be

beneficial in developing an epigenetic clock with a
smaller training set. To address this point, two types of
epigenetic clocks (one using all the CpGs on EPIC and
the other using the CpGs common to EPIC and 450 K)
were trained on random subsets of the training set of
eABEC and validated in the test sample of eABEC (see
Methods for further details). Both types of epigenetic
clocks showed a remarkable improvement in precision
and accuracy as the sample size of the training set in-
creased (Fig. 4). However, across all the reduced training
sets, the epigenetic clock based on all the CpGs on EPIC
did not outperform the other clock based on the CpGs
common to EPIC and 450 K (Fig. 4). This indicates that
the additional CpGs on EPIC do not enhance the accur-
acy or precision of the epigenetic clocks when the train-
ing set is reduced.

Validation of ABECs and other epigenetic clocks
Using an independent cohort from GEO (n = 123), we
evaluated the performance of ABEC, eABEC, and cABEC
against six published epigenetic clocks: the Hannum
Blood-based clock [19], Horvath Pan-tissue clock [20],
Levine PhenoAge clock [16], Horvath Skin & Blood clock
[3], Alsaleh EPIC clock [22], and Zhang clock [34]. The in-
dependent test set consisted of GSE111165 [26] and

GSE115278 [27] from the GEO database (see Table 1 for
details). None of these GEO datasets have previously been
used to train any epigenetic clocks.
Figure 5 summarizes the results of epigenetic age pre-

diction by ABEC, eABEC, cABEC, and the six published
epigenetic clocks mentioned above. Our eABEC and the
Zhang clock showed the highest precision (r = 0.96),
followed by ABEC (r = 0.95), cABEC (r = 0.95), the Hor-
vath Skin & Blood clock (r = 0.94), and the Hannum
Blood-based epigenetic clock (r = 0.87). The 95% confi-
dence intervals of the r values can be found in Supple-
mentary File 2 (S-Table 1). Here, we note that only the
precision metric (r) was presented in Fig. 5 because the
dots in the scatter plots could deviate systematically
from the 45-degree line (so-called systematic offset) but
still form a very tight prediction, e.g., panel (D) in Fig. 5.
In such cases where high precision and relatively low ac-
curacy are present, the systematic offset can be cali-
brated using a linear transformation, or, if necessary, a
non-linear transformation.
An important distinction of ABECs from the other pub-

lished clocks is that they are based on an ethnically homo-
geneous training set (MoBa-START and GSE116339
comprised individuals of European ancestry). We vali-
dated ABEC, eABEC, cABEC, and the other published epi-
genetic clocks in the EPIC-derived blood-based DNAm
data from EPIPREG (n = 470; 305 European women and
165 South Asian women, Fig. 6), a sub-study of the
STORK Groruddalen Cohort [24]. ABEC, eABEC, cABEC,
the Horvath Skin & Blood clock, and Zhang clock showed
the highest precisions (r > 0.9). More interestingly, eABEC

Fig. 1 Analysis flow. MoBa-START adults were randomly assigned to a training and a test set
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showed that the epigenetic age acceleration (EAA; resid-
uals from the regression of DNAm age on chronological
age) was higher in South Asian women than in Norwegian
women (+ 0.51 years, P = 0.0015, Supplementary File 2, S-
Figure 2A). EAA derived by the Alsaleh EPIC clock was
also elevated in South Asians compared to Norwegians (+
0.25 years, P = 4E-04, Supplementary File 2, S-Figure 2B).
However, EAAs derived by ABEC, cABEC, and the other
published clocks did not show any difference between the
two groups.

Given that ABEC, eABEC, and cABEC were trained on
the ethnically homogeneous training set of Europeans,
they may be sub-optimal for predicting chronological
age in other ethnicities. To explore this further, we ap-
plied ABEC, eABEC, cABEC, and the other published
epigenetic clocks to a GEO dataset comprising African
Americans (GSE132203 [28]; n = 795, Supplementary
File 2, S-Figure 3). All the clocks, except for the Alsaleh
EPIC clock, showed high correlations between chrono-
logical age and epigenetic age (r > 0.86). The 95%

Fig. 2 Chronological age estimation by ABEC. a Scatter plot of chronological age against DNAm age estimated by ABEC in the training set. b
Scatter plot of chronological age against DNAm age estimated by ABEC in the test set. c Residual plot in the training set. d Residual plot in the
test set. The red line in panels (a) and (b) represents a perfect correlation between chronological age and DNAm age, and the dotted line is the
regression of DNAm age on chronological age

Lee et al. BMC Genomics          (2020) 21:747 Page 5 of 13



confidence intervals of the r values can be found in Sup-
plementary File 2 (S-Table 1). eABEC, cABEC, and the
Zhang clock showed the highest r of 0.96, and ABEC
and the Horvath Skin & Blood clock showed the second-
highest r of 0.95.

Discussion
We developed precise epigenetic clocks (ABEC and
eABEC) using blood-based DNAm data from EPIC. Our

epigenetic clocks showed a more precise chronological
age prediction than existing blood-based epigenetic
clocks (e.g., the Hannum Blood-based clock and Horvath
Skin & Blood clock; Fig. 5). The reason for the higher
precision is more likely due to the large training set (n =
2227, Table 1) and the wide age-span of the samples (19
to 88 years for the training set of eABEC, Table 1),
which is consistent with the findings by Zhang and col-
leagues [34]. Compared to eABEC, both Hannum Blood-

Fig. 3 Chronological age estimation by eABEC. a Scatter plot of chronological age against DNAm age estimated by eABEC in the extensive
training set. b Scatter plot of chronological age against DNAm age estimated by eABEC in the test set. c Residual plot in the training set. d
Residual plot in the test set. The red line in panels (a) and (b) represents a perfect correlation between chronological age and DNAm age, and
the dotted line is the regression of DNAm age on chronological age
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based clock and Horvath Skin & Blood clock were
trained on fewer samples (n = 656 and n = 896, respect-
ively) that had a wider age-span (19 to 101 years and 0
to 94 years, respectively) [3, 19]. Other clocks (the Hor-
vath Pan-tissue clock and Levine PhenoAge clock) may
not be directly comparable to eABEC for chronological
age prediction. For instance, the Horvath Pan-tissue clock
was designed to measure epigenetic aging not only in
blood but in multiple tissues [20], and the Levine Pheno-
Age was designed to predict phenotypic age (estimated
using 10 clinical biomarkers, e.g., albumin, creatinine,
serum glucose, and seven others) based on DNAm [16].
To develop eABEC, we added GSE116339 to the train-

ing set of ABEC. GSE116339 is from a study by Curtis
et al. [25] that used EPIC to measure DNAm in periph-
eral blood samples collected from 658 individuals of
European ancestry (638 non-Hispanic and 20 Hispanic)
in Michigan, USA. These individuals had been exposed
to the endocrine-disrupting chemical polybrominated bi-
phenyl when an agricultural accident introduced it into
the food supply in the 1970s. We selected 635 individ-
uals from the control group whose total PBB (PBB-153,
PBB-101, PBB-77, and PBB180) exposure was lower than
5 pg/ml. The distribution of the total PBB exposure was
highly right-skewed.
The high precision of eABEC cannot be attributed

solely to the use of the EPIC platform as the additional
413,743 CpGs on EPIC did not improve age prediction

noticeably (Fig. 4). Although the 1791 CpGs selected by
eABEC included 1084 CpGs that only exist on EPIC,
eABEC did not outperform cABEC that used the CpGs
common to 450 K and EPIC. This indicates that 226,915
probes (out of 413,743) that are designed to cover regula-
tory regions (DNase proximal/distal [35] and FANTOM5
[36]) did not increase the precision of the epigenetic
clocks significantly [21]. Yet, Pidsley et al. [21] reported
that probes on EPIC cover 58% of FANTOM5 enhancers,
7% of distal, and 27% of proximal ENCODE regulatory re-
gions, suggesting that the coverage of regulatory regions is
still low. Thus, it is difficult to dismiss the possibility that
other regulatory CpGs not currently included on EPIC
might improve age prediction.
Underestimation and overestimation of epigenetic

clocks should be carefully assessed using residual plots
instead of scatter plots. As we regressed chronological
age on DNAm levels (chronological age = DNAm levels
+ error), a scatter plot that displays chronological age on
the x-axis and DNAm age on the y-axis may lead to the
misconception that DNAm age is overestimated in the
oldest age group and underestimated in the youngest
age group (Supplementary File, S-Figure 4). In contrast,
residual plots that display DNAm age on the x-axis and
residuals (DNAm age minus chronological age) on the y-
axis would enable a fair evaluation of prediction models.
The strength of the current scatter plots lies in the
visualization of EAA (the residuals of the regression of

Fig. 4 Comparison of precision and accuracy between a clock based on the CpGs common to 450 K and EPIC and a clock on all the CpGs on
EPIC. a Scatter plot of the Pearson correlation (r) in the test set against the sample size of the training set. b Scatter plot of MAD in the test set
against the sample size of the training set. In panel (a), we fit the smoothing splines of the Fisher’s Z-transformed r values on the sample size,
derived the confidence intervals, and inverse-transformed them. In panel (b), we fit the smoothing splines of MAD values on the sample size
without transformation. The black dots refer to the clock based on the CpGs common to 450 K and EPIC, and the red dots refer to the clock
based on all the CpGs on EPIC
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DNAm age on chronological age; i.e., the vertical distance
between each dot and the dotted line in Figs. 2 and 3).
Our clocks, particularly eABEC, showed a system-

atic underestimation in older subjects, as was the case
with the Horvath Pan-tissue clock and Hannum
Blood-based clock in GSE132203 [37]. The systematic
underestimation may be corrected by 1) adding more
DNAm data of older subjects to the training set or 2)

calibrating epigenetic clocks using a non-linear trans-
formation (e.g., piecewise cubic regression (with a
knot at 70) or smoothing spline of chronological age
on DNAm age). However, we could not add more
EPIC-derived DNAm data from older subjects (prefer-
ably subjects of European ancestry aged 70 to 80
years) to the training set for eABEC. We note that
the underestimation in older subjects can cause EAA

Fig. 5 Chronological age estimation by ABEC, eABEC, and the other published epigenetic age estimators. a ABEC, b eABEC, c Hannum Blood-
based clock, d Horvath Pan-tissue clock, e Levine PhenoAge clock, f Horvath Skin & blood clock, g Alsaleh Blood-based EPIC clock (the stepwise
regression), and h Zhang clock (elastic net regression). The red line in the panels represents a perfect correlation between chronological age and
DNAm age, and the dotted line is the regression of DNAm age on chronological age
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to be dependent on chronological age. Therefore, for
other researchers who are interested in the associ-
ation between EAA and a given phenotype, we rec-
ommend redefining EAA (e.g., regressing DNAm age
on chronological age using a piecewise cubic regres-
sion or a smoothing spline rather than an ordinary
linear regression) so that EAA is independent of
chronological age.

Our eABEC may result in subtle differences in EAA
across different ethnic groups, e.g., Supplementary
File 2, S-Figure 2A. A hypothesis explaining this bias
is that the CpGs included in eABEC may be located
near SNPs with a low minor allele frequency [38].
The SNPs may influence the DNAm level at the
CpGs if the minor allele frequencies at the SNPs dif-
fer across ethnicities. To address this point, we added

Fig. 6 Application of ABEC, eABEC, and other epigenetic clocks to DNAm data in the EPIPREG sub-study of the STORK Groruddalen cohort. The
title of each panel displays the overall r as well as the ethnicity-specific r. EUR indicates the r between chronological age and DNAm age in 305
women of European ancestry, whereas SAS refers to the r between chronological age and DNAm age in 165 women of South Asian ancestry
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SNP annotations generated by Zhou et al. [38] and
McCartney et al. [39] to Supplementary File 1.

Conclusion
Three blood-based epigenetic clocks were developed to esti-
mate adults’ chronological age using EPIC-derived DNAm
data. The precision of these clocks was high (r > 0.94) when
validated in independent cohorts. The high level of precision
was not explained by the broader genomic coverage of EPIC
(> 850,000 CpG sites) but rather by the large training set
(n= 2227) with a wide age-span (19 to 88 years).

Methods
Study population
MoBa is a nationwide pregnancy cohort study in which
approximately 95,000 mothers, 75,000 fathers, and 114,
000 children were recruited from 1998 to 2008 across
Norway [23]. The participants completed a series of ques-
tionnaires that are also linked to information from the
Medical Birth Registry of Norway [23]. Peripheral whole-
blood samples were collected from the mothers at the
17th week of gestation and at birth and from the fathers at
the 17th week of gestation. Cord-blood samples were col-
lected from newborns at birth [40, 41]. The precise
chronological age in days at blood draw was calculated for
the fathers and mothers. Further details on MoBa have
been described in previous publications [23, 40–42]. We
used data from a sub-study of MoBa (MoBa-START) with
blood-based DNAm data on 2016 adults (mothers and fa-
thers who were randomly selected among complete
mother-father-newborn trios in MoBa).
GSE116339 is an epigenome-wide association study

(EWAS) of polybrominated biphenyl in peripheral blood
[25]. GSE111165 explored the difference in genome-
wide DNAm between brain and peripheral tissues (buc-
cal, saliva, and blood) from epilepsy patients [26].
GSE115278 is an EWAS of insulin resistance, obesity,
and metabolic complications [27, 43–45]. GSE132203
examined the association between DNAm and psychi-
atric or stress-related symptoms [28].
EPIPREG is nested within the STORK Groruddalen

Cohort study (a population-based cohort, n = 823, [24]).
EPIPREG quantified DNAm in white blood cells, col-
lected at the 28th week of gestation, from 480 women
(312 of European ancestry and 168 of South Asian an-
cestry), using EPIC. In this study, we focused on 470
women (305 of European ancestry and 165 of South
Asian ancestry) after excluding eight samples with low
quality and two samples with an absolute EAA larger
than 15 years. Further details of EPIPREG are described
in Supplementary File 3 (S-Figure 7).
The age distributions of all the individuals included in

the training and test sets can be found in Supplementary
File 2 (S-Figure 5 and 6).

Pre-processing of DNA methylation
For MoBa-START, 500 nanograms of DNA stored in
the MoBa Biobank (see Paltiel et al. [41] for further de-
tails of the storage of the biological samples) were
shipped to LIFE & BRAIN GmbH (Bonn, Germany).
The samples were bisulfite converted and processed
using the EZ-96DNA methylation-Lightning™MagPrep
kit (Zymo Research, Irvine, USA) according to the man-
ufacturer’s instructions. The raw iDAT files were
imported and processed using the RnBeads R package
[46]. 44,210 probes with cross-hybridization [39], high
detection p-value (> 0.01), and 16,117 probes near
single-nucleotide polymorphisms (filtering.snp = “3”)
were excluded. The data were run in four batches and
the exclusion criteria for removing probes were applied
to each batch separately. Probes that were excluded from
one batch were removed from all batches. The DNAm
signals at the remaining probes were control-normalized
and corrected for background noise using the wm.nasen
and methylumi.noob options. Additionally, among a total
of 2034 non-replicated samples, we excluded 18 samples
that displayed low signal intensities and deviated (out-
liers) from the clusters formed by principal component
analysis. The two probe chemistries (Type I and Type II
probes) were normalized using Beta-mixture quantile
normalization (BMIQ, [30]) using the wateRmelon R
package [47]. In summary, the number of remaining
probes was 790,213 (770,586 from autosomes and 19,
627 from sex-chromosomes).
For the DNAm data from GEO, we downloaded the

iDAT files and used normal-exponential out-of-band
(Noob, [29]) normalization in the minfi R package [48].
For the DNAm data from EPIPREG, we performed func-
tional normalization (FunNorm, [31]) using the meffil R
package [49]. Further details of the DNA extraction and
quality control process of EPIPREG can be found in
Supplementary File 3.

Elastic net regression
Penalized regressions (glmnet R package [50]) were used
to develop the three ABECs. Chronological age in days
was regressed on 770,586 autosomal CpGs that remained
after quality control. The mixing parameter (alpha) was
set to 0.5 and the shrinkage parameter (lambda) leading to
the minimum mean square error was selected after 10-
fold cross-validation in the training set. Supplementary
File 3 (S-Figure 8) includes cross-validation curves for
lambda and alpha values. ABEC, eABEC and cABEC se-
lected 1695 CpG sites (lambda = 0.02884886), 1791 CpG
sites (lambda = 0.05281471), and 1892 CpG sites
(lambda = 0.0438477), respectively. Supplementary File 1
lists these CpG sites, their corresponding coefficients for
ABEC, eABEC, and cABEC, and SNP annotations gener-
ated by Zhou et al. [38] and McCartney et al. [39].
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Comparison between EPIC-CpG clock and common CpG
clock
The implementation resembles bootstrapping conceptually.
For each of the reduced sample sizes (n = 100, 125, 156,
194, 243, 303, 378, 472, 589, 735, 918, 1145, 1430 and 1784;
the determination of these values is detailed in Supplemen-
tary File 3), we first constructed five training sets by ran-
domly selecting subjects from the full training set of
eABEC (n = 2227). We made the sequence of the reduced
sample sizes denser around 100 and sparser around 2227
because epigenetic clocks gradually improved their preci-
sion and accuracy when the training set was larger than
1145. On each training set, we trained two types of epigen-
etic clocks: one using all the CpGs on EPIC and the other
using the CpGs common to EPIC and 450 K. Next, we vali-
dated these clocks in the test set of eABEC (n = 485) and
calculated r and MAD accordingly. The mgcv R package
[51] was used to fit the smoothing splines in Fig. 4. Particu-
larly, in Fig. 4a, we fit the smoothing splines of the Fisher’s
Z-transformed r values (FðrÞ ¼ 0:5� logð 1þr

1 − rÞ) on the sam-
ple size, derived the confidence intervals and inverse-
transformed them.

Availability of epigenetic clocks
The estimated intercepts and coefficients for ABEC,
eABEC, and cABEC can be found in Supplementary File 1.
The ABECs can be readily applied to any DNAm data

using the following procedure: 1) generate a matrix of
beta values (n individuals by p CpG sites) using a back-
ground correction method, e.g., Noob (preferably) with-
out any batch adjustment (Supplementary File 3), 2)
select the CpG sites for the ABECs (Supplementary
File 1) out of the matrix of beta values, 3) calculate the
linear combination of the beta values at the selected
CpG sites, and 4) add the estimated intercept (Supple-
mentary File 1) to the linear combination.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-020-07168-8.

Additional file 1. This file includes CpG sites for ABEC, eABEC, and
cABEC, their corresponding coefficients, overlap with the other published
clocks, genomic locations, neighboring genes, presence in the Illumina
HumanMethylation450K and 27 K array, and the SNP annotations
generated by Zhou et al. [38] (with the suffix of “Zhou”) and McCartney
et al. [39] (with the suffix of “McCartney”).

Additional file 2. This file includes 1) a figure displaying the age
prediction of cABEC, 2) a table containing the bootstrapped 95%
confidence intervals for the r values in Figs. 4, 5 and 6) figures displaying
the age prediction of the ABECs and the other published clocks in EPIP
REG and GSE132203, 4) a figure illustrating the regression-to-the-mean ef-
fect and 5) histograms displaying the age distribution of individuals in
each cohort.

Additional file 3. This file includes 1) further details (sample selection,
DNA extraction, and quality control) of EPIPREG, 2) cross-validation curves
of mean squared error over lambda and alpha values for eABEC, 3)

determination of the reduced sample sizes for Fig. 4, and 4) further infor-
mation regarding batch adjustment in developing the ABECs.
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ABSTRACT 
 
The human pan-tissue epigenetic clock is widely used for estimating age across the entire lifespan, but it does 
not lend itself well to estimating gestational age (GA) based on placental DNAm methylation (DNAm) data. We 
replicate previous findings demonstrating a strong correlation between GA and genome-wide DNAm changes. 
Using substantially more DNAm arrays (n=1,102 in the training set) than a previous study, we present three 
new placental epigenetic clocks: 1) a robust placental clock (RPC) which is unaffected by common pregnancy 
complications (e.g., gestational diabetes, preeclampsia), 2) a control placental clock (CPC) constructed using 
placental samples from pregnancies without known placental pathology, and 3) a refined RPC for 
uncomplicated term pregnancies. These placental clocks are highly accurate estimators of GA based on 
placental tissue; e.g., predicted GA based on RPC is highly correlated with actual GA (r>0.95 in test data, median 
error less than one week). We show that epigenetic clocks derived from cord blood or other tissues do not 
accurately estimate GA in placental samples. While fundamentally different from Horvath’s pan-tissue epigenetic 
clock, placental clocks closely track fetal age during development and may have interesting applications.  
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INTRODUCTION 
 
Gestational age (GA) of the fetus is used to forecast the 
date of delivery, optimize prenatal care, and monitor the 
growth and development of the fetus relative to other 
pregnancies. Short GA at delivery impacts neonatal 
morbidity and mortality [1-3], as well as brain 
development [4-6]. Thus, accurate classification of the 
fetus may help predict neonatal risk. In this regard, the 
World Health Organization defined extremely preterm 
(<28 weeks of gestation), very preterm (28-32 weeks of 
gestation) and moderate or late preterm (32-37 weeks of 
gestation) birth to reflect the newborn’s developmental 
stage [7].  
 
Traditional methods for estimating GA include early 
obstetric ultrasound measures or calculations based on 
the last menstrual period (LMP) [8]. The early ultrasound 
method estimates GA based on the visible fetal size (e.g., 
crown-rump length during the first trimester [9-11] or 
biparietal diameter after the second trimester [12-15]). 
The LMP method calculates GA based on the time 
elapsed since the known first day of the LMP. The early 
ultrasound method is widely accepted as the gold 
standard due to its higher accuracy [16] but is not 
routinely available in low and middle-income countries. 
More accurate classification of GA at birth may help 
predict neonatal risk for adverse outcomes and measure 
GA more accurately than through the assessment of 
physical and neurological features of the newborn, 
especially when early ultrasound measures are lacking, 
or the infant is growth-restricted but not preterm. 
 
Here, we aim to develop a new molecular estimator of 
GA based on placental tissue samples that is more 
accurate than the previous clock [17]. Earlier studies 
have revealed profound molecular changes in placental 
chorionic villi, the placental structures that project into 
maternal decidua and are bathed in maternal blood, 
during gestation [18-22]. We focus on placental DNA 
methylation (DNAm) data, because prior work 
demonstrated that accurate estimators of chronological 
age (epigenetic clocks) can be developed based on 
DNAm levels from a variety of tissues [23], that one 
can estimate GA based on DNAm data derived from 
umbilical cord blood samples [24, 25], and most 
pertinently that one can estimate GA based on placental 
methylation data (Mayne et al. 2017) [17]. Our study 
provides more accurate placenta-based GA estimators 
(i.e., placental epigenetic clocks) than those developed 
previously, because we use a substantially larger sample 
for our training set (more than six times larger than that 
of Mayne et al. 2017). We aim to develop three 
different placental epigenetic clocks: 1) a “robust 
placental clock” (RPC) that is largely unaffected by 
pregnancy conditions (e.g., preeclampsia, gestational 

diabetes, and trisomy), 2) a “control placental clock” 
(CPC), tailor-made for measuring GA in normal 
pregnancies, and 3) a “refined RPC”, trained for 
uncomplicated term (GA>36) pregnancies. For the 
RPC, we purposely included placental samples from a 
variety of pregnancy complications in the training data 
(e.g., hypertension or diabetes) as well as congenital 
abnormalities (e.g., trisomy 13, 18 and 21). 
 
RESULTS 
 
Placental DNA methylation data 
 
We downloaded publicly available DNAm data from 
Gene Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo/; Table 1) that assessed DNAm levels in 
placental tissues. Eighteen datasets used the Illumina 
HumanMethylation 450K BeadChip (450K) platform 
and one used the more recent Illumina Methylation 
EPIC BeadChip (EPIC) array. Our analyses focused on 
the 441,870 autosomal CpG probes that are shared 
between the two Illumina platforms such that the 
resulting GA estimators (RPC and CPC) would be 
applicable to data from both platforms. 
 
Robust placental clock (RPC) 
 
An overview of our analysis is presented in Figure 1. 
We developed the RPC using several placental DNAm 
datasets (training n=1,102, Table 1, Figure 1). We 
regressed GA (dependent variable) on DNAm levels of 
CpG sites using a penalized regression model (elastic 
net regression [26]). The elastic net regression model 
automatically selected 558 CpG sites for the RPC model 
(Supplementary File 1). Predicted GA is a weighted 
average of DNAm levels at these 558 CpGs, where the 
weights are the regression coefficients. 
 
Figure 2 shows the results of a comparison between the 
RPC and the placental clock from Mayne et al. (2017) 
in independent test data (test n=187, Table 1). The 
predictive accuracy of the placental clocks was 
quantified using the median absolute error (MAE, 
defined as the median absolute deviation between 
predicted GA and observed GA), and the degree of the 
linear association between predicted GA and observed 
GA was measured using the Pearson correlation 
coefficient (r). According to both measures, the RPC 
(MAE=0.96 weeks; 95% confidence interval (CI) [0.88, 
1.19], r=0.99; 95% CI [0.98, 0.99]) outperformed 
Mayne’s placental clock (MAE=2.63 weeks; 95% CI 
[2.17, 3.01], r=0.94; 95% CI [0.92, 0.96]). Note that 
Mayne’s placental clock underestimated GA in two data 
sets: GSE73375 (green dots) and GSE75196 (blue dots), 
and overestimated GA in two other data sets: 
GSE66210 (black) and GSE70453 (red). 
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Table 1. Description of the publicly available placental DNAm data. 
GEO 
Number 

Placental tissue type GEO submitter N Platform Normalization 
method 

Probe exclusion 
criteria11 

GA 
range 
(weeks) 

Training data       
 GSE71678 Fetal side, near the cord 

insertion 
Marsit et al. 343 450K2 funNorm4 SC, CH, SNP, DP 30-42 

 GSE75248 Fetal side  Marsit et al. 334 450K2 funNorm4 SC, CH, SNP, DP 37-42 
 GSE71719 Fetal side, near the cord 

insertion 
Marsit et al. 44 450K2 noob5 SC, CH, SNP, DP 37-41 

 RL1 Fetal side, chorionic villi  - 121 450K2 funNorm4 SC 14-42 
 GSE100197 Fetal side, chorionic villi  Robinson et al. 16 450K2 SWAN6 SC, SNP, DP, MB 26-39 
 GSE108567 Fetal side, chorionic villi  Robinson et al. 7 450K2 SWAN6 SC, CH, SNP, DP, BR 29-38 
 GSE69502 Fetal side, chorionic villi  Robinson et al. 7 450K2 SWAN6 SC, CH, SNP, DP, BR 16-24 
 GSE74738 Fetal side, chorionic villi  Robinson et al. 8 450K2 SWAN6 SC, CH, SNP, DP, BR 6-13 
 GSE115508 Fetal side, chorionic villi  Robinson et al. 44 EPIC3 funNorm4 SC, CH, SNP, DP, BR 28-37 
 GSE44667 Fetal side, chorionic villi  Robinson et al. 27 450K2 SWAN6 SC, SNP, DP, MB 25-37 
 GSE49343 Fetal side, chorionic villi  Robinson et al. 13 450K2 SWAN6 SC, SNP, DP 5-39 
 GSE42409 Fetal side, chorionic villi  Robinson et al. 4 450K2 SWAN6 SC, SNP, DP 26-33 
 GSE120250 Fetal side, near the cord 

insertion 
Weksberg et al. 86 450K2 GenomeStudioNorm7 SC, SNP, DP 35-41 

 GSE98224 Fetal side  Cox et al. 48 450K2 SWAN6 SC, SNP, DP, MB 27-41 
Test data        
  GSE70453 Maternal side, decidua 

near the cord  
Binder et al. 82 450K2 BMIQ8 SC, CR, SNP 35-42 

  GSE73375 Fetal side Fry et al. 36 450K2 quanNorm9 DP 22-41 
  GSE75196 Fetal side Chiu et al. 24 450K2 dasen10 SC, SNP, DP, BR 32-40 
  GSE76641 Fetal side, chorionic villi Slieker et al. 4 450K2 funNorm4 SC, SNP, DP, BR 9-22 
  GSE66210 Fetal side, chorionic villi Bojesen et al.  41 450K2 GenomeStudioNorm7 - 11-15 
1 Placental DNAm data generated from the Robinson laboratory at the University of British Columbia (Vancouver, BC, Canada); 
 The data for which is publicly available as part of the GEO data sets listed below. 
2 450K: Illumina Infinium HumanMethylation450 BeadChip 
3 EPIC: Infinium MethylationEPIC BeadChip 
4 funNorm: Functional normalization [27]  
5 noob: Normal-exponential out-of-band [29] 
6 SWAN: Subset-quantile within array normalization [28] 
7 GenomeStudioNorm: Genome Studio normalization  
  (details available in the GenomeStudio Methylation Module v1.8 User Guide, https://www.illumina.com/content/dam/illumina-
support/documents/documentation/software_documentation/genomestudio/genomestudio-2011-1/genomestudio-methylation-v1-8-
user-guide-11319130-b.pdf) 
8 BMIQ: Beta-mixture quantile dilation [30] 
9 quanNorm: Quantile normalization [31, 32] 
10 dasen: Data-driven separate normalization [33] 
11 Probe exclusion criteria 
 SC: Sex chromosome, CH: Cross-hybridizing, SNP: Single nucleotide polymorphism, DP: Detection P-value < 0.01, MB: Missing beta > 5%, 
and BR: Bead replicates < 3. 
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The advantage of the RPC is particularly pronounced in 
later gestation, e.g., when restricting the analysis to 
placental samples with GA > 25 weeks, the RPC 
(MAE=0.89 [0.73, 1.02], r=0.82 [0.76, 0.87]) greatly 
outperforms Mayne's clock (MAE=2.25 [1.9, 2.63], 
r=0.61 [0.05,0.71], Figure 2C and 2D).  
 
As expected by its construction, the RPC predicted GA 
accurately even in placental samples with adverse 
pregnancy conditions such as preeclampsia, gestational 
diabetes, and trisomy 13, 18 or 21 (Supplementary 
Figure S1). However, Mayne’s placental clock 
underestimated GA in placental samples from pre-
eclampsia cases and overestimated GA in cases of 
gestational diabetes and trisomy (Supplementary Figure 
S1). In case of trisomy, the RPC (MAE=2.26 [1.63, 
2.88], r=0.12 [-0.25, 0.46]) was more accurate than 
Mayne’s clock (MAE=3.99 [3.35, 5.4], r=0.02 [-0.34, 
0.39]) but still showed a slight overestimation. The 
RPC's GA estimate was not associated with fetal sex 
(Supplementary Figure S2). We could not evaluate the 
effect of ethnicity because our test data did not include 
ethnic information except for GSE73375 (n=36, 
Supplementary Figure S3).  
 
The training data used in the construction of the RPC 
employed several different normalization methods:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
functional normalization (funNorm, [27]), subset-
quantiles within arrays (SWAN, [28]) and the normal- 
exponential out-of-band (noob, [29]) approach. This 
lack of uniformity in normalization methods in the 
training data has a statistical advantage: it makes it 
more likely that the RPC will be robust with respect to 
different normalization methods. In support of this, we 
found that the RPC validated in test data that were 
normalized using various methods: beta-mixture 
quantile dilation (BMIQ, [30]), quantile normalization 
(quanNorm, [31, 32]), data-driven separate normaliza-
tion (dasen, [33]) as detailed in Table 1.  

Control placental clock (CPC) 

We trained the CPC on placental samples (training 
n=963, Table 1) that had been designated as "control" 
samples. Hence, placental samples with higher GA were 
probably from relatively normal pregnancies. However, 
placental samples with lower GA might contain samples 
that would be considered abnormal (i.e., premature 
rupture of membranes, spontaneous premature labor) 
but minimal placental pathology relative to pre-
eclampsia cases. The analysis flow was identical as for 
the RPC, except for the composition of the training and 
test sets (Supplementary Figure S4). The elastic net 
regression model used for the CPC automatically 
selected 546 CpG sites (Supplementary File 1).  

Figure 1. Flow chart of the RPC development. 
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To assess whether adverse pregnancy conditions 
influence the epigenetic GA estimate, we applied the 
CPC to placental samples associated with chromosomal 
abnormalities (confined placental mosaicism, diandric 
triploidy, trisomy 13, 16, 18 and 21), neural tube defects 
(anencephaly and spinal bifida), intrauterine growth 
restriction, maternal complications (gestational diabetes 
and preeclampsia), and chorioamnionitis (test, n=326). 
Interestingly, the CPC accurately predicted the GA of 
fetuses with the above-mentioned conditions 
(MAE=1.02, r=0.98, Figure 3A) even though the CPC 
was constructed using unaffected control samples only.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To test whether pregnancy conditions are associated 
with faster/slower epigenetic aging, we used epigenetic 
measures of GA acceleration that were formally defined 
as raw residuals resulting from regressing the DNAm 
GA estimate on observed GA. By definition, this 
residual-based measure of GA acceleration is not 
correlated with true GA (r=0). GA acceleration did not 
significantly deviate from zero for any pregnancy 
conditions mentioned above (Figure 3B), but we 
acknowledge the small sample sizes for diandric 
triploidy (n=3) and trisomy 16 (n=3). When restricting 
the analysis to placental samples from the first 

Figure 2. Gestational age estimation of the RPC and Mayne et al. (2017)’s placental clock. (A) Scatter plot between 
observed GA and DNAm-predicted GA (RPC) across all trimesters. (B) Scatter plot between observed GA and DNAm-predicted GA 
(Mayne et al. 2017) across all trimesters. (C) Zoom-in on panel A restricting GA > 25 weeks. (D) Zoom-in on panel B restricting GA
> 25 weeks. 
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trimester (weeks 1 to 12), we found the CPC’s GA 
estimates to be slightly inaccurate, which was due to 
the small training set (only n=7 fetuses with GA < 12 
weeks).  
 
Refined robust placental clock for uncomplicated 
term pregnancies 
 
For researchers who are particularly interested in 
uncomplicated term pregnancies, we also developed a 
second version of the RPC using placental samples from 
"uncomplicated term” pregnancies  (defined as GA > 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

weeks) without any known pregnancy condition.  
 
Toward this end, we selected "uncomplicated" term 
placental samples (n=733) from the training set used for 
the original RPC. Further, we restricted the penalized 
regression model analysis to the 558 CpGs that make up 
the original RPC. The penalized regression model 
automatically selected 395 CpG sites out of the 558 
sites (Supplementary File 1). We find that the "refined" 
RPC for uncomplicated term pregnancies leads to 
highly accurate GA estimates (MAE=1.49, r=0.98, 
Figure 4A) in the RPC’s test set (n=187). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Effect of pregnancy condition on the GA estimate by CPC. (A) Scatter plot between GA and DNAm-predicted
GA (CPC) across all trimesters. (B) Violin plot of GA acceleration (standardized residual) for each pregnancy condition. 

Figure 4. Gestational age estimation by the refined RPC and the RPC. (A) Scatter plot between observed GA and DNAm-
predicted GA (by the refined RPC) – all samples from the RPC’s test data (n=187). (B) Scatter plot between observed GA and DNAm-
predicted GA (by the refined RPC) - uncomplicated term samples from the RPC’s test data (n=69). (C) Scatter plot between observed GA
and DNAm-predicted GA (by the RPC) - uncomplicated term samples from the RPC’s test data (n=69). 
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Evaluating other epigenetic clocks  
 
Using RPC’s test data (n=187), we found that 
previously published epigenetic clocks derived from 
cord blood samples or other tissues do not apply to the 
estimation of GA based on placental samples. 
 
No significant correlation between GA and predicted 
DNAm age could be observed for clocks by Hannum 
(2013) [34], Horvath (2013) [23], Levine (2018) [35], 
and Horvath (2018) [36] (Supplementary Figure S5). 
However, the DNAm age estimate is close to zero for 
Horvath’s pan-tissue clock and the more recently 
developed Skin & Blood clock. Similarly, GA 
estimators for cord blood (Bohlin's cord blood clock 
[24], Knight’s cord blood clock [25]) failed to accu-
rately predict GA in placental samples (Supplementary 
Figure S6). Overall, these studies demonstrate that the 
placenta is quite distinct from other tissues  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

regarding the development and application of DNAm 
based age estimators. 
 
Fetal sex-classifier based on DNAm 
 
Several GEO datasets did not report fetal sex (e.g., 
GSE70453, GSE73375 and GSE76641) and CpGs 
present on sex chromosomes. Therefore, we developed 
a fetal sex-classifier based RPC’s training data 
(n=1,102) using CpGs that are present on autosomes. 
Toward this end, we regressed fetal sex (binary 
outcome) on 441,870 autosomal CpG sites using an 
elastic net implemented in the glmnet R package [37]. 
The elastic net automatically selected 220 autosomal 
CpG sites. The classification accuracy was 100% for the 
placental test data from GSE75196 (n=24). 
Interestingly, the placental sex classifier turns out to be 
highly accurate, when applied to blood-based DNAm 
data from adults (e.g., an accuracy of 96% in the data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Results of EWAS and potential confounding between DNA methylation and gestational age due to selection 
bias. (A) Scatter plots between Z scores from controls and Z scores from preeclampsia. (B) The depicted minimal causal diagram under 
the null hypothesis of no effect of GA on DNAm. Here, the pregnancy condition (preeclampsia) would induce a spurious association
between DNAm and GA, because preeclampsia could prompt earlier delivery (shorter GA) and influence DNAm. Note that the association 
between GA and DNAm is not due to a direct causal relationship between DNAm and GA. Rather, the association is confounded by 
preeclampsia. If the selection criteria differ substantially across studies, the placental clock models may not perform well. (C) EWAS
Manhattan plot of GA. 
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from the Framingham Heart Study, n=2,356). As the 
sex of the fetus is typically identical to the sex of its 
placenta (except for rare cases of chimerism or sex-
chromosome mosaicism), the sex-classifier was used to 
impute fetal sex in GSE66210, GSE70453, GSE73375 
and GSE76641. 
 
Epigenome-wide association studies of gestational 
age 
 
We briefly report the results from an epigenome-wide 
association study (EWAS) of GA to demonstrate the 
profound effect of GA on placental DNAm levels. To 
protect against confounding by preeclampsia, we 
conducted EWAS in two separate strata: first, for 
placental samples from control pregnancies (n=831); 
second, for placental samples from pregnancies with 
preeclampsia (n=70). We combined the summary 
statistics from the two EWAS using Stouffer's method 
for meta-analysis [38]. The two EWAS summary 
statistics presented consistent DNAm-GA correlations 
across 441,870 autosomal CpGs (Figure 5A). 
 
Strikingly, 10,827 CpG sites exhibit a genome-wide 
significant correlation with GA (P<1E-07; Figure 5C, 
Supplementary File 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Among these sites, 5,940 were in CpGs islands, 262 
were in the north shelf, 1,165 in the north shore, 241 in 
the south shelf, and 902 in the south shore. The top 
four genes with the largest number of significant CpG 
sites were MAD1L1 (17 CpGs), BRD2 (13 CpGs), 
INPP5A (12 CpGs) and RPTOR (9 CpGs). The top 25 
CpG sites and their nearest gene(s) are reported in 
Table 2.  
 
The RPC had 36 epigenome-wide significant (P<1E-07) 
CpG sites, the CPC had 39, and the refined RPC had 32.  
 
DISCUSSION 
 
Using the largest placental training set to date 
(n=1,102), we developed highly robust molecular 
estimators of GA. The robust placental epigenetic clock 
(RPC) is expected to perform well, even when applied 
to cases with adverse fetal outcomes or pregnancy 
complications. We developed this clock using a 
placenta-based training set that included several adverse 
conditions, including chromosomal abnormalities 
(trisomy and triploidy), neural tube defects (anen-
cephaly and spinal bifida), intrauterine growth 
restriction, maternal complications (gestational diabetes 
and preeclampsia), and chorioamnionitis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. The top 25 CpG sites associated with GA. 

CpG Gene Chr 

Relation to 
UCSC  

CpG Island 

UCSC 
RefGene 

Group 
Meta Z (P) 

(n=901) 

Z (P) of 
Control 
(n=831) 

Z (P) of 
Preeclampsia 

(n=70) 
cg23034799 CADM1 11 Island TSS200 -11.4 (7E-30) -10.3 (6E-23) -4.9 (2E-06) 
cg03418552 CADM1 11 Island TSS200 -10.1 (6E-24) -9.4 (8E-20) -3.9 (2E-04) 
cg21155609 FAM167B 1 N_Shore 1stExon 11. (3E-28) 10.2 (1E-22) 4.4 (2E-05) 
cg27339550 ZNF853 7 Island TSS1500 -10.9 (7E-28) -9.2 (4E-19) -5.9 (1E-08) 
cg20025003 TFCP2L1 2 Island TSS200 -10.8 (4E-27) -9.5 (6E-20) -5.2 (6E-07) 
cg02215898  6 Island  -10.6 (3E-26) -10.1 (2E-22) -3.7 (3E-04) 
cg11544721 CETN3 5 Island Body -10.5 (5E-26) -10. (4E-22) -3.7 (3E-04) 
cg01152986 SETD6;SETD6 16 Island TSS200 -10.5 (5E-26) -9.7 (7E-21) -4.2 (4E-05) 
cg08757742 RASGRF2 5 Island TSS200 -10.5 (6E-26) -9.2 (6E-19) -5.2 (6E-07) 
cg26662656  15 N_Shelf  10.5 (1E-25) 8.2 (1E-15) 6.7 (2E-10) 
cg13458335 BMP8B 1 Island TSS1500 -10.1 (6E-24) -9. (2E-18) -4.6 (8E-06) 
cg20630277 MRPL23 11 Island Body -10. (1E-23) -9. (2E-18) -4.4 (2E-05) 
cg21908248 PPP1R15B 1 Island 1stExon -10. (1E-23) -9. (4E-18) -4.5 (1E-05) 
cg26940573 ZNF566 19 Island 1stExon;5'UTR;TSS200 -10. (1E-23) -8.8 (9E-18) -4.7 (5E-06) 
cg13242525 FAM86C 11 Island TSS1500 -10. (1E-23) -8.2 (2E-15) -5.9 (2E-08) 
cg13512138 CHID1 11 Island 5'UTR -10. (2E-23) -8.8 (1E-17) -4.7 (4E-06) 
cg05569874 SEMA4B 15 Island 5'UTR;1stExon -10. (2E-23) -9.3 (2E-19) -3.8 (2E-04) 
cg21060796 LAYN 11 Island Body -10. (2E-23) -8.5 (1E-16) -5.2 (6E-07) 
cg01103597 RUNX3 1  Body 9.9 (3E-23) 8.5 (1E-16) 5.1 (7E-07) 
cg12799981 ASCC1;C10orf104 10 N_Shore 1stExon;5'UTR;TSS1500 -9.9 (7E-23) -9.4 (1E-19) -3.4 (7E-04) 
cg12888127 KNTC1;RSRC2 12 Island TSS1500;TSS200 -9.9 (7E-23) -9.2 (4E-19) -3.7 (3E-04) 
cg03366925 GLI3 7 Island TSS1500 -9.8 (1E-22) -8.5 (1E-16) -4.9 (2E-06) 
cg19599862 ZNF226 19  1stExon;5'UTR -9.8 (1E-22) -8.2 (1E-15) -5.4 (2E-07) 
cg16449659 TIGD4;ARFIP1 4 S_Shore TSS1500;5'UTR -9.7 (2E-22) -9.1 (1E-18) -3.7 (3E-04) 
cg27006129 ZNF114 19 N_Shore TSS1500 -9.7 (3E-22) -7.9 (1E-14) -5.7 (3E-08) 
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In contrast, the only other published placental clock by 
Mayne and colleagues was trained on a small training 
set (n=170). In our independent test set (n=187), 
Mayne’s clock under/overestimated GA according to 
pregnancy conditions. (Supplementary Figure S1). 
These systematic deviations from Mayne's clock might 
reflect interesting biological effects or technical artifacts 
(batch effects, normalization methods). Another 
potential limitation of Mayne’s clock is that the authors 
limited the eligible CpG sites to the approxi-mately 
18,437 autosomal sites on the 27K and 450K bead 
chips. This might explain why the Mayne’s clock uses 
only 62 CpG sites, whereas our RPC uses 558. 
 
To infer biological processes under the 558 and 546 
CpG sites, we conducted functional gene enrichment 
analyses using the Genomic Regions Enrichment of 
Annotation Tool (GREAT, v.3.0, [39]). However, we 
did not find any significant biological annotations 
associated with fetal aging. Elastic net regressions 
automatically select predictive CpG sites of gestational 
age (GA), but these CpG sites are not always bio-
logically meaningful. 
 
Our study had several limitations. First, the "observed" 
GA used for building these epigenetic clocks were 
estimated either by early pregnancy ultrasound or the 
LMP method. Although early pregnancy ultrasound 
based on fetal growth is the gold standard in a clinical 
setting, it is susceptible to variations in fetal size and 
leads to a systematic underestimation of GA in smaller 
fetuses [40-42]. 
 
There is also a concern that some of the training sets 
might be subject to systematic confounding due to 
adverse pregnancy conditions, as is the case for 
preeclampsia (Figure 5B). GA tends to be overestimated 
for placentas linked to preeclampsia, which is consistent 
with the associated pathology of advanced villous 
maturation, as well as previous reports of molecular 
signs of advanced aging [17, 43]. In this hypothetical 
example, preeclampsia confounds the association 
between placental DNAm and GA (Figure 5B, [44-46]). 
However, this type of confounding probably does not 
affect our placental clocks for the following reasons. 
First, the CPC for control samples and the refined RPC 
for uncomplicated term samples also accurately 
predicted GA even in pregnancies with known 
complications. Second, our EWAS of GA reveals pro-
found associations between GA and DNA methylation 
levels even after stratifying the analysis by pre-
eclampsia. 
 
Moreover, it is possible that the RPC and the CPC 
might not perform well in case of non-live births, 
because the proportion of non-live births was extremely 

small amongst the third trimester samples in the training 
datasets, while unavoidably all first and second 
trimester samples are non-live births. In addition, it has 
been suggested that gravidity or parity may change 
placental physiology (e.g., higher placental weight 
associated with higher parity [47]) and therefore might 
modify the relationship between the placental epi-
genome and GA. 
 
The clinical application of the RPC might be limited, 
because obtaining placental samples during pregnancy 
is highly invasive (e.g., chorionic villus sampling [48, 
49]). However, the existence of a predictive placental 
clock – the RPC – opens the possibility to develop 
another epigenetic clock based on cell-free fetal DNA 
(cffDNA). cffDNA is fragmented from placenta 
trophoblasts [50, 51], and circulates in maternal blood 
during pregnancy [52]. If the development of a cffDNA 
clock is successful, clinicians readily estimate GA 
simply by collecting and analyzing maternal blood 
anytime during pregnancy. 
 
METHODS 
 
Study population 
 
We collected publicly available data from Gene 
Expression Omnibus (GEO) using the GEOparse 
Python package (Python 3.6.5: Anaconda, Inc.). Table 1 
details each dataset. GSE71678 examined the 
correlation between placental DNAm and arsenic 
exposures in the New Hampshire Birth Cohort Study 
[53]. GSE75248 examined placental DNAm in relation 
to newborns’ neurobehavioral outcomes [54]. 
GSE71719 studied the association between DNA 
hydroxymethylation and gene expression using 
placental samples [55]. The Robinson laboratory (RL) 
at the University of British Columbia (Vancouver, BC, 
Canada) transferred placental DNAm data that are 
publicly available in the GEO database. GSE100197 
and GSE98224 were studies that aimed to find placental 
DNAm profiles for preeclampsia and intrauterine 
growth restriction in women recruited at the University 
of British Columbia Women’s and Children’s Hospital 
(Vancouver, Canada) and at Mount Sinai Hospital 
(Toronto, Canada), respectively [56]. GSE108567 
investigated batch effects in DNAm micro array data 
[57]. GSE69502 explored DNAm patterns in multi-
tissue samples (placental chorionic villi, kidney, spinal 
cord, brain, and muscle) from fetuses that were aborted 
due to neural tube defects [58]. GSE74738 aimed to 
identify differentially-methylated imprinted regions 
using a genome-wide approach [59]. GSE115508 
compared DNAm patterns in cases of placental 
inflammation (acute chorioamnionitis) with those in 
unaffected controls [60]. GSE44667 studied the 
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association between placental DNAm in gene enhancer 
regions and early-onset preeclampsia [61]. GSE49343 
investigated placental DNAm with trisomy and 
preeclampsia [62]. GSE42409 enhanced probe annota-
tion of Illumina HumanMethylation 450K BeadChip to 
facilitate biologically meaningful data interpretation 
[63]. GSE120250 examined the impact of assisted 
reproductive technology on the placental DNA methy-
lome [64]. GSE70453 conducted epigenome-wide and 
transcriptome-wide analyses of gestational diabetes 
[65]. GSE73375 examined DNAm in the preeclamptic 
placenta in relation to the transforming growth factor 
beta pathway [66]. GSE75196 studied different DNAm 
patterns in patients with preeclampsia and unaffected 
controls [67]. GSE76641 studied the transcriptional and 
DNAm trajectory of 21 organs during fetal development 
[68].  
 
Measurement of DNA methylation 
 
Either the Illumina Infinium HumanMethylation450 
BeadChip or the Infinium MethylationEPIC BeadChip 
was used to measure DNAm level at each CpG site. The 
DNAm level ( -value) was the ratio of two fluores-
cence signals (methylated and unmethylated). The minfi 
R package [31] was used to preprocess all the DNAm 
datasets except for GS2E115508 and GSE120250 
(preprocessed by Illumina’s proprietary software, 
Genome Studio). The preprocessing methods and probe 
exclusion criteria differed across studies. For example, 
Marsit and colleagues, the largest GEO submitter, used 
the funNorm, whereas Robinson and colleagues mostly 
used the funNorm or the SWAN (Table 1). Other GEO 
submitters used the BMIQ, funNorm, quanNorm, dasen, 
or noob. Most GEO submitters excluded probes on sex-
chromosomes, near single nucleotide polymorphisms, 
with cross-hybridization or with a detection p-value > 
0.01. 
 
Pre-processing of DNA methylation data 
 
We ensured that all samples were included only one 
time in our training data. Some GEO datasets re-used 
the same samples or included technical replicates. For 
example, 154 samples were re-used in GSE100197, 
GSE108567, GSE69502, GSE74738, GSE44667, 
GSE49343 and RL data; and 15 technical replicates 
were found in GSE100197 and RL data. The sample 
size (N) in Table 1 refers to the counts after excluding 
the re-used samples and replicates. 
 
We detected and removed outliers using the following 
steps: 1) we defined a gold standard DNAm profile as 
the inter-sample median value. For each CpG, we 
computed the median beta value across all placental 
samples. 2) The gold standard was correlated with each 

placental sample to calculate the Pearson correlation 
coefficient. 3) Placental samples were excluded if their 
correlation with the gold standard profile was lower 
than 0.9. Overall, only four putative outliers were 
removed from the analysis.  
 
Missing DNAm levels were imputed with the gold 
standard DNAm levels. Thus, if the beta value of a CpG 
was missing, the missing value was imputed with the 
interpersonal median value across all samples. These 
imputations were only implemented in the training data.  
 
Elastic net regression of gestational age 
 
We fit a penalized regression model using the “glmnet” 
R package [37]. GA was regressed on 441,870 CpG 
sites that are shared between the 450K and the EPIC 
array. The glmnet mixing parameter alpha was set to 0.5 
(specifying elastic net regression), and the shrinkage 
parameter, lambda resulting in the minimum mean 
square error, was chosen using 10-fold cross-validation 
in the training data. The RPC automatically selected 
558 CpG sites (lambda=0.0936), the CPC did 546 CpG 
sites (lambda=0.0892), the refined RPC did 395 CpG 
sites (lambda=0.0116), and the fetal sex-classifier did 
220 CpGs (lambda=0.0073). The number of 
overlapping CpGs between the RPC and CPC was 199. 
Supplementary File 1 includes CpG sites and their 
corresponding coefficients for the RPC, CPC, refined 
RPC and fetal sex-classifier. 
 
Epigenome-wide association study of gestational age 
 
We used the R function "standardScreening-
NumericTrait" from the weighted gene co-expression 
network analysis R package (WGCNA; [69]) to carry 
out a robust correlation test (based on the biweight 
midcorrelation) between each CpG and GA. We 
conducted two separate EWAS of GA: one in control 
placental samples (n=831) and the other in placental 
samples from preeclampsia cases (n=70). We computed 
biweight midcorrelations between DNAm levels and 
GA, and the corresponding Z statistics and p-values in 
each stratum. The Z statistics of the two sets of EWAS 
were combined using the weighted Stouffer’s method 
[38] as: / , where  is the square root of 
the sample size in the th stratum. The corresponding p-
values were computed as 2 1 (|Z |) . The 
EWAS was limited on the 411,870 autosomal probes 
available on both the 450K and the EPIC array 
platform. 
 
Software availability 
 
The coefficient values of the placental clocks and the 
fetal sex classifier can be found in Supplementary File 1. 



www.aging-us.com 4248 AGING 

Abbreviations 
 
GA: gestational age; DNAm: DNA methylation; LMP: 
last menstrual period; RPC: robust placental clock; 
CPC: control placental clock; GEO: Gene Expression 
Omnibus; 450K: Illumina HumanMethylation 450K 
BeadChip; EPIC: Illumina MethylationEPIC BeadChip; 
MAE: median absolute error; funNorm: functional 
normalization; SWAN: subset-quantiles within arrays; 
noob: normal-exponential out-of-band; BMIQ: beta-
mixture quantile dilation; quanNorm: quantile nor-
malization; dasen: data-driven separate normalization; 
WGCNA: weighted gene co-expression network 
analysis; EWAS: epigenome-wide association study; 
cffDNA: cell-free fetal DNA. 
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INTRODUCTION 
 
Telomeres are the (TTAGGG)n repeats located at the ends 
of each chromosome. Their broad function is to prevent 
genomic instability [1]. Telomeres in adult germ cells [2], 
bone marrow [3, 4] and embryonic stem cells [5] are 
largely maintained by telomerase. After birth, however, 
telomeres in somatic cells gradually shorten because of 
the repressed activities of telomerase [3–6]. In cultured 
cells, when telomeres become critically short, the cell 
reaches replicative senescence [1, 7]. Telomere length 
(TL) is reported to be shorter in leukocytes of men than 
women, but this sex difference may depend on the 
measurement method [8]. In their meta-analysis of data 
from 36 cohorts with a total of 36,230 participants, 
Gardner and colleagues found longer telomeres in women 
only for the terminal restriction fragments (TRF) Southern 
blot method [8]. By contrast, no sex effect was detected 
for the other TL measurement methods including the 
widely used quantitative real-time polymerase chain 
reaction (qPCR) protocol originally described by 
Cawthon [9]. TL is also shorter in leukocytes of 
individuals of European ancestry than individuals of 
African ancestry [10, 11]. Further, leukocyte telomere 
length (LTL) is associated with the two disease categories 
that largely define longevity in contemporary humans—
cancer and cardiovascular disease [12–14]. 
 
High heritability estimates for LTL have been reported 
irrespective of the methods used for measuring LTL; 
reported heritability estimates are between 36% and 82% 
based on Southern blot [15–18], and between 51% and 
76% based on qPCR [19, 20]. Genome-wide association 
studies (GWAS) conducted in large observational cohorts 
have identified 11 loci associated with LTL [21–24].  
A subset of these loci harbor telomere maintenance 

genes. These loci, however, explain only a small 
proportion of the genetic variance in LTL. Similarly, 
relatively little is known about epigenetic changes and 
LTL. Here, we focus on the relationship between LTL 
and DNA methylation levels in leukocytes. Epigenome-
wide association studies (EWAS) have emerged as a 
powerful tool for evaluating genome-wide changes in 
DNAm for a given phenotype of interest [25]. Previous 
studies have explored the association between DNAm 
and LTL [26–28], but these studies were somewhat 
limited due to moderate sample sizes or the focus on 
specific regions in the genome. Here, we conduct the 
largest EWAS of LTL to date in different groups defined 
by sex and ethnicity. 
 
RESULTS 
 
Epigenome-wide association study of leukocyte 
telomere length 
 
We considered two sets of adjustments for LTL 
confounders: 1) partially adjusted LTL for age, sex, and 
ethnicity and 2) fully adjusted LTL for age, sex, 
ethnicity, and imputed white blood cell counts (CD4+ 
naïve, CD8+ naïve and exhausted cytotoxic T cell). We 
conducted a large-scale multi-ancestry EWAS of the 
partially and fully adjusted LTL using seven cohorts – 
the Framingham Heart Study (FHS, n=874), the Jackson 
Heart Study (JHS, n=1,637), the Women’s Health 
Initiative (WHI, n=818), the Bogalusa Heart Study 
(BHS, n=831), the Lothian Birth Cohorts (LBC1921 and 
LBC1936, n=403 and n=906, respectively), and the 
Longitudinal Study of Aging Danish Twins (LSADT, 
n=244). The analysis flow is depicted in Figure 1. We 
note that adjustment in this script indicates a mixture of 
data stratification and regression adjustment. 

ABSTRACT 
 
Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what
extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we
conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) –
the Framingham Heart Study, the Jackson Heart Study, the Women’s Health Initiative, the Bogalusa Heart
Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our
stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of
three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-
analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly
associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts.
Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian
rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-
methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly
significant relationships between two hallmarks of aging: telomere biology and epigenetic changes. 
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Overall, 8,716 CpG sites were significantly (P<1E-07) 
associated with the partially adjusted LTL in the global 
meta-analysis. The top four genes with the largest 
number of significant CpGs were VARS (16 CpGs), 
PRDM16 (15 CpGs), MAGI2 (14 CpGs) and MSI2 (13 
CpGs). In the group-specific meta-analyses, we found 
87 significant CpGs in men of European ancestry, 14 
significant CpGs in men of African ancestry, 298 
significant CpGs in women of European ancestry, and 

20 significant CpGs in women of African ancestry 
(Supplementary File 1). 
 
We identified 823 significant (P<1E-07) CpG sites 
associated with the fully adjusted LTL through the global 
meta-analysis. Our statistical significance threshold  
(1E-07) corresponds to a 5% family-wise error for 450K 
array studies [29]. Table 1 presents the top 30 CpGs 
among the 823 significant CpGs and groups them by

 

 
 

Figure 1. Analysis flow chart. 
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Table 1. The top 30 most significant CpG sites associated with the fully adjusted LTL. 

CpG Gene Chr 
Relation to 

UCSC  
CpG island 

UCSC  
RefGene  

group 

Meta-Analysis 

Global meta 
Z (P) 

n=5,713 

European  
male Z (P) 

n=1,389 

African  
male Z (P) 

n=697 

European  
female Z 

(P) n=2,095 

African  
female Z (P) 

n=1,532 

cg08899667 VARS 6 N_Shelf Body -10.1 (4E-24) -5.2 (3E-07) -6.0 (2E-09) -5.1 (4E-07) -4.2 (3E-05) 

cg02980249 VARS 6 N_Shelf Body -8.7 (2E-18) -5.8 (5E-09) -4.0 (6E-05) -4.8 (2E-06) -3.4 (7E-04) 

cg02597894 VARS 6 N_Shelf Body -8.1 (4E-16) -4.8 (2E-06) -4.2 (3E-05) -5.2 (2E-07) -2.7 (6E-03) 

cg04368724 VARS 6 N_Shelf Body -8.0 (9E-16) -3.0 (2E-03) -5.0 (5E-07) -4.2 (3E-05) -4.0 (8E-05) 

cg04018738 VARS 6 N_Shelf Body -8.0 (2E-15) -3.6 (3E-04) -4.6 (4E-06) -4.4 (1E-05) -3.5 (4E-04) 

cg24771152 VARS 6 N_Shelf Body -7.8 (6E-15) -3.8 (2E-04) -4.3 (2E-05) -4.0 (6E-05) -3.7 (2E-04) 

cg20507228 MAN2A2 15 - Body -9.2 (5E-20) -5.4 (8E-08) -5.7 (2E-08) -3.6 (3E-04) -3.5 (4E-04) 

cg08972170 C7orf41 7 - Body -9.0 (2E-19) -3.7 (2E-04) -4.9 (8E-07) -4.1 (5E-05) -5.4 (7E-08) 

cg27343900* ERGIC1 5 - Body -8.8 (1E-18) -6.1 (8E-10)* -5.1 (3E-07) -4.2 (2E-05) -2.4 (2E-02) 

cg10549018 TLL2 10 - Body -8.6 (1E-17) -5.3 (1E-07) -3.9 (1E-04) -4.5 (8E-06) -4.0 (7E-05) 

cg26709300* YPEL3 16 N_Shore 1stExon;Body -8.6 (1E-17) -3.9 (8E-05) -5.4 (6E-08)* -2.4 (2E-02) -4.8 (1E-06) 

cg27106909* YPEL3 16 N_Shore  -8.5 (2E-17) -5.6 (2E-08)* -5.1 (3E-07) -2.5 (1E-02) -3.4 (6E-04) 

cg12798040* XRCC3 14 - Body -8.5 (2E-17) -5.4 (8E-08)* -5.4 (8E-08)* -4.1 (4E-05) -2.2 (2E-02) 

cg02194129 XRCC3 14 - Body -8.3 (1E-16) -4.9 (1E-06) -5.0 (5E-07) -4.3 (2E-05) -2.6 (9E-03) 

cg19841423* ZGPAT;LIME1 20 S_Shore Body;TSS1500 -8.4 (3E-17) -5.0 (6E-07) -5.5 (5E-08)* -3.7 (2E-04) -2.7 (8E-03) 

cg02810967 NCAPG;DCAF16 4 S_Shore Body;TSS1500 8.3 (9E-17) 4.4 (1E-05) 5.4 (9E-08) 4.1 (4E-05) 2.8 (5E-03) 

cg19935065 DNTT 10 - TSS1500 -8.1 (4E-16) -3.5 (4E-04) -4.9 (1E-06) -5.0 (5E-07) -3.2 (1E-03) 

cg11093760 CILP 15 -  -8.1 (5E-16) -5.9 (4E-09) -4.1 (5E-05) -3.3 (1E-03) -3.1 (2E-03) 

cg19097500 NFIA 1 N_Shore TSS1500 -8.1 (6E-16) -5.4 (7E-08) -3.7 (2E-04) -3.7 (2E-04) -3.6 (3E-04) 

cg09626867 EXOSC7 3 - Body -8.1 (7E-16) -5.2 (2E-07) -4.1 (3E-05) -4.5 (6E-06) -2.8 (5E-03) 

cg04509882 EIF4G1 3 -  -8.1 (8E-16) -5.5 (4E-08) -4.3 (2E-05) -3.3 (1E-03) -3.1 (2E-03) 

cg23661483 ILVBL 19 S_Shelf Body -8.0 (9E-16) -3.7 (2E-04) -4.3 (2E-05) -5.4 (7E-08) -3.3 (1E-03) 

cg01012082 NCOA2 8 -  -8.0 (1E-15) -4.7 (3E-06) -4.0 (7E-05) -4.4 (1E-05) -3.4 (8E-04) 

cg21461082 PRMT2 21 Island Body 8.0 (2E-15) 2.9 (4E-03) 4.4 (9E-06) 4.5 (6E-06) 4.4 (1E-05) 

cg25921609 MYH10 17 N_Shore Body -7.9 (3E-15) -5.2 (3E-07) -3.6 (3E-04) -4.5 (6E-06) -3.1 (2E-03) 

cg24420089* PTDSS2 11 N_Shore Body -7.8 (8E-15) -3.4 (7E-04) -5.8 (7E-09)* -2.3 (2E-02) -3.5 (5E-04) 

cg07414525 CHL1 3 - Body -7.8 (9E-15) -3.5 (4E-04) -3.0 (3E-03) -3.5 (5E-04) -5.8 (6E-09) 

cg14817906 CNNM4 2 - Body -7.7 (1E-14) -4.4 (1E-05) -4.1 (4E-05) -3.9 (8E-05) -3.2 (1E-03) 

cg04860432* PTGER2 14 S_Shore Body -7.7 (2E-14) -5.8 (7E-09)* -4.3 (1E-05) -2.3 (2E-02) -2.7 (7E-03) 

cg23570810 IFITM1 11 N_Shore Body 7.7 (2E-14) 4.2 (3E-05) 4.2 (2E-05) 4.2 (2E-05) 3.0 (2E-03) 

* The CpGs were more strongly associated with LTL in one or two sex and ethnicity specific groups than in the rest of the 
groups. 
 

their annotated gene names. Among the top 30 CpGs, six 
were in VARS, two were in YPEL2 and two were in 
XRCC3. The CpGs highlighted by an asterisk in Table 1 
were more strongly associated with LTL in one or two 
sex and ethnicity-specific groups than in the rest of the 
groups. Specifically, the LTL-DNAm correlations at 
cg27343900 (in ERGIC1) and cg12798040 (in XRCC3) 
were stronger in men of European ancestry than in 
women of African ancestry. The LTL-DNAm correlation 

at cg27106909 near YPEL3 was stronger in men of 
European ancestry than in women of European ancestry. 
 
Figure 2 displays regional test statistics of LTL-associated 
CpGs on top of the local DNAm correlation structure for 
the top four genes listed in Table 1. VARS showed a 
cluster of CpGs above and right below the threshold of 
significance, while MAN2A2, C7orf41 (current name, 
MTURN) and ERGIC1 had one or two significant CpGs. 
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The clusters detected in VARS might be because of the 
high probe density on the array and the strong inter-CpG 
correlations. 
 
The group-specific meta-analyses also detected several 
significant (P<1E-07) CpGs associated with the fully 
adjusted LTL. Figure 3 shows that 25 CpGs were 
significant in men of European ancestry, three CpGs in 
men of African ancestry, 19 CpGs in women of European 
ancestry, and four CpGs in women of African ancestry. 

Figure 4 displays scatter plots across the four group-
specific meta-analyses. The correlation coefficient of 
each scatter plot was lowest between African American 
females and European males (r=-0.02) and highest 
between European females and European males (r=0.40). 
Population and sample size differences between strata 
may influence the correlations. The black dots in the 
panels refer to the top 30 CpG sites detected through the 
global meta-analysis. Across the 30 CpGs, we did 

 
 

 
 

Figure 2. Regional Manhattan plots and inter-CpG correlations for the top four genes identified in the global meta-analysis. 
(A) VARS; (B) MAN2A2; (C) C7orf41 (MTURN); (D) ERGIC1. 
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Functional enrichment analysis of LTL-associated 
CpG sites 
 
To infer the biological meaning underlying LTL-
associated CpG sites, the Genomic Regions Enrichment 
of Annotations Tool (GREAT) was used to associate 
differentially methylated probes (DMPs) with nearby 
genes of known pathway annotations. We performed 
both a gene-based and a region-based enrichment 
analysis for (1) all DMPs (n=850), (2) hypermethylated 
probes (n=95), and (3) hypomethylated probes (n=755). 
 
Analyzing all DMPs, we found 11 biological 
annotations to be significantly enriched with both the 
gene-based as well as the region-based test 
(Supplementary File 2, Figure S1, Table S1). Of these, 
five annotations showed a region-fold enrichment > 1.5; 
the circadian clock (3.9x), blood coagulation (1.9x), 
hemostasis (1.9x), wound healing (1.8x), and response 
to wounding (1.7x). Other annotations also related to 
circadian rhythm, blood coagulation and wound healing, 

further strengthening the main observations 
(Supplementary File 2, Tables S1, S2). 
 
Next, analyzing hypomethylated probes only, we found 
that CpGs negatively correlated with LTL mainly explain 
the above-mentioned functional enrichment. In contrast, 
hypermethylated probes led to less significant enrichment 
p values, a finding likely due to the lower number of CpGs 
(Supplementary File 3). We observed an enrichment of 
genes involved in mitogen-activated protein kinase 
phosphatase activity and immune regulation 
(Supplementary File 2, Figure S1). As part of a 
robustness/sensitivity analysis, we repeated the enrichment 
study after excluding CpGs with single-nucleotide 
polymorphisms (SNPs) in the extension base (global minor 
allele frequency > 1%) or probes prone to mapping to 
multiple regions in the genome. Across overlapping 
annotations (n=1,590), we found high concordance with 
our initial findings (r=0.97, P<2.2E-16), indicating that our 
results are highly robust against potentially faulty probes. 
Details can be found in Supplementary File 3. 

 

 
 

Figure 3. EWAS Manhattan plots of the fully adjusted LTL. 
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DNA methylation in subtelomeric regions 
 
We observed a higher proportion of the positive LTL-
DNAm correlations in subtelomeric regions than in non-
subtelomeric regions when we focused on the 823 
significant CpGs that were associated with the fully 
adjusted LTL. The proportion of the positive LTL-
DNAm correlations was 17.1% in the subtelomeric 
regions and 9.9% in the non-subtelomeric bodies (Chi-
squared test, P=0.01; Supplementary File 2, Table S3). 
The subtelomeric regions were defined as each 
chromosome’s head and tail, each of which was 5% of 
each chromosome’s length. However, this approach may 
not be optimal for the following reasons: 1) the inter-
CpG correlations may differ between the non-
subtelomeric and subtelomeric regions; 2) one cannot 
clearly dichotomize genomic loci into non-subtelomeric 
and subtelomeric regions; and 3) the LTL measurements 
were not chromosome-specific but averaged across all 
chromosomes. 

Summary-data-based Mendelian randomization  
 
We calculated the causal effects of the 823 CpGs 
(significantly associated with the fully adjusted  
LTL) on LTL using summary-data-based Mendelian 
randomization (SMR) [30] and found that 16 CpGs  
had a significant (P<0.05) causal effect on LTL 
(Supplementary File 2, Table S5). The causal effect of 
cg00622799 near RTEL1 led to the lowest p-value (P= 
6E-4) among the 823 CpGs when SNP rs909334 was 
used as an instrumental variable. A non-significant p-
value (P=0.21) for the test for heterogeneity in 
independence instruments (HEIDI) is desirable because it 
indicates that rs909334 (instrumental variable) is the only 
SNP that influences LTL through the DNAm level at 
cg00622799. A GWAS of LTL [21] and cis methylation 
quantitative trait locus (cis-mQTL, a reduced GWAS of 
DNAm) [31] were used to obtain the SMR causal effects 
(betas), p-values and HEIDI p-values. The SMR p-value 
identifies possible methylation sites via which genetic 

 

 
 

Figure 4. Scatter plots between the group-specific meta-Z scores. (A) European male vs African male; (B) European male vs European 
female; (C) European male vs African female; (D) African male vs European female; (E) African male vs African female; (F) African female vs 
European female; The black dots in the panels refer to the top 30 CpG sites detected by the global meta-analysis, whereas the grey dots 
indicate the remaining CpG sites. Pearson correlation coefficients (red font) reveal strong agreement (r=0.4) between males and females of 
European ancestry. 
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variants (SNPs) might be influencing LTL. The HEIDI p-
value then indicates the evidence that there is (1) a single 
causal SNP whose effect on LTL is mediated through the 
methylation CpG site (HEIDI P>0.05) or (2) different 
SNPs linked to the methylation level and LTL (HEIDI 
P<0.05). 
 
Additionally, we examined whether the 823 CpGs 
overlapped significantly with 54,942 known cis-
methylation QTLs. Strikingly, a highly significant 
number of CpGs (188 CpGs out of 823 CpGs) were 
known cis-mQTLs (hypergeometric test P= 1.02E-16). 
To carry out this overlap analysis, we retrieved 188 SNPs 
each of which corresponded to the 188 CpGs from the 
cis-mQTL summary statistics. Next, we looked up each 
of the 188 SNPs in the most recent GWAS catalogue 
database (v1.02, https://www.ebi.ac.uk/gwas/docs/file-
downloads). 22 SNPs were associated with complex 
traits (Supplementary File 2, Table S6). Among these 22 
SNPs, rs2540949 in CEP68 was associated with atrial 
fibrillation, and rs17708984 in TPM4 (GWAS P=6E-16) 
was associated with platelet count (Supplementary File 2, 
Table S6). Platelet count is related to blood coagulation 
and wound healing, which were identified through the 
functional gene enrichment analysis of the LTL-
associated CpGs described above. 
 
Weighted correlation network analysis (WGCNA) 
 
Weighted correlation network analysis (WGCNA) 
identified four important co-methylated modules (labeled 
black, red, ivory and yellow in Figure 5) using FHS, JHS 
and WHI (n=3,329). Hypermethylation in the black 
module was associated with increased age, shortened 
LTL, decreased CD8+ naïve T cell counts, and  
increased exhausted cytotoxic T cell counts, whereas 
hypermethylation in the red module showed opposite 
correlations. Elevated methylation levels in the yellow 
module were correlated with longer LTL and higher 
CD8+ naïve T cell counts. The ivory module had a 
pattern similar to the one in the black module. None of 
the modules revealed any strong correlation with the fully 
adjusted LTL, which is not surprising as this measure of 
LTL is adjusted for age and white blood cell type 
composition. The relationships between co-methylated 
module representatives and traits of interest (LTL, the 
partially adjusted LTL, fully adjusted LTL, age, and 
white blood cell counts) are displayed in Figure 6. 
 
DISCUSSION 
 
This multi-ethnic EWAS of LTL is the largest to date 
and revealed strong associations between LTL and 
DNAm levels in all groups defined by sex and 
ancestry. Our stratified analysis showed that the 
EWAS findings for women of African ancestry are 

distinct from those of three other groups: males of 
African ancestry, males and females of European 
ancestry. A detailed analysis reveals that this 
difference does not reflect differences in sample size, 
age distribution, or LTL. We analyzed 1,532 blood 
samples from women of African ancestry, 697 from 
men of African ancestry, 1,389 from men of European 
ancestry, and 2,095 from women of European 
ancestry. Although men of African ancestry had the 
smallest sample size, their EWAS results were 
consistent with those from the two European groups. 
 
Our unadjusted meta-analysis across the groups revealed 
profound relationships between TL and global DNA 
methylation levels, which largely reflect confounding by 
blood cell composition. However, one can observe 
genome-wide significant relationships between 
methylation levels and LTL even after adjusting for 
differences in blood cell composition. In particular, we 
report 823 CpGs (close to or within 557 genes) that are 
significantly correlated with the fully adjusted LTL. 
More than 88 percent (730 CpGs) of these 823 significant 
CpG sites exhibit a negative correlation with LTL, 
meaning that higher methylation levels are associated 
with shorter LTL at these CpG sites. 
 
Among the 823 CpGs, the top 10 CpGs were linked to 
seven genes/loci (VARS, MAN2A2, C7orf41, ERGIC1, 
TLL2, YPEL3 and XRCC3). VARS encodes the  
enzyme Valyl-tRNA synthetase that is critical in 
eukaryotic translation [32]. Mutations in VARS cause 
neurodevelopmental disorders, such as microcephaly, 
cortical dysgenesis, seizures, and progressive cerebral 
atrophy [32, 33]. MAN2A2 encodes alpha-mannosidase 2x 
that is active in N-glycan biosynthesis [34]. MAN2A2 null 
males were largely infertile in mouse studies [35]. C7orf41 
(current official name, MTURN), encodes Maturin, a 
protein that controls neurogenesis in the early nervous 
systems [36]. ERGIC1 encodes a cycling membrane 
protein that contributes to membrane trafficking  
and selective cargo transport between intermediate 
compartments [37, 38]. TLL2 encodes Tolloid-like protein 
2 [39] and is associated with attention-deficit/hyperactivity 
disorder [40]. YPEL3 codes for Yippee-like 3, a protein 
that suppresses tumor growth, proliferation and metastasis 
in several types of cancer [41, 42]. XRCC3 encodes a 
RecA/Rad51-related protein that maintains chromosome 
stability and repairs DNA damage [43, 44]. 
 
Functional enrichment studies demonstrate that the 
significant CpG sites were located near genes that play 
a role in circadian clock, blood coagulation, and wound 
healing, respectively. A rich literature links TL to 
circadian rhythm. For example, cellular senescence 
impairs circadian rhythmicity both in vitro and in vivo 
[45]. Sleep disorders and shorter sleep duration are 
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Figure 5. Hierarchical clustering of CpG sites by weighted gene co-expression network analysis (WGCNA). Each data point on 
the x-axis of the dendrogram refers to an individual CpG site. The color band ‘Consensus module’ displays co-methylated modules (clusters) 
in different colors. The other color bands highlight the degree of correlations between DNA methylation of CpG sites and traits of interest. 
Red represents a positive correlation, whereas blue represents a negative correlation. 

 

Figure 6. Heat map of correlations between the co-methylated module representatives and LTL, the partially adjusted LTL, 
the fully adjusted LTL, age, and blood cell counts. The numbers in the cells refer to meta-Z scores and their corresponding p-values. 
Meta-Z scores were calculated based on biweight midcorrelations between DNAm and a trait of interest in the six strata. 1Partially adjusted 
LTL for age, sex and ethnicity. 2Fully adjusted LTL for age, sex, ethnicity, CD4+ naïve, CD8+ naïve and exhausted cytotoxic T cell. 
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associated with shorter telomeres [46, 47]. Telomerase 
and TERT mRNA expression are furthermore under  
the control of CLOCK-BMAL1 regulation (a core 
component of the circadian clock) and exhibit 
endogenous circadian rhythms [48]. CLOCK-deficient 
mice display shortened TL and abnormal oscillations of 
telomerase activity [48]. Our results are in line with 
these findings and support a relationship between LTL 
and circadian rhythm. 
 
TL has also been associated with wound healing and 
blood coagulation. For example, mice with longer 
telomeres show higher wound healing rates of the skin 
[49]. Furthermore, exogenous delivery of the human 
TERT gene significantly improved wound healing in an 
aged rabbit model [50]. In humans, poor wound healing 
has been reported in individuals with dyskeratosis 
congenita, a rare congenital disorder caused by a defect 
in telomere maintenance [51]. While assigning causality 
remains a challenge, our findings do provide evidence 
that telomere functioning is associated with the circadian 
clock, wound healing and blood coagulation through the 
DNA methylome in a population-based sample. Future 
work is needed to further understand the mechanisms by 
which this is regulated and how it impacts human health 
and diseases.  
 
Our findings were based on a considerably larger sample 
size (n=5,713) than previous studies. Buxton et al. (2014) 
used 24 blood and 36 Epstein-Barr virus cell-line samples 
of 44 to 45 years old males and identified 65 and 36 TL-
associated gene promoters, respectively [27]. Gadalla et 
al. (2012) was based on a sample of 40 cases with 
dyskeratosis congenita and 51 controls [28], and the 
authors reported a positive correlation between LTL and 
methylation at LINE-1 and subtelomeric sites only 
among the cases. Bell and colleagues performed an 
EWAS of age, TL and other age-related phenotypes 
using 172 samples of female twins [26]. Due to the small 
sample size, the authors could not find genome-wide 
significant associations between DNAm levels and TL. 
 
We adjusted LTL for imputed blood cell composition in 
addition to age, sex, and ethnicity, because blood cell 
composition confounds the relationship between DNAm 
[52, 53] and LTL [54]. Consistent with previous findings, 
our WGCNA analyses in Figure 5 also showed that the 
black, red, and yellow modules were highly related to 
both blood cell counts and LTL. One concern was that 
blood cell counts might be causally influenced by DNAm 
and LTL (i.e., blood cell counts might be a collider 
between DNAm and LTL), which may introduce bias in 
LTL-DNAm correlations. Thus, we ran another EWAS 
without considering blood cell counts and compared LTL-
DNAm correlations before and after adjustment for blood 
cell counts (Supplementary File 1). The correlations listed 

in Table 1 became slightly weaker after adjustment for 
blood cell counts but remained significant nonetheless. 
However, the number of associated CpG sites was greatly 
reduced after adjustment for blood cell counts. Cell type 
heterogeneity is thus an important variable to consider in 
studies of telomere length. Future work should be 
extended to cell type-specific analysis as well as to tissues 
beyond whole blood. 
 
We did not adjust LTL for cigarette smoking in our main 
analyses because smoking had a non-significant effect on 
LTL (FHS: P=0.83 for never vs former smoker and 
P=0.76 for never vs current smoker; WHI: P=0.20 for 
never vs former smoker and P=0.24 for never vs current 
smoker), though suggestive associations could be found 
in JHS (P=0.08 for never vs former smoker and P=0.02 
for never vs current smoker). These results pointing to a 
very weak effect of smoking are consistent with those 
from Astuti and colleagues [55] who reported that 50 of 
84 studies found no association between smoking and 
TL, although their meta-analysis concluded that smokers 
may have shorter TL. Our sensitivity analyses also 
revealed that all the 823 CpGs remained significant 
regardless of smoking variables. Our EWAS summary 
statistics includes this sensitivity analysis with additional 
adjustment for smoking (see the names of columns 
starting with “aaa” in Supplementary File 1). 
 
One limitation of our study is that it does not elucidate 
the biological pathways or mechanisms linking DNAm 
and LTL. In other words, our findings do not explain 
whether DNAm shortens or lengthens LTL, or whether 
LTL regulates DNAm. Second, we did not include 
genotypic information in our analyses. Other studies have 
suggested that genomic variants might regulate DNAm 
[31] and LTL [21–24, 56]. Third, LTL measurement is 
sensitive to the methods used for DNA extraction and 
LTL estimation [57]. Fourth, we only used EWAS and 
WGCNA to analyze the data. A supervised machine-
learning approach for predicting TL based on DNAm 
levels will be described in a separate article [58]. 
 
This study represents the largest EWAS analysis of DNA 
methylation and LTL to date. We identified over 800 
genome-wide significant CpG sites that are located in or 
near genes with links to circadian rhythm, blood 
coagulation and wound healing. These findings link two 
hallmarks of aging: epigenetic changes and telomere 
biology. 
 
MATERIALS AND METHODS 
 
Study population 
 
The FHS Offspring Cohort started in 1971 to inaugurate 
epidemiological studies of young adults in Framingham, 
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 FHS recruited 5,124 
individuals and invited them to examinations at the FHS 
facilities [59]. The JHS recruited 5,306 African 
Americans from 2000 to 2004 in the Jackson metropolitan 

cardiovascular disease [60]. Participants provided medical 
history, social records and whole-blood samples. The 
WHI started in 1992 and enrolled 64,500 postmenopausal 
women aged between 50 and 79 years into either clinical 
trials or observational studies [61]. Among many sub-
studies, WHI “Broad Agency Award 23” has provided 
both blood-based LTL and DNAm array data. The BHS 
started in 1972 and has recruited multiple waves of 
participants from childhood, adolescence and adulthood  

[62]. The LBC1921 and LBC1936 are 
longitudinal studies of 550 individuals born in Scotland in 
1921 and of 1091 individuals born in Scotland in 1936. 
The studies were set up in 1999 and 2004, respectively, 
with the aim of studying cognitive aging [63, 64]. The 
LSADT was initiated in 1995 and is a cohort-sequential 
study of Danish twins aged 70 years or more [65, 66]. 
Surviving twins were surveyed every second year until 
2005. In 1997, whole blood samples were collected from 
689 same-sex twins and the present study included all 
twin pairs who participated in the 1997 wave and for 
whom LTL measurements were available. 
 
The sample size of each cohort used in this study as 
follows: FHS (n=874), JHS (n=1,637), WHI (n=818), 
BHS (n=831), LBC1921 (n=403), LBC1936 (n=906), 
and LSADT (n=244). 
 
Measurement of LTL 
 
LTL was measured by either of two methods: Southern 
blot [67] or qPCR [9]. All cohorts used Southern blot, 
except for LBC1921 and LBC1936 that used qPCR. LTL 
measurement by Southern blot provides the mean of 
TRFs, whereas qPCR provides the ratio of telomeric 
template to glyceraldehyde 3-phosphate dehydrogenase. 
The average inter-assay coefficients of variation were 
2.4% in FHS, 2.0% in JHS, 2.0% in WHI, 1.4% in BHS, 
5.1% in LBC (LBC1921 and LBC1936 combined), and 
2.5% in LSADT. Further details on the measurement of 
LTL in each cohort are provided in Supplementary File 2. 
 
Measurement of DNA methylation 
 
DNAm data were generated on either of two different 
Illumina array platforms: the Illumina Infinium 
HumanMehtylation450 Bead-Chip (Illumina, San Diego, 

Bead-
were computed, which quantify methylation levels 
between 0 and 1, with 0 being unmethylated and 1 being 
fully methylated. Further details on normalization and 

quality control of the data can be found in Supplementary 
File 2. 
 
Statistical analysis 
 
We stratified the seven cohorts (FHS, JHS, WHI, BHS, 
LBC1921, LBC1936 and LSADT) by sex, ethnicity and 
batch, which resulted in 16 strata (Table 2). 
 
In each of the 16 strata, we applied two sets of 
adjustments on LTL using a regression: 1) partially 
adjusted for age alone, and 2) fully adjusted for age and 
DNAm-based estimated cell type proportions (CD4+ 
naïve, CD8+ naïve T cell and exhausted cytotoxic T cell). 
In FHS and LSADT, we used a linear mixed model to 
regress LTL on the adjusting variable(s) (fixed effect) 
and family structure (random effect). In JHS, WHI, BHS, 
LBC1921 and LBC1936, an ordinary linear regression 
was used. The blood cell type proportions were  
estimated using Horvath’s DNAm age calculator 
(https://dnamage.genetics.ucla.edu/home), with the 
exception of LSADT where the blood cell counts were 
estimated using Houseman et al. (2012)’s method [68]. 
 
The R package for weighted gene co-expression network 
analysis (WGCNA; [69]) was used to compute 
epigenome-wide biweight midcorrelations between 
DNAm levels and adjusted LTL in each of the 16 strata. 
The biweight midcorrelation is an attractive method for 
computing correlation coefficients because 1) it is more 
robust than Pearson correlation and 2) unlike the 
Spearman correlation, it preserves the biological signal as 
shown in large empirical studies [70]. We focused on 
441,870 autosomal probes that were shared between the 
450K and the EPIC array. We combined the 16 sets of 
EWAS summary statistics into four group-specific or one 
global meta summary statistics as described in Figure 1. 
Meta Z values and the corresponding p-values were 
computed as 2/i i iZ w w  and meta2 1 , 
where wi is the square root of the sample size in the ith 
stratum, respectively. 
 
Genomic Regions Enrichment of Annotations Tools 
(GREAT, v3.0) was used to predict the biological 
function of DMPs by associating both proximal and distal 
genomic CpG sites with their putative target genes [71]. 
GREAT implements both a gene-based test and a region-
based test using the hypergeometric and binomial test, 
respectively, to assess enrichment of genomic regions in 
biological annotations. DMPs were uploaded to the 
GREAT web portal (http://great.stanford.edu/public/html/) 
and analyses were run using the hg19 reference annotation 
and the whole genome as background. Genomic regions 
were assigned to genes if they are between 5 Kb upstream 
and 1 Kb downstream of the TSS, plus up to 1 Mb distal.
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Table 2. Sample size of the 16 strata used in the meta-analyses. 

Cohort Stratum Sample size Mean age (range) Mean LTL2 (range) Age-LTL 
correlation3 

FHS European female 442 57 (33-81) 7.07 (5.51-8.7) -0.29 
 European male 432 58 (36-82) 6.92 (5.59-8.52) -0.34 
JHS African female 1034 56 (23-92) 7.22 (4.93-10.03) -0.39 
 African male 603 55 (22-93) 7.06 (5.12-9.24) -0.45 
WHI African female 342 63 (50-80) 7.12 (5.57-9.06) -0.24 
 European female 476 68 (51-80) 6.77 (5.24-8.49) -0.27 
BHS African female 156 44 (30-54) 7.34 (5.35-9.22) -0.08 
 African male 94 44 (33-49) 7.21 (5.60-9.47) -0.17 
 European female 315 43 (29-55) 6.82 (5.02-9.17) -0.08 
 European male 266 43 (28-52) 6.75 (5.27-8.54) -0.18 
LBC19211 European female 242 79 (78-80) 3.99 (3.00-4.72) -0.29 
 European male 161 79 (78-81) 4.26 (3.46-5.31) -0.29 
LBC19361 European female 448 70 (68-71) 4.05 (2.69-6.00) 0.01 
 European male 458 70 (68-71) 4.33 (2.99-7.12) 0.17 
LSADT European female 172 79 (73-90) 5.79 (3.94-7.38) -0.25 
 European male 72 79 (74-87) 5.60 (4.53-6.78) -0.17 

1 LBC recruited adults living in and around Edinburgh and who were born in 1921 and 1936. 
2 In kilobases; LTL measurement in TRF (Southern blot): FHS, JHS, WHI, BHS and LSADT; LTL measurement in T/S (qPCR): 
LBC1921 and LBC1936. 
3 Pearson correlation coefficients. 
 

Pathway annotations from GO Biological Processes, GO 
Cellular Component, GO Molecular Function, MSigDB, 
and PANTHER were used to infer the biological 
meanings behind the DMPs that were associated with 
LTL. GREAT outputs statistics of the gene-based and 
region-based tests, which were subsequently adjusted for 
multiple testing using the Bonferroni correction. 
 
The SMR executable software (https://cnsgenomics.com/ 
software/smr/#Download) was used to calculate the 
causal effects of the selected CpGs on LTL [30]. The 
SMR obtains a causal effect estimate ,

ˆ( CpG LTLb

, ,
ˆ ˆ/ )SNP LTL SNP CpGb  by dividing the effect of a SNP on LTL 

,
ˆ( )SNP LTLb  by the effect of a SNP on CpG ,

ˆ( )SNP CpG . 
GWAS of LTL summary data by Codd and colleagues 
[21] was downloaded from the European Network for 
Genetic and Genomic Epidemiology consortium 
(https://downloads.lcbru.le.ac.uk/engage). The mQTL 
data by McRae and colleagues [31] were downloaded 
from the SMR website (http://cnsgenomics.com/data/ 
SMR/LBC_BSGS_meta.tar.gz). 
 
WGCNA performed a consensus network analysis using 
FHS, JHS and WHI. 30,000 randomly selected CpG sites 

were used to improve readability (resulting in a single 
cluster tree) and offset computational limitations. 
WGCNA hierarchically clustered the 30,000 CpGs based 
on their similarities. The merging threshold of clusters 
(modules) was 0.15. All the statistical analyses were 
performed using R version 3.5.1. 
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SUPPLEMENTARY MATERIALS  
 
Please browse Full Text version to see the data of 
Supplementary Files 1, 2, 3. 
 
Supplementary File 1. Part of summary statistics of 
EWAS of adjusted LTL (global meta P<1E-05 with full 
adjustment). Each row corresponds to a single CpG site. 
The annotations are based on the Human genome 19 (NCBI 
37). The remaining columns indicate the biweight 
midcorrelations and their corresponding Z-scores, p-values 
and sample size. The suffix “a_” means that LTL was adjusted 
for age, sex and ethnicity. The suffix “aa_” means that LTL 
was adjusted for age, sex, ethnicity and blood cell counts. 

The suffix “aaa_” means that LTL was adjusted for age, sex, 
ethnicity, blood cell counts and smoking. 

Supplementary File 2.Additional analyses for 1) 
functional enrichment analysis, 2) the LTL-DNAm 
correlation in subtelomeric regions, 3) summary-data-
based Mendelian randomization, 4) sensitivity 
analyses, and 5) detailed descriptions of each study 
cohort. 

Supplementary File 3. GREAT gene enrichment 
analyses. 

 


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

