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Introduction: The functional role of milk for the developing neonate is an area of great

interest, and a significant amount of research has been done. However, a lot of work

remains to fully understand the complexities of milk, and the variations imposed through

genetics. It has previously been shown that both secretor (Se) and Lewis blood type

(Le) status impacts the human milk oligosaccharide (HMO) content of human milk. While

some studies have compared the non-HMO milk metabolome of Se+ and Se− women,

none have reported on the non-HMO milk metabolome of Se− and Le– mothers.

Method and Results: To determine the differences in the non-HMO milk metabolome

between Se–Le– mothers and other HMO phenotypes (Se+Le+, Se+Le–, and Se–

Le+), 10 milk samples from 10 lactating mothers were analyzed using nuclear magnetic

resonance (NMR) spectroscopy. Se or Le HMO phenotypes were assigned based on the

presence and absence of 6 HMOs generated by the Se and Le genes. After classification,

58 milk metabolites were compared among the HMO phenotypes. Principal component

analysis (PCA) identified clear separation between Se–Le– milk and the other milks. Fold

change analysis demonstrated that the Se–Le– milk had major differences in free fatty

acids, free amino acids, and metabolites related to energy metabolism.

Conclusion: The results of this brief research report suggest that the milk metabolome

of mothers with the Se–Le– phenotype differs in its non-HMO metabolite composition

from mothers with other HMO phenotypes.

Keywords: human milk, metabolome, Lewis negative, oligosaccharide, energy metabolism, South Africa,

non-secretor
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INTRODUCTION

Human milk is the gold standard for infant nutrition as
it provides essential nutrients for infant growth, as well as
bioactive components such as human milk oligosaccharides
(HMOs).While the variation of HMOs among different maternal
HMO phenotypes has been widely studied (1–4), the impact
of the maternal HMO phenotypes on other low-molecular-
weight milk metabolites remains unclear. Metabolites other than
oligosaccharides are thought to play important roles in infant
health. For example, milk glutamate has been shown to impact
appetite and growth (5), biogenic amines have been reported to
provide protection against infectious disease (6), taurine has been
recognized to contribute to neonatal brain development (7), and
creatine appears to be essential for normal neural development
(8). An understanding of how these metabolites change with
HMO phenotype may be important to further understanding of
the function of these metabolites in milk.

Maternal HMO phenotypes are determined by the activity
of two genes: the secretor (Se) gene fut2, coding for α-1,2-
fucosyltransferase 2 (FUT2), and the Lewis (Le) gene fut3, coding
for α-1,3/1,4-fucosyltransferase (FUT3). FUT2 and FUT3 are
responsible for the fucosylation of milk oligosaccharides. There
are five monosaccharides upon which all HMOs are built: D-
glucose, D-galactose, N-acetylglucosamine (GlcNAc), L-fucose
and sialic acid (Neu5Ac) (9). At the core of the HMO structure is
lactose, which can be sialylated to form α2-3 (e.g., 3′sialyllactose,
3’SL) or α2-6 (e.g., 6′sialyllactose, 6’SL) linkages to sialic acid,
or fucosylated to form α1-2 (e.g., 2′FL), or α1-3 (e.g., 3FL)
linkages to fucose. To form more complex HMOs, lactose can
be elongated through a β1-3 linkage to lacto-N-biose (type I) or
a β1-6 linkage to N-acetyllactosamine (type II). Lactose or the
formed polylactosamine backbone can then be sialylated and/or
fucosylated to create an additional 200 different oligosaccharide
structures (10). FUT2 synthesizes 2’FL or lacto-N-fucopentose
I (LNFP I) by attaching a fucose to lactose or lacto-N-tetraose
(LNT), respectively. FUT3 synthesizes lacto-N-difucohexaose I
(LDFH I) and lactodifucotetraose (LDFT) from LNFP I and 2’FL,
respectively, by attaching an additional fucose. FUT3 can also
directly transfer fucose to LNT, lactose, and lacto-N-neotetraose

(LNnT) to form lacto-N-neotetraose II (LNFP II), 3FL, and lacto-
N-neotetraose III (LNFP III), respectively (4). Additionally, the
α-1,3-fucosyltransferases encoded by fut4, 5, 6, 7, and/or 9, which
are Se− and Le− independent, also play roles in attaching fucose
to lactose, and thus 3FL and LNFP III can sometimes be observed
in milk from Lewis negative (Le−) women (11, 12). It has been
speculated that FUT1 α-1,2-fucosyltransferase 1 also participates
in HMO fucosylation, as α-1-2-fucosylated HMOs have been
observed in milk from Se− women (13). In human milk from

Abbreviations: HMOs, Human milk oligosaccharides; Se, secretor; Le,

Lewis; FUT1, α-1,2-fucosyltransferase 1; FUT2, α-1,2-fucosyltransferase 2;

FUT3, α-1,3/1,4-fucosyltransferase; GlcNAc, N-acetylglucosamine; Neu5Ac,

sialic acid; LNFP I, lacto-N-fucopentose I; LNFP II, lacto-N-fucopentose II;

LNFP III, lacto-N-fucopentose III; LNT, lacto-N-tetraose; LNnT, lacto-N-

neotetraose; LDFH I, lacto-N-difucohexaose I; LDFH II, lacto-N-difucohesaose

II; LDFT, lactodifucotetraose; 2’FL, 2’fucosyllactose; 3FL, 3-fucosyllactose; 3’SL,

3’sialyllactose; 6’SL, 6’sialyllactose; PCA, principal component analysis.

Se+/Le+ women, 35–50% of the HMOs are fucosylated, 12–14%
are sialylated, and 42–55% are non-fucosylated neutral (14).

While the Se and Le genes are important to generate a
variety of HMOs in both free and conjugated forms, many
individuals have polymorphisms in one or both of these
genes making them non-functional. In European and American
populations, the Le− frequency is between 4 and 6%, and
20% of the population are Se–, making Se–Le– extremely
rare. In contrast, in certain African populations, over 30% of
the population are Le− and ∼38% are Se− (15–17), which
makes the probability of having Se–Le– mothers higher. The
importance of functional Se and Le genes in infant development
is an area of active research. One study showed that maternal
secretor status appeared to be important for preventing diarrhea,
as although the gut microbiota measured through 16S rRNA
sequencing did not differ between infants of Se+ and Se−
mothers, the prevalence of diarrhea was higher among infants of
Se− mothers (18). Moreover, when these infants were provided
iron supplements, infants of Se− mothers were more likely to
experience a decrease in the abundance of Bifidobacterium and
an increase in pathogens compared to infants of Se+ mothers
(18). However, supplementation with galactooligosaccharides
appeared to ameliorate the impact of iron supplementation (18).

Studies comparing the non-HMO milk metabolome from
mothers who were phenotypically Se+ to Se− demonstrated
no differences between groups (19, 20). We have previously
reported on the milk metabolome at day 90 (21) and over the
first month of lactation (22) in Se+Le+ and Se–Le+ women.
We observed no significant difference in non-HMO metabolites
between the two groups. To date, no studies have compared
the non-HMO metabolome of milk from phenotypically Se–Le–
mothers to any other phenotype. We hypothesized that the non-
HMOmilk metabolome from Se–Le– women would be similar to
the other phenotypes 1 month after delivery. This brief research
report provides preliminary data on the comparison of the milk
metabolome between women with the Se–Le– phenotype and
other phenotypes.

METHODS

Milk Sample Preparation
In this pilot study, to maximize the homogeneity of subjects
(23), human milk samples were collected 1 month postpartum
from 10 randomly-selected healthy women (age 29.8 ± 4.8,
pre-pregnancy BMI 25.0 ± 2.9) in Cape Town, South Africa,
who gave birth to term infants (50% male) through vaginal
delivery, and practiced exclusive breastfeeding prior to sample
collection. The exclusion criteria included antibiotic or probiotic
treatment during the last trimester of pregnancy, and the
breastfeeding period. Ethical approval for this study was provided
by the University of Cape Town’s Human Research Ethical
Committee (HREC REF: 306/2014). Mature milk samples
from mothers were collected after obtaining their consent.
Women were asked to wash their hands, their nipple, and
surrounding breast area with soap, then soak the breast area
with chlorhexidine to reduce contamination by skin microbes,
followed by washing with sterile water. A small volume of
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milk was collected manually or with an electric breast pump
into a sterile collection bottle after discarding the first few
drops. Time since last feed was not recorded. After collection,
samples were transported on ice and stored at −20◦C until
further processing. This study is a subset of a larger study
on the relationship of milk short chain fatty acids and
atopy (24).

Milk samples were prepared as previously described (25).
Briefly, samples were thawed on ice, mixed, then 500 µL of each
sample was filtered through Amicon Ultra 0.5mL 3-kDa cutoff
spin filters (Millipore Sigma, Burlington, MA, USA) at 10,000
× g for 15min at 4◦C to remove lipids and protein, as the
study was interested in low-molecular-weight polar metabolites.
Three hundred and fifty microliter of filtrate was mixed with 70
µL of deuterium oxide and 60 µL of standard buffer solution
[consisting of 585mM NaHPO4 (pH 7.0), 11.667mM disodium-
2,2-dimethyl-2-silapentane-5-sulfonate (DSS, internal standard),
and 0.47% NaN3 in H2O] in a 1.5mL Eppendorf tube (25). Four
hundred and sixty microliter of the mixture was transferred to
a nuclear magnetic resonance (NMR) tube for subsequent NMR
spectral analysis.

NMR Data Acquisition and Processing
1H NMR spectra were acquired at 25◦C using the first transient
of the Varian tnnoesy pulse sequence on a Varian 500 MHz
Inova spectrometer equipped with a 5mm HCN cold probe.
Water suppression pulses were calibrated to achieve a bandwidth
of 80G. Spectra were collected with 128 transients and 8
steady-state scans using a 4 s acquisition time (48,000 complex
points) and a 1 s recycle delay. Before spectral analysis, all free
induction decays were zero-filled to 64,000 data points and
line broadened to 0.5Hz. The methyl singlet produced by DSS
internal standard was used for chemical shift referencing (set to
0 ppm) and for quantification. Spectra were manually processed
and 64 polar milk metabolites (including the 6 HMOs used for
phenotype determination) were identified and quantified using
Chenomx NMRSuite version 8.1 (Chenomx Inc., Edmonton,
AB, Canada).

HMO Phenotype Determination
The HMO phenotype was determined based on the presence or
absence of six specific milk oligosaccharides (2’FL, 3FL, LNFP I,
LNFP II, LNFP III, and LDFT) in the NMR spectra that were
identified and quantified from an NMR spectral library created
through the analytical preparation of commercially available
HMOs as previously described (21). In this study, the limit of
detection was set to 20µM for these compounds based on the
ability to clearly observe spectral peaks of these HMOs over
noise in the spectra generated from the Varian 500 MHz Inova
spectrometer. Detection of both 2’FL and LNFP I in milk resulted
in phenotype assignment as Se+, otherwise Se–. When LNFP II,
3FL, LDFT, and LNFP III were visible in the NMR spectra, the
phenotype was assigned as Le+, otherwise Le–.

Statistical Analysis
Statistical computing and graphical generation were performed
using the R (version 3.5.2) programing environment. Prior
to principal component analysis (PCA), generalized log
transformation [defined as log2(1+y) where y is the metabolite
concentration] was applied to all metabolomics data. PCA
was computed using the prcomp function in the stats package
of R without scaling the transformed data, and the first two
components were plotted.

Metabolomics data without log transformation was used to
perform log2_Fold calculation according the following equation.
Briefly, the mean concentration of each metabolite was first
calculated for the Se–Le–, Se–Le+, and Se+ phenotypes (the
Se+Le+ and Se+Le– samples were combined since there was
only one Se+Le– sample). The mean concentration of each
metabolite in the Se–Le– (or Se–Le+) groups was divided by
the mean concentration of the same metabolite in the Se+
group to calculate the ratio between Se–Le– (or Se–Le+) and
Se+ phenotypes. To ensure metabolites were expressed in the
same range, log2 transformation was applied. To decrease the
chance of false discovery using FDR-corrected p-values (since
most metabolites were significantly different using this method),
we considered a log2 fold change cut off of ±1.5 as an indication
of significance.

RESULTS

In total, 10 milk samples were collected from South African

women 1 month after term delivery, of which 60% (n = 6)
were Mixed Race, 20% (n = 2) were Black, and 20% (n =
2) were Caucasian. None of the women had atopic disease.
An NMR spectrum annotated with HMO peaks is shown in
Figure 1A. Multiple peaks of each HMO could be identified,
with some overlapping with other metabolites in milk. The
HMO phenotypes of the subjects was estimated by assessing
the presence or absence of specific HMOs in the milk samples
(Table 1), with examples of the NMR spectrum corresponding
to each of the HMO phenotypes shown in Figure 1B. Samples
where both 2’FL and LNFP I could be measured were assigned as
Se+, while samples where these two HMOs could not be detected
were designated Se–. No sample was detected with only one
of the two HMOs. Se+ samples with the presence of LNFP II,
3FL, LDFT, and LNFP III were assigned as Se+Le+, otherwise
they were assigned as Se+Le–. Se− samples with detectable
levels of LNFP II, 3FL, and LNFP III were classified as Se–
Le+, and for those without these three HMOs as Se–Le–. Out
of 10 samples analyzed, three samples were designated Se–Le–,
as none of the six targeted HMOs was detected in any of these
samples. Additionally, the area under the peak for the three FUT
3-catalyzed HMOs (LNFP II, LNFP III and 3FL) were higher
in milk from Se–Le+ mothers compared to milk from Se+Le+
mothers (Figure 1B).

To evaluate whether the milk metabolome was different
among the HMO phenotypes, 58 quantified polar metabolites
(excluding the HMOs resulting from FUT2 and FUT3)
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FIGURE 1 | Identification of HMOs in human milk NMR spectra. (A) Multiple peaks of each HMO are shown in 10 different chemical shift regions at various vertical

scales to illustrate characteristic peaks associated with identified HMOs. Magnification is indicated at the top of each segment. (B) Comparison of NMR spectra of

milk between individuals with putative differences in Se and Le status.

were examined and compared. Figure 2A shows a principal
component analysis (PCA) of milk metabolites of women from
the identified HMO phenotypes. Separation along PC1, which
explained 48.7% of the variance, revealed a difference between
the Se–Le– group and all other-12 groups. Along PC2, which
explained 15.0% of the variance, separation based on Se status
was observed. As there was only one sample identified as Se+Le–,

and it did not separate from the Se+Le+ samples in the PCA plot
(Figure 2A), it was combined with the Se+Le+ samples (Se+
samples) in further analyses.

In order to further compare milk metabolites among
groups, the fold/ratio of metabolite concentrations in milk
from Se–Le– and Se–Le+ mothers relative to milk from
Se+ mothers were calculated (Figure 3). In terms of the
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TABLE 1 | Proposed synthetic pathways of the principal fucosyloligosaccharides used to identify Secretor (Se) and Lewis (Le) phenotypes based on their

presence/absence in the 10 milk samples.

Starting structure LNT Lactose LNT LNnT Lactose 2’FL

Subject HMO phenotype Se+ Le+ Proposed HMO phenotype

HMO LNFP I 2’FL LNFP II LNFP III 3FL LDFT

1 bld bld bld bld bld bld Se–Le–

2
√ √ √ √ √ √

Se+Le+

3 bld bld
√ √ √

bld Se–Le+

4 bld bld
√ √ √

bld Se–Le+

5 bld bld bld bld bld bld Se–Le–

6 bld bld
√ √ √

bld Se–Le+

7 bld bld
√ √ √

bld Se–Le+

8 bld bld bld bld bld bld Se–Le–

9
√ √

bld bld bld bld Se+Le–

10
√ √ √ √ √ √

Se+Le+

LNFP I, lacto-N-fucopentose I; LNFP II, lacto-N-fucopentose II; LNFP III, lacto-N-fucopentose III; LNT, lacto-N-tetraose; LNnT, lacto-N-neotetraose; LDFT, lactodifucotetraose; 2’FL,

2’fucosyllactose; 3FL, 3-fucosyllactose; Se, secretor; Le, Lewis;
√
, Detected; bld, Below limit of detection. HMO concentrations below 20 µMwere considered below the detection limit.

FIGURE 2 | Comparison of non-HMO milk metabolites between milk from women with different Se and Le status. (A) Principal component analysis of metabolites not

used for HMO phenotype assignment. (B) Comparison of some non-HMO milk metabolites between Se-Le- and other phenotypes. Magnification is indicated at the

top of each segment.

oligosaccharides and their metabolites, 3’galactosyllactose, 3’SL,
fucose, and LNnT were between 2- and 10-fold lower in milk
samples from Se–Le– and Se–Le+ compared to Se+ mothers.
Galactose was 6 and 1 times higher in milk samples from Se–
Le– and Se–Le+ mothers, respectively, compared to samples
from Se+ mothers. For metabolites associated with energy
metabolism, samples from Se–Le– milk were approximately
4 times higher in creatine phosphate, 12 times higher in
creatine, 4 times higher in creatinine, 5 times higher in
citrate, 6 times higher in pyruvate, and 10 times higher
in succinate compared to Se+ milk, while these metabolites
were similar in concentration between milk from Se–Le+ and
Se+mothers.

Milk from Se–Le– mothers also differed with respect to free
amino acid concentrations compared to milk from Se+ and Se–
Le+ mothers. Arginine, asparagine, glycine, leucine, isoleucine,
lysine, and tyrosine were 2–4-fold higher in milk samples from
Se–Le– compared to Se+. Interestingly, the fold difference of
these amino acids in milk between Se–Le+ and Se+ samples was
<2-fold. Carnitine was higher in milk from both the Se–Le– (∼4
fold) and Se–Le+ (∼2 fold) groups compared to Se+. Alanine,
glutamate, glutamine, taurine, and betaine were all between 2-
and 5-fold lower in the Se–Le– group compared to the Se+ group,
while they were similar in concentration between the Se–Le+ and
Se+ groups. Aspartate was also 2-fold lower in milk from both
Se–Le– and Se–Le+ samples compared to Se+.
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FIGURE 3 | Fold difference of metabolite concentrations in milk from Se–Le–

and Se–Le+ mothers relative to Se+ mothers. The mean concentration of

each

(Continued)

FIGURE 3 | metabolite was calculated for all groups and the means of the

Se–Le– and Se–Le+ groups were divided by the mean of the metabolite

concentration from the Se+ groups to determine the ratio relative to the Se+
groups. The ratio values were then log2 transformed. Log2_fold values over

1.5 or below −1.5 are indicated in the figure. * log2_fold over 1.5 or below

−1.5 when comparing Se–Le– to Se+ samples. # log2_fold over 1.5 or below

−1.5 when comparing Se–Le+ to Se+ samples.

Free fatty acids and associated metabolites such as acetate,
choline, and sn-glycero-3-phosphocholine were 12-, 2-, and 2-
fold higher, respectively, in the Se–Le– group compared to
samples from Se+ mothers. Azelate, butyrate, caprate, and
caprylate were also 8-, 10-, 6-, and 9-fold higher respectively
in the Se–Le+ group compared to Se+ samples. Additionally,
butyrate was 3- and 10-fold higher in Se–Le– and Se–Le+
groups compared to Se+. O-phosphocholine was lower in
the Se–Le– group (10-fold) compared to Se+. Representative
peaks of taurine, betaine, acetone and 3’SL are shown in
Figure 2B. Metabolite concentrations for each subject are shown
in Supplementary Table 1.

DISCUSSION

Significant research has been undertaken to understand the
impact of maternal secretor status and Lewis blood type on the
milk glycome (12) and subsequent influence on infant health
including their gut microbiota (26), susceptibility to rotavirus
(15), allergy to bovine milk (27), and weight during the first 6
months (28). But no studies have focused on the metabolome of
milk from the Se–Le– population due to its low prevalence.

In the current study, we found that all of the 6 fucosylated
HMOs used to determine HMO phenotypes were below the
detection limit of the instrument in Se–Le– samples. 3FL and
LNFP III were previously reported to be present in milk from
Le− women, which could potentially be due to the activity
of FUT4, 5, 6, 7, and 9 enzymes (1). In the current study,
neither of these HMOs was detected in Le− women, which
may be due to the difference in detection methods. Mass
Spectrometry can measure down to the picomolar level, whereas
for spectra obtained from the Varian 500 MHz spectrometer
used in this study, the limit of detection of these metabolites
was 20µM. It remains to be determined if oligosaccharides
present in milk below 20µM would have a significant impact on
infant health.

Other HMOs and related metabolites such as
3′galactosyllactose, 3′SL, fucose, galactose, and GlcNAc also
trended different within the HMO phenotypes, indicating other
factors influencing the glycome of human milk (Figure 3).
3′SL (Figure 2B), lower in both Se–Le– and Se–Le+ groups
compared to Se+ in this study, was reported to be similar
in concentration in milk from Se+ and Se− women (14, 21)
or even ∼20–56% higher in milk from Se− compared to
Se+ women (18, 29). 6′-sialyllactose, which is not reported
in the current study, was demonstrated to be significantly
higher in milk from non-secretor women (14). Further studies
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are needed to investigate if this is due to a preference of
α-2, 6-sialylation / α-2, 3-sialylation or simply a difference
amongst populations.

Pyruvate, citrate, cis-aconitate, and succinate, which are
metabolites involved in the tricarboxylic acid (TCA) cycle,
were higher in Se–Le– milk. Increased TCA cycling could
indicate greater energy provision, and previous studies have
speculated that a higher level of TCA intermediates in
bovine milk compared to human milk may be to enhance
growth (30, 31).

HMO biosynthesis is suggested to be an extension of lactose
biosynthesis which occurs in the Golgi of the mammary gland
epithelial cells (32). Therefore, inactivity of both α-1,2- and α-
1,3/1,4- fucosylltransferases in Se–Le– women might profoundly
impact mammary gland metabolism, and thus impact milk
composition. Alanine, taurine, glutamine and glutamate are
the most abundant free amino acids in human milk (21, 33),
and these were all lower in the milk from the Se–Le– group
compared to milk from the Se+ group. Higher free glutamate
in bovine milk infant formula has been reported to decrease
its intake (5). It could be that a lower level of glutamate
in milk from Se–Le– women could increase milk intake by
the infant to compensate for the low and less diverse HMO
content. Branched chain amino acids (leucine and isoleucine)
and lysine were higher in Se–Le– compared to Se+ milk. A
similar pattern of free amino acids in human milk was seen
in a previous study comparing high and low growth rate
groups of premature infants (34), where a higher content of
insulinotrophic amino acids and tyrosine was associated with
faster infant growth.

Choline in the Se–Le– group was almost double the level
in Se+ samples, while phosphocholine was one-tenth the
level. A previous study showed a negative correlation between
choline and phosphocholine in human milk (35), and a similar
correlation was observed in this study. The origin of choline
in milk is not completely understood. One study reported
that breastmilk choline is related to maternal choline intake
and genetic polymorphisms (36), while another study showed
no difference in milk choline content based on maternal
diet (37). Indeed, the betaine level in Se–Le– milk was 2-
fold lower than that in Se+ samples, suggesting a possible
lower conversion of choline to betaine. It could be that the
difference in milk choline (and other metabolites) in the Se–
Le– group compared to Se+ group could result in differences
in milk lipid synthesis (38). Indeed, choline is an essential
precursor of phosphatidylcholine and sphingomyelin, which are
essential components of biological membranes and precursors
for intracellular messengers such as ceramide and diacylglycerol
(39). This would imply that the milk fat globule would be
different in Se–Le– mothers since maternal phenotype will
impact conjugated glycolipids in addition to HMOs (40).
Differences in the milk fat would need to be assessed in a
separate study.

Here, in this brief research report, we showed differences in
the non-HMO milk metabolome between phenotypically Se–
Le– mothers and Se–Le+, and Se+ mothers. These differences
included metabolites related to energy metabolism, amino acids,
and fatty acids. The current study is limited by the small sample
size and the rarity of Se–Le– HMO phenotype. Factors such
as the completeness of milk expression, time since last feed,
time of the day during sample collection, and information
on mother’s diet were not collected; however, the impact of
these factors on milk composition is negligible compared to
the impact of genetics. Nonetheless, this study shows that the
Se and Le status of the mother has an important role to play
in the composition of non-oligosaccharide milk metabolites.
Further research involving larger sample sizes should be done
to confirm the findings, investigate the impact on milk lipid and
proteins, and investigate potential biological consequences of Se–
Le– milk on infant gut microbial succession and metabolism.
This will help further unravel the link between human milk and
infant health.
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