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Abstract: Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25%
of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology
includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic
steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors,
including exposure to environmental toxicants, are involved in the development and progression
of NAFLD. Environmental factors may promote the development and progression of NAFLD by
various biological alterations, including mitochondrial dysfunction, reactive oxygen species pro-
duction, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated
signaling. Moreover, environmental contaminants can influence immune responses by impairing
the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs)
are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire.
FRs have been employed in several household and outdoor products; therefore, human exposure is
unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune
and inflammatory signaling and their possible contribution to the development and progression of
NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified,
and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for
NAFLD are also discussed.

Keywords: flame retardants; nonalcoholic fatty liver disease; metabolism-disrupting chemicals;
cytokines; interferon; metabolic disruption

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a significant cause of concern worldwide;
it is estimated that about 25% of the world’s adult population suffers from NAFLD [1,2].
NAFLD is highly prevalent in North America, South America, Asia-Pacific, the Middle East,
and European countries [3]. The estimated incidence of NAFLD is more than 64 million
individuals in the United States and 52 million in the four main European countries (United
Kingdom, Italy, Germany, and France) with significant economic costs [4]. NAFLD is charac-
terized by hepatic steatosis, a state of uncontrolled supraphysiological accumulation of fatty
acids or triglycerides in the liver [5]. Triglycerides and cholesterol esters stored in the liver are
later packed into lipid droplets localized in the cytoplasm [6,7]. The increased lipids species
further promote cellular stress and hepatocellular injury, promoting NALFD development to
more severe conditions. NAFLD consists of broad-spectrum pathologies; steatosis usually
occurs as the first stage of liver damage. With the advancement of time, steatosis typically
progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis,
cirrhosis, and eventually leads to hepatocellular carcinoma (HCC) [8]. (Figure 1).
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Figure 1. Progression of NAFLD. Simple steatosis is the initial phase of NAFLD characterized by excessive accumulation
of fat in the hepatocyte. With time, steatosis progresses to a more inflammatory state called NASH in approximately
59% of patients. In addition, 41% of patients can develop more severe conditions such as fibrosis and cirrhosis (40%),
leading to hepatocellular carcinoma in 2–10% [1]. Steatosis, NASH, and fibrosis are reversible with timely and appropriate
interventions, while later stages cannot be reversed. (Created with BioRender.com).

Clinically steatosis is distinguished by the intrahepatic accumulation of fat in more
than 5% of hepatocytes, whereas NASH is a stage within the spectrum of NAFLD and is
distinguished by the presence of steatosis, hepatocellular injury, hepatocyte ballooning,
and inflammation with or without fibrosis [9]. The clinical diagnoses of these conditions
are difficult because of the lack of diagnostic tools. Current diagnosis mostly relies on
liver biopsy, along with certain serum biomarkers such as alanine aminotransferase (ALT)
and aspartate aminotransferase (AST), as well as liver imaging [10,11]. Several factors
are responsible for the pathogenesis and progression of NAFLD, such as diet, obesity,
gut microbiota, genetic predisposition, epigenetic factors, oxidative stress, metabolic factors,
and hormonal dysregulation, resulting in altered lipid homeostasis, which leads to lipid
accumulation and inflammation [12,13].

Increasing evidence suggests a plausible role of environmental risk factors, including
exposure to endocrine and/or metabolism-disrupting chemicals that can alter the function
of endocrine signaling in the liver, which is a central organ for controlling lipid homeosta-
sis [14,15]. Moreover, environmental contaminants can influence immune responses by
impairing the immune system’s components and, ultimately, disease susceptibility [16].
It has been well recognized that occupational and environmental chemical exposures are as-
sociated with the development and progression of NAFLD [17]; therefore, some researchers
also propose to use the term TAFLD to describe the spectrum of toxicant-associated fatty
liver diseases that may include steatosis, steatohepatitis, cirrhosis, and liver cancer [18].
However, TAFLD was initially used to describe the extent of pathological liver damage
similar to alcoholic liver disease and NAFLD following xenobiotic exposure (e.g., prescrip-
tion drugs) [19], whereas toxicant-associated steatohepatitis (TASH) is the more severe
form of fatty liver disease and may arise from exposures to industrial chemicals, such
as vinyl chloride, even in the absence of other risk factors for fatty liver such as alcohol
consumption, obesity, etc. [20]. However, we are using the well-accepted term NAFLD for
further discussion in this paper.

Flame retardants (FRs) are anthropogenic chemicals or mixtures of chemicals widely
used in commercial and consumer products such as building materials, automobiles, plas-
tics, textiles, furniture, mobile phones, and toys since the 1960s to reduce the flammability
and risk of fire [21–23]. The production and use of FRs are steadily increasing globally;
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in 2008, global production and use were 1.95 million tons, which increased to 2.62 million
tons in 2014 [24]. The global market of FRs had a value of USD 6.29 billion in 2015, and it is
projected to be USD 11.96 billion by 2025 [25]. The production of organophosphorus flame
retardants (OPFRs), which are used as a replacement of largely restricted brominated FRs,
has drastically increased over the last few years [26,27].

Biomonitoring studies have demonstrated the presence of FRs in indoor and outdoor
environments, including air, house dust, drinking water, sediment, biota [28–30], and even
in composite food samples [31]. Moreover, FRs and their metabolites are consistently de-
tected in human tissues, urine samples, hair, nails, placenta, breast milk, body fluids, serum,
and blood samples indicating exposure to the human population [32–38]. With the high
usage and ubiquitous presence of FRs in various household and outdoor products, human
exposure to FRs are unavoidable. Higher exposure to FRs among children, compared to
adults, has been reported in a biomonitoring study [39]. The routes of exposure of FRs
to humans depend upon the chemical and predominantly include inhalational, ingestion,
and dermal routes [40–42].

Some occupations, e.g., electronic waste (e-waste), recycling, air transportation, and
manufacturing facilities, have been shown to expose workers to high concentrations of
FRs [43]. Recently, it has been shown that occupational exposure to OPFRs, polybromi-
nated diphenyl ethers (PBDEs), and novel brominated flame retardants occur in a variety
of professions and activities such as chemical manufacturing, carpet installation, foam man-
ufacturing, electronic scrap, rigid board installation, gymnastics, nail salons, roofing, and
polyurethane foam application [44]. FRs are a growing concern to human health and the
environment and have been identified as high priority chemicals, e.g., in the pan-European
initiative Human Biomonitoring for Europe (HBM4EU) [45].

Several health hazards associated with chronic exposure to legacy PBDEs and other
FRs used as substitutes have been reported, including developmental, neurotoxicity, repro-
ductive disorders, carcinogenicity, and endocrine and metabolic disruption [28,46–52]. The
in vitro and in vivo endocrine disruption effects of several FRs have been well documented,
and studies indicate that FRs could modulate several nuclear receptors (NRs) [53–55]. It has
been known that the modulation of endocrine signaling alters developmental, reproductive,
neurological, and immune functions [56]. Effects of endocrine-disrupting chemicals can
occur at very low levels, and early exposures during the development period have been
linked with an increased incidence of metabolic-related adverse effects such as obesity,
diabetes, and NAFLD [57]. Increasing evidence also indicates an association between expo-
sure to FRs and metabolic syndrome in few epidemiological studies [58–61]. Therefore, it is
important to evaluate FRs-associated risk of metabolic effects such as NAFLD development
and progression, especially in occupationally exposed populations and individuals with
other risk factors such as obesity and type 2 diabetes (T2D). This review aims to describe
possible biological mechanisms altered by FRs in the context of NAFLD, particularly fo-
cusing on the role of IFN and inflammatory signals in metabolic disruptions. An outlook
on the emerging potential therapies targeting immune and inflammatory signaling for
NALFD is also discussed.

2. Pathobiology of NAFLD: Role of IFN and Inflammatory Signaling

NAFLD is a complex metabolic disease modulated by numerous factors and mani-
fested with several metabolic alterations [62]. Various biochemical processes portray the
pathophysiology of NAFLD, and multiple mechanisms have been proposed. The “two-hit
hypothesis” pathogenesis of NAFLD starts with the first hit, i.e., the accumulation of
excessive triglycerides in the liver leading to steatosis, and the second hit includes several
factors such as oxidative stress that initiate the progression of steatosis to a more severe
condition such as NASH [63,64]. In contrast, the “multiple-hit hypothesis” considers multi-
ple parallel events acting synergistically, such as lipotoxicity, adipose tissue inflammation,
and gastrointestinal events, including effects on gut microbiota in the development and
progression of NAFLD [65,66]. In general, lipid accumulates in the liver as a result of
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increased de novo fatty acid synthesis, decreased fatty acid oxidation, increased fatty
acid influx from peripheral organs to the liver, and decreased fatty acid efflux from the
liver [67,68]. It has been suggested that the hepatic accumulation of triglycerides in the liver
might be protective toward progressive liver damage [69,70]. However, it is worth noting
that NAFLD is a complex disease, and there are lines of evidence that inflammation may
precede steatosis and contribute to the advancement of the disease or may even further lead
to lipid accumulation in hepatocytes (steatosis) [65]. Moreover, recent findings suggest the
involvement of pro-inflammatory cytokines and innate immunity signaling in the patho-
physiology of NAFLD, regulating all features of NAFLD progression, including disbalance
in lipid homeostasis, metabolic dysregulation, inflammation, and fibrosis [71–75].

Interferons (IFNs) are a type of cytokines that are released/produced as a defense
mechanism against viral infections [76] and/or in response to the damage-associated molec-
ular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs refer
to a set of intracellular signaling molecules that are secreted upon cellular stress, injury, or
cell death. DAMPs are detected by pattern recognition receptors (PRRs) such as Toll-like
receptors (TLRs), NOD-like receptors (NLRs), receptor for advanced glycation end products
(RAGE), and c-GAS (a cytosolic PRRs), which activate downstream signaling pathways
to induce production of cytokines that drives the progression of NAFLD [77–79]. IFNs
are classified based on their receptor and downstream signaling cascades into three main
classes: type I (IFN-α/β), type II (IFN-γ), and type III (IFN-λs). IFN-α and IFN-β bind
to a specific heterodimeric membrane receptor on the cell surface called the IFN receptor
(IFNAR), composed of two IFNα and IFNβ receptor subunits (IFNAR1 and IFNAR2). The
binding of IFN-α/β to their receptor initiates the downstream signaling and recruitment
of receptor-activated protein kinases such as Janus kinase 1 (JAK1) and tyrosine kinase
2 (TYK2), which phosphorylate and activate the transcription factors signal transducer
and activator of transcription (STAT1) and STAT2. The phosphorylated STATs recruit IFN
regulatory factor 9 (IRF9), which together (STAT1–STAT2–IRF9) forms a complex called
IFN-stimulated gene factor 3 (ISGF3). The ISGF3 translocates to the nucleus and binds with
IFN-stimulated response elements (ISREs) to initiate transcription of several IFN-related sig-
nature genes [80,81]. The dimeric IFN-γ receptor consists of the interferon-gamma receptor 1
(IFNGR1) and IFNGR2 and activates JAK1 and JAK2, which exclusively activate STAT1 [82].
IFN-λ binds to a heterodimeric receptor comprised of two different chains—IFN-λR1 and
IL-10R2—leading to the activation of JAK1 and TYK2, which then phosphorylate and ac-
tivate STAT1 and STAT2. The phosphorylated STATs with IRF9 (ISGF3) enter the nucleus
and drive the transcription of IFN-stimulated genes (ISGs). Both type I and type III IFNs
activate ISGF3 and therefore induce similar transcriptional responses [83].

The potential role of IFNs in NAFLD has been demonstrated by an increased expres-
sion of stimulator of IFN genes (STING) in high-fat diet (HFD)-induced NAFLD mouse
model and free fatty acid-induced NAFLD in the human fetal hepatocytes cell culture,
whereas knocking down either STING or IRF3 reduced the lipid accumulation, hepatic
inflammation, and apoptosis in liver of mice [84]. A higher level of STING was found in
liver tissues from NAFLD patients, in mice model of NAFLD, STING-induced macrophage-
mediated liver inflammation and fibrosis, whereas STING deficiency attenuated steatosis,
fibrosis, inflammation, and insulin resistance in the liver of mice [85]. Activation of STING
was associated with an aggravated expression of several inflammatory cytokines, including
IL-18, IL-6, IL-1β, TNFα, and C-X-C motif chemokine ligand 10 (CXCL-10) in HFD-induced
NAFLD mice, whereas repressing STING signaling attenuated lipid accumulation and
liver inflammation [86]. STING is an endoplasmic reticulum-bound protein that induces
expression of type I IFNs (IFN-α and IFN-β) [87,88], IRF3, and NFκB through the TBK1
pathway [89]. IRF3 is a transcriptional regulator of inflammation and inflammatory re-
sponse and has been linked with insulin resistance, as shown in murine adipocytes [90].
Translocation of IRF3 into the nucleus further induces the transcription of type I IFN on
binding to ISREs [91].
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Considering the expression and involvement of the STING pathway in clinical and
experimental models of NAFLD, which led to the induction of IFNs or IRFs, it is hypoth-
esized that IFNs might be a key player in the pathogenesis and progression of NAFLD.
More recently, Ghazarian et al. also demonstrated the potential role of IFNs in NAFLD
by the finding that IFNαR1−/−mice lacking IFNAR1 were protected from HFD-induced
hepatic steatosis and insulin resistance, whereas wild-type mice developed severe NAFLD
phenotypes [92]. Moreover, a choline-deficient diet-induced NAFLD mice model showed
increased STAT1 and IFN-regulated genes compared to controls, further suggesting a pos-
sible role of IFN signaling in NAFLD [93]. It has been observed that the hepatocyte-specific
deletion of IFNαR1 worsened steatosis and inflammation but not insulin resistance in mice
fed with a choline-deficient diet or HFD. Adipocyte-specific deletion of IFNαR1 worsened
metabolic dysregulation and increased insulin resistance but not steatosis. IFNαR1 deletion
in myeloid or intestinal epithelial cells was not susceptible to metabolic dysregulation or
liver damage [94]. These observations further suggest a diverse tissues specific role of
IFN signaling in metabolic dysregulation, which warrants further investigation. Moreover,
IRF7, the principal regulator of IFN, increased triglyceride, cholesterol, free fatty acid,
and induced lipid accumulation in HFD-fed mice, while knockdown of IRF7 ameliorated
diet-induced hepatic steatosis and improved glucose and lipid homeostasis [95].

The downstream mechanisms by which IFN signaling modulates hepatic steatosis
or NAFLD progression are still uncertain. However, IFN mediated cytokine produc-
tion, modulation of receptor responses, transcriptional regulation of IFN target genes,
or lipid/glucose metabolism-related genes, inducing lipogenesis and lipolysis, can be
involved. Experimental studies demonstrated that IFN-γ-induced lipogenesis in renal
mesangial cells by enhancing the expression of high mobility group box 1 (HMGB1),
which further upregulated the expression of sterol regulatory element-binding protein 1c
(SREBP-1c) and fatty acid synthase via JAK2/STAT1-mediated pathway in mouse [96].
IFN-α stimulated hepatic fatty acid synthesis, increased activity of enzyme acetyl-CoA
carboxylase (ACC), which plays an essential role in the fatty acid synthesis, and showed
synergistic activity when administered in combination with other cytokines such as TNF or
IL-1 in mice [97]. A recent study also indicated the involvement of IFNα in obese-related
NAFLD patients, as evidenced by increased IFN-α serum levels that were associated with
intramuscular fat in obese patients with NAFLD [98]. Another study also found stimulation
of hepatic lipid and cholesterol synthesis after administering various cytokines, including
IFNs to mice [99]. These data suggest an important role of cytokines and IFNs in regulating
lipid metabolism and inducing metabolic disturbances.

Both type I and type II IFN (IFN-β and IFN-γ) have been reported to induce insulin
resistance in vitro in mouse adipocytes by inducing different isoforms of suppressor of
cytokine signaling (SOCS) [100]. SOCS plays a significant role in metabolic disease by
modulating insulin and pro-inflammatory cytokine signaling. SOCS-1 and SOCS-3 induced
insulin resistance by inhibiting phosphorylation of insulin receptors IRS-1 and IRS-2 and
downstream signaling in mice liver [101]. Inhibition of SOCS-1 and SOCS-3 in obese
diabetic mice improved insulin sensitivity, regulated the expression of SREBP-1c, and
ameliorated hepatic steatosis and hypertriglyceridemia [102]. In cultured mouse adipocytes,
IFN-α and IFN-γ induced lipolysis and impaired lipoprotein lipase activity [103,104]. IFN-
γ increased triacylglycerol and lipid droplets levels in pancreatic β-cells, increased de
novo lipogenesis, impaired mitochondrial fatty acid oxidation, and increased expression of
lipid metabolism genes via JAK-dependent signaling [105]. Moreover, IFN-γ deficiency
attenuated steatohepatitis and fibrosis in MCDHF diet-induced NASH in IFN-γ deficient
mice by inhibiting macrophage or Kupffer cell infiltration, inflammatory responses, and
hepatic stellate cell activation [106].

However, hepatocyte-specific deletion of JAK2 in mice developed steatosis, whereas
the same mice were completely protected against the development of diet-induced steato-
hepatitis and glucose intolerance [107]. Sos et al. also demonstrated spontaneous steatosis
development in hepatocyte-specific JAK2 deleted mice [108]; however, JAK2 hepatocyte-
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specific deletion protected against ROS-induced oxidative damage [109]. The above studies
strengthen the involvement of IFN or IFN regulatory pathways in NAFLD development;
however, further studies are needed to explore the potential role of IFNs in the development
and progression of NAFLD.

Inflammatory cytokines such as IL-1α, IL-1β, and TNFα play an essential role in
lipid metabolism and metabolic diseases [110–112]. IL-1 signaling upregulated fatty acid
synthase and lipogenic gene expression in obese mice and induced de novo fatty acid
synthesis and hepatic inflammation [113]. Kupffer cell-derived inflammatory markers
act as major modulators of peroxisome proliferator-activated receptor (PPAR) expression
and activity in mice and human primary hepatocytes culture. Kupffer cell-secreted IL-1β
suppressed PPARα activity and thereby inhibited fatty acid oxidation, resulting in hep-
atic lipid accumulation in obese mice [114]. Depletion of Kupffer cells improved hepatic
steatosis, suggesting a critical role of Kupffer cells and derived cytokines such as IL-1
in regulating lipid metabolism. IL-1α and IL-1β have been reported to impair insulin
signaling by altering tyrosine phosphorylation of insulin receptor substrate (IRS-1 and
IRS-2), which leads to insulin resistance [115]. Insulin resistance is one of the prominent
and pivotal factors responsible for the development of NAFLD. Insulin resistance increases
de novo lipogenesis by increasing SREBP-1c, a transcription factor that activates fatty acid
synthesis and lipolysis in the peripheral tissue, ultimately increasing the accumulation
of triglyceride in the liver [116–120]. Moreover, insulin resistance leads to inadequate
suppression of gluconeogenesis and contributes to hyperglycemia and hepatic steatosis.
Under the influence of hyperglycemic condition, the liver transcription factor carbohy-
drate responsive element-binding protein (ChREBP), which regulate various lipogenic
gene expression stimulates glycolysis and lipogenesis in the liver [121]. Insulin resistance
also promotes peripheral lipolysis in adipose, subsequently increasing lipid delivery and
accumulation in the liver, thereby increasing steatosis [122]. TNFα also contributes to
insulin resistance by inhibiting insulin receptor signaling [123,124]. Nevertheless, IL-17A
has also been associated with hepatic steatosis and pro-inflammatory response in NAFLD,
which facilitated steatosis progression to steatohepatitis with increased inflammation [125].
Together, IFN and inflammatory signaling play a critical role in the pathogenesis and pro-
gression of NAFLD. However, further studies are warranted to understand the molecular
mechanisms and clarify the role of JAK–STAT and tissue-specific role of IFN signaling
pathway in the pathophysiology of NAFLD.

3. Biological Actions of FRs: Role in Inflammatory and Cytokine Signaling

FRs are associated with various pathological alterations, as documented in Table 1.
Many FRs, such as PBDEs, are structurally close analogs of thyroid hormones (THs),
e.g., thyroxine (T4) and triiodothyronine (T3) (Figure 2); therefore, considerable evidence
suggests a role of PBDEs-mediated thyroid-associated endocrine disruption in animals and
humans [126–132]. THs are crucial for development, growth, and metabolic activity, and
their importance in hepatic fatty acid and cholesterol synthesis, including metabolism, has
been well documented [133]. Growing evidence also points toward the induction of reactive
oxygen species (ROS) or oxidative stress biomarkers by FRs, which may contribute to their
toxicity, endocrine disruption effects [134–136], and metabolic dysregulation [137,138].
For example, short-term exposure to environmentally relevant doses of dechlorane plus
showed endocrine disruption effects in zebrafish and increased hepatic catalase activity,
a marker of oxidative stress [139]. PentaBDE exposure to rats disturbed redox homeostasis,
intensified lipid peroxidation, and induced symptoms of fatty liver disease [140]. Exposure
to penta-BDE mixture of BDE-99 and BDE-100 caused histopathological changes and
hepatocellular injury in rat liver tissue, increased liver mass, fatty degeneration, hepatocytes
hypertrophy, and vacuolization [141,142].
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Figure 2. Structure similarity between thyroid hormone [thyroxine (T4) and triiodothyronine (T3)] and flame retardants
(PBDE, e.g., 2,2′,4,4′,5-Pentabromodiphenyl ether (BDE-99), 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), 2,2′,4,4′,5,5′-
Hexabromodiphenyl ether (BDE-153), and novel brominated flame retardant, e.g., Tetrabromobisphenol A).

DBDPE affected liver function parameters, such as ALT and AST levels, and caused
hepatocyte hypertrophy and cytoplasmic vacuolization in mice liver and induced hepatic
cytochrome P450 (CYP450) enzymes such as CYP1A, CYP2B, and uridine diphosphate-
glucuronosyltransferase [143]. These enzymes are downstream activators of nuclear xeno-
biotic receptors (NXR), such as aryl hydrocarbon receptor (AhR) and chimeric antigen re-
ceptor (CAR). Perinatal exposure of human-relevant doses of 2,2′,4,4′-tetrabromodiphenyl
ether (BDE-47) to rat showed differential expression of genes encoding for various biologi-
cal process and pathways, including activation of the CYP450 in the pathways of PXR/RXR,
and CAR and metabolic pathways of lipid, carbohydrate and amino acid, cofactor, and
vitamin metabolism in the liver tissues of rat offspring [144].

DE-71, a mixture of PBDE-induced liver histopathological alterations such as hepa-
tocellular hypertrophy, vacuolization, and necrosis in rats, CYP1A and CYP2B induction
indicated NR activation, i.e., AhR and CAR [145]. In human liver cell culture, several
OPFRs caused intracellular lipid accumulation through increased fatty acid biosynthesis,
inhibition of β-oxidation, increased de novo fatty acid, triglyceride, and cholesterol syn-
thesis, as well as mitochondrial dysfunction [146]. Maternal exposure to OPFR mixture
including tris(1,3-dichloro-2-propyl) phosphate, tricresyl phosphate, and triphenyl phos-
phate (TPhP) to mice altered the expression of various genes related to fatty acid synthesis,
glucose, and triglycerides metabolism in the liver of mice offspring. It was suggested that
the effects were possibly mediated by modulation of NRs, including estrogen receptor
(ERα), PPARγ, insulin receptor, ghrelin receptor, and leptin receptor [147].

Exposure of human liver cell culture to 9,10-dihydro-9-oxa-10-phosphaphenanthrene
10-oxide (DOPO) affected various genes and pathways representing several biological
processes, including fatty acid metabolism and glucose transport, along with cellular stress
response pathways [148]. Furthermore, neonatal exposure to TPhP and its metabolite
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diphenyl phosphate (DPHP) induced sex- and dose-dependent metabolic disruptions in
adult mice. Low dose exposure to TPhP upregulated lipid-related metabolites in serum
of male mice while exerted no significant effects on female mice. High doses downreg-
ulated the pyruvate metabolism and citric acid cycle pathway, reflecting abnormal lipid
metabolism after TPhP exposure in male mice [149].

Moreover, in utero, exposures of rat dams to DE-71 and BDE-47 decreased T4 level
and upregulated hepatic transcripts of CYPs and conjugation enzymes, Nrf2, and ATP-
binding cassette (ABC) transporters in postnatal day four (PND 4) rat pups, indicating
metabolic alterations and increased oxidative stress. Cytoplasmic vacuolization in the
liver was also observed in DE-71 exposure groups [150]. Exposure to a human-relevant
dose from the dust of a commercial mixture of FR Firemaster® 550 has been reported to
be a potential obesogen, endocrine disruptor, and contributed to metabolic syndrome and
insulin resistance in rats [151].

Table 1. In vitro and in vivo experimental evidence highlighting the hepatotoxic potential of FRs and associated biochemical dysregulations.

Flame
Retardants Inference and Summary Test System References

BDE-47

• Aggravated hepatic lipid accumulation by
upregulating fatty acid synthesis and
suppressing lipid exportation and β oxidation.

• Increased inflammation, oxidative stress, and
serum transaminase levels.

C57BL/6J mice fed HFD [152]

BDE-209, DBDPE

• Induced liver histological changes and interfered
with lipid metabolism through oxidative stress.

• Increased γ-glutamyl transferase, glucose, total
bilirubin, and indirect bilirubin levels in serum.

Sprague Dawley rats [153]

BDE-47, BDE-32

• Increased several pro-inflammatory genes,
induced oxidative stress and DNA damage, and
altered mitochondrial function.

human hepatocellular
carcinoma cells
(HepG2 cells)

[154]

TDCPP, TCPP, TCEP

• Increased expression of apoptotic protein and
lactate dehydrogenase enzyme.

• Downregulated antioxidants genes such as
superoxide dismutase and catalase.

Human hepatocarcinoma cells
(SMMC-7721 cells) [155]

TDCPP

• Induced oxidative stress and cell cycle arrest in
the liver.

• Increased caspase-dependent apoptotic
pathways in the liver and induced cellular
damage.

Adult zebrafish [156]

TOCP

• Increased serum ALT and AST levels, oxidative
stress in the liver, and hepatocellular injury.

• Inhibited the viability of the mouse liver cancer
cells.

Mouse liver cancer cells (Hepa
1–6) and mice [157]

BDE-153

• Induced ROS generation, genomic instability,
autophagy, apoptotic cell death by mitochondrial
dysfunctions.

HepG2 cells [158]
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Table 1. Cont.

Flame
Retardants Inference and Summary Test System References

OctaBDE
• Impaired redox homeostasis and induced

oxidative stress in the liver. Wistar rat [159]

TCPP

• Disturbed cell growth/division, energy
metabolism, signal transduction, defense, and
stress response.

• Increased ROS with an increased expression of
Bcl-2 family encoding genes.

Human fetal liver
(L02 cells) [160]

DE-71

• Induced pathological alterations in the liver,
including increased liver weight, hepatocytic
hypertrophy, vacuolation, and necrosis.

• Increased CYP1A1, CYP1A2, CYP2B, thyroid
lesions, and decreased serum thyroid hormone
(T4) levels in rats.

F344/N rats and B6C3F1 mice [161]

BDE-47

• Elicited ROS production, lipid peroxidation and
modulated the mitochondrial membrane
potential.

Human fetal liver–derived
hematopoietic stem cells [162]

BDE-209

• Increased oxidative stress, serum glucose, insulin,
and triglyceride, and induced structural changes
in liver and adipose tissue.

ICR mice [163]

BDE-47

• Exposure to environmentally relevant
concentrations during development increased
lipid uptake and accumulation by upregulating
CD36 and altered expression of metabolic genes,
possibly by the mTORC1 signaling pathway.

Pregnant CD-1 mice [164]

HBCD

• Altered transcriptomic profiles of xenobiotics
metabolism, oxidative stress, immune response,
lipid, glucose metabolism, circadian regulation,
cell cycle, fibrotic activity, and hormonal
regulation in both males and female rats.

Fischer rats [165]

TDCIPP
• Increased pro-inflammatory cytokine and plasma

bile acid levels and disrupted lipid homeostasis. Chicken embryos [166]

TPhP

• Disrupted hepatic carbohydrate, lipid, fatty acid,
amino acid metabolism pathway and DNA
damage repair system.

• Induced histopathological damage in the liver.
Adult zebrafish [167]

HBCD

• Enhanced hyperglycemia, hyperinsulinemia,
insulin resistance, and hepatic steatosis.

• Increased adipose tissue inflammation.
Male C57BL/6JJcl mice fed

HFD [168]
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Table 1. Cont.

Flame
Retardants Inference and Summary Test System References

Penta & Deca BDPE

• Induced liver microsomal enzymes and impaired
redox homeostasis.

• Increased fatty degeneration and microvascular
steatosis in the liver.

Female Wistar rats [140,169]

BDE-47

• In utero exposure induced obesity, hepatic
steatosis, glucose intolerance by altering lipid
metabolism-related genes, and gut microbiome
dysregulation.

• Promoted inflammation, fatty acid uptake, and
inhibited fatty acid catabolism.

Pregnant ICR mice [170]

AMEP, ADEP
• Induced mild hepatotoxicity, fatty degeneration,

and necrosis of the hepatocytes. BALB/c mice [171]

Dechlorane Plus

• Induced oxidative stress and DNA damage in the
liver.

• Altered hepatic carbohydrate, lipid, nucleotide,
and energy metabolism via MAPK and
JAK–STAT signaling.

Mice [172]

TCEP

• Induced hepatotoxicity by oxidative stress,
mitochondrial impairment, DNA damage, and
affected cellular senescence.

HepG2 cells [173]

THP

• Induced endoplasmic reticulum stress-mediated
apoptosis and cell cycle arrest.

• Induced hepatocyte ballooning, degeneration,
and acute liver injury in mice.

L02 cells, mouse hepatocyte
(AML12), and C57BL/6 mice [174]

BDE-99 perinatal
exposure

• Increased ROS production, induced thyroid
hormone disruption and increased body weight
of rat pup.

• Decreased levels of the cell survival PIP3K/Akt
pathway and cyclin D1 in rat pup livers.

Sprague Dawley rats [175]

EHDPP

• Affected energy homeostasis, endoplasmic
reticulum stress, apoptosis, cell cycle, and
inflammation response pathways in cells.

L02 cells [176]

TBBPA

• Induced oxidative stress, mitochondria damage,
and apoptosis in the hepatocytes by the Nrf2
pathway.

L02cells [177]

TCPP, tris (2-chloropropyl) phosphate; EHDPP, 2-ethylhexyl diphenyl phosphate; TCEP, tris (2-chloroethyl) phosphate; TOCP, Tri-
ortho–cresyl phosphate; DBDPE, Decabromodiphenyl ether; OctaBDE, Octabromodiphenyl ether; HBCD, hexabromocyclododecane;
BDE-47, 2,2′,4,4′-tetrabromodiphenyl ether; BDE-153, 2,2′,4,4′,5,5′-hexabromodiphenyl ether; TBECH, 1,2-dibromo-4-(1,2-dibromoethyl)-
cyclohexane; BDE-32, 2,4′,6-tribromodiphenyl ether; BDE-99, 2,2′,4,4′,5-Pentabromodiphenyl ether, ADEP, aluminium diethylphosphinate;
AMEP, aluminium methylethylphosphinate; FABP4, fatty acid-binding protein; HFD, high-fat diet; TBBPA, Tetrabromobisphenol A.
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A direct effect of FRs on cytokine production was reported in numerous studies.
DE-71 enhanced pro-inflammatory response and increased secretion of inflammatory cy-
tokines such as interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17A, IL-17, TNF-α, and
IFN-γ in vitro in human peripheral blood mononuclear cells (PBMCs) [178]. BDE-47 in-
duced ROS and stimulated pro-inflammatory cytokine release in first-trimester human
extravillous trophoblast cell culture [179]. Hexabromocyclododecane (HBCD) and tetra-
bromobisphenol A (TBBPA) have been reported to alter the secretion of inflammatory
cytokines such as TNFα, IL-1β, and IFN-γ through mitogen-activated protein kinase
(MAPK)-associated extracellular-signal-regulated kinase (ERK1/2) pathways in human
PBMCs [180,181]. HBCD significantly increased intercellular adhesion molecule (ICAM-
1), IL-6, and IL-8, whereas TBBPA significantly increased the expression of ICAM-1 and
IL-6 in human bronchial epithelial cell culture [182]. Involvement of NR signaling in
TBBPA-mediated inflammatory response was reported, which might have stimulated the
JAK–STAT signaling in bronchial epithelial cells.

TBBPA is a halogenated analog of bisphenol A (BPA). BPA is a widely used chemi-
cal in several products and has been known to show numerous adverse effects besides
well-known xenoestrogen effects. BPA exposure has been identified as a risk factor for
metabolic disease, including NAFLD, and epidemiological studies find an association
between BPA exposure or urinary BPA levels with the NAFLD [183,184]. However, the
analogs of BPA- TBBPA and Tetrachlorobisphenol A (TCBPA) are found to be more cyto-
toxic to the rat hepatocytes than BPA itself and induced oxidative stress and mitochondrial
dysfunction and decreased ATP production [185]. TCBPA treatment of mice significantly
induced secretion of various pro-inflammatory cytokines (IL-2, IL-12, TNF-α, and IFN-
γ) and immunosuppressive cytokines (IL-4, IL-5, IL-10, GM-CSF) in serum, suggesting
immunosuppressive property of TCBPA [186]. Moreover, the transcriptomic analysis re-
vealed that TBBPA induced changes in expression levels of transcripts associated with
hepatic IFN pathway regulation and genes regulating fatty acid metabolism in rats [187].
TBBPA has also been shown to induce adipogenesis (lipid accumulation) in mouse-derived
preadipocytes cell culture [188].

Recently, tetrabromo-ethyl cyclohexane (TBECH) has also been reported to exhibit
immunotoxic property, enhanced lactate dehydrogenase, and upregulated expression of
IL-1β, IL-6, and TNF-α, proapoptotic genes, antigen presenting-related genes as well as
induced oxidative stress in vitro in murine macrophages [189]. Similarly, decabrominated
diphenyl ethers (BDE-209) and DBDPE-induced inflammation and upregulated various
inflammatory mediators IL-1β, IL-6, IL-10, and TNFα in serum samples of male rats [190].
Moreover, perinatal exposure to low doses of BDE209 increased the pro-inflammatory
cytokines IL-4, IL-6, IL-10, TNFα, IFN-γ, and IL-17 in the serum of male offspring [191].
BDE209 also promoted TLR4-dependent lipid uptake and enhanced lipid accumulation
in vitro in human macrophages [192].

It has recently been shown that the six common OPFRs (TPHP, TDCPP, TNBP, TOCP,
TCEP, and TBOEP) affected inflammation-related pathways, including JAK–STAT, TNF
signaling, and PI3K–Akt pathways in varying degrees in vitro in human macrophages [193].
The presented data suggest that numerous FRs are capable of inducing cytokines and
inflammatory mediators, which might interplay with other signaling pathways.

Elevated levels of cytokines, including TNF-α, IL-lβ, IL-6, and chemokine monocyte
chemoattractant protein-1 (MCP-1) after BDE-47 exposure, induced liver inflammation in
mice [194], aggravated hepatic steatosis and fibrosis in the mouse by oxidative stress and
increased pro-inflammatory cytokines [152]. BDE-209 and DBDPE induced liver morpho-
logical changes by oxidative stress and inflammation by increasing levels of TNFα and
IL-6 [153]. BDE-209 has been reported to induce mitochondrial dysfunction in isolated
rat liver and increased ROS accumulation in human liver, induced cytochrome c release,
and apoptotic cell death [195]. Acute exposure to tris (1,3-dichloroisopropyl) phosphate
(TDCIPP) significantly upregulated the expression of inflammatory genes IL-1β, IL-6, IL-10,
IL-12a, IL-13, IL-15 IL-26, including TLR signaling pathways such as TLR8a, TLR8b, TLR9,
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AP1, STAT1b, and IRF7, leading to inflammation and hepatotoxicity in zebrafish [196].
Therefore, the collected evidence suggests a plausible role of FRs and their metabolites in
hepatotoxicity or steatosis through inflammatory cytokines or IFN-dependent pathways.
Together, these findings support the FRs-mediated interplay between cytokines and ox-
idative stress in the etiology of NAFLD. Table 2 summarizes the literature evidence of
FR-mediated induction of IFN or IFN components that are associated with the IFNs role
in NAFLD.

Table 2. A summary of the role of IFN signaling in the development and progression of NAFLD and FRs-mediated IFN signaling,
which can potentially impact NFALD biology.

Contribution of the IFNs Signaling in NAFLD FRs-Mediated IFN Signaling

Higher frequencies of IFN-γ+ and/or IL-4+ cells were detected
among CD4+ T cells in peripheral blood of NASH patients [197].
Increased IFN-γ in the liver of pediatric (<15 years) NASH
patients was observed [198].
IFN-γ induced liver inflammation, hepatocyte injury in the
progression of NASH in mice [106].

DE-71 enhanced IFN-γ in vitro in PBMCs [178].
Prenatal exposure to decabrominated diphenyl ether (DBDE)
increased IFN-γ in the bronchoalveolar lavage fluids in
offspring mice [199].

IFN-γ contributed to hepatic inflammation in diet-induced
NASH in rats, rat macrophage, and hepatocellular carcinoma
cell lines [200].

TBBPA increased IFN-γ in vitro in human PBMCs [180,181].

IFN-γ-treatment activated hepatic stellate cells and increased
hepatocyte apoptosis, hepatic inflammation, serum AST and
fibrosis in mouse liver [201].

TCBPA increased secretion of IFN-γ in the serum of mice [186].

STING-IRF3 activation-induced inflammation, hepatocyte
injury and apoptosis, and disturbed glucose and lipid
metabolism in mice and in LO2 cells [84].

BDE209 increased IFN-γ in the serum of male offspring [191].

Type I and/or type II IFN signaling was associated with
oxidative damage in mouse hepatocytes [202] as well as insulin
resistance in mouse adipocytes culture [100].

TPHP, TDCPP, TNBP, TOCP, TCEP, and TBOEP modulated
JAK–STAT signaling in human leukemia monocytic
culture [193].

TNF-α and type I IFN production in Kupffer cells and dendritic
cells induced hepatic cell death leading to NASH in mice and
murine normal hepatocyte cell culture by TLR7-mediated
signaling [203].

TDCIPP upregulated TLR signaling, STAT1, IRF7, and induced
inflammation and hepatotoxicity in zebrafish [196].

Upregulation of IL-1β, TNF-α, and IFN-γ in the liver of mice in
NASH [204,205].

TBBPA upregulated hepatic IFN signaling and genes regulating
fatty acid metabolism in rats [187].

Increased TLR4 and IRF3 gene expression were observed in
patients with NASH and hepatocytes exposed to palmitate and
lipopolysaccharides [206].
TLR2, TNF-α, and IFN-γ are up-regulated in livers of rats
in NASH [207].

BDE-209 enhanced TLR4-dependent lipid uptake in vitro in
human macrophages [192].

4. Modulation of IFN Signaling by FRs and Role in NAFLD

A growing body of evidence suggested that FRs and/or their metabolites modulated
the inflammatory and cytokines signaling, including the immunological pathways in sev-
eral in vitro and in vivo studies. However, direct studies reporting FRs mediated IFN
modulation leading to NAFLD is scarce, although ample evidence exists that strengthens
FRs’ role in cytokine modulation, as presented in Table 2. Among the critical regulators
of immune responses and inflammation, including IFN signaling, are the mitochondria,
which contain approximately 1000 distinct proteins [208,209]. Mitochondria are involved
in cellular respiration and ATP synthesis; however, apart from the canonical actions, a vast
range of biological processes including energy homeostasis, metabolism, signaling, inflam-
mation, and immune functions are also regulated by mitochondria [210–212]. Lipophilic
characteristics of mitochondrial membranes facilitate the accumulation of lipophilic com-
pounds, and mitochondrial DNA (mtDNA) is potentially more prone to be affected by the
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lipophilic environmental toxicants [213,214]. Moreover, mounting evidence also reports
FRs-induced mitochondrial dysfunction in several in vitro and in vivo studies [195,215–
217], and recently, biomarkers of mitochondrial dysfunction have been positively correlated
with lipid accumulation potential of several OPFRs in mouse hepatocytes culture [218]. Ob-
servations in patients and animal models of NAFLD/NASH demonstrated mitochondrial
dysfunctions, as often observable characteristics in NAFLD [219–221].

In the case of FRs, the mechanisms associated with the development and progression
of NAFLD might be chemical specific; however, exposure to FRs could potentially dam-
age the mitochondria or hamper mitochondrial function. Damage to the mitochondria
can release the genomic DNA or mtDNA into the cytoplasm, where it serves as DAMPs
and activates the PRR for instance, cGAS–cGAMP–STING pathway, leading to enhanced
production of inflammatory cytokine, including IFNs [222–224]. Mitochondria damage
also generates ROS and pro-inflammatory cytokines, which can further lead to cellular
injury. mtDNA could activate other PRRs such as TLR in the Kupffer cells and infiltrating
monocytes, thereby increasing the expression of various inflammatory cytokines, including
IFNs [225,226]. IFNs can further lead to steatosis and NAFLD progression, possibly by
modulating the expression of lipid metabolism-related genes, increasing de novo lipo-
genesis, increasing lipolysis in the peripheral tissues, insulin resistance, and increasing
inflammation and cellular injury, apoptosis, or cell death, as depicted in Figures 3 and 4.

Figure 3. Scheme showing role of FRs-mediated cytokine and IFNs production and potential contribution in the progression
of NAFLD. DAMPS are produced by damaged cells and bind to PRRs such as TLRs and NLRs, or cytosolic DNA sensors
(cGAS), resulting in downstream signaling leading to activation of inflammatory mediators, cytokines, and IFNs. IFNs
function through the respective IFN receptors and downstream JAK–STAT signaling, leading to the expression of interferon
stimulatory genes (ISGs), which modulate many biological processes involved in the progression of NAFLD. (Created with
BioRender.com).
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Figure 4. Schematic of FRs-mediated proposed mechanisms and pathways involved in the pathophysiology and progression
of NAFLD. FRs, through several distinct mechanisms, could cause biochemical disruptions of many metabolic processes.
FRs can induce direct mitochondrial damage or impair the mitochondria function and β-oxidation, thereby inducing ROS
and inflammatory signaling. Alternatively, FRs could activate the NXRs. Since NRs are the central regulators of hepatic lipid
metabolism, activation of NXR such as PXR could increase lipogenic gene expression, leading to increase de novo lipogenesis,
inhibition of fatty acid β-oxidation, and increases in fatty acid import through upregulation of CD36. The impairment of
mitochondrial β-oxidation induces the long-chain fatty acids metabolism via peroxisomal β-oxidation and ω-oxidation
in the cytochromes. These processes further generate a considerably high amount of ROS, promoting oxidative stress, in
turn inducing damage to the mitochondrial membranes, compromising cellular respiration and metabolism, and impairing
liver function by cellular damage. Damaged mitochondria release the mtDNA into the cytosol, where it gets recognized
as DAMPs by several PRR such as TLR or cGAS. cGAS is an innate immune sensor, which generates a second messenger
cGMP and activates STING by translocating it to the perinuclear Golgi complex and serves as a signal for TBK1 and
IKK. This promotes the phosphorylation and nuclear translocation of IRF3 and NF-κB inhibitor IκBα, and stimulation
of IFN, whereas NF-κB translocation to the nucleus activates pro-inflammatory cytokines. In comparison, TLR activates
either MyD88-dependent or TRIF-dependent signaling pathways and induces the expression of various inflammatory
cytokines (TNFα, IL-1β, IL-6, IFNs). Cytokines, e.g., IFNs, bind to their respective receptors and initiate the downstream
signaling, which phosphorylates and activates the transcription factors and initiates transcription of several IFN-related
genes responsible for insulin resistance and activation of inflammatory mediators and de novo lipogenesis. Insulin resistance
stimulates hyperinsulinemia, which increases glycolysis and promotes de novo lipogenesis by enhancing ChREBP and
SREBP-1c, significantly contributing to lipid accumulation. Insulin resistance increases lipolysis, leading to increased free
fatty acids delivery from the peripheral organs into the liver mediated by elevated CD36. Inflammatory mediators, such as
IFNs, TNFα, and IL-6, may further decrease VLDL export and facilitate lipid accumulation. The net result is an escalation of
hepatic steatosis and inflammatory condition, eventually leading to more severe NAFLD/NASH conditions. (Created using
BioRender.Com).

In addition, oxidative stress may contribute to the development of insulin resistance
through p38-MAPK- or other stress-activated kinases such as JNK, GSK-3β, and IKKβ-
dependent mechanisms [227]. Nevertheless, studies have shown that OPFRs are effectively
metabolized or biotransformed in humans [228]. Biotransformation of FRs by CYP450
metabolizing enzymes may produce metabolites with different physicochemical and toxi-
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cological properties [229]. Significant associations between PBDE exposure and CYP2E1
mRNA in the placenta and CYP1A1 mRNA in the fetal liver in human subjects were ob-
served [230]. Increased CYP2E1 has been reported to be associated with fatty liver disease.
CYP2E1 generates a significant amount of ROS and triggers oxidative damage such as
lipid peroxidation and impairment of mitochondrial function and cellular injury through
various signaling pathways, including JNK signaling [231]. CYP2E1 by hydroxylation of
fatty acid promotes the formation of cytotoxic lipid species that further promote cellular
stress and induce hepatocellular injury or cell death [232].

Moreover, FRs such as OPFRs and PBDEs have also been shown to induce CYP450
enzymes and NXR, which may negatively influence redox homeostasis [233,234]. Thus,
FRs could directly induce mitochondrial damage by hampering the mitochondrial func-
tion, a well-known target of environmental toxicants [235–237], or indirectly by CYP450
xenobiotic-metabolizing enzymes that are known to affect redox homeostasis. Exposure to
FRs could modulate the NRs, which are reported to directly control the CYP450 responses
and transcription of various CYP isoforms [238,239]. Taken together, mitochondrial damage
and/or modulation of NRs could be a critical biological factor responsible for FRs-mediated
IFN signaling during the development and progression of NAFLD as depicted in Figure 4.

5. Role of FRs in Modulating Other Signaling Linked to NAFLD Biology

Hypothyroidism has been closely associated with NAFLD, which is supported by
various epidemiological studies. For instance, Guo et al., in a meta-analysis involving
61,548 participants, reported that elevated thyroid-stimulating hormone (TSH) levels were
significantly associated with a higher risk of NAFLD [240]. More recently, Tanase et al.
summarized the correlation between hypothyroidism and NAFLD, emphasizing the role
of the TH-liver axis in lipid and cholesterol metabolism, insulin resistance, oxidative
stress, and inflammatory and immune pathogenesis in NAFLD [241]. An increased TSH
level after FRs exposure suggested that FRs act as a competitive inhibitor of the thyroid
receptor, leading to hypothyroidism [242]. Furthermore, several FRs, including OPFRs and
PBDEs, have been reported to exert thyroid receptor β (TRβ) antagonistic activity [243].
Additionally, it has been reported that elevated TSH binds to thyrotropin receptor (TSHR)
on hepatocytes and induced hepatic steatosis via the SREBP-1c lipogenic pathway in
rodents [244]. TSH induces gluconeogenesis and diminishes hepatic bile acid synthesis,
which plays a crucial role in the digestion of dietary fats and regulation of lipid and glucose
metabolism, and inflammatory responses [245]. Bile acids are the endogenous ligand
of the farnesoid X receptor (FXR) [246]. Bile acid activation of FXR regulates hepatic de
novo lipogenesis, gluconeogenesis, glycogenolysis, inflammation and improves insulin
sensitivity, as reviewed [247]. Thus, FRs-mediated thyroid deregulation or hypothyroidism
could be another connecting link for their involvement in the pathogenesis of NAFLD.
TH signals by binding to the liver-specific receptor (THRβ), which plays a central role in
the metabolism and utilization of lipids [133]. TR cross talk with metabolic pathways and
other transcription factors such as PPARα and activates the expression of genes involved
in fatty acid β-oxidation [248,249]. Inhibition of TR by FRs could impair TH signaling and
reduce fatty acid utilization resulting in the esterification of fatty acids and triglycerides
accumulation in the liver.

Moreover, dysregulations of NRs, including the NR1 subfamily, have been indicated
as molecular initiating events (MIEs) in the pathogenesis of NAFLD in the adverse outcome
pathways (AOP), leading to hepatic steatosis [250]. The NR subfamily heterodimerizes
with retinoid X receptor (RXR) and regulates the transcription of various genes involved in
energy homeostasis, lipid, glucose metabolism, and inflammation [251]. These changes can
lead to reprogramming the transcription of genes involved in hepatic lipid homeostasis
leading to NAFLD [14,251]. Thus, FRs could act by several distinct pathways causing
biochemical disruption and leading to NAFLD and progression to NASH and eventually
HCC particularly via modulation of NRs, ROS production, lipid peroxidation, cytokine
release, insulin resistance, and mitochondrial dysfunction, as outlined in Figure 4.
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It is well known that environmental exposure for chemicals or toxicants is lower,
compared to occupational/industrial or accidental exposure. Nevertheless, the duration
of environmental exposures (especially during vulnerable lifecycle stages) can be much
greater, compared to occupational exposures [252]. Human exposure to FRs can range from
various developmental stages, and exposures during early life are especially considered
of concern. Environmental exposure can cause a wide range of effects depending on the
route and dose of exposure and the individual’s susceptibility, e.g., preexisting disease,
age, gender, and genotype. Experimental studies may have been conducted with high
doses and may represent high exposure conditions, e.g., following accidental or occupa-
tional exposures of FRs. However, epidemiological studies suggest that even low doses
(environmental exposure) may cause adverse effects (see, e.g., the recent review [52]).

Various epidemiological studies positively correlate the presence of FRs with oxida-
tive stress, thyroid endocrine disruption, and inflammatory biomarkers. Recently urinary
OPFRs metabolite namely dibutyl phosphate (DNBP), bis(1-chloro-2-propyl) phosphate
(BCPP), bis(2-chloroethyl) phosphate (BCEtP), bis(1,3-dichloro-2-propyl) phosphate (BD-
CPP), and DPHP were detected in pregnant women and were positively associated with the
oxidative DNA damage– 8-hydroxy-2′-deoxyguanosine (8-OHdG) and lipid peroxidation
(8-isoprostane) biomarkers in urine [253]. OPFR metabolites such as dibutyl phosphate
(DBP) and DPHP were positively associated with oxidative stress biomarkers, malondi-
aldehyde (MDA), oxidative stress DNA damage biomarkers (8-OHdG), and TSH levels in
maternal and neonatal human urine samples [254]. This suggests that oxidative stress and
possible thyroid disruption due to OPFRs during pregnancy are of concern.

Another study finds a positive association between the presence of FRs, e.g., (TCPP,
TCEP, TNBP, and TPHP) and elevated oxidative stress DNA biomarkers (8-OHdG) in urine
samples from participants living in an e-waste dismantling area [134]. A significant positive
association was also observed between serum levels of PBDE (BDE-99, BDE-100, and BDE-
153) and liver biomarker alkaline phosphatase [255]. These data further suggest a potential
involvement of environmental exposure to various toxicants, including FRs, and effects
such as oxidative stress, endocrine disruption, inflammation, and hepatic imbalance. Due to
the lipophilic nature of FRs, particularly brominated FRs, they can easily penetrate the
epithelial barriers and accumulate in fats such as adipose tissues for an extended period
and could also be responsible for metabolic syndrome and T2D [58]. Neonatal or maternal
exposure to FRs could cause epigenetic modulation, which can manifest into metabolic
alteration later in life [147,256,257].

6. Emerging Pharmacotherapeutics for NAFLD Targeting Immune or
Inflammatory Signaling

With no Food and Drug Administration (FDA)-approved drugs for NAFLD–NASH,
current first-line treatment includes managing metabolic syndromes such as hyperlipi-
demia, hyperglycemia, and obesity with lifestyle modifications, including diet and physical
exercise. However, several pharmacological therapies aiming to alleviate NAFLD and
NASH are currently being examined at various phases of clinical trials. Currently, ongoing
pharmacotherapy trials for NAFLD and NASH focus on a multitude of mechanisms and
diverse targets, including insulin resistance, de novo lipogenesis, oxidative stress, targeting
nuclear receptor, and immune or inflammatory signaling.

It is interesting to note that targeting immune or inflammatory signaling pathways has
shown promising results in preclinical studies. A phase II clinical trial is currently ongoing
with an antagonist of TLR4 (JKB-122) (National Clinical Trial number- NCT04255069). TLR4
plays a pivotal role in innate immunity, inflammatory response, and NAFLD pathogenesis.
Other therapeutic immune or pro-inflammatory targets include JNK Inhibitor- CC-90001,
which is also being evaluated in phase II trial in subjects with NASH and stage 3 or stage
4 liver fibrosis (NCT04048876).

In addition, a phase II study with leronlimab (PRO 140)-humanized monoclonal an-
tibody antagonist to C-C chemokine receptor type (CCR5) was started to evaluate the
efficacy in NASH patients (NCT04521114). Meriva®, a complex of phosphatidylcholine and



Int. J. Mol. Sci. 2021, 22, 4282 17 of 29

curcumin with potent anti-inflammatory property is being evaluated in phase II trials in pe-
diatric NAFLD patients of ages between 8 and 17 years old (NCT04109742). Curcumin acts
as a regulator of inflammation by downregulating the expression of various inflammatory
cytokines, including TNF-α, IL-1, IL-2, IL-6, IL-8, and IL-12, MCP, and mitogen-activated
and JAK–STAT signaling [258]. The ongoing trial with a wide spectrum of molecules
targeting different pathways holds promise for the potential use of some molecules in
clinical practice.

7. Conclusions and Future Perspectives

NAFLD is a multifactorial disease and a growing health problem globally. Dietary
factors, host genetics, gut microbiota, innate immunity, and inflammatory signaling con-
tribute to the pathophysiology of NAFLD [259]. Other contributing factors for the onset
and progression of NAFLD include obesity, diabetes, and exposure to occupational or
environmental toxicants [260]. The environmental or occupational exposure to chemicals
such as FRs might increase an individual’s susceptibility to NAFLD. Early life exposures
(or during development) might alter the genes involved in hepatic lipid homeostasis, which
can be associated with metabolic dysfunction later in life [14,261]. Various FRs such as
OPFRs are a concern to human and environmental health because of their increasing levels
in the environment and exposure to FRs leads to various biological alterations including
metabolic disruption. Besides modulation of NRs and endocrine-disrupting potential,
FRs are capable of modulating inflammatory and IFN-mediated signaling. The direct
interaction of FRs with STING remains largely unknown. However, the putative molecular
mechanisms could include DAMPs mediated activation of cGAS–cGAMP–STING or other
PRRs mediated-IFN-signaling pathways. Nevertheless, the biological effects of FRs in
NAFLD onset and progression need to be studied using human disease-relevant models.

A better understanding of the tissue-specific role of STING or IFN signaling and their
cross talk with other pathways may help to understand the potential mechanisms for the
development and progression of NAFLD. Moreover, the underlying mechanism of how
environmental factors, including external exposome, moderate the immune signaling such
as STING and IFNs pathway needs further investigation. IFN signaling appeared to be
involved in NAFLD–NASH, as evidenced by various clinical and experimental studies.
Therefore, more mechanistic studies are required to understand the precise role of IFN
pathways in NAFLD for potential therapeutic utilization. It is recommended to perform
these mechanistic studies using clinically relevant disease models.
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Abbreviations

ACC acetyl-CoA carboxylase
AhR aryl hydrocarbon receptor
ALT alanine aminotransferase
AOP adverse outcome pathways
AST aspartate Aminotransferase
ATP adenosine triphosphate
Bcl2 b-cell lymphoma 2
BFR brominated flame retardants
cAMP cyclic adenosine monophosphate
CAR chimeric antigen receptor
CCR5 c-c chemokine receptor type 5
CD36 cluster of differentiation 36
cGAMP cyclic guanosine monophosphate-adenosine monophosphate
cGAS cyclic guanosine monophosphate-adenosine monophosphate synthase
ChREBP carbohydrate-responsive element-binding protein
CYP450 cytochrome P450
DAMPs damage-associated molecular patterns
DGAT diacylglycerol acyltransferase
ERK extracellular-signal-regulated kinase
FAS fatty acid synthase
FR flame retardants
FXR farnesoid X receptor
GLUT4 glucose transporter type 4
HCC hepatocellular carcinoma
HMGB1 high mobility group box protein 1
HFD high-fat diet
IFN interferon
IFNGR interferon-gamma receptor
IL interleukin
IRF interferon regulatory factor
IRS insulin receptor substrate
ISGs interferon-stimulated genes
ISRE interferon-stimulated response elements
JAK1 Janus kinase 1
JNK c-jun N-terminal protein kinase
LXR liver X receptor
MAPK mitogen-activated protein kinase
MCP monocyte chemoattractant protein
MDC metabolic disrupting chemicals
MIE molecular initiating events
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin
NAFLD nonalcoholic fatty liver disease
NASH nonalcoholic steatohepatitis
NLRs nucleotide-binding oligomerization domain-like receptors
NR nuclear receptor
NXR nuclear xenobiotic receptors
OPFRs organophosphorus flame retardants
PAMP pathogen-associated molecular patterns
PBDEs polybrominated diphenyl ethers
PBMC peripheral blood mononuclear cells
PI3K phosphoinositide 3-kinase
PPAR peroxisome proliferator-activated receptor
PRR pattern recognition receptors
PXR pregnane X receptor
RAGE receptor for advanced glycation end products
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ROS reactive oxygen species
RXR retinoid X receptor
SCD-1 stearoyl-CoA desaturase-1
SOCS suppressor of cytokine signaling
SREBP sterol regulatory element-binding protein
STAT signal transducer and activator of transcription
STING stimulator of interferon genes
T2D type 2 diabetes mellitus
TAFLD toxicant-associated fatty liver disease
TASH toxicant-associated steatohepatitis
TGFβ transforming growth factor-beta
TH thyroid hormone
TLR Toll-like receptor
TNF tumor necrosis factor
TYK2 tyrosine kinase 2
VLDL very-low-density lipoprotein
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