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Abstract 

Objective: Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable 

psychiatric condition. By exploiting the reported relationship between ADHD and educational 

attainment (EA), we here aimed to improve discovery of ADHD-associated genetic variants and 

investigate genetic overlap between these phenotypes. 

Method: A conditional/conjunctional false discovery rate (condFDR/conjFDR) method was applied 

to genome-wide association study (GWAS) data on ADHD (2064 trios, 896 cases and 2455 controls) 

and EA ( ) to identify ADHD-associated loci and loci overlapping between ADHD and 

EA. Identified single nucleotide polymorphisms (SNPs) were tested for association in an independent 

population-based study of ADHD symptoms ( ). Genetic correlation between ADHD and 

EA was estimated using LD score regression and Pearson correlation. 

Results: At levels of  and  we identified five ADHD-associated loci, 

three of these being shared between ADHD and EA. None of these loci had been identified in the 

primary ADHD GWAS, demonstrating the increased power provided by the condFDR/conjFDR 

analysis. Leading SNPs for 4 of 5 identified regions are in introns of protein coding genes: KDM4A, 

MEF2C, PINK1, RUNX1T1, while the remaining one is an intergenic SNP on chromosome 2 at 2p24. 

Consistent direction of effects in the independent study of ADHD symptoms was shown for 4 of 5 

identified loci. A polygenic overlap between ADHD and EA was supported by significant genetic 

correlation ( , ) and >10-fold mutual enrichment of SNPs associated 

with both traits. 

Conclusion: We identified five novel loci associated with ADHD and provided evidence for a shared 

genetic basis between ADHD and EA. These findings could aid understanding the genetic risk 

architecture of ADHD and its relation to EA. 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition, caused 

by interplay of genetic and environmental risk factors. Its prevalence is estimated to be 5% in school-

aged children and 2.50% in adults1. The heritability of ADHD is one of the highest reported among 

psychiatric disorders in epidemiological studies, estimated at 0.70 0.801. However, it has been 

difficult to identify genetic risk variants that account for the high heritability of ADHD, resulting in a 

relatively modest SNP-based heritability, currently estimated at 0.282. This may be in part explained 

by its complex phenotypic structure (heterogeneous clinical features, developmental course and 

outcome, high rate of comorbid symptoms and disorders3) and genetic architecture with a highly 

polygenic etiology, with both common and rare variants contributing small effects4. Moreover, large 

sample sizes are needed for reliable detection of such effects. The relatively small samples of existing 

ADHD genetic studies, as compared to those available for other psychiatric disorders5,6, present an 

additional challenge. Up to now, no published GWASs have been able to detect genome-wide 

significant association ( ) for ADHD. 

It is well-established that complex traits often have a polygenic structure with shared genetic 

background7,8. Recently, a conditional/conjunctional false discovery rate (condFDR/conjFDR) 

method was developed9 to exploit overlapping association across GWASs and thereby boost 

association signals in GWAS of one phenotype by combining it with genome-wide association data 

of another phenotype (condFDR) or enable detection of specific genetic loci shared between two 

phenotypes (conjFDR). If genetic overlap between two phenotypes exists, the method offers for 

increased statistical power compared to conventional multiple hypotheses testing approaches10,11. This 
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method was successfully applied to discover novel associations and to detect shared genetic variants 

in various complex disorders, including neurological12,13 and psychiatric9 diseases. 

ADHD is consistently associated with lower levels of EA1,14: the percentage of US adolescents not 

completing high school is 5%, whereas it is approximately 35% for adolescents diagnosed with 

ADHD15. There are several ways in which ADHD may relate to lower EA, which are not mutually 

exclusive. First, the clinical and cognitive symptoms of ADHD (e.g. attention deficits) may directly 

perturb EA. Secondly, ADHD has a number of common comorbidities, including learning 

disabilities16, mood disorders16 and disruptive behavior16, associated with lower EA. Another 

possibility is that ADHD and EA share causative factors. Recent findings demonstrate negative 

genetic correlation between ADHD and EA ( , , )17, 

suggesting that genetic variants conferring risk to ADHD may contribute to lower EA in the general 

population. Thus, we can hypothesize that ADHD and EA may have a shared genetic basis and may 

amplify association signal by combining these phenotypes in condFDR/conjFDR method. 

In contrast to ADHD, where the currently published largest GWASs contain less than 4000 cases18,19, 

the latest GWAS on EA contains more than 300000 individuals, uncovering multiple genome-wide 

significantly associated loci20. Combining this EA GWAS with moderately-powered GWAS of 

ADHD18 in the condFDR/conjFDR approach, we aimed here at identifying novel loci associated with 

ADHD as well as loci shared between ADHD and EA. The latter may provide insights into the 

molecular genetic mechanisms jointly influencing ADHD and EA and inform their biological 

underpinnings. Applying novel statistical methods, we also tested whether the observed phenotypic 

correlation between ADHD and EA implies a genetic correlation between these traits. Additionally, 

for the identified ADHD-associated variants, we assessed consistency of effect directions in an 

independent population based study of ADHD symptoms and performed in silico analyses of their 

functional effects (eQTL, expression quantitative loci). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 

Material and methods 

Participant samples 

We used ADHD data from the Psychiatric Genomics Consortium (PGC)18. The data set contains 

information from 2064 trios, 896 cases and 2455 controls. EA data were obtained from the Social 

Science Genetic Association Consortium (SSGAC)20, where EA was measured as the number of years 

of schooling completed that was harmonized between different educational systems. For our analyses, 

we used summary statistics generated by the meta-analysis of all discovery and replication cohorts, 

except the 23andMe sample (64 datasets with total ). 

Top association signals identified in our analyses were examined in the summary statistics from an 

independent GWAS of ADHD symptoms performed by EArly Genetics and Lifecourse Epidemiology 

(EAGLE) consortium21. Unlike the PGC case-control ADHD GWAS, EAGLE GWAS represents a 

meta-analysis of 9 population-based pediatric cohorts containing information on 17666 children under 

the age of 13 years with measures of ADHD symptom scores. 

Detailed description of data used for analysis and data preprocessing steps is given in the supplemental 

material available online. 

Statistical analyses 

To assess genetic overlap between ADHD and EA and thus warrant subsequent condFDR/conjFDR 

analysis, we generated conditional QQ plots and fold-enrichment plots in both directions: conditioning 

ADHD on EA and vice versa9. To explore the nature of the polygenic overlap and test the hypothesis 

that the investigated phenotypes correlate genetically, we calculated Pearson correlations between 

association z-scores of ADHD and EA SNPs within nested subset (strata) of SNPs with increasing 
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significance of p-values in either ADHD or EA (formal definition of SNP stratum is given in 

supplementary material, available online). To further support this hypothesis, we estimated genetic 

correlation between ADHD and EA using LD score regression8. Details of these analyses are 

described in supplementary material. 

To identify specific loci associated with ADHD, we applied the condFDR method described 

previously9. The condFDR method takes summary statistics that reflect genetic association of a 

phenotype of interest (primary) together with those of an auxiliary (conditional) phenotype and 

estimates a posterior probability that a SNP is null (has no association) in the primary phenotype, 

given that p-values of the SNP in both the primary and conditional phenotypes are lower than observed 

p-values. Thus, the condFDR method increases the power to discover loci associated with a primary 

phenotype by leveraging associations with a secondary phenotype. It does so by re-ranking SNPs 

compared to nominal p-value-based ranking9. In contrast, ranking SNPs based on unconditional FDR 

(e.g. using Benjamini Hochberg or Benjamini Yekutieli procedure) does not change their order 

(compared to nominal p-values). 

Although both conditional QQ plots and genetic correlation based on the LD score regression can be 

useful to get a general idea of whether two traits have a significant genetic overlap, they are unable to 

find specific susceptibility loci shared by the traits. The conjFDR approach is an extension of 

condFDR allowing the identification of specific loci associated with both traits9. The conjFDR is 

defined as the maximum of the two condFDR values (taking one phenotype as primary and another 

as conditional and vice versa) for a specific SNP. Thus, the conjFDR approach estimates a posterior 

probability that an SNP is null for either phenotype or both at the same time, given that the p-values 

for both phenotypes are lower than the observed p-values. The method, therefore, uncovers loci 

associated with both phenotypes simultaneously. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



To avoid inflation of the results due to LD-dependency in fold-enrichment and QQ plots as well as in 

condFDR/conjFDR analyses, we randomly pruned all SNPs across 500 iterations. For each iteration, 

all but one random SNP in each LD-independent region (clump of SNPs in strong LD, ) were 

removed, and finally the results were averaged across all iterations. LD (r2 values) was estimated 

based on the 1000 Genomes Project phase 3 European sub-population data using PLINK22. 

As for meta-analyses based on multiple data-sources, the quality of our condFDR/conjFDR analysis 

will depend on the robustness of the primary data. More details about condFDR and conjFDR methods 

can be found in supplementary material and in the original publication9. 

Evaluation of the detected ADHD loci in an independent study of ADHD symptoms 

We used genetic data on association of ADHD symptoms obtained from EAGLE consortium to test 

whether our results can be supported by data from the independent sample. For this purpose, we 

checked whether effects of the most significant SNPs in the loci identified by condFDR/conjFDR 

analyses are consistent between PGC ADHD and EAGLE data sets. 

In silico identification of allele-specific effects of significant SNPs on transcription 

Identifying and investigating genetic variants that might affect gene expression (expression 

quantitative trait loci or eQTLs) may shed light on how associated variants may contribute to 

biological mechanisms underlying a phenotype. eQTLs vary significantly both between different 

tissues and over time23. Existing GWASs on ADHD and EA clearly demonstrate remarkable 

enrichment of association signals in genomic regions implicated in regulation of gene expression in 

brain18,20. Hence, we focused on eQTL analysis of genes expressed in brain tissues. Significant 

associations identified with condFDR and conjFDR analyses were queried for known eQTLs using 

the GTEx portal (http://gtexportal.org) and the Braineac database (http://www.braineac.org). The 

latter database contains information on cis-eQTLs for 10 brain regions: cerebellar cortex, frontal 
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cortex, hippocampus, medulla (specifically inferior olivary nucleus), occipital cortex (specifically 

primary visual cortex), putamen, substantia nigra, thalamus, temporal cortex and intralobular white 

matter. Additionally, we checked age-dependent variations of expression in genes containing 

identified significant SNPs using the Human Brain Transcriptome database (http://hbatlas.org)24. 

 

Results 

Evaluation of genetic overlap and correlation 

In the absence of genetic overlap between two traits, it is expected that p-values for association with 

one trait are independent from the p-values for association with the other. However, conditional QQ 

plots in Figure 1 clearly demonstrate an increasing degree of leftward deflection for strata of more 

significant SNPs. This is observed both when conditioning ADHD on EA (Figure 1A) and vice versa 

(Figure 1B), suggesting substantial cross-trait polygenic enrichment. Enrichment of association 

signals for one trait among those of another is also clearly visible in the fold-enrichment plots, with 

more than 10-fold enrichment of SNPs from the strictest stratum ( ) for 

both traits (Figure S1, available online). Additionally, association z-scores of ADHD and EA 

demonstrate increasing negative correlation in more strictly defined strata of SNPs, both when strata 

are defined based on ADHD p-values (Figure 1C) and on EA p-values (Figure 1D). Moreover, LD 

score regression analysis also showed significant negative genetic correlation ( , 

, ) between these phenotypes. 

Identification of ADHD-associated loci and loci shared between ADHD and EA 

Using the condFDR/conjFDR method we identified 5 LD-independent regions, significantly 

associated with ADHD ( , ), 3 of which were also identified as 
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shared between ADHD and EA. From each of these regions a single SNP with the lowest 

condFDR/conjFDR value (strongest association signal) was selected to represent their loci. These 

SNPs are presented in Table 1. Manhattan plots resulting from condFDR and conjFDR analyses are 

presented in Figures 2 and 3, respectively. Four out of five identified most significant SNPs revealed 

the opposite directions of effect in ADHD and EA. 

Identified loci and related genes 

Two loci (represented in Table 1 by variants rs618678 and rs412458) were identified both in condFDR 

and conjFDR analyses. rs618678 represents the strongest signal in the conjFDR analysis (

) and the second strongest in the condFDR analysis ( ). This 

SNP is an intronic variant within KDM4A on chromosome 1p34.2 (Figure 4B). Figure 4B and Figure 

S2B (available online) show the genetic context of rs618678, indicating, respectively, the conjFDR 

and condFDR values of adjacent SNPs. It is worth noting that in our analysis rs618678 tags a broad 

region of association. As can be seen in Figure 4B, multiple significant SNPs in strong LD (

) with rs618678 were detected in this region, spanning over more than 200000 basepairs (bp). 

Besides KDM4A, the region also contains PTPRF (located in 1p34.2, upstream of KDM4A) and 

ST3GAL3 (1p34.1, directly downstream KDM4A) genes. The latter was also identified in the eQTL 

analysis (discussed below). Another significant signal identified in both condFDR (

) and conjFDR ( ) analyses is represented by rs412458, an 

intronic variant within MEF2C on chromosome 5q14.3 (Figure S2A, D, available online). 

Two loci were identified by condFDR, but not conjFDR. The strongest signal was detected at 

rs4324303 ( ), that is in the intergenic region on chromosome 2p24 (Figure 

4A). Multiple significant variants tagged by rs4477079 ( ) were also 

identified on chromosome 8 within RUNX1T1 (Figure S2C, available online). 
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Finally, conjFDR analysis identified a shared variant ( ) at PINK1 

(rs17414302, intronic, 1p36.12) (Figure S2E, available online). There were no LD-linked SNPs in the 

direct vicinity and only 25 SNPs in LD ( ) with this variant, residing upstream of PINK1, at 

about 100000 bp. 

None of SNPs identified either in condFDR or conjFDR reached genome-wide significance in 

previously published GWAS of ADHD18. Rs618678 reached genome-wide significance in EA (

)20. Rs412458, which was identified by both condFDR and conjFDR, was not reported 

as genome-wide significant by the published EA GWAS ( ), but it is in LD (

) with rs588282 that did reach genome-wide significance in that study (previously reported 

). Other loci identified in our analyses were below genome-wide significance threshold 

in EA. It is also worth noting that the unconditional FDR values for all identified SNPs were above 

0.01 and 0.05 in condFDR and conjFDR analysis respectively. 

Evaluation of the detected ADHD loci in an independent study of ADHD symptoms 

To assess the robustness of our results, we examined the loci identified in either the condFDR or 

conjFDR analyses (Table 1) in the association summary statistics from the independent GWAS of 

ADHD symptoms conducted by EAGLE consortium21. Four out of five loci (represented by SNPs: 

rs17414302, rs412458, rs618678, rs4324303) have the same direction of effect in the PGC and 

EAGLE GWASs while the last locus (represented by rs4477079 SNP) has an opposite direction of 

effect in these GWASs. These results are presented in Table S2 (available online). 

In silico identification of allele-specific effects on transcription 

According to Human Brain Transcriptome data24, all six implicated genes (Table 1, Genes in the 

region) have a pronounced expression in different brain regions during the whole life cycle (Figure 
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S3, available online). Therefore, alterations in the expression level of these genes (where the detected 

SNPs are located) may affect a broad variety of processes over an extended period. We scanned the 

Braineac database to check whether SNPs identified in either the condFDR or conjFDR analyses are 

associated with gene expression in brain tissues. We found that four of five SNPs from Table 1 may 

operate as eQTLs, significantly ( ) associated with the expression of 13 different genes in 

several brain regions (Table S1, available online). Among those 13 genes, the most significant eQTL 

was observed between rs618678 and ST3GAL3. Further, significant eQTL effects of rs618678 on 

ST3GAL3 were identified in muscle-skeletal tissue ( ) in the GTEx database 

(https://gtexportal.org/), but not in the brain tissue. 

 

Discussion 

The present study sought to investigate the genetic overlap between ADHD and EA, to leverage their 

potentially common genetics in order to improve the discovery of ADHD-associated loci and help our 

understanding of the correlation between EA and ADHD observed in epidemiological studies. It is, 

however, worth emphasizing the broad potential of the applied methodology, which can be used to 

leverage the great variety of existing GWAS data for dissecting the molecular genetic basis underlying 

complex human traits and disorders and their shared genetic etiology. 

We identified significant genetic overlap between ADHD and EA supported by a pronounced genetic 

correlation ( , , ), consistent enrichment of shared variants 

in conditional QQ plots (Figure 1A, B), more than 10-fold mutual enrichment of SNPs associated with 

both traits (Figure S1, available online) and growing negative correlation of association z-scores for 

the nested SNP strata with increasing significance in both traits (Figure 1C, D). These findings 
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encourage the hypothesis that there is a shared genetic basis underlying ADHD and EA where in 

general ADHD risk alleles are associated with lower EA. 

In comparison to previous study, exploring the topic of genetic overlap between ADHD and EA17, our 

analysis employs a much larger data set of EA, allowing for a more reliable detection of genetic 

overlap (Figure 1; , , ). It is also worth noting that we report 

a genetic correlation that is stronger than previously observed using the same ADHD data and a 

smaller ( ) EA dataset ( , , )17. Moreover, our 

study provides further insights into the shared genetic basis of ADHD and EA by identifying specific 

genetic loci jointly influencing these phenotypes. Further studies are warranted to determine in what 

way these genetic variants influence ADHD and EA. It is feasible that the shared genetic effects may 

influence EA through an intermediary phenotype such as reading disability, which is comorbid to 

ADHD25, or through more basic neurobiological systems. 

By combining GWAS summary statistics data on ADHD and EA18,20 in the condFDR/conjFDR 

analyses, we enhanced discovery in the moderately powered ADHD GWAS and found five novel LD-

independent loci associated with ADHD (Table 1). None of the loci identified in our analyses reached 

genome-wide significance in the ADHD GWAS18, while rs618678 and rs412458 reached genome-

wide significance in the GWAS of EA20. Four of five loci have opposite directions of effect in PGC 

case-control ADHD study18 and EA study20 (Table 1) and consistent directions of effect in the 

independent population-based study of ADHD symptoms from the EAGLE consortium21 (Table S2, 

available online). The only SNP (rs4477079) having the same direction of effect in PGC ADHD data 

set and EA also has inconsistent effect directions in the PGC ADHD and EAGLE ADHD datasets. 

Despite the relatively small GWAS sample sizes on ADHD by the PGC18 and EAGLE21 consortia, 

and their differences in definitions of phenotype, observed consistency of effect directions of the 
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identified variants supports the credibility of the findings and the statistical approach. The fact that 

the majority of identified SNPs had opposite directions of effect in ADHD and EA is in line with the 

observed negative genetic correlation and corresponds to the expectations that can be drawn from 

existing clinical studies demonstrating poor academic performance and decreased rates of high school 

graduation and postsecondary education in individuals with diagnosed ADHD14. Altogether, these 

findings provide new insights into the genetic architecture of ADHD, suggesting shared molecular 

genetic mechanisms with EA. Furthermore, the findings may suggest that individuals with a high load 

of ADHD genetic risk factors, but not necessarily with the disorder itself, may be at higher risk for 

lower EA. 

The most significant locus shared between ADHD and EA (rs618678) is located on chromosome 1 

and represents a broad region of association spanning over more than 200,000 bp in 1p34.2 and 1p34.1 

(Figure 4B; Figure S2B, available online). This region contains three protein coding genes: PTPRF, 

KDM4A and ST3GAL3. rs618678 is an intronic variant within KDM4A, a member of the Jumonji 

domain 2 family, which encodes a protein that demethylates histone residues, and acts as an epigenetic 

transcriptional regulator26. Genome-wide significant variants within KDM4A were reported in a recent 

GWAS of schizophrenia5, a disorder that may share genetic background with ADHD. The protein 

encoded by PTPRF is a member of the protein tyrosine phosphatase (PTP) family, which regulates a 

variety of cellular processes, including cell growth, differentiation, mitotic cycle and oncogenic 

transformation. Mouse studies showed that PTPRF promotes neurogenesis in the hippocampus27, a 

brain region linked to memory. ST3GAL3 encodes a sialyltransferase responsible for the terminal 

sialylation of brain gangliosides and glycoproteins, which constitute a major part of the surface glycan 

coat of neurons and glia and act as an interface for cellular interactions28. Interestingly, mutations of 

ST3GAL3 may impair the development of higher cognitive functions29 and are associated with severe 

infantile epilepsy30. Our eQTL analysis with Braineac database revealed strong associations of 
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rs618678 with altered expression of ST3GAL3 (Table S1, available online), suggesting that this may 

be a potential mechanism whereby this locus affects ADHD and EA. However, this association was 

not detected using GTEx database. The discrepancy between the results from the different eQTL-

datasets could be attributed to differences in methodological techniques or sample configuration 

between the eQTL databases, or reflect the relatively small sample sizes. The eQTL results should be 

re-assessed when larger brain-eQTL databases are available. 

The second locus shared between ADHD and EA (rs412458) is an intronic variant within MEF2C 

(Figure S2A, D, available online) which has multiple LD-linked variants with low condFDR/conjFDR 

values. MEF2C encodes one of four transcription factors constituting the myocyte enhancer factor 2 

(MEF2) family31. MEF2 is involved in neuronal survival and may regulate the growth and pruning of 

neurons as well as the number of synapses in the hippocampus, with potential  relevance for memory 

and learning32. Mutations of MEF2C cause severe mental retardation with stereotypic movements, 

seizures and/or cerebral malformations33. Further, genome-wide significant SNPs within MEF2C have 

been reported to be associated with schizophrenia5 which shares polygenic risk with ADHD34. In 

addition, mutations in MEF2 genes have been found in patients with different neurological disorders 

including Rett-like disorder and Parkinson's diseases32. MEF2C expression is particularly enriched in 

the cerebral cortex35 (Figure S3, available online). 

The third locus identified as susceptible for both ADHD and EA by conjFDR is an intronic variant 

within PINK1 on chromosome 1 (rs17414302). PINK1 encodes a serine/threonine protein kinase that 

primarily localizes to mitochondria and protects against progressive mitochondrial damage and 

dysfunction36. This protein is thought to be involved in regulating neurite morphogenesis, enhancing 

anterograde mitochondrial transport and density of mitochondria in dendrites and upregulating 

expression of neuronal differentiation proteins37. PINK1 is important for the maintenance of 

mitochondria in part by selective degradation of compromised mitochondria (mitophagy)38. Mutations 
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39. However, rs17414302 

represents an isolated signal with rather poor LD support (Figure S2E, available online) and it should 

thus be examined in more detail. 

The strongest SNP association with ADHD revealed by the condFDR analysis was rs4324303. This 

SNP was not significant in the conjFDR analysis, but showed consistent direction of effect with 

ADHD symptoms in the EAGLE sample, possibly suggesting a putative role specific to ADHD. 

Rs4324303 is an intergenic variant located approximately 1 mega base upstream of the nearest protein 

coding gene (TRIB2). It is therefore difficult to speculate about the potential role of this variant in 

different cellular processes. 

Another variant identified by the condFDR analysis is rs4477079, an intronic variant within RUNX1T1 

on chromosome 2. RUNX1T1 acts as a co-repressor of Notch40 and Wnt41 pathways. RUNX1T1 was 

reported to have high expression levels in adult and fetal brain42 and may influence axon guidance 

process43. RUNX1T1 was previously identified among the top associations (although not reaching 

genome-wide significance) in the context of oppositional defiant disorder (ODD), which is a frequent 

psychiatric disorder seen in individuals with ADHD44. Notably, unlike the other loci identified in our 

analyses, this locus shows an inconsistent direction of effect between PGC ADHD risk and 

quantitative measures of ADHD symptoms in pediatric populations (Table S2) and a co-directional 

effect between PGC ADHD risk and EA (Table 1). The latter is contrary to expectations based on 

previous findings. The role of RUNX1T, thus, remains puzzling and further studies are needed to 

clarify it. 

To further evaluate the ADHD-associated variants identified in this study utilizing the data from PGC 

ADHD case-

GWAS. Four of five loci identified here revealed consistent direction of effect in the independent 
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GWAS of ADHD symptoms (Table S2, available online). Of note, twin studies provide strong 

evidence that the diagnosis of ADHD can be considered as the extreme of a continuous trait45 and 

several studies show that the polygenic risk score computed from an association study of ADHD 

diagnosis predicts the variability of ADHD symptoms in population samples21,46. Additionally, it has 

been shown that the continuous measure of ADHD (such as symptom score) and the ADHD diagnosis 

share over 90% of their genetic background47. Thus, the results of the performed exploration may be 

viewed as confirmatory of our findings. 

It is also worth mentioning that two loci identified in our analyses (corresponding to rs618678 and 

rs412458 in Table 1) were reported to reach genome-wide significance in the largest GWAS on 

ADHD performed to date, with the total number of 20183 ADHD cases and 35191 controls. In this 

GWAS, ADHD diagnosis was based on either ICD10 or DSM-IV. The study is yet unpublished but 

preprint is available in bioRxiv47. 

As children with ADHD have been reported to have high risk for academic failure, school dropout, 

grade repetition and placement in special education48,49, it is likely that the prevalence of ADHD cases 

among individuals with lower EA would be increased compared to the prevalence among individuals 

with higher EA. Moreover, ADHD is known to have a complex pattern of co-morbid conditions1 

(including dyslexia25, oppositional defiant disorder50 and others), many of them are also associated 

with lower EA. This potential overlap of phenotypes prevents us from translating the genetic 

correlation into actual pleiotropy, which is defined as the same gene variant affecting independent 

diseases or traits. Furthermore, it is challenging to evaluate small effect sizes, and speculate about 

molecular mechanisms behind the effective variants when examining such potentially overlapping 

phenotypes. Another general problem is that the effects of the associated variants are small and their 

functional roles have not been directly investigated. Associated genetic loci contain several genes and 

it is difficult to establish an arrow of causality when studying association between traits. Thus, the 
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question whether ADHD is diagnosed because of observed educational problems or ADHD is the 

cause of subsequent educational problems or there is other common underlying factor needs further 

exploration. 

Also of possible relevance is the sample overlap between PGC ADHD and EA datasets (both GWASs 

include the WTCCC58C cohort51), which may inflate the results of our FDR analyses. However, the 

results of LD score regression, which are in line with those of our FDR analyses, are not affected by 

the sample overlap8. 

We identified five loci associated with ADHD and provided evidence for a shared genetic basis 

between ADHD and EA, implicating three genetic loci in this overlap. Four of five identified loci 

showed consistent effects in the independent data set of ADHD symptoms, and inverse correlation 

with EA, in line with prior epidemiological and genetic studies. Altogether, the findings provide new 

insights into the relationship between ADHD and EA, suggesting shared molecular genetic 

mechanisms. On a cautious note, the identified risk variants are not informative clinically due to their 

small effect sizes. Further research is required to clarify the biological effects of the identified genetic 

variants and how these may influence EA and ADHD pathogenesis. 
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Tables 

SNP Chr 

Region 

Position condFDR conjFDR Location 

relative to gene 

Genes in 

the region 

p-value Effect size 

ADHD EA ADHD EA 

rs17414302 1p36.12 20976535 -2 -2 intronic PINK1 -4 -7 -0.090 0.022 

rs618678 1p34.2 44133299 -3 -3 intronic 

KDM4A 

PTPRF 

ST3GAL3  

-5 -10 -0.053 0.017 

rs4324303 2p24 13817678 -3 -1 intergenic - -7 -3 -0.079 0.009 

rs412458 5q14.3 88029627 -3 -2 intronic MEF2C -5 3.73 -6 0.061 -0.014 

rs4477079 8q21.3 93059038 -3 -1 intronic RUNX1T1 -6 -3 -0.071 -0.009 

Table 1. Most significant SNPs for each LD-independent region identified either with condFDR ( ) or with conjFDR (

) analysis. condFDR/conjFDR values that are below the predefined significance threshold of 0.01/0.05 are marked with bold. Chromosome and 

position are indicated according to GRCh37. For both ADHD and EA, p-values without genomic inflation correction are shown. Thee effect size is 

given as  for ADHD and as Beta regression coefficient for EA. Genes in the region are defined as genes containing SNPs at either 

 or  and in LD ( ) with the most significant SNP of the locus. Genes containing the leading SNP are 

marked in bold. Annotation was generated with Biomart Variant Effect Predictor (http://www.ensembl.org/Homo_sapiens/Tools/VEP). 
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Figure legends 

Figure 1. Conditional QQ plots and correlation plots. 

Conditional QQ plots (A, B) demonstrate relation between expected (x axis) and observed (y axis) 

significance of markers in the primary trait when markers are stratified by their p-values in the 

conditional trait. A sequence of four nested strata is presented: all SNPs (i.e. p-values of the 

conditional trait ), ,  and 

. 

A: ADHD conditioned on educational attainment (EA). 

B: educational attainment (EA) conditioned on ADHD. 

Correlation -scores of 

ADHD and EA for the nested strata of SNPs (as introduced in the conditional QQ plots) averaged 

over 500 iterations of random pruning. Solid black lines indicate standard deviations. 

C: SNP strata are defined by the p-values of markers in educational attainment (ADHD|EA). 

D: SNP strata are defined by the p-values of markers in ADHD (EA|ADHD). 

Figure 2. Manhattan of  for ADHD conditional on educational attainment (EA). 

The data are unpruned. The small points are non-significant SNPs, the bold points represent significant 

SNPs ( ). Points corresponding to significant SNPs with lowest conditinoal FDR in 

each LD-independent region ( ) have a black border and either the name of corresponding 

gene (for SNPs within the gene) or the rs-number (for an intergenic SNP) written above it. The 

horizontal grey dotted line shows the significance threshold of condFDR (0.01). Black dots stand for 

unconditional FDR values. 

Figure 3. Manhattan plot of conjunctional  for ADHD and educational attainment (EA). 

The data are unpruned. The small points stand for non-significant SNPs, the bold points represent 

significant SNPs ( ). Points corresponding to significant SNPs with lowest 
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conjunctional FDR in each LD-independent region ( ) have a black border and the name of 

the corresponding gene written above it. The horizontal grey dotted line shows the significance 

threshold of conjFDR (0.05). 

Figure 4. Genetic context of the strongest associations identified in condFDR (A) and conjFDR (B) 

analyses. 

Values for both genotyped and imputed variants are shown on the left y-axis as  

and  respectively. In each subplot, an SNP with the strongest association is shown 

strongest associated SNP measured as r2 coefficient (described in the legend). The recombination rate 

is plotted as a blue solid line, its value in centimorgan/megabase (cM/Mb) is indicated on the right y-

axis. The red dotted lines indicate the FDR thresholds (0.01 for condFDR and 0.05 for conjFDR).  

A: surrounding of the strongest association in condFDR analysis: rs4324303 (

). 

B: surrounding of the strongest association in conjFDR analysis: rs618678 ( ). 

Figures are generated with LocusZoom52. 
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Supplemental material 

Participant samples 

We used ADHD data from the Psychiatric Genomics Consortium (PGC)1. The data set contains 
information from 2064 trios, 896 cases and 2455 controls combined from four independent studies 
(CHOP2, IMAGE3, IMAGE II4, PUWMa5). Each dataset has undergone stringent quality control 
(including filtering out SNPs with high missingness and significant deviation from Hardy-
Weinberg equilibrium) and was imputed using HapMap Phase III European CEU and TSI samples 
as the reference panels. The association analysis was performed separately on each dataset and the 
inverse variance weight meta-analysis has been carried out. Details of the data processing steps 
and the analyses are described in the original publication1. Prior to our analyses, we performed 
basic quality control of the obtained PGC summary statistics: SNPs with low imputation quality 
(info score < 0.80) and minor allele frequency (MAF) < 0.01 were excluded. Additionally, we 
removed the major histocompatibility complex (MHC) region (defined on hg19 as chr6: 28477797 
- 33448354). The remaining 6393963 SNPs were used for the analyses. For quantile-quantile (QQ) 
and enrichment plots as well as for conjFDR analyses, all p-values were adjusted by genomic 
control inflation factor as described previously6,7. 

Different ADHD diagnostic procedures were used across studies. Below we briefly summarize 
phenotype measurement procedures in each study (taken from the original publications). 

 CHOP: trio families were recruited from pediatric and behavioral health clinics in the 
Philadelphia area. Inclusion criteria included families of European descent with an ADHD 
proband (age 6 - 18). Exclusion criteria included prematurity (< 36 weeks), mental retardation, 
major medical and neurological disorders, pervasive developmental disorder, psychoses and 
major mood disorders. A child psychiatrist assessed diagnostic status of ADHD probands by 
K-SADS P-IVR interview. Parental ADHD was assessed using the ADHD Self-Report Scale. 

 IMAGE: trio families of European origin were collected using a common protocol with 
centralized training and reliability testing of raters and centralized data management. Families 
were identified through ADHD probands aged 5 to 17 attending outpatient clinics at the data 
collection sites in Europe and Israel. Exclusion criteria were autism, epilepsy, IQ < 70, brain 
disorders and any genetic or medical disorder associated with externalizing behaviors that 
might mimic ADHD. Parents of children were interviewed with the Parental Account of 
Childhood Symptom (PACS), a semi-structured, standardized, investigator-based interview 
developed as an instrument to provide an objective measure of child behavior. Both parents 
and teachers completed the respective versions of the Conners ADHD rating scales and the 
Strengths and Difficulties Questionnaire. Using results of these surveys, probands had been 
clinically diagnosed as ADHD based on the DSM-IV criteria (or hyperkinetic disorder, the 
most closely equivalent category in the ICD-10 nomenclature used at some of the clinics). 



IMAGE II: a case-control study using samples collected by the IMAGE project (but not 
included in the IMAGE GWAS) and samples collected at additional sites (Germany, Scotland 
and Cardiff, UK) that were assessed in a manner similar to IMAGE samples. Cases were 
identified mainly through outpatient clinics at the data collection sites. 

 PUWMa: trio families were collected independently at three sites (MGH, Washington 
University and UCLA) using similar but slightly different methods. Children were 5 - 19 years 
of age at initial assessment and met criteria for DSM-IV-TR ADHD. 

 MGH. Psychiatric assessments were made with K-SADSE (Epidemiologic Version) 
interview (indirect interviews with parents and additionally direct interviews with 
subjects older than 12). Exclusion criteria included major sensorimotor handicaps 
(deafness, blindness), psychosis/schizophrenia, autism, inadequate command of the 
English language, or a Full Scale IQ less than 80. 

 Washington University. Parents reported on their children and themselves, and the 
youths on themselves, using the Missouri Assessment of Genetics Interview for 
Children (MAGIC), a semi-structured psychiatric interview. DSM-IV diagnoses of 
ADHD were based upon parental reports. Families were excluded if a parent/guardian 
reported mental retardation or if the parent/guardian and twins could not speak English. 

 UCLA. Lifetime psychiatric diagnoses were based on semi-structured diagnostic 

interviewers with extensive experience and reliability training in psychiatric diagnoses. 
Children and adolescents were assessed using the Schedule for Affective Disorders and 
Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL). 
Adult parents were assessed using the Schedule for Affective Disorders and 
Schizophrenia-Lifetime version (SADS-LA-IV), supplemented with the K-SADS 
Behavioral Disorders module for diagnosis of ADHD. Direct interviews were 
supplemented with parent and teacher versions of the Swanson, Nolan, and Pelham, 
version IV (SNAP-IV) rating scale, as well as a parent-completed CBCL and Teacher 
Report Form. Parents also completed current ratings of self and spouse behavior with 
the ADHD Rating Scale IV. Best estimate diagnoses were assigned using all of the 
available clinical information according to strict DSM-IV criteria and reviewed by 
senior clinicians. Subjects were excluded from participation if they were positive for 
any of the following: neurological disorder, head injury resulting in concussion, 
lifetime diagnoses of schizophrenia or autism, or estimated Full Scale IQ < 70. 

EA data were obtained from the Social Science Genetic Association Consortium (SSGAC)8, where 
EA 
population under various educational systems, the International Standard Classification of 
Education (ISCED) of the United Nations Educational, Scientific and Cultural Organization 



(UNESCO) was used. Each major educational qualification that it is possible to attain in a specific 
country was mapped into one of seven ISCED categories. To construct the primary outcome 
variable, each ISCED category was then translated into US years of schooling. So eventually 
educational attainment for all subjects in the study (regardless of country of birth) was measured 
in US years of schooling.. For our analyses, we used summary statistics generated by the meta-
analysis of all discovery and replication cohorts, except the 23andMe sample which is not publicly 
available (64 datasets with total N = 328917). For each dataset, genome-wide association was 
tested using only individuals of European descent, with EA assessed at age 30 or above. Cohort-
level data underwent various quality control procedures (filtering out SNPs with high missingness 
and significant deviation from Hardy-Weinberg equilibrium etc.) and a round of genomic control. 
Sample-size-weighted meta-analysis of all 9256490 autosomal SNPs (from the 1000 Genomes 
Project) passing quality control procedures was performed using METAL9. Detailed information 
on sample selection, cohort-level quality control and meta-analysis can be found in the original 
publication8. Before conducting our analyses, we removed MHC region. In addition, for QQ plots, 
enrichment plots and conjFDR analyses, we also corrected p-values for genomic inflation (as 
defined above). The data are available for downloading at (http://www.thessgac.org/data). 

We examined our top association signals in the summary statistics from an independent GWAS of 
ADHD symptoms performed by EArly Genetics and Lifecourse Epidemiology (EAGLE) 
consortium10. Unlike the PGC case-control ADHD GWAS, EAGLE GWAS represents a meta-
analysis of 9 population-based pediatric cohorts containing information on 17666 children under 
the age of 13 years with measures of ADHD symptom scores. Several different measures of ADHD 
symptom scores were used across cohorts, including the Attention Problems scale of the Child 
Behavior Checklist (CBCL) and the Teacher Report Form (TRF), the Hyperactivity scale of the 
Strengths and Difficulties Questionnaire (SDQ) and the DSM-IV ADHD items (e.g. as included in 

Rating Scale)11-15. For the meta-analysis, one phenotype was selected from each 
cohort. Based on the phenotype that was most available, school-age ratings were chosen over 
preschool-age ratings, parent ratings over teacher ratings, and the measurement instrument with 

-IV > 
CBCL > SDQ). The study did not detect genome-wide significant SNPs. 

LD score regression 

To support a hypothesis of shared genetic basis between ADHD and EA we applied linkage 
disequilibrium (LD) score regression 16 to estimate SNP-based genetic correlation between them. 
For this calculation, we used only SNPs overlapping with HapMap phase 3 variants, while low 
quality imputed markers as well as indels, rare variants (MAF < 0.01) and markers from the MHC 
region were removed from both data sets as described in the main text. The analysis was performed 
using the Python-based package available at (https://github.com/bulik/ldsc) and the procedure is 
described in the documentation of the package (https://github.com/bulik/ldsc/wiki/Heritability-
and-Genetic-Correlation). Since we know that there is sample overlap between ADHD and EA 

pt. Obtained genetic correlation was significantly 



below zero (rg = -0.403, SE = 0.075). Similar values can be obtained using LD Hub 
(http://ldsc.broadinstitute.org) 
available at LD Hub. The obtained genetic correlation is in line with our findings obtained with 
conjFDR model, where all three markers are significantly associated with both ADHD and EA 
presenting opposite directions of effect (Table 1). It is worth noting here that LD score based 
genetic correlation allows effective detection of genetic correlation only when the bulk of variants 
associated with both traits reveals strong net correlation between the direction of effects of 
overlapping SNPs relative to each other (i.e. correlated same or opposite direction of effects in two 
phenotypes, but not mixed). The method is also not able to identify specific shared loci. To 
circumvent the latter, we applied conjFDR method described below. 

Fold enrichment plot 

The fold enrichment plot allows the assessment of genetic enrichment in one (primary) trait when 
conditioning on another (conditional) trait. Enrichment is present if the degree of upward 
deflection from the expected null level (horizontal line through 1) depends on the stratum defined 
by the p-values for association with the trait used for conditioning (e.g. pconditinal trait < 1.00x10-1).  

Here by SNP stratum corresponding to some p-value threshold pthresh in trait T (either ADHD or 
EA) we mean a set of SNPs for which z-scores are available in both ADHD and EA GWASs and 
which have p-values in trait T below the threshold pthresh. 

First, the empirical cumulative distribution function (CDF) of primary trait association p-values is 
computed for all SNPs. Then the CDF of association p-values is also estimated for each SNP 
stratum defined by the p-values for association with the conditional trait. Then fold enrichment for 
each stratum is estimated as the ratio CDFstratum/CDFall. The x-axis displays nominal -log10(p-
value) for the primary trait, the y-axis shows the fold enrichment. Here we focus on polygenic 
effects for SNPs not reaching the standard GWAS significance threshold -log10(p) < 7.30 
(corresponding to p > 5.00 -8). 



Figure S1. Fold enrichment of association between ADHD and educational attainment (EA). Fold enrichment plots 
of the observed -log10

-8) in the primary trait 
stratified based on the association with the conditional trait. A sequence of four nested strata is presented: all SNPs 
(i.e. p-values of the conditional trait <= 1), pconditinal trait < 10-1, pconditinoal trait < 10-2 and pconditinoal trait < 10-3. Successive 
upward elevation compared to all SNPs demonstrates polygenic enrichment both for ADHD conditioned on 
educational attainment (A) and for educational attainment conditioned on ADHD (B). 

Conditional/Conjunctional FDR 

The following brief description of conditional/conjunctional false discovery rate 
(condFDR/conjFDR) method is based on the papers 6,7 where the method was introduced and 
subsequent correction to the second paper 17. 

To explain the condFDR/conjFDR method, we will first review the concept of standard 
(unconditional) false discovery rate (FDR). Then we describe the condFDR method. The latter is 
an extension of the standard FDR, which incorporates information from genome-wide association 
summary statistics of a second phenotype to adjust its significance level. After that we will present 
a formal definition of conjFDR for two phenotypes and show that it can be estimated as a 
maximum of two conditional FDRs. 

In empirical Bayes interpretation, for a given p-value cutoff, FDR can be defined as follows 18: 

 



where  is the a priori fraction of null SNPs,  is the null cumulative distribution function 
(CDF), and  is the CDF of all SNPs, both null and non-null. Under the null hypothesis,  is the 
CDF of the uniform distribution on the unit interval [0,1], so  and the latter formula 
reduces to: . Having this definition, the conditional FDR for two phenotypes 
can be defined as the posterior probability that a given SNP is null for the first phenotype given 
that the p-values for both phenotypes are as small as or smaller than the observed p-values. 
Formally this can be expressed as: 

 

where  and  are p-values of SNPs in the first and the second phenotypes correspondingly, 
 is the conditional proportion of null SNPs and  is the conditional cdf for the first 

phenotype given that p-values for the second phenotype are  or smaller. We denote the 
conditional FDR for phenotype 1 (pt1) given phenotype 2 (pt2) as . In our calculations, 

we produce a conservative estimate of  by setting  and using the empirical 

conditional cdf in place of . 

In our study, conjFDR is used to identify SNPs that are associated with two phenotypes 
simultaneously. It is defined as the posterior probability that a given SNP is null for either 
phenotype or both phenotypes simultaneously when the p-values for both phenotypes are as small 
or smaller than the observed p-values. Formally, the conjunctional FDR is defined as: 

 

where  is the a priori fraction of SNPs null for both phenotypes simultaneously,  is 
the joint null cdf,  is the a priori fraction of SNPs non-null for the pt1 and null for pt2 with 

 the joint cdf of these SNPs, and  is the a priori proportion of SNPs non-null for pt2 
and null for pt1, with joint cdf .  is the joint overall mixture cdf for all SNPs of 
both phenotypes. We denote conjunctional FDR for phenotype 1 and phenotype 2 as . 

A model-free conservative estimation of the conjunctional FDR for phenotypes pt1 and pt2 can be 
calculated as: 

 

Using upwardly biased estimates of conditional FDRs  and  as described 

above and noting that for enriched samples, p-values will tend to be smaller than predicted from 
the uniform distribution (giving  and ), the latter equation follows from: 



 

Assuming that SNPs are independent if one or both are null (that is reasonable for disjoint 
samples), the last quantity is exactly equal to the formal definition of  above. 

 

Identified ADHD associated loci  

Figure S2. Genetic surrounding of the SNPs identified in the condFDR (upper row, A, B, C) or in the conjFDR 
(lower row, D, E) analyses except the SNPs with the strongest associations from each analysis (presented in the main 
text). 
Values for both genotyped and imputed variants are shown on the left y-axis as log10(condFDR) and 
log10(conjFDR) respectively. In each subplot, the SNP with the strongest association is shown in the large purple 

t associated SNP measured as 
r2 coefficient (described in the legend). The recombination rate is plotted as a blue solid line, its value in 
centimorgan/megabase (cM/Mb) is indicated on the right y-axis. Red dotted lines indicate the FDR significance 
threshold (0.01 for condFDR and 0.05 for conjFDR). 
Figures were generated with LocusZoom tool 19 available online: http://locuszoom.sph.umich.edu/locuszoom/ 
 



eQTL analyses 

Figure S3. Temporal expression in brain regions for genes from 5 loci identified either in condFDR or in conjFDR 
analyses. Expression profiles are obtained from the Human Brain Transcriptome database (http://hbatlas.org). Gene 
expression along entire development and adulthood in the cerebellar cortex (CBC), mediodorsal nucleus of the 
thalamus (MD), striatum (STR), amygdala (AMY), hippocampus (HIP) and neocortex (NCX) is demonstrated. 

 



Gene SNP exprID aveALL HIPP OCTX PUTM SNIG TCTX THAL WHMT 

ST3GAL3 rs618678 2333515 5.1 -12 1.8 -5 7.6 -6 1.6 -3 2.1 -3 4.6 -5 2.6 -5 1.6 -2 

PTPRF rs618678 2333361 9. -4 6.6 -1 6.7 -1 1.1 -2 4.4 -1 6.6 -2 2.2 -2 4.3 -1 

KDM4A rs618678 2333472 1.3 -2 3.9 -2 4.1 -1 7.9 -1 1. -4 7.1 -1 1.2 -1 3.0 -1 

ERI3 rs618678 2409615 1.6 -2 3.5 -4 7.5 -1 7.4 -1 8.8 -1 8.1 -1 3.2 -2 3.8 -1 

TIE1 rs618678 2333056 1.0 -1 6.1 -1 5.6 -1 2. -4 4.1 -1 8.1 -1 2.4 -1 1.8 -1 

TIE1 rs618678 2333080 1.8 -1 5.9 -1 4.3 -1 1.7 -1 8.8 -1 7.2 -1 2. -4 4.9 -1 

KIAA0467 rs618678 2333277 3.0 -1 4.6 -1 1.4 -1 5. -4 1.7 -1 7.8 -1 7.6 -1 1 

DPH2 rs618678 2333638 5.5 -1 7.7 -2 4.4 -2 2.3 -1 1.3 -1 1.9 -1 5.6 -1 4.2 -5 

RUNX1T1 rs4477079 3144436 -1 -1 -1 -4 -1 -1 -1 -1 

RUNX1T1 rs4477079 t3144433 -1 -1 -1 -4 -1 -1 -1 -1 

TRIB2 rs4324303 2470209 -3 -1 -1 -1 -1 -4 -1 -2 

TMCO4 rs17414302 2399954 5.2 -4 1.3 -1 5.7 -1 9.6 -1 2.8 -2 1.2 -1 2.9 -1 4.3 -1 

TMCO4 rs17414302 2399978 9. -4 1.3 -2 6.0 -1 5.5 -1 6.0 -2 5.8 -1 2.5 -2 3.1 -1 

TMCO4 rs17414302 t2399977 9. -4 1.3 -2 6.0 -1 5.5 -1 6.0 -2 5.8 -1 2.5 -2 3.1 -1 

PINK1 rs17414302 2324112 6.4 -2 5.8 -3 4.6 -1 5.4 -2 8.5 -1 6.0 -1 4.6 -1 5.5 -4 

TMCO4 rs17414302 2399969 9.8 -2 7.4 -1 6.0 -1 2.1 -1 5.6 -4 7.6 -1 6.3 -1 7.7 -1 

RAP1GAP rs17414302 2400695 1.9 -1 5. -4 4.3 -1 8.8 -1 5.1 -1 1.4 -1 2.0 -1 1.2 -1 

EIF4G3 rs17414302 2400449 3.4 -1 4.6 -1 5.1 -1 7 -4 1.2 -1 7.6 -1 7.0 -1 2.3 -1 

RAP1GAP rs17414302 2400691 7.6 -1 8. -4 4.8 -1 8.1 -1 5.6 -1 5.6 -1 2.8 -1 4.2 -1 

Table S1. Genes with expression levels significantly associated with one of SNPs identified as significant either in 
condFDR or in conjFDR analyses (Table 1) according to Braineac database (http://www.braineac.org). First column 
(Gene) represents the gene symbol. Second column (SNP) shows the rs number of the SNP that affects gene 
expression. Third column (exprID) indicates the identification number of exon-specific probeset affected by the SNP 

n the exon level). 
Fourth column (aveALL) demonstrates p-value for average expression across all 10 brain tissues available in 
Braineac. The remaining 7 columns contain eQTL p-values for 7 different brain regions: HIPP (hippocampus), 
occipital OCTX (cortex, specifically primary visual cortex), PUTM (putamen), SNIG (substantia nigra), TCTX 
(temporal cortex), THAL (thalamus) and WHMT (intralobular white matter). Significant p-values (< 0.001) are 
highlighted in red. The remaining 3 brain regions available in Braineac: cerebellar cortex, frontal cortex and medulla 
(specifically inferior olivary nucleus) are not included in the table because none of the genes affected by identified 
SNPs have significantly altered expression level in these tissues. 

 

Evaluation of the detected ADHD loci in an independent study of ADHD symptoms 



SNP Chr region Position 
Effect size p-value

EAGLE PGC EAGLE PGC 

rs17414302 1p36.12 20976535 -0.293 -0.090 -1 -4 

rs618678 1p34.2 44133299 -2.364 -0.053 -2 -5 

rs4324303 2p24 13817678 -0.827 -0.079 -1 -7 

rs412458 5q14.3 88029627 0.230 0.061 -1 -5 

rs4477079 8q21.3 93059038 0.170 -0.071 -1 -6 

Table S2. The most significant SNPs in the loci identified by condFDR/conjFDR, their effect sizes and association 
p-values in PGC ADHD GWAS and EAGLE GWAS of ADHD symptoms. 
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