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Factors aff ecting the reversal of antimicrobial-drug 
resistance
Pål J Johnsen, Jeff rey P Townsend, Thomas Bøhn, Gunnar S Simonsen, Arnfi nn Sundsfj ord, Kaare M Nielsen

The persistence or loss of acquired antimicrobial-drug resistance in bacterial populations previously exposed to drug-
selective pressure depends on several biological processes. We review mechanisms promoting or preventing the loss 
of resistance, including rates of reacquisition, eff ects of resistance traits on bacterial fi tness, linked selection, and 
segregational stability of resistance determinants. As a case study, we discuss the persistence of glycopeptide-resistant 
enterococci in Norwegian and Danish poultry farms 12 years after the ban of the animal growth promoter avoparcin. 
We conclude that complete eradication of antimicrobial resistance in bacterial populations following relaxed drug-
selective pressures is not straightforward. Resistance determinants may persist at low, but detectable, levels for many 
years in the absence of the corresponding drugs.

Introduction
Over the past 6 decades, bacterial populations have 
responded to the selective pressure of antimicrobial 
drugs by evolving resistance to all commercially available 
agents.1 Decreased discovery rates of new classes of 
antimicrobial agents have substantiated a notion that, for 
some bacterial species, we might face clinical infections 
for which there are no treatment options.2,3 The frequency 
of acquired resistance in the targeted bacterial population 
is positively associated with the consumption of 
antimicrobial drugs. France, Spain, and Portugal were 
the European countries with the highest per head, non-
hospital antimicrobial-drug consumption levels in 1997.4 
These countries have also reported the highest prevalence 
of penicillin non-susceptible Streptococcus pneumoniae 
(PNSP) and β-lactamase producing Haemophilus 
infl uenzae.5 Correspondingly, countries with low levels of 
antimicrobial consumption report low frequencies of 
resistance.6–9 The levels of resistance from country to 
country are consistent with empirical and theoretical 
studies that have identifi ed the volume of drug use as the 
major cause of increased frequency of resistance.10,11

Despite the well-described correlation and strong 
theoretical basis for the prediction of resistance 
development, few epidemiological studies have recorded 
temporal changes in the frequency of resistance to a 
specifi c drug when the volume of drug consumption in 
the community is deliberately reduced. One highly cited 
study12 reported a 50% reduction in the proportion of 
macrolide-resistant group A streptococci in Finland 
following reduced consumption of macrolides. Several 
attempts have also been made to reduce the frequency of 
PNSP through decreased usage of antimicrobial agents. 
A successful intervention was reported in Iceland, where 
reduced consumption levels of antimicrobials were 
followed by a decrease in the frequency of PNSP from 
20% to 12%.11 A reduction in PNSP-colonisation rates 
from 52·5% to 34·5% was also obtained in France after 
antimicrobial prescriptions were reduced by 19%.13 
Recently, Dagan and colleagues14 reported on seasonal 
variations in antimicrobial prescription patterns: higher 
antimicrobial consumption during winter was associated 

with higher proportions of resistant S pneumoniae. When 
prescription rates declined during the summer, a 
substantial reduction in antimicrobial-drug-resistant 
S pneumoniae was reported among Jewish children. 
Notably, the same level of seasonality could not be 
observed among Bedouin children in the same period, 
probably because they had a higher year-round level of 
antimicrobial use. However, other studies have not been 
able to associate overall reduced consumption levels of 
antimicrobials in the community with reduced levels of 
resistance in S pneumoniae.15,16 Perhaps most disturbing 
was a study on sulfonamide-resistant Escherichia coli in 
the UK, where a 98% decrease in sulfonamide 
prescriptions during the 1990s was followed by a 6·2% 
increase in the frequency of sulfonamide resistance.17 A 
follow-up study showed that sulfonamide resistance 
persisted undiminished in E coli 5 years later.18

These contrasting results clearly indicate that the fate 
of antimicrobial-resistance determinants, following a 
signifi cant reduction in the selective pressure, depends 
on factors other than drug consumption alone. Several 
processes reduce the reversal of acquired antimicrobial-
drug resistance in the absence of the corresponding drug. 
These processes include rates of reacquisition (facilitated 
by ongoing horizontal gene transfer [HGT] and 
spontaneous mutation events), mutation-based 
alterations in microbial physiology to reduce the fi tness 
costs of acquired-resistance determinants, directional 
selection of genetically linked traits, and the presence of 
systems regulating segregational stability of extra-
chromosomal elements carrying resistance determinants. 
These processes may act alone or in concert to determine 
the fate of resistance determinants in the larger bacterial 
population, and determine whether the acquired-resistant 
phenotypes will subsequently be replaced with susceptible 
phenotypes (ie, reversal of resistance; see fi gure 1) within 
relevant time scales. In the following sections, each 
process will be discussed.

Rates of reacquisition of antimicrobial resistance
Bacteria acquire antibiotic resistance by spontaneous 
mutations or by HGT through the processes of 
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conjugation, transformation, and transduction. The rate 
at which bacteria evolve or reacquire resistance by these 
means is a crucial component of any model developed to 
enhance control of the reversal of resistance. Spontaneous 
mutation to a resistant phenotype is often the fi rst means 
of reacquisition considered. However, rates of 
spontaneous mutation are generally too low to undermine 
the reversal of resistance in drug-free environments 
through the recurrent generation of resistant mutants—
although bacteria with elevated mutation rates (mutators) 
have been suggested to play a part in pathogenicity and 
resistance development.19,20 Mutator phenotypes that have 
elevated mutation rates, mainly due to defective DNA-
repair mechanisms, have been shown to be common in 
both natural and pathogenic isolates of E coli and 
Salmonella spp.19,21 On a cell-by-cell basis, increased 
mutation rates straightforwardly increase the frequency 
of resistant phenotypes. However, the population eff ects 
of mutators depend on the level of environmental 
adaptation of the bacterial population to its environment. 
Mutators are unsuccessful in a constant environment to 
which the bacterial population is well adapted.22 Under 
these constant conditions, the negative eff ect of 
deleterious mutations on host fi tness outweighs that of 
the less frequent benefi cial mutations. The host fi tness 

eff ect may however be reversed in new or fl uctuating 
environments, such as in hospital settings, where bacteria 
face bottlenecks and periodic strong directional selection. 
A number of studies have pointed out that clinical isolates 
of Pseudomonas aeruginosa, E coli, and Neisseria 
meningitides have elevated mutation frequencies, 
suggesting selection of mutator phenotypes.19,23–25 
Population dynamic models have shown that mutators 
may transiently increase and persist at high frequencies 
when multiple mutations are needed for an adaptive 
character,21 and even for single mutations if these 
benefi cial mutations occur fi rst in the mutator 
subpopulation.26

Bacterial acquisition of resistance determinants 
through HGT,27,28 in the context of reversal of resistance, 
is important in at least two ways. First, a high rate of 
HGT may undermine reversal of resistance by directly 
supplying resistance determinants from resistant strains 
to susceptible strains within the same population. Little 
is known about actual horizontal transfer rates outside of 
the laboratory. However, population dynamic models 
supported by experimental studies show that the rate of 
conjugal plasmid transfer may match the rate at which 
plasmids are lost by segregation in E coli populations.29,30 
If plasmid transfer balances the eff ect of segregation, the 
fate of a plasmid as a genetic parasite is dependent on the 
fi tness cost of the plasmid only. In this regard, it is 
important to note that conjugative plasmids may have 
very high transfer frequencies even though the donor 
ability varies in a heterogeneous population.31,32 Dionisio 
and colleagues31 showed in mixed cultures of E coli donor 
and recipient cells that plasmid R-1 transconjugants 
increased several orders of magnitudes in frequency after 
only 5 days in serial transfer cultures. These experiments 
support the notion that the infl uence of recurring HGT 
on reversal of resistance that has occurred via plasmid 
loss may be substantial. Second, conjugative elements 
harbouring antimicrobial-resistance determinants might 
escape negative selection of their host by rapid transfer to 
other host genetic backgrounds (ie, non-resistant 
bacterial strains and species) that may experience 
diff erent selective conditions. This escape from negative 
selection may be of particular importance for broad host 
range extra-chromosomal elements such as Inc18 
plasmids, and for conjugative transposons.33,34

Relative fi tness costs of antimicrobial-resistance 
determinants
Both in-vitro and in-vivo studies have demonstrated that 
newly acquired antimicrobial-resistance traits impose a 
biological cost in terms of reduced relative fi tness of the 
host bacterium when compared with their susceptible 
counterparts in drug-free environments.35–40 For example, 
resistance to streptomycin due to point mutations in rpsL 
in E coli reduces the translation rate, and consequently the 
growth rate, when compared with E coli wild type cells.39,40 
The acquisition of a mobile genetic element such as a 
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Figure 1: The processes governing reversal of antimicrobial-drug resistance in bacterial populations
The presence of an antimicrobial drug selects for resistant strains rendering an increasing fraction of the 
population resistant. Removal of the selective pressure (eg, by suspending drug usage) can lead to various 
outcomes. If a biological cost is associated with carriage of antimicrobial-drug resistance (A) the frequency of 
resistance will decline to a level where resistance is regenerated by mutations or by HGT (marked with an asterisk). 
The biological cost of resistance may be decreased over time through compensatory mutations (B) that reduce the 
rate at which resistant clones are outcompeted by susceptible counterparts. Other population processes (C), alone 
or in concert, might further undermine the reversal of resistance. These processes include linked selection of 
resistance determinants with other benefi cial traits, reacquisition of resistance determinants through frequent 
HGT, and postsegregational killing systems that maintain plasmid-carrying cells in the bacterial population (ie, 
stability of resistance). A reintroduction of the antimicrobial agent (D) will lead to a rapid increase in the frequency 
of resistance. 
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plasmid that encodes proteins conferring anti microbial 
resistance should generally reduce the growth rate due to 
the extra burden of replication and gene expression. From 
a population perspective, the diff erence in relative fi tness 
between susceptible and resistant bacteria will lead to 
reduced growth rates or transmission effi  cacy, or both, 
and hence lower frequencies of resistant phenotypes. 
Eventually, these fi tness costs will lead to elimination of 
newly resistant strains or reduction of their frequency to a 
minimal level representing the rate at which the resistance 
is regenerated by mutations or HGT.

Of course, a variety of mutations may confer resistance 
to the same antibiotic, and the fi tness cost of each mutant 
may be distinct. Gagneux and colleagues41 recently 
presented data from in-vitro generated rifampin-resistant 
Mycobacterium tuberculosis mutants showing fi tness costs 
(ie, relative fi tness compared with a rifampin-susceptible 
ancestor) across a range of 5–40%. Consistent results 
were also presented by Rozen and colleagues42 on 
fl uoroquinolone-resistance mutations in S pneumoniae. 
For large populations in an environment without 
selection for resistance, the expected reversal of resistance 
would be directly proportional to the magnitude of the 
biological cost of resistance determinants over time. 
Resistance would disappear, or at least decrease to the 
frequency of regeneration, in a predictable manner.

However, bacteria might acquire compensatory 
mutations that reduce the host-fi tness cost of the 
resistance trait. Compensatory mutations have been 
shown in vitro, in animal experiments, and have been 
indicated in clinical situations.35,38,40,41,43–46 In bottlenecked 
populations (such as serial transfer cultures or microbial 
host-to-host transmission models), resistant strains 
carrying fi tness-compensatory mutations are unlikely to 
revert to susceptibility. This persistence occurs because 
more compensatory mutation loci exist than susceptibility 
reversions.40 Moreover, new spontaneous mutations 
restoring susceptibility might lead to lower host fi tness 
when present in a genetic background that is well adapted 
to resistance.40,47 Thus, the original fi tness-restoring 
compensatory mutations in the resistant population can 
result in an adaptive valley in the population genetic 
landscape, where susceptible revertants are less fi t than 
their resistant counterparts. Consistent with this concept, 
some resistant strains show increased fi tness when 
compared to their susceptible counterparts.38,45,46 When 
resistant strains are more fi t than their susceptible 
counterparts, the frequency of resistance will not decline 
simply by removing selective antimicrobial pressures, 
and an intervention-based reversal of antimicrobial 
resistance becomes an increasingly diffi  cult challenge.

Linked selection and segregational stability of 
resistance determinants
Physical linkage of several resistance determinants on 
the same genetic element enables genetic hitch-hiking of 
the unselected determinant through positive selection of 

the other. The presence of several resistance genes on the 
same replication unit (plasmid or other horizontally 
mobile elements) is widespread in the bacterial world.48–51 
Physically linked benefi cial host genes (eg, virulence 
genes or heavy metal resistance) can favour persistence 
of other resistance determinants that are not selected for. 
An example is the fusidic acid and cadmium resistance 
determinants that are present on pUB101 of Staphylococcus 
aureus.52 Selection of bacteria in environments high in 
fusidic acid will simultaneously maintain cadmium 
resistance, even when there is no cadmium in the 
environment, and vice versa.

Antibiotic-resistance determinants can also be linked to 
benefi cial genes in the chromosome. One example is the 
link between epidemicity and antibiotic resistance (for a 
comprehensive review see Martinez and Baquero).53 For 
some nosocomial pathogens, a few clones (S aureus)54,55 or 
clonal complexes (Enterococcus faecium)56,57 have rapidly 
spread worldwide. It is likely that antibiotics have played a 
role in restricting diversity during their evolution and 
spread.58,59 It is also evident that the antibiotic-resistance 
determinants in these epidemic clones are physically 
linked to genes that constitute a genetic landscape highly 
adapted for host-to-host transmission and colonisation. 
Thus, increased frequencies of resistance to a given 
antibiotic may not be causally linked to increased 
consumption of the correspondent drug, but rather 
through selection for another transmission or colonisation 
factor. A compelling example was provided in Iceland 
where, despite a substantial reduction in antibiotic 
prescriptions, increased frequencies of resistance to 
multiple antibiotics among PNSP were reported between 
1993 and 1998. This surprising result was due to the 
effi  cient spread of the Spanish–Icelandic PNSP clone in 
the community, possibly due to little or no herd immunity 
in the human population.60 Conversely, increased levels of 
herd immunity in the human population might lead to 
reduced frequency of resistance through negative selection 
of immunological markers of the bacterial strain that are 
genetically linked to the resistance determinants. This 
may occur as a consequence of specifi c clones spreading 
through the host population or vaccination strategies.

Physical linkage of resistance determinants to plasmid 
stability systems may also infl uence persistence in the 
absence of drug-selective pressures. Plasmid stability 
depends upon multimer resolution (mrs), active 
partitioning (par), and postsegregation killing (PSK) 
systems.61 PSK systems promote plasmid maintenance 
through selective killing of plasmid-free cells. These 
systems have also been called plasmid addiction systems62 
or toxin–antitoxin loci.63 A PSK system consists of a toxin 
and an antitoxin that are coexpressed. If the plasmid is 
lost, the bacterium is killed or impaired as a result of the 
higher cytoplasmic stability of the toxin compared with 
the antitoxin.61–63 A PSK system that selectively kills or 
impedes the growth of plasmid-free daughter cells, 
restricts loss of resistance from the bacterial population 
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due to random plasmid loss, and would contribute 
substantially to the persistence of plasmid-encoded 
resistance in the absence of antimicrobial selection.

Eff ects of reduced consumption of antimicrobial 
drugs
Opposing results have been reported on the eff ects of 
reduced drug consumption levels in the community.12,17 
No study has reported the complete reversal of acquired 
drug resistance in bacterial populations that are no 
longer exposed to specifi c antimicrobial drugs. However, 
such analyses based on drug prescription and resistance 
surveillance data are often hampered by the fact that 
antimicrobials are rarely entirely removed from the 
environment, although they may no longer be used for 
certain human or veterinary purposes. Thus, sporadic 
exposure to antimicrobials (periodic selection) may 
subtly but forcefully maintain resistant populations. 
Long-term studies of the changes in antimicrobial-
resistance patterns in bacterial populations from 
environments where usage of a specifi c antimicrobial 
drug has been completely stopped have rarely been 
possible, but such studies are highly desirable for 
analysis of the fate of resistance determinants in the 
absence of positive selection. In the following section, 
we present a case study of the persistence of glycopeptide-
resistant enterococci (GRE) after the presumably 
complete removal of glycopeptide-selective pressures. 

A case study on the reversal of antimicrobial 
resistance
In 1993, researchers from the UK and Germany presented 
evidence for community reservoirs of GRE.64,65 GRE were 
isolated from sewage (UK, Germany), farm animals (UK), 
and uncooked chicken (UK). During the late 1990s 
isolations of GRE from animals and non-hospitalised 
people were reported from several European countries.66–71 
Soon, a causal relation between avoparcin use in animal 
husbandry and the occurrence of GRE was established.66,68,69,72 
Avoparcin resistance confers cross-resistance to 
vancomycin, an important antimicrobial agent for the 
treatment of multiresistant Gram-positive infections in 
human beings.73 As a consequence of the reported link 
between the use of avoparcin as an animal growth promoter 
and the occurrence of GRE, avoparcin was abandoned in 
Norway and Denmark in 1995, Germany 1996, and in 
remaining countries of the European Union in 1997.

After the use of avoparcin was discontinued, reports 
from Italy, Germany, the Netherlands, and Denmark 
showed an expected decline in the proportion of GRE in 
animals and humans, suggesting a successful 
intervention.70,74–77 However, studies from Norway and 
Denmark showed GRE persistence on poultry farms up 
to 8 years after the avoparcin ban.78–80 These studies 
indicate that, even though the frequencies of GRE had 
declined immediately after the ban on avoparcin, GRE 
persisted in the farm environments. Surveillance data 
from Danish poultry farms reveal that the steep decline in 
the proportion of glycopeptide-resistant E faecium (GREF) 
that occurred in the fi rst 3 years after the ban on avoparcin 
was followed by more moderate declines between 1998 
and 2007.8 A plot of the available Norwegian E faecium 
surveillance data together with the complete Danish data 
set is consistent with a single pattern of resistance decline 
(fi gure 2). The data suggest that the proportions of GREF 
have tended toward stabilisation since 2001, with more 
than 1–2% of the enterococcal population being 
glycopeptide resistant.6 These data show the persistence 
of glycopeptide-resistance determinants in avoparcin-free 
environments up to 12 years after the ban in Norway and 
Denmark, and provide a rare case study on the eff ect of 
abolished drug consumption (avoparcin) on corresponding 
resistance determinants (glycopeptide resistance) in 
bacterial populations. In the following sections key 
processes aff ecting the reversal of glycopeptide resistance 
are discussed. 

Acquisition of glycopeptide-resistance 
determinants in enterococci 
Acquired glycopeptide resistance in enterococci is 
encoded by six diff erent genotypes: vanA, vanB, vanD, 
vanE, vanG, and vanL.81,82 Resistance based on the vanA 
genotype is inducible, is only expressed in the presence 
of glycopeptides,83 is encoded by Tn1546 (also designated 
the vanA gene-cluster), and is the only genotype found in 
the Norwegian and Danish agricultural reservoirs. The 
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Figure 2: Occurrence of glycopeptide-resistant Enterococcus faecium in Danish and Norwegian poultry samples
Percentage of glycopeptide resistant E faecium (GREF) in Danish and Norwegian poultry samples following the 
1995 ban on the glycopeptide growth promoter avoparcin. The plotted line is based on the complete Danish data 
sets where E faecium were isolated from cloacal-swab samples before susceptibility testing.8 The Norwegian 
proportions of GREF among collected E faecium isolates were determined from both faecal and meat samples.6 
E faecium isolated from meat are of faecal origin and the GREF proportions in infected meat are most likely directly 
refl ecting the proportions in faeces. No GREF were detected among Danish faecal E faecium samples in 2006.8 
However, GREF were isolated from Danish poultry meat samples in 2006, suggesting that GREF occurrence below 
1–2% is close to the detection limit of the surveillance programme.8 
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original Tn1546 (10·8 kbp) contains nine genes 
responsible for regulation of the gene cluster, resistance 
to vancomycin and teicoplanin, and transposon 
movement.84

Several lines of evidence suggest substantial horizontal 
transfer of Tn1546. Identical Tn1546 elements, 
predominantly plasmid associated, are present in a wide 
variety of diff erent enterococcal strains and reservoirs.85–87 
Moreover, plasmid-associated Tn1546 elements easily 
transfer under both in-vitro and in-vivo conditions.88–92 In 
a recent study,80 94% of Norwegian GRE isolates 
harboured a common plasmid-mediated Tn1546-junction 
fragment, supporting the rapid spread of a specifi c extra-
chromosomal Tn1546 containing element. Although 
these data suggest repeated HGT of plasmid mediated 
Tn1546, it is neither clear to what extent such transfer 
might occur in typical farm environments nor to what 
extent repeated HGT may counteract reversal of 
glycopeptide resistance. In-vivo data indicate that 
diminishing plasmid frequency due to segregation 
instability and competition from plasmid-free cells might 
have been overwhelmed by repeated plasmid transfer.90 
These data suggest that frequent HGT not only counteract 
resistance loss due to ineffi  cient plasmid segregation, 
but also the negative fi tness eff ect caused by a decreased 
reproduction rate for plasmid carrying strains. 

The fi tness cost of carrying glycopeptide-
resistance determinants
The relative fi tness diff erence between resistant and 
susceptible strains is the key factor controlling the 
frequency of resistance in bacterial populations.1,93 Implicit 
in the reasoning behind the European avoparcin bans 
was the hypothesis that glycopeptide-resistant enterococci 
are less fi t than their susceptible counterparts, and that 
the glycopeptide-susceptible population would eventually 
outcompete and replace the resistant population.

The published work suggests that glycopeptide 
resistance in farm environments is frequently located on 
plasmids.80,89,94 The only study that experimentally 
investigated the biological cost of a vanA plasmid 
suggested a 4% reduced fi tness relative to the plasmid-
free ancestor.90 Recently, an in-vivo colonisation and 
transfer study revealed that a plasmid (pVEF1)95 from a 
Norwegian poultry farm was stably maintained in the 
recipient for more than 20 days.88 Interestingly, the ratios 
of exconjugants and plasmid-free recipient strains were 
stable throughout the experiments, suggesting little if 
any biological cost of the newly acquired glycopeptide-
resistance plasmid.

The rapid decline in GREF occurrence following the 
ban on avoparcin (fi gure 2) is consistent with a fi tness 
cost associated with glycopeptide resistance. A plausible 
explanation for the seemingly reduced rate of GREF 
decline between 1998 and 2007 is the reduction of putative 
fi tness costs associated with glycopeptide-resistance 
determinants. However, it should be noted that a reduced 

rate of GREF decline could be due to other mechanisms, 
such as transient episodes of linked selection or clonal 
shifts in the GREF populations, or both.

Linked selection and segregation stability of 
glycopeptide-resistance determinants
A potential mechanism for persistence of plasmid-
mediated vanA GREF is linked selection. Physical linkage 
between vanA glycopeptide resistance and both CuSO4 
and erythromycin-resistance determinants has been 
reported on GREF plasmids of animal origin.48,94 For 
instance, Hasman and colleagues94 reported that 36% 
(10/29) of E faecium isolated from Danish poultry 
harboured the tcrB gene, mediating reduced susceptibility 
to the growth promoting agent CuSO4. However, only 
10% (3/29) were also resistant to glycopeptides, and 
despite the lack of evidence for physical linkage in GREF 
of poultry origin, it is likely that CuSO4 was coselected 
with glycopeptide resistance in Danish poultry. In 
Norway, no resistances to CuSO4 or commonly used 
antimicrobials have been detected in transconjugants,89 
or in several sequenced plasmids95,96 supporting a general 
absence of physically linked resistance determinants. 
Avoparcin was the only antibacterial feed additive used in 
substantial quantities in Norway from 1986 to 1995. 
Alternative growth promoters did not replace avoparcin.6 
However, ionophore coccidiostats are still used in 
Norwegian poultry production, and total sales have been 
stable at roughly the same level as before the abolishment 
of avoparcin.6 Reduced susceptibility to narasin appears 
to be common in E faecium isolated from Norwegian 
poultry farms; however, it has not been associated with 
glycopeptide resistance.6 The situation is diff erent in 
Sweden, where an increased prevalence of vanA GREF in 
poultry faecal samples is probably due to clonal expansion 
of E faecium resistant to vancomycin, low levels of 
erythromycin (8–16 mg/L), and reduced susceptibility to 
narasin.97 Thus, the continued use of either narasin or 
erythromycin, or both, probably allows for sustained but 
low proportions of GREF through genetic hitch-hiking.

Indirect stabilisation of plasmid-encoded glycopeptide 
resistance determinants through physical linkage to PSK 
systems might also infl uence long-term persistence in 
antibiotic-free environments. A ω-ε-ξ-like PSK system 
was linked to the vanA genes widespread on Norwegian 
poultry farms previously exposed to avoparcin.80,89,95 One 
of the plasmids (pVEF1) harbouring this putative PSK 
system showed complete segregational stability in a serial 
transfer assay,88 and the ω-ε-ξ-like operon was able to 
stabilise pAT18 in Enterococcus faecalis.96 The ω-ε-ξ operon 
of a streptococcal plasmid (pSM19035) stabilised plamids 
in both Bacillus subtilis and E coli.98 It is tempting to 
speculate on the possibility that Tn1546 linkage to PSK 
systems on conjugative plasmids constitutes the basis for 
the persistent GREF core populations in the Norwegian 
farm environments, continuously addicting new genetic 
backgrounds to the plasmids through conjugal transfer. 
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Conclusions
The processes contributing to the reversal of antimicrobial 
resistance are complex and will vary with antimicrobial-
consumption patterns, bacterial species, lifestyle, and 
environment. It is increasingly clear that antimicrobial 
resistance is opposite to the good things in life: it is easy 
to get, but hard to lose.99 On the positive side, the abolition 
of a given antimicrobial drug can, when resistance 
frequencies are very high, relatively quickly reduce the 
frequency of resistance. Thus, human exposure rates to 
antimicrobial-resistant bacteria and their transferable 
genetic elements will be substantially reduced. On the 
downside, it is also clear that resistant phenotypes may 
persist at low but detectable frequencies for many years 
after removal of the selective pressures.

In conclusion, complete eradication of antimicrobial-
resistance determinants once present in bacterial 
populations by simply removing drug-selective pressures 
appears not to be straightforward. A more detailed 
understanding is necessary of the species and strain 
specifi c biological cost of resistance with respect to both 
spontaneous mutations and transferable units, the 
contribution of in-vivo reacquisition rates of resistance 
determinants (by repeated HGT), and linked selection 
and segregational stability of extra-chromosomal 
elements, to more accurately predict the eff ect of various 
intervention strategies on the reversal of resistance in 
bacterial species and populations.   
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