DIABETES, OBESITY AND METABOLISM A JOURNAL OF PHARMACOLOGY AND THERAPEUTICS

Carbohydrate quantity in the dietary management of type 2 diabetes – a systematic review and meta-analysis

Journal:	Diabetes, Obesity and Metabolism
Manuscript ID	DOM-18-0387-RA.R2
Manuscript Type:	Review Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Korsmo-Haugen, Henny-Kristine; Hogskolen i Oslo og Akershus Avdeling for helse ernaring og ledelse, Department of Health, Nutrition and Management Brurberg, Kjetil; Nasjonalt folkehelseinstitutt, Division for Health Services; Western Norway University of Applied Sciences, Centre for Evidence Based Practice Mann, Jim; University of Otago, Human Nutrition&Medicine Aas, Anne-Marie; Oslo Universitetssykehus, Division of Medicine, Dep. Clinical Services, Section of Nutrtion and Dietetics; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine
Key Words:	dietary intervention, meta-analysis, glycaemic control, dyslipidaemia, systematic review, type 2 diabetes

7/2

2 3 4	1 2	Carbohydrate quantity in the dietary management of type 2 diabetes – a systematic review and meta-analysis			
5 6	3	Authors: Henny-Kristine Korsmo-Haugen, Kjetil Gundro Brurberg, Jim Mann, Anne-Marie			
7 8	4	Aas			
9 10	5	Henny-Kristine Korsmo-Haugen			
11 12	6	Faculty of Health Sciences			
13 14	7	Department of Health, Nutrition and Management			
15 16	8	Oslo and Akershus University College of Applied Sciences			
17 18	9	Norway			
19 20	10	Ph +47 41455996			
21 22	11	E-mail: henny-kristine.haugen@griffithuni.edu.au			
23	12				
24 25	13	Kjetil Gundro Brurberg			
26 27	14	Division for Health Services			
28 29	15	Norwegian Institute of Public Health, Oslo/			
30 31	16	Western Norway University of Applied Sciences,			
32 33	17	Centre for Evidence Based Practice			
34 35	18	Norway			
36	19	E-mail: kjetilgundro.brurberg@fhi.no			
37 38	20				
39 40	21	Jim Mann			
41 42	22	Department of Medicine,			
43 44	23	University of Otago, Dunedin,			
45 46	24	New Zealand			
47 48	25	Phone + 64 3 4797719.			
49 50	26	E-mail: jim.mann@otago.ac.nz			
51	27				
52 53	28	Anne-Marie Aas (corresponding author)			
54 55 56 57 58 59	29	Oslo University Hospital, Division of Medicine, Department of Clinical Services, 1			

1		
2 3	1	Section of Nutrition and Dietetics/
4 5	2	Faculty of Medicine, Institute of Clinical Medicine, University of Oslo
6 7	3	Norway
8 9	4	Ph +47 47302912
10 11	5	E-mail: <u>a.m.aas@medisin.uio.no</u>
12 13	6	
14	7	
15 16	8	Short running title: Carbohydrate quantity and type 2 diabetes
17 18	9	Word count of abstract: 255
19 20	10	Word count of main text: 4250
21 22	11	Number of references: 59
23 24	12	Number of tables: 1
25 26	13	Number of references: 59 Number of tables: 1 Number of figures: 4
27	14	
28 29	15	
30 31		
32 33		
34 35		
36		
37 38		
39 40		
41		
42 43		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 58		-
58 59		2
60		

Aims: This systematic review and meta-analysis compares the effects of low carbohydrate diets (LCDs) on body weight, glycaemic control, lipid profile and blood pressure with those observed on higher carbohydrate diets (HCDs) in adults with type 2 diabetes. Methods: MEDLINE, EMBASE, CENTRAL, CINAHL, Food Science Source and SweMed+ databases were systematically searched to identify randomised controlled trials (duration ≥ 3 months) investigating the effects of a LCD compared to a HCD in the management of type 2 diabetes. Data were extracted and pooled using a random effects model and expressed as mean differences and risk ratio. Subgroup analyses were undertaken to examine the effects of duration of intervention, extent of carbohydrate restriction and risk of bias. The certainty of evidence was assessed using GRADE. Results: Of the 1589 studies identified, 23, including 2178 participants, met inclusion criteria. Reductions were slightly greater on LCDs than HCDs for HbA_{1c} (-1.0 mmol/mol, CI -1.9, -0.1 [-0.09%, CI -0.17, -0.01]) and triglycerides (-0.13 mmol/l, CI -0.24, -0.02). Changes in weight, HDL- and LDL-cholesterol, total cholesterol and blood pressure did not differ significantly between groups. Subgroup analyses suggested that the difference in HbA1c was only evident in studies with duration of ≤ 6 months and with high risk of bias. *Conclusions*: The proportion of daily energy provided by carbohydrate intake is not an important determinant of response to dietary management, especially when considering longer term trials. A range of dietary patterns including those traditionally consumed in Mediterranean countries seems suitable for translating nutritional recommendations for people with diabetes into practical advice. Systematic review registration number: CRD42013005825.

to Review only

1 INTRODUCTION

Dietary advice is generally accepted as a cornerstone of the management of type 2 diabetes $(T2DM)^{1}$. More than 80% of all patients presenting with T2DM are overweight or obese ^{2,3}. and recommendations relating to energy intake and physical activity aimed at weight management are a core component of the treatment of T2DM worldwide ⁴⁻⁷. However, advice regarding the macronutrient composition has varied over time⁸. With occasional exceptions, carbohydrate restriction was a key component of diabetic dietary prescriptions for much of the 20th Century. In the 1960's it became evident that CHD rates were exceptionally high in people with diabetes and the high fat (predominantly saturated fat) intakes associated with the reduction in carbohydrate were presumed to be a contributory factor. This observation together with the demonstration of the beneficial effects of dietary fibre on glycaemic control and blood lipids in the 1970s led to a change in the nutritional approach. Fibre-rich, low glycaemic index carbohydrates were encouraged and total carbohydrate intake was liberalized in advice to people with diabetes as well as populations at large $^{4,9-14}$.

More recent reports, have suggested the potential of appreciable reductions in carbohydrate to facilitate weight reduction and improve glycaemic control, insulin sensitivity, blood pressure, HDL-cholesterol and triglyceride levels to a greater extent than higher carbohydrate diets ¹⁵⁻¹⁹. However, three recent meta-analyses of trials undertaken in people with T2DM reached different conclusions regarding the merits of carbohydrate restriction in this patient group ^{16,20,21}. In order to inform an update of current European Guidelines for the management and prevention of diabetes, we have undertaken a systematic review and meta-analysis which attempts to circumvent the criticisms which have been levelled at the earlier attempts to aggregate the relevant trials ^{22,23}. More specifically we wanted to investigate whether a low-carbohydrate diet improved weight and metabolic control more than a higher carbohydrate diet in patients with type 2 diabetes.

Page 6 of 71

ו 2		
2 3		
4		
5		
6		
-		
7 8		
9		
1	0	
1	1	
1	2	
	3	
	4	
	5	
	6	
	7	
1	8	
ו ר	9	
2 ว	1	
2	901234567890	
2	∠ २	
2	ر ۵	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3		
3		
	4	
	5	
	6	
3	7	
3		
	9	
	0	
4		
4		
4		
4 4	4	
	5 6	
4		
	8	
	9	
	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	Q	
5	9	
6	0	

1

2

1

MATERIALS AND METHODS

3 This systematic review was carried out according to Cochrane recommendations 24 , and

4 reported in line with the PRISMA Statement ²⁵ (Supplementary table 1). The protocol for this

5 review was prospectively registered in PROSPERO (CRD42013005825).

6 Search strategy and study selection

7 We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, Food Science Source and SweMed+ for RCTs published between 8 9 1983 to January 2016. Our search terms were: (diet OR carbohydrate-restricted OR low 10 carbohydrate diet OR dietary carbohydrates OR ketogenic diet OR Atkins diet OR diabetic 11 diet) AND (type 2 diabetes OR diabetes mellitus OR type 2 OR diabetes OR non-insulin 12 dependent diabetes mellitus), using MeSH terms when available. We also searched the reference list of identified studies and performed forward citation searches to consider further 13 studies not identified by our online search. 14

We included randomised controlled trials of parallel or cross-over design with more than three 15 16 months duration in adults with type 2 diabetes. We had no restrictions regarding minimum number of included subjects. Co-morbidity was accepted, but studies including individuals 17 with impaired glucose tolerance and/or type 1 diabetes were only included whenever separate 18 19 data for patients with type 2 diabetes were provided. Trials had to compare a diet below to a 20 diet above 40% total energy (E%) from carbohydrate to be included. Complex interventions 21 consisting of elements with the potential to interfere with the effect of the dietary intervention 22 (e.g. parenteral administration or promotion of physical activity) were excluded.

We accepted studies written in English, Danish, Norwegian and Swedish. One review author
(HKH) screened all titles and abstracts, and excluded obviously irrelevant records. For the

2 3	1	remaining records, full-text articles were obtained and assessed independently for inclusion
4 5 6	2	by two authors (AMA and HKH). Any disagreements were resolved by consensus.
7 8	3	Data extraction and risk of bias
9 10 11	4	From each study we extracted the name of first author, year of publication, study design,
12 13	5	study duration, participant details, intervention diet details, markers of compliance with diets,
14 15	6	and the outcomes measured. The following outcomes were considered: weight, HbA_{1c} , lipids,
16 17	7	blood pressure and compliance to dietary intervention. Data were extracted by one author
18 19 20	8	(HKH), and verified by a second investigator (AMA).
20 21 22	9	We assessed risk of bias for the main items suggested by Cochrane ²⁴ : random sequence
23 24	10	generation, allocation concealment, blinding of participants and personnel, blinding of
25 26 27	11	outcome assessment, incomplete outcome data, selective reporting and other sources of bias.
27 28 29	12	For each study and outcome, two researchers (HKH and AMA) independently rated the seven
30 31	13	domains to low, unclear or high risk of bias.
32 33 34	14	We applied the following rules to assess the overall risk of bias for each study and outcome:
35 36	15	• Low risk: No high risk of bias, and not more than two unclear risks of bias
37 38	16	• High risk: Two or more high risks of bias, one high and more than one unclear risk, or
39 40 41	17	more than four unclear risks of bias
41 42 43	18	• The remaining articles were classified as unclear risk of bias
44 45	19	Due to the nature of delivery of dietary interventions, blinding of participants and study
46 47	20	personnel that provided dietary advice was not possible. Hence, this item was not considered
48 49 50	21	when assessing the overall risk of bias.
51 52	22	Data synthesis and analysis
53 54	23	Results were summarized qualitatively, and whenever applicable, results from available
55 56 57	24	studies were combined in meta-analysis using Review Manager (RevMan) [Computer
58 59		7

Page 8 of 71

1	program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane
2	Collaboration, 2014. We expected clinical heterogeneity among studies, and chose the
3	random-effects model. The weighting of individual trials was defined by inverse variance and
4	mantel-haenszel methods for continuous and dichotomous outcomes, respectively. We
5	calculated the mean difference (MD) for continuous outcomes, whereas dichotomous effect
6	sizes were expressed in terms of a risk ratio (RR). For trials with multiple dietary arms, we
7	pooled data for the higher-carbohydrate diet groups to create one control group ²⁴ . Crossover
8	trials were not included in meta-analysis due to short intervention period and possible
9	carryover effect. The HbA1c unit was converted from % to mmol/mol by the use of a
10	conversion calculator: http://www.ngsp.org/convert2.asp.
11	Meta-analyses were considered to be associated with heterogeneity when the I ² value was
12	above 50%, and/or the P value of the Cochrane Q test was less than 0.10 24 , and subgroup
13	analysis were used to explore possible reasons for the suggested heterogeneity. In particular,
14	we conducted post-hoc subgroup and sensitivity analyses to explore the impact of study
15	duration (≤ 6 months vs. ≥ 12 months), varying carbohydrate content in the LCD-group (very
16	low-carbohydrate diets, VLCD: 21-70 g carbohydrates and moderate LCD: 30-40 E%
17	carbohydrates) ¹⁵ and risk of bias (low vs. high).
18	
19	Two authors (AMA and HKH) independently graded ²⁶ the certainty of the evidence for diets
20	of lower carbohydrate content when compared with diets of higher carbohydrate content in
21	the management of type 2 diabetes. We assessed publication bias for a given outcome by

- 22 inspection of funnel plots.
- **RESULTS**

24 Search results and characteristics of the included studies

Page 9 of 71

1	Out of 1589 studies identified through database searches and cross reference list matching, 23
2	studies were included in the review ²⁷⁻⁴⁹ (Fig 1). Main reasons for exclusion were diet
3	intervention not being low-carbohydrate; duration of intervention being less than three
4	months; study sample consisting of individuals without type 2 diabetes and studies using a
5	non-randomised and/ or non-controlled trial design (Supplementary table 2).
6	The total participant number in the 23 articles was 2178, 1061 participants in the low-
7	carbohydrate group and 1194 participants in the control group. Two studies included
8	participants with and without type 2 diabetes ^{31,34} . In these studies, only data on the type 2
9	diabetes participants were extracted. The follow up time ranged from three months
10	28,29,32,33,38,45,46 to over three years 30 . Studies were published between 1994 27 and 2014 $^{46-49}$;
11	eight were conducted in North America ^{27,30,31,33,35-37,46} , five in Europe ^{32,38,42,45,47} , five in
12	Australia ^{28,29,41,44,48} , one in New Zealand ⁴³ , three in Israel ^{34,39,40} and one in Japan ⁴⁹ .
13	Randomised crossover design was used in four studies ^{27-29,38} , and parallel randomised control
14	trials, with one or two control groups, were implemented in 19 studies ^{30-37,39-49} .
15	A summary of findings from the included studies are presented in Table 1. Twelve studies
16	reported having included individuals who were either overweight or obese ^{31-35,37,39-41,43,44,48} .
17	Physical activity was not specifically addressed in any of the studies, but several trials
18	promoted general recommendations for physical activity.
19	The LCD was compared to either low-fat diets ^{31-34,37,42,47,49} , standard diabetes care ^{38-40,45} ,
20	high carbohydrate diets ^{27,29,41} , low-protein diets ^{30,44} , a standard protein diet ⁴⁸ , Mediterranean
21	diets ^{34,39} , high carbohydrate, low-fat diets ^{28,43} , a high wheat-fibre diet ⁴⁶ , low-glycaemic
22	index diets ^{35,36} or a high-glycaemic index diet ³⁶ . The recommended amount of dietary
23	carbohydrates in the low-carbohydrate interventions ranged from five ³⁵ to 40% ^{27-29,33,41,43-}
24	^{45,48} of the total energy intake. Among the 17 studies that assessed the actual intake of
	9

Page 10 of 71

carbohydrates throughout the study period, all but one ⁴⁸ found that the difference in carbohydrate intake was statistically significant between the LCD-group and comparator ^{28,29,32,33,36-43,45-47,49}. In six of the low-carbohydrate interventions ^{28,29,33,39,47,48}, and ten of the comparator diets ^{28,29,33-35,39,40,47-49} it was intended that participants consumed energy restricted diets that ranged from approximately 5000 kJ (1200 kcal)⁴⁰ to 7500 KJ (1800 kcal)³⁴ per day. Fifteen studies emphasized that weight reduction was a goal of the dietary intervention. Conversely, several trials permitted study participants in the intervention to eat ad libitum while limiting carbohydrate intake.

Mean duration of diabetes among participants varied from one to over 17 years and the participants frequently used medications including insulin therapy 30,31,34,35,37,41-45,47,49, anti-hypertensive drugs ^{29,30,33,36,38,43,44,46} lipid lowering medications ^{29,30,33,36-38,42-44,46} and oral hypoglycaemic agents, such as metformin 30,31,35,37,38,42,46-49, sulfonylurea 27,30,31,37,38,42,46-49 and thiazolidinedione ^{38,46,48,49}. Dietary advice was provided by health professionals, such as dietitians, nutritionists, diet counsellors ^{29,31,33-37,39-47,49}, physicians ^{42,47} and nurses ⁴² and incorporated both individual meetings and group sessions.

Risk of bias in included studies

Assessment of risk of bias is summarized in supplementary figure 1A and shown for the individual studies in supplementary figure 1B. Method of random sequence generation was reported and found adequate in 15 studies. Eight trials provided sufficient information about the proceedings of allocation concealment and they were rated as low risk. As expected, few studies blinded study participants and personnel to the dietary interventions (with the exception of one trial⁴⁰), and were thus rated as unclear risk of bias. Five studies reported blinding of outcome assessors. Furthermore, one study ²⁹ had high risk of attrition bias due to incomplete reporting of outcome data, as only compliers were incorporated in analysis and non-adhering participants were excluded. Selective reporting was found in four trials. Overall,

when using the predefined criteria, the study level assessment showed that ten trials had high
risk of bias ^{27-32,35,45,47,49}, three had low risk of bias ^{41,43,48} and the remaining ten studies were
considered as unclear risk of bias ^{33,34,36-40,42,44,46}, (Supplementary figure 1). The Funnel plots
for the different outcomes did not indicate any publication bias (Supplementary figure 2).

Body weight

Of the 20 studies that incorporated changes in body weight as an outcome, 17 provided sufficient information to be included in the meta-analysis, comprising 739 participants randomised to the LCD and 848 randomised to the HCD. Overall, LCD was not associated with greater weight loss than HCD in either short or long term studies (Figure 2A), but subgroup analysis suggested more positive results in short term studies (≤ 6 months) than in studies with longer follow up (Supplementary table 3a). Sensitivity analysis showed less difference between LCD and HCD in studies with low risk of bias than in studies with high risk of bias (supplementary table 3C). In the three cross-over studies of 3 months duration ^{28,29,38} which did not fulfill criteria for inclusion in the meta-analysis, one ³⁸ showed greater weight loss associated with LCDs. The certainty of evidence was moderate, with little heterogeneity ($I^2 = 29\%$), (Supplementary table 4).

Glycaemic control

LCD was associated with a greater overall reduction in HbA_{1c} (MD -1.0 mmol/mol, 95% CI 1.9, -0.1 [-0.09 %, 95% CI -0.17, -0.01]) in the 16 studies included in this analysis. This result
is largely driven by the results of the short term studies (Figure 2B, Supplementary table 3a),
and by trials associated with high risk of bias (Supplementary table 3C). Of the three further
short term studies not included in the meta-analysis ^{28,29,38} one ³⁸ showed greater
improvements on LCDs. The evidence was considered as having moderate certainty for this

24 outcome (Supplementary table 4).

Serum lipids and blood pressure

2 Sixteen RCTs are included in the pooled analyses of the effects on HDL-cholesterol and

3 Triglycerides, 15 studies in the analysis of LDL-cholesterol and 14 in the analysis of total

4 cholesterol. The meta-analyses showed no significant difference between groups in effect on

5 HDL-cholesterol (MD 0.04 mmol/l, 95% CI -0.01, 0.10; low evidence), LDL-cholesterol (MD

6 -0.01 mmol/l, 95% CI -0.13, 0.11; low evidence), and total cholesterol (MD 0.04 mmol/l,

7 95% CI -0.12, 0.20; low evidence), but a slightly greater reduction in triglycerides with LCD

8 (MD -0.13, 95% CI -0.24, -0.02 mmol/l; low evidence), (Figure 3D, Supplementary table 4).

9 There was evidence for considerable between-study heterogeneity for triglycerides ($I^2 = 57\%$,

10 p < 0.003), HDL-cholesterol ($I^2 = 72\%$, p < 0.0001), LDL-cholesterol ($I^2 = 64\%$, p = 0.0004)

11 and total cholesterol ($I^2 = 71\%$, p < 0.0001).

The reasons for the observed heterogeneity were explored in subgroup and sensitivity analysis. No consistent subgroup effects were observed across the three outcomes, even though HDL-cholesterol was slightly higher on LCD than HCD in long term studies (p=0.10, Figure 3B, Supplementary table 3A) and LDL-cholesterol was higher in VLCD-trials compared with moderate LCD (p=0.05, Supplementary table 3B and Supplementary figure 3). Trials with low risk of bias showed less difference between LCD and HCD for changes in HDL-cholesterol and triglyceride than trials associated with high risk of bias, whereas the results were more consistent for LDL- and total cholesterol.

Sixteen trials examined the effect of a LCD on blood pressure. As shown in Figure 4A and B,
the pooled effect from the meta-analysis indicated no significant difference in effect of the
LCD on systolic (SBP) and diastolic blood pressure (DBP) when compared to control (SBP:
MD -0.93 mmHg, 95% CI -2.24, 0.37, DBP: MD -0.21 mmHg, 95% CI -1.20, 0.79). Two of
the three studies that were not included in the meta-analyses showed a greater reduction in

1	DBP in the LCD group ^{36,38} . The certainty of evidence was considered low for both outcomes
2	due to risk of bias and imprecision (Supplementary table 4). No evidence of between study
3	heterogeneity was identified in the meta-analyses ($I^2 = 0\%$).

4 Compliance and attrition rate

By using 24-hour recalls or food records, nine out of 18 studies found that dietary intake of carbohydrates in the LCD were 5 E% within what was recommended. In seven out of nine trials that observed low compliance, participants were on VLCD with 5 to 22 E% from carbohydrates ^{31,32,34,35,37,40,42}. Four of these studies were based on an Atkins diet ^{34,35,37,40}. In the meta-analysis of attrition rates between LCD and HCD, no detectable difference in attrition was observed: RR 1.08 (95% CI 0.92, 1.27; $I^2 = 0\%$), (Figure 4C). The results were similar in trials associated with high and low risk of bias. The certainty of evidence for attrition was downgraded to low due to risk of bias and imprecision (Supplementary table 4).

14 Carbohydrate and fat quality in the diets

Seven of the included studies gave no information regarding dietary intake or only information on macronutrient distribution. Sixteen studies assessed dietary intake and 15 of these reported information regarding the nature of carbohydrate eaten (fibre, Glycemic Index or load, sucrose, key foods provided in feeding trials). In 9/15 trials the intake of fibre was higher in the HCD, while six trials reported no differences in fibre intake. GI /GL were higher in the HCD in the two studies that reported this, while the intake of sucrose was lower in the LCD in one of the three trials that reported sucrose intake. In seven of the trials unsaturated fatty acids substituted carbohydrates in the LCDs. This resulted in a significantly higher intake of unsaturated fatty acids in the LCD compared with the HCD in six of the trials that reported fatty acid composition while intake of saturated fat increased only in two of these studies

Page 14 of 71

DISCUSSION

This systematic review and meta-analysis shows that the minimally lower levels of HbA_{1c} apparent when comparing diets with very low (21 - 70g) or low (30 to 40 E%) carbohydrate content with those providing a higher carbohydrate content (greater than 40 E%) are driven by trials with a duration of six months or less and by trials associated with high risk of bias. The only consistent difference between the studies with higher and lower carbohydrate intakes was a small difference (0.13mmol/l) in triglyceride levels, but this was also most evident in trials with high risk of bias. No differences in weight, blood pressure or total, LDL and HDL cholesterol were apparent in either the relatively short or longer term trials.

Our systematic review and meta-analysis identified all relevant trials published between 1983 and January 2016 and therefore included an appreciably greater number of studies than earlier meta-analyses, thus enabling more convincing conclusions than previously possible. Other strengths included strict compliance with the established criteria for the conduct of such a review and meta-analysis, including registration and specification of methodology prior to the literature search, the involvement of two researchers to independently extract and assess the trials, and the use of GRADE methodology to evaluate the certainty of the evidence. The inevitable limitation of any such review stems from the quality of the included trials and the extent to which participants achieved adherence to prescribed diets, which in studies of free living individuals inevitably diminishes over time. The observation that trials with high risk of bias are associated with more favourable results for the LCD in many analysis highlights a potential pitfall in the interpretation of individual studies, meta-analysis and subgroup analysis. We attempted to assess compliance with prescribed diets and determine the extent to which nature of carbohydrate might have influenced outcome. While there appeared to be a relatively high level of compliance with the LCD, it was evident that the ability to follow a

1		
1 2 3	1	diet with very l
4 5	2	medications ov
6 7	3	limited informa
8 9 10	4	carbohydrate di
10 11 12	5	insulin) that ma
13 14	6	have shown. Or
15 16	7	diabetes medica
17 18	8	adjusting for di
19 20		
21 22	9	Ajala et al ¹⁶ re
23 24	10	carbohydrate, l
25 26	11	compared with
27 28	12	of benefits incl
29 30	13	patterns and co
31 32	14	that neither the
33 34 35	15	possible to dise
36 37	16	various outcom
38 39	17	carbohydrate in
40 41	18	and we used a r
42 43	19	Ajala and colle
44 45	20	the other hand,
46 47	21	control when al
48 49 50	22	which involved
50 51 52	23	weight change
53 54	24	In a mana na an
55 56	24	In a more recen
57	25	concluded that
58 59		
60		

L	diet with very low-carbohydrate content was generally poor. Furthermore, changes in
2	medications over time may have blurred effects of differences in diet composition. The
}	limited information given in the included studies suggests that particularly the very low-
Ļ	carbohydrate diet groups had a greater reduction in the use of diabetes medication (mainly
5	insulin) that may have masked a more positive impact on glycaemic control than what we
6	have shown. On the other hand, only four studies showed a significant difference in change in
,	diabetes medication between the diets and some of the studies repeated their analyses
3	adjusting for difference in medication and found that it did not alter the conclusions.
)	Ajala et al ¹⁶ reported a review and meta-analysis which examined the effects of low-
)	carbohydrate, low-GI, high-fibre, high-protein, Mediterranean, vegetarian and vegan diets
_	compared with control diets in trials continued for six months or more. They reported a range
2	of benefits including an improvement in glycaemic control associated with all these dietary
}	patterns and concluded that they were appropriate for people with diabetes. However given
Ļ	that neither the low carbohydrate nor the comparator diets were clearly defined, it is not
5	possible to disentangle the effect of carbohydrate quantity from other dietary attributes on the
5	various outcome measures. Our meta-analysis also included trials with a range of
,	carbohydrate intakes, but differences between low and higher intakes were clearly specified
3	and we used a random effects analysis, rather than a fixed effect analysis (as performed by
)	Ajala and colleagues ¹⁶) to take into account the heterogeneity of studies. Naude et al ²⁰ , on
)	the other hand, concluded that there were no differences in either body weight or glycaemic
_	control when altering carbohydrate quantity, but their meta-analysis included only five trials
2	which involved isoenergetic comparisons, thus limiting any chance of finding differences in
}	weight change or glycaemic control as a consequence of altering macronutrient distribution.

In a more recently published systematic review and meta-analysis, Snorgaard et al ²¹, like us concluded that the modestly beneficial effect on glycaemia conferred by low carbohydrate

2	
3	
4	
5	
6	
_	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

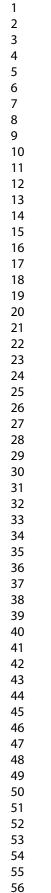
1	diets was only apparent in the short term. However, our analysis differed from their approach
2	in that we considered the outcomes of the relatively short and longer term trials separately,
3	whereas five of the eight studies providing 3-6 month data in the Snorgaard et al review were
4	also the source of the 12 month data. They also reported that the effect on glycaemic control
5	was related to the extent of carbohydrate restriction. This association was totally dependent
6	upon the findings of two trials ^{50,51} of 3 months duration that were not included in our
7	analyses because they included subjects with prediabetes ⁵⁰ or implemented an additional
8	physical activity intervention ⁵¹ . When examining the forest plots for VLCD diets and
9	moderate LCD diets separately there appeared to be a better effect of VLCD on HbA_{1c} also in
10	our meta-analysis, but post hoc subgroup analysis did not confirm this. On the contrary, the
11	subgroup analysis showed that VLCD had a less favourable effect on LDL-cholesterol
12	compared with HCD while this difference was not shown in studies using moderate LCD. The
13	period of Snorgaard et al's 21 search (2004 – 2014) was appreciably shorter than the period
14	covered by the present study and the upper cut-off used to define low carbohydrate diets was
15	45 E% whereas we chose the somewhat lower cut-off, $40 \text{ E}\%$.
16	Short term benefits of low and very low carbohydrate diets in terms of weight loss and
17	improvements in blood pressure and blood lipid profile have also been shown in
18	normoglycaemic individuals ^{18,19} . It has not been possible to disentangle whether the short

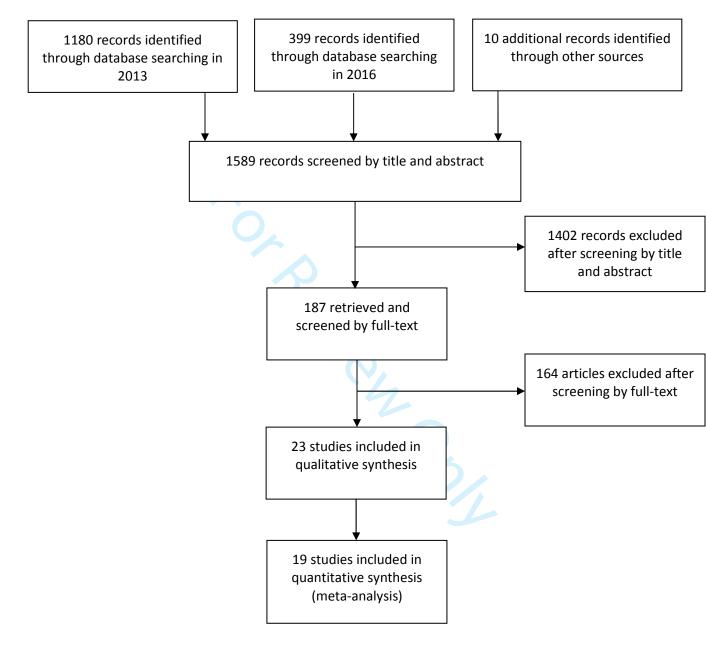
^{5,19}. It has not been possible to disentangle whether the short normoglycaemic individuals 18 term improvement in glycaemic control and a range of cardiovascular risk factors is a 19 20 consequence of the weight loss or a direct result of carbohydrate restriction and/or the consequential redistribution of the proportion of energy provided by other macronutrients. It 21 is also uncertain whether the failure to demonstrate meaningful long term benefits results 22 23 from failure to comply with advice to reduce carbohydrate or a consequence of adaptation to 24 an altered dietary pattern. Nevertheless it is clearly the longer term outcome data which are of relevance to the practical application of these findings. 25

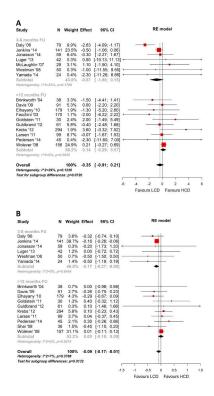
1	Several issues need to be taken into account when translating these findings into nutritional
2	advice for people with type 2 diabetes. Weight reduction was a goal in the majority of the
3	studies and the improvements seen on lower carbohydrate diets were mainly observed when
4	weight loss was achieved. Thus it is unclear whether the patient would benefit from
5	carbohydrate reduction if weight loss is not achieved. Advice regarding the proportion of total
6	energy provided by carbohydrate also needs to take into account the source and nature of
7	carbohydrate and the effects of the other macronutrients. A substantial number of studies
8	mainly carried out in the 1980s and 1990s demonstrated benefit in terms of glycaemic control
9	and cardiovascular risk factors in association with relatively high carbohydrate diets rich in
10	dietary fibre derived from legumes, vegetables and fruit ⁴ . Of particular relevance to the
11	interpretation of the results of the present analysis, is that triglyceride levels were not
12	increased even when carbohydrate intakes were high (around 60 E%) in these earlier studies
13	provided that much of the carbohydrate was derived from sources rich in dietary fibre and
14	slowly digested starches. Altered intakes of fat and protein resulting from changing the
15	proportion of energy from carbohydrate may also influence glycaemic control and indicators
16	of cardiovascular risk. Many of the LCD interventions included in our meta-analysis
17	promoted increased intake of unsaturated fat but not saturated fat. Thus the findings have no
18	direct bearing on several widely promoted low carbohydrate high fat diets in which saturated
19	fat is not restricted or may even be encouraged. Detailed dietary data was not provided in
20	many of the studies included in the meta-analysis so it is not possible at present to disentangle
21	the effects of carbohydrate quantity from carbohydrate quality and other macronutrients.
22	Finally, of the 13 studies that reported on the incidence of adverse effects only one ³⁰
23	reported worse outcome on indicators of nephropathy with the HCD. The rest of the trials
24	reported no serious or important adverse events and no difference between groups in reported
25	mild adverse effects such as mild hypoglycaemia.

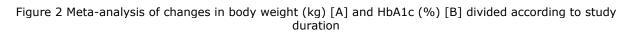
3
4 5
6
7 8
9 10
10
11 12
13
12 13 14 15 16 17
16
17 19
18 19
20
21 22
23
24 25
26
27
28 29
30
31 32
33
34 25
35 36
37
38 39
40
41 42
43
44 45
45 46
47
48 49
50
51 52
53
54 55
56
57
58 59
60

1	Further long term dietary intervention studies taking into account both amount and source of
2	carbohydrate would be helpful in refining nutritional recommendations for people with
3	diabetes. However, in practice nutrition recommendations require translation into dietary
4	patterns in order for them to be implemented. On the basis of currently available systematic
5	reviews and meta-analyses there is an appreciable body of evidence to suggest that a
6	traditional Mediterranean type diet is particularly appropriate for people with T2DM ^{16, 52-54} .
7	Mediterranean diets vary in the proportion of energy provided by macronutrients but are
8	typically rich in pulses, fruits, vegetables, and nuts with olive oil being a major contributor to
9	fat intake. Other dietary approaches including a healthy Nordic diet and vegetarian diets may
10	also be beneficial for people with diabetes ^{16, 52, 54-59} . None of these dietary patterns is
11	particularly low or high in carbohydrate. The range of possibilities enhances the concept of
12	personal preference playing a key role in the prescription of dietary advice as well as
13	permitting appreciable restriction of rapidly digested starches and sugars for those with
14	insulin resistance. While energy balance remains a cornerstone of all dietary advice for people
15	with diabetes, the proportion of macronutrients seems to be less important.
16	
10	
17	Acknowledgments: Grateful acknowledgement is given to study author K. Walker for
18	clarifying details from her study.
19	Funding: The authors preformed this systematic review as part of their ordinary professional
20	positions and received no particular funding for the work.
24	Defense
21	References
22	1. World Health Organization. <i>Diet, nutrition, and the prevention of chronic diseases: report of a</i>
23 24	 <i>joint WHO/FAO expert consultation.</i> Geneva: World Health Organization;2003. Daousi C, Casson IF, Gill GV, MacFarlane IA, Wilding JP, Pinkney JH. Prevalence of obesity in
25	type 2 diabetes in secondary care: association with cardiovascular risk factors. Postgraduate
26	medical journal. 2006;82(966):280-284.

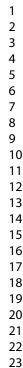

2			
3	1	3.	Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type
4	2		2 diabetes mellitus in observational studies: a systematic literature review. Diabetes,
5	3		metabolic syndrome and obesity: targets and therapy. 2013;6:327-338.
6	4	4.	Mann JI, De Leeuw I, Hermansen K, et al. Evidence-based nutritional approaches to the
7	5		treatment and prevention of diabetes mellitus. Nutrition, Metabolism, And Cardiovascular
8	6		Diseases. 2004;14(6):373-394.
9	7	5.	Canadian Diabetes Association Clinical Practice Guidelines Expert Committee: Canadian
10	8		diabetes association. Clinical practice guidelines for the prevention and management of
11	9		diabetes in Canada. Can J Diabetes. 2013;37(Suppl 1):S1-S212.
12	10	6.	American Diabetes Association. Obesity management for the treatment of type 2 diabetes.
13 14	11		Sec. 6. In Standards of Medical Care in Diabetes—2016. Diabetes Care. 2016;39(Supplement
14	12		1):S47-S51.
16	13	7.	Internal Clinical Guidelines Team. National Institute for Health and Care Excellence: Clinical
17	14		Guidelines. In: Type 2 Diabetes in Adults: Management. London: National Institute for Health
18	15		and Care Excellence (UK). Copyright (c) 2015 National Institute for Health and Care
19	16		Excellence.; 2015.
20	17	8.	Mann J. Lines to legumes: changing concepts of diabetic diets. Diabetic Medicine.
21	18		1984;1(3):191-198.
22	19	9.	American Diabetes Association. Standards of Medical Care in Diabetes—2013. Diabetes Care.
23	20		2013;36(Supplement 1):S11-S66.
24	21	10.	Dyson PA, Kelly T, Deakin T, et al. Diabetes UK evidence-based nutrition guidelines for the
25	22		prevention and management of diabetes. <i>Diabetic Medicine</i> . 2011;28(11):1282-1288.
26	23	11.	Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the
27	24		management of adults with diabetes. <i>Diabetes Care</i> . 2014;37(Supplement 1):S120-S143.
28	25	12.	Canadian Diabetes Association. Guidelines for the nutritional management of diabetes
29	26		mellitus in the new millennium: a position statement. 1999.
30	27	13.	Nutrition Committee of the British Diabetic Association's Professional Advisory Committee.
31	28		Dietary Recommendations for People with Diabetes: An Update for the 1990s. Diabetic
32 33	29		Medicine. 1992;9(2):189-202.
34	30	14.	American Diabetes Association. Evidence-based nutrition principles and recommendations
35	31		for the treatment and prevention of diabetes and related complications. Diabetes Care.
36	32		2002;25(suppl 1):s50-s60.
37	33	15.	Wheeler ML, Dunbar SA, Jaacks LM, et al. Macronutrients, food groups, and eating patterns
38	34		in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care.
39	35		2012;35(2):434-445.
40	36	16.	Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary
41	37		approaches to the management of type 2 diabetes. The American Journal Of Clinical
42	38	. –	Nutrition. 2013;97(3):505-516.
43	39	17.	Feinman RD, Pogozelski WK, Astrup A, et al. Dietary carbohydrate restriction as the first
44	40		approach in diabetes management: critical review and evidence base. <i>Nutrition.</i>
45	41	10	2015;31(1):1-13.
46	42	18.	Mansoor N, Vinknes KJ, Veierod MB, Retterstol K. Effects of low-carbohydrate diets v. low-fat
47	43		diets on body weight and cardiovascular risk factors: a meta-analysis of randomised
48 49	44	10	controlled trials. <i>Br J Nutr.</i> 2016;115(3):466-479.
49 50	45	19.	Bueno NB, de Melo ISV, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic
50	46		diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials.
52	47	20	Br J Nutr. 2013;110(7):1178-1187.
53	48 49	20.	Naude CE, Schoonees A, Senekal M, Young T, Garner P, Volmink J. Low carbohydrate versus
54	49 50		isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review
55	50		and meta-analysis. PloS one. 2014;9(7):e100652.
56			
57			
58			19
59			
60			

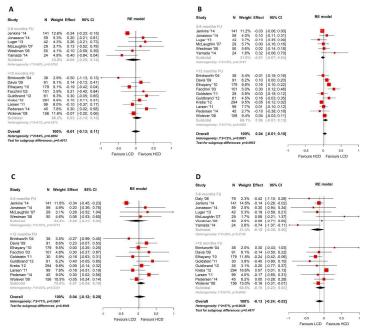

1			
2	_		
3	1	21.	Snorgaard O, Poulsen GM, Andersen HK, Astrup A. Systematic review and meta-analysis of
4	2		dietary carbohydrate restriction in patients with type 2 diabetes. <i>BMJ Open Diabetes</i>
5	3	22	Research and Care. 2017;5(1).
6 7	4	22.	van Wyk HJ, Davis RE, Davies JS. A critical review of low-carbohydrate diets in people with
7 8	5 6	23.	Type 2 diabetes. <i>Diabetic Medicine.</i> 2016;33(2):148-157. Mann JI, Te Morenga L. Diet and diabetes revisited, yet again. <i>The American Journal of</i>
9	7	25.	Clinical Nutrition. 2013;97(3):453-454.
10	8	24.	Higgins J, Green SP, Wiley I, Cochrane C. Cochrane handbook for systematic reviews of
11	9	24.	interventions. Hoboken, NJ: Wiley-Blackwell; 2008.
12	10	25.	Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and
13	11		meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews. 2015;4(1):1.
14	12	26.	Balshem H, Helfand M, Schunemann HJ, et al. GRADE guidelines: 3. Rating the quality of
15	13		evidence. Journal of clinical epidemiology. 2011;64(4):401-406.
16 17	14	27.	Garg A, Bantle JP, Henry RR, et al. Effects of varying carbohydrate content of diet in patients
17	15		with non-insulin-dependent diabetes mellitus. The Journal of the American Medical
19	16		Association. 1994;271(18):1421-1428.
20	17	28.	Walker KZ, O'Dea K, Nicholson GC, Muir JG. Dietary composition, body weight, and NIDDM.
21	18		Comparison of high-fiber, high-carbohydrate, and modified-fat diets. Diabetes Care.
22	19	•••	1995;18(3):401-403.
23	20	29.	Walker KZ, O'Dea K, Nicholson GC. Dietary composition affects regional body fat distribution
24	21		and levels of dehydroepiandrosterone sulphate (DHEAS) in post-menopausal women with
25	22 23	30.	Type 2 diabetes. <i>European journal of clinical nutrition</i> . 1999;53(9):700-705. Facchini FS, Saylor KL. A low-iron-available, polyphenol-enriched, carbohydrate-restricted
26 27	23 24	50.	diet to slow progression of diabetic nephropathy. <i>Diabetes.</i> 2003;52(5):1204-1209.
28	24	31.	Samaha FF, Iqbal N, Seshadri P, et al. A Low-Carbohydrate as Compared with a Low-Fat Diet
29	26	51.	in Severe Obesity. New England Journal of Medicine. 2003;348(21):2074-2081.
30	27	32.	Daly ME, Paisey R, Paisey R, et al. Short-term effects of severe dietary carbohydrate-
31	28	-	restriction advice in Type 2 diabetes-a randomized controlled trial. <i>Diabetic medicine</i> .
32	29		2006;23(1):15-20.
33	30	33.	McLaughlin T, Carter S, Lamendola C, et al. Clinical efficacy of two hypocaloric diets that vary
34	31		in overweight patients with type 2 diabetes: comparison of moderate fat versus
35 36	32		carbohydrate reductions. Diabetes Care. 2007;30(7):1877-1879.
37	33	34.	Shai I, Schwarzfuchs D, Henkin Y, et al. Weight loss with a low-carbohydrate, Mediterranean,
38	34		or low-fat diet. The New England Journal Of Medicine. 2008;359(3):229-241.
39	35	35.	Westman EC, Yancy WS, Jr., Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-
40	36		carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2
41	37	20	diabetes mellitus. <i>Nutrition & Metabolism</i> . 2008;5:36-36.
42	38 39	36.	Wolever TM, Gibbs AL, Mehling C, et al. The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no
43	39 40		effect on glycated hemoglobin but reduction in C-reactive protein. <i>The American journal of</i>
44 45	40 41		clinical nutrition. 2008;87(1):114-125.
43 46	42	37.	Davis NJ, Tomuta N, Schechter C, et al. Comparative study of the effects of a 1-year dietary
47	43		intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control
48	44		in type 2 diabetes. <i>Diabetes care</i> . 2009;32(7):1147-1152.
49	45	38.	Jönsson T, Granfeldt Y, Ahrén B, et al. Beneficial effects of a Paleolithic diet on cardiovascular
50	46		risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovascular
51	47		Diabetology. 2009;8:35-35.
52	48	39.	Elhayany A, Lustman A, Abel R, Attal-Singer J, Vinker S. A low carbohydrate Mediterranean
53 54	49		diet improves cardiovascular risk factors and diabetes control among overweight patients
54 55	50		with type 2 diabetes mellitus: a 1-year prospective randomized intervention study. <i>Diabetes,</i>
56	51		Obesity & Metabolism. 2010;12(3):204-209.
57			
58			20
59			
60			

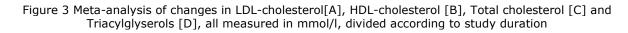

1			
2	1	40	Coldstein T. Kodu ID. Down, ENA. Adlan D. Zin F. Dool. The offerst of a low could be whethe on own
3	1	40.	Goldstein T, Kark JD, Berry EM, Adler B, Ziv E, Raz I. The effect of a low carbohydrate energy-
4	2		unrestricted diet on weight loss in obese type 2 diabetes patients - A randomized controlled
5	3 4	41.	trial. European e-Journal of Clinical Nutrition and Metabolism. 2011;6(4):e178-e186.
6 7	4 5	41.	Larsen RN, Mann NJ, Maclean E, Shaw JE. The effect of high-protein, low-carbohydrate diets
8	6		in the treatment of type 2 diabetes: a 12 month randomised controlled trial. <i>Diabetologia.</i> 2011;54(4):731-740.
9	0 7	42.	Guldbrand H, Dizdar B, Bunjaku B, et al. In type 2 diabetes, randomisation to advice to follow
10	8	42.	a low-carbohydrate diet transiently improves glycaemic control compared with advice to
11	9		follow a low-fat diet producing a similar weight loss. <i>Diabetologia</i> . 2012;55(8):2118-2127.
12	10	43.	Krebs. JD, Elley. CR, Parry-Strong. A, et al. The Diabetes Excess Weight Loss (DEWL) Trial: a
13	10	45.	randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in
14	12		type 2 diabetes. <i>Diabetologia</i> . 2012;55(4):905-914.
15	13	44.	Brinkworth GD, Noakes M, Parker B, Foster P, Clifton PM. Long-term effects of advice to
16	14	• • •	consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese
17	15		adults with Type 2 diabetes: one-year follow-up of a randomised trial. <i>Diabetologia</i> .
18	16		2004;47(10):1677-1686.
19 20	17	45.	Luger M, Holstein B, Schindler K, Kruschitz R, Ludvik B. Feasibility and efficacy of an isocaloric
20	18		high-protein vs. standard diet on insulin requirement, body weight and metabolic
21 22	19		parameters in patients with type 2 diabetes on insulin therapy. <i>Exp Clin Endocrinol Diabetes</i> .
22	20		2013;121(5):286-294.
24	21	46.	Jenkins DJ, Kendall CW, Vuksan V, et al. Effect of lowering the glycemic load with canola oil
25	22		on glycemic control and cardiovascular risk factors: a randomized controlled trial. Diabetes
26	23		Care. 2014;37(7):1806-1814.
27	24	47.	Jonasson L, Guldbrand H, Lundberg AK, Nystrom FH. Advice to follow a low-carbohydrate diet
28	25		has a favourable impact on low-grade inflammation in type 2 diabetes compared with advice
29	26		to follow a low-fat diet. Ann Med. 2014;46(3):182-187.
30	27	48.	Pedersen E, Jesudason DR, Clifton PM. High protein weight loss diets in obese subjects with
31	28		type 2 diabetes mellitus. Nutrition, metabolism, and cardiovascular diseases. 2014;24(5):554-
32	29		562.
33	30	49.	Yamada Y, Uchida J, Izumi H, et al. A non-calorie-restricted low-carbohydrate diet is effective
34 35	31		as an alternative therapy for patients with type 2 diabetes. <i>Intern Med.</i> 2014;53(1):13-19.
36	32	50.	Saslow LR, Kim S, Daubenmier JJ, et al. A randomized pilot trial of a moderate carbohydrate
37	33		diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2
38	34		diabetes mellitus or prediabetes. <i>PLoS One.</i> 2014;9(4):e91027.
39	35	51.	Tay J, Luscombe-Marsh ND, Thompson CH, et al. A very low-carbohydrate, low-saturated fat
40	36		diet for type 2 diabetes management: a randomized trial. <i>Diabetes Care</i> . 2014;37(11):2909-
41	37		2918.
42	38	52.	Emadian A, Andrews RC, England CY, Wallace V, Thompson JL. The effect of macronutrients
43	39		on glycaemic control: a systematic review of dietary randomised controlled trials in
44	40		overweight and obese adults with type 2 diabetes in which there was no difference in weight
45	41	50	loss between treatment groups. Br J Nutr. 2015;114(10):1656-1666.
46	42 43	53.	Esposito K, Maiorino MI, Bellastella G, Chiodini P, Panagiotakos D, Giugliano D. A journey into
47 48	43 44		a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ open.
48 49	44 45	54.	2015;5(8):e008222. Schwingshackl L, Chaimani A, Hoffmann G, Schwedhelm C, Boeing H. A network meta-
50	43 46	54.	analysis on the comparative efficacy of different dietary approaches on glycaemic control in
51	40 47		patients with type 2 diabetes mellitus. <i>Eur J Epidemiol.</i> 2018;33(2):157-170.
52	47 48	55.	Adamsson V, Reumark A, Fredriksson IB, et al. Effects of a healthy Nordic diet on
53	48 49	55.	cardiovascular risk factors in hypercholesterolaemic subjects: a randomized controlled trial
54	49 50		(NORDIET). J Intern Med. 2011;269(2):150-159.
55	51	56.	Olsen A, Egeberg R, Halkjaer J, Christensen J, Overvad K, Tjonneland A. Healthy aspects of the
56	51	50.	Nordic diet are related to lower total mortality. J Nutr. 2011;141(4):639-644.
57	52		
58			21
59			


1		
2 3 4 5	1 2 3	57. Uusitupa M, Hermansen K, Savolainen MJ, et al. Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome a randomized study (SYSDIET). <i>J Intern Med.</i> 2013;274(1):52-66.
6	4	58. Viguiliouk E, Kendall CW, Kahleova H, et al. Effect of vegetarian dietary patterns on
7	5	cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of
8 9	6	randomized controlled trials. <i>Clinical nutrition</i> . 2018.
9 10	7 8	https://doi.org/10.1016/j.clnu.2018.05.032 59. Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in
11	9	diabetes: a systematic review and meta-analysis. <i>Cardiovascular diagnosis and therapy</i> .
12	10	2014;4(5):373-382.
13 14 15	11	
16 17	12	Figure legends
17	13	Figure 1 PRISMA Study eligibility flow chart
19	15	i gure i i russini study englemity new enalt
20 21	14	Figure 2 Meta-analysis of changes in body weight (kg) [A] and HbA1c (%) [B] divided
22	15	according to study duration
23		
24 25	16	Figure 3 Meta-analysis of changes in LDL-cholesterol[A], HDL-cholesterol [B], Total
26	17	cholesterol [C] and Triacylglyserols [D], all measured in mmol/l, divided according to study
27	18	duration
28 29	10	duration
30 31	19	Figure 4 Meta-analysis of Systolic [A] and Diastolic blood pressure (mmHg) [B] and
32	20	Attrition rate(Risk ratio) [C] divided according to study duration
33 34	24	
35	21	
36 27	22	
37 38		
39	23	Supplementary Appendix:
40		
41 42	24	• Supplementary table 1: PRISMA Checklist for preferred reporting items in systematic
43	25	reviews and Meta-Analyses
44 45	26	• Supplementary table 2: List of excluded studies
46 47	27	• Supplementary table 3
48	28	○ A) Subgroup-analysis based on study duration ≤ 6 months (short term) vs ≥ 12
49 50	29	moths (long term)
51 52	30	• B) Subgroup-analysis based on the amount of carbohydrates in the LCD group,
53	31	LCD (21-70 g CHO) vs LCD (30-40% TE CHO)
54 55	32	• C) Sensitivity-analysis based on high versus low risk of bias
56 57	33	• Supplementary table 4: Summary of findings across studies
58		22
59 60		

1		
2 3	1 •	Supplementary figure 1: Risk of bias graphs.
4	2	• A) Summary of the internal validity of the included studies
5 6	3	 B) Summary for the individual RCTs
7		
8 9	4	Supplementary figure 2: Funnel plots for the individual outcomes
10	5 •	Supplementary figure 3: Forest plots divided according to carbohydrate restriction in
11 12	6	the LCD group
12	7	
14	_	
15 16	8	
17		
18 19		
20		
21 22		
23		
24		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 58		22
59		23
60		







275x397mm (300 x 300 DPI)

275x397mm (300 x 300 DPI)

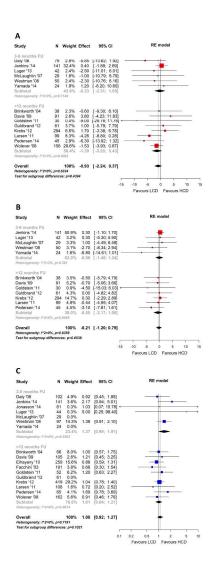


Figure 4 Meta-analysis of Systolic [A] and Diastolic blood pressure (mmHg) [B] and Attrition rate (Risk ratio) [C] divided according to study duration

275x397mm (300 x 300 DPI)

Table 1 Characteristics and summary of findings of studies selected for inclusion in the review. Outcomes show significant findings within the

low-carbohydrate group	and between dietary groups
------------------------	----------------------------

Study details	Study design	Participants randomized	LCD	Comparator	Outcome	Duration	Weight	HbA1c	Serum lipids	Blood pressure	Compliance to LCD – Presented as mean±SD
MODERATE LOW-C	CARBOHYDRAT	E DIETS									
Brinkworth et al., [44] Australia (2004)	Randomised controlled trial	66 obese type 2 diabetes patients	40 E% CH 30 E% fat 30 E% protein	55 E% CH 30 E% fat 15 E% protein	Weight HbA1c LDL, HDL TG, TC Blood pressure Compliance by attrition ^a	16 months	Weight reduced (p<0.01). No difference between groups	NS	HDL increased (p<0.001). No difference between groups	DBP reduced (p <0.05). Greater reduction in SBP and DBP with the LCD (p =0.04 and <0.008) ^b	NA
Elhayany et al., [39] Israel (2010) ^e	Randomised controlled trial	259 overweight type 2 diabetes patients	35 E% CH 45 E% fat 15-20 E% protein	50-55 E% CH 30 E% fat 20 E% protein	Weight, HbA1c LDL, HDL TG, TC Compliance by food records and attrition	12 months	Weight reduced (p<0.001). No difference between groups	HbA1c reduced ($p<0.001$). Greater reduction with the LCD ($p=0.021$) ^{d,e}	LDL, HDL, TG and TC improved ($p<0.001$). Greater improvements in LDL ⁴ , HDL ⁴ and TG ⁴ with the LCD ($p=0.036$, <0.001)	NA	42 E% CH
Facchini et al., [30] USA (2003)	Randomised control trial	191 type 2 diabetes patients with renal failure	35 E% CH 30 E% fat 25-30 E% protein 5-10 E% ethanol	65 E% CH 25 E% fat 10 E% protein	Weight HbA1c LDL, HDL, TC	Mean follow-up 3.0±1.8 years	NS	NS	HDL increased ^f No difference between groups	NA	NA
Garg et al., [27] USA (1994)	Randomised crossover trial	21 type 2 diabetes patients	40 E% CH 45 E% fat 15 E% protein	55 E% CH 30 E% fat 15 E% protein	LDL, HDL TG, TC	14 weeks	NA	NA	TG reduced (p=0.03). No difference between groups	NA	NA
Jenkins et al., [46] Canada (2014)	Randomised controlled trial	141 type 2 diabetes patients	39 E% CH ^g 37 E% fat ^g 20 E% protein ^g	49 E% CH ^g 27 E% fat ^g 20 E% protein ^g	Weight HbA1c LDL, HDL TG, TC Blood pressure Compliance by attrition	3 months	Weight reduced (p<0.05). No difference between groups	HbA1c reduced (p<0.05). No difference between groups	LDL, HDL, TG and TC reduced (p<0.05). Greater reduction in LDL, HDL, TC and TG with the LCD (p<0.01, =0.04, <0.01 and =0.18)	SBP and DBP reduced (p<0.05). No difference between groups	Not applicable ^g
Jönsson et al., [38] Sweden (2009)	Randomised crossover trial	13 non-insulin treated type 2 diabetes patients	32 E% CH 39 E% fat 24 E% protein	42 E% CH 34 E% fat 20 E% protein	Weight, HbA1c LDL, HDL TG, TC Blood pressure Compliance by food records	3 months	Weight reduced (p=0.005 and 0.01). Greater reduction in weight with the LCD (p=0.01 and 0.04)	HbA1c reduced (p<0.001). Greater reduction with the LCD (p=0.02)	TG reduced (p=0.003). Greater improvements in HDL and TG with the LCD (p=0.03 and 0.003)	SBP reduced (p=0.048). Greater reduction in DBP with the LCD (p=0.03)	32±7 E% CH 39±5 E% fat 24±3 E% protein
Krebs et al., [43]	Randomised	419 overweight	40 E% CH	55 E% CH	Weight	24 months	Weight reduced	NS ^f	NS ^f	NS	46±7 E% CH

Page	29	of	7	1
------	----	----	---	---

New Zealand (2012)	controlled trial	type 2 diabetes patients	30 E% fat 30 E% protein	30 E% fat 15 E% protein	HbA1c LDL, HDL TG, TC Blood pressure Compliance by food records and attrition		(p<0.001). No difference between groups				33±6 E% fat 21±4 E% protein
Larsen et al., [41] Australia (2011)	Randomised controlled trial	108 overweight and obese type 2 diabetes patients	40 E% CH 30 E% Fat 30 E% Protein	55 E% CH 30 E% Fat 15 E% Protein	Weight HbA1c LDL, HDL TG, TC Blood pressure Compliance by food records and attrition	12 months	Weight reduced (p<0.001). No difference between groups	HbA1c reduced (p<0.001). No difference between groups	HDL and TG improved ^f . No difference between groups	NS ^r	42 E% CH 31 E% fat 27 E% protein
Luger et al., [45] Austria (2013)	Randomised controlled trial	44 insulin treated type 2 diabetes patients	40 E% CH 30 E% fat 30 E% protein	55 E% CH 30 E% fat 15 %% protein	Weight HbA1c LDL, HDL, TG Blood pressure Compliance by food records and attrition	3 months	Weight reduced (p<0.001). No difference between groups	HbA1c reduced (p=0.05). No difference between groups	TG reduced (p=0.01). No difference between groups	DBP reduced (p=0.005). No difference between groups	38±7 E% CH 35±6 E% fat 26±5 E% protein
McLaughlin et al., [33] USA (2007)	Randomised controlled trial	29 overweight, diet-treated type 2 diabetes patients	40 E% CH 45 E% fat 15 E% protein	60 E% CH 25 E% fat 15 E% protein	Weight LDL, HDL TG, TC Blood pressure Compliance by food records and attrition	3 months	Weight reduced (p<0.001). No difference between groups	NA	TG reduced (p=0.008). No difference between groups	NS	43 E% CH 38 E% fat 19 E% protein
Pedersen et al., [48] Australia (2014)	Randomised controlled trial	76 overweight type 2 diabetes patients	40 E% CH 30 E% fat 30 E% protein	50 E% CH 30 E% fat 20 E% protein	Weight, HbA1c LDL, HDL TG, TC Blood pressure Compliance by attrition	12 months	Weight reduced (p<0.001). No difference between groups	HbA1c reduced (p=0.01). No difference between groups	HDL and TG improved (p<0.01 and <0.001). Greater increase in LDL with the LCD (p=0.05)	Greater reduction in DBP with the LCD (p=0.01)	197±16 g CH (40 E%) 78±7 g fat (35 E%) 131±10 g protein (26
Walker et al., [28] Australia (1995)	Randomised crossover trial	24 type 2 diabetes patients	40 E% CH 40 E% fat	59 E% CH 21 E% fat	Weight, HbA1c LDL, HDL TG, TC Blood pressure Compliance by food records	3 months	Weight reduced (p<0.005). No difference between groups	NS	NS	NS	40±1 E% CH 36±1 E% fat 22±1 E% protein
Walker et al., [29] Australia (1999)	Randomised crossover trial	34 post- menopausal women with type 2 diabetes	40 E% CH 40 E% fat	60 E% CH 20 E% fat	Weight HbA1c HDL, TG, TC Compliance by food records	3 months	Weight reduced (p<0.01). No difference between groups	NS ^h	NS ^h	NA	43±5 E% CH 33±5 E% fat 21±2 E% protein
Wolever et al., [36] Canada (2008)	Randomised controlled trial	162 diet-treated type 2 diabetes patients	39 E% CH ^g 40 E% fat ^g 19 E% protein ^g	47 E% CH ^g 31 E% fat ^g 20 E% protein ^g 52 E% CH ^g 27 E% fat ^g 21 E% protein ^g	Weight HbA1c LDL, HDL TG, TC Blood pressure Compliance by attrition	12 months	Weight reduced (p=0.003). No difference between groups	HbA1c increased (p<0.0001). No difference between groups	LDL reduced (p=0.0079). No difference between groups	DBP reduced (p=0.0080). Greater reduction in DBP with the LCD (p=0.020)	Not applicable ^g
Yamada et al., [49] Japan (2014)	Randomised controlled trial	24 type 2 diabetes patients	<130-70 g/day CH (33 E%)	50-60 E% CH <25 E% fat	Weight, HbA1c	6 months	NS	HbA1c reduced (p=0.03). Greater	TG reduced (p=0.02). No	NS	30±13 E% CH 45±9 E% fat

				<20 E% protein	LDL, HDL, TG Blood pressure Compliance by food records and attrition			reduction with the LCD (p=0.03)	difference between groups		25±7 E% protein
VERY LOW-CARBO	HYDRATE DIET	ſS			attrition						
Daly et al., [32] UK (2006)	Randomised controlled trial	102 obese patients with poorly controlled type 2 diabetes	< 70 g/d CH (22 E%) No information provided on intake of fat and protein	45 E% CH ^g 33 E% fat ^g 21 E% protein ^g	Weight HbA1c TG SBP Compliance by food records and attrition	3 months	Greater reduction in weight with the LCD (p=0.001)	No difference between groups	No difference between groups	No difference between groups	34 E% CH 40 E% fat 26 E% protein
Davis et al., [37] USA (2009)	Randomised controlled trial	105 overweight type 2 diabetes patients	20-25 g/d CH (5-6 E%) for two weeks, then a 5 g increase each week	50 E% CH ^g 25 E% fat 19 E% protein ^g	Weight HbA1c1 LDL, HDL, TG, TC Blood pressure Compliance by food records and attrition	12 months	NS ^r	NS ^f	Greater increase in HDL with the LCD (p=0.002).	NS ^r	33±13 E% CH 44±11 E% fat 23±7 E% protein
Goldstein et al., [40] Israel (2011)	Randomised controlled trial	56 obese type 2 diabetes patients	<25 g/d CH (<6 E%) for 6 weeks, then <40 g/d (<10 E%) No restrictions on intake of fat and protein	80 E% divided between CH and fats 10-20 E% protein	Weight HbA1c HDL, TG, TC Blood pressure Compliance by food records and attrition	12 months	Weight reduced (p<0.001). No difference between groups	Reduction in HbA1c ^f No difference between groups	NS	NS	85±35 g CH (20 E%) 111±45 g fat (58 E%) 102±37 g protein (24 E9
Guldbrand et al., [42] Sweden (2012)	Randomised controlled trial	61 type 2 diabetes patients	20 E% CH 50 E% fat 30 E% protein	55-60 E% CH 30 E% fat 10-15 E% protein	Weight, HbA1c LDL, HDL TG, TC Blood pressure Compliance by food records and attrition	24 months	Weight reduced (p=0.020 and 0.011). No difference between groups	NS	LDL and HDL improved (p=0.020 and <0.001). No difference between groups	SBP and DBP reduced (p=0.012 and 0.004). No difference between groups	31±6 E% CH 44±5 E% fat 24±4 E% protein
Jonasson et al., [47] Sweden (2014)	Randomised controlled trial	61 type 2 diabetes patients	20 E% CH 50 E% fat 30 E% protein	55-60 CH 30 E% fat 10-15 E% protein	Weight ^f , HbA1c LDL, HDL TG, TC Compliance by food records and attrition	6 months	Weight reduced ^f ./ No difference between groups	HbA1c reduced (p<0.01). No difference between groups	HDL increased (p<0.05). No difference between groups	NA	25±8 E% CH 49±8 E% fat 23±4 E% protein
Samaha et al., [31] USA (2003)	Randomised controlled trial	52 severely obese type 2 diabetes patients	<30 g/d CH (8 E%) No restrictions on intake of fat	51 E% CH ^g 30 E% fat 16 E% protein ^g	HbA1c Compliance by food records ⁱ	6 months	NA	NS ^f	NA	NA	37±18 E% CH 41±16 E% fat 22±9 E% protein
Shai et al., [34] Israel (2008)	Randomised controlled trial	46 moderately obese type 2 diabetes patients	20 g/d CH (6 E%) for two months, then max 120 g/d (34 E%) No restrictions on intake of fat and protein	51 E% CH ^g 30 E% fat 19 E% protein ^g 50 E% CH ^g 35 E% fat 19 E% protein ^g	HbA1c Compliance by food records ⁱ	24 moths	NA	Hba1c reduced (p<0.05). No difference between groups	NA	NA	40±7 E% CH 39±5 E% fat 22±4 E% protein

1CD, Une-canabydata dat, ELD, Une-data ty lapotetian, HDL, hgh-dataity lapotetian, TG, tinac/glyceral, TG, total dubksteral, SN, box association (ALD) to association of the properties of the section	Westman et al., [35] USA (2008)	Randomised controlled trial	84 obese type 2 diabetes patients	< 20 g/d CH (5 E%) No information provided on intake of fat and protein	55 E% CH ^g 36 E% fat 20 E% protein ^g	Weight, HbA1c LDL, HDL TG, TC Blood pressure Compliance by food records and attrition	6 months	Weight reduced ($p<0.05$). Greater reduction in weight and BMI with the LCD ($p=0.008$ and 0.05)	HbA1c reduced (p=0.009). Greater reduction with the LCD (p=0.03)	HDL and TG improved (p<0.05). Greater increase in HDL with the LCD (p<0.001)	SBP and DBP reduced (p<0.05). No difference between groups	13 E% CH 59 E% fat 28 E% protein
^d LCD significantly improved compared to ADA ^e LCD significantly improved compared to TM	^a Compliance measured ^b P value represent betw	d at three months ween groups change	e from week 12 to 64				-	-	acronutrient; CH, car	bohydrate; NS, not sig	gnificant; N/A, not	tassessed
p-value on effect within dier group not provided. Maconnierd wate down was easily and during study of a day. * value on effect between group not provided, but the authors state that no difference was seen between the two diets; no information available on within-group effect. Data on macrosoft intrace during study was extracted from the whole study population: Data on macrosoft intrace during study was extracted from the whole study population:	^d LCD significantly im ^e LCD significantly im	proved compared to proved compared to	to ADA o TM	(American Diabetic	Association (ADA)	vs. Traditional Medite	francan Diet (11	MD)				
¹ Value of electroweer godys not grouted, not the whole study populated	^g Macronutrient value	shows the actual int	take during study/end	of study					for a t			
				the whole study pop	oulation	en the two diets; no inf	ormation availa	ble on within-group er	rect			

Section/topic	#	Checklist item	Reported on page a
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6-7

Page 33 of 71

PRISMA 2009 Checklist

4			Page 1 of 2	
5 6 7	Section/topic	#	Checklist item	Reported on page #
8 9	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6-7
10 11 12	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
13	RESULTS			
14 15 16 17	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8, fig. 1, ESM table 2
18 19 20	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1
21 22 23 24 25 26 27 28	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-12 (reported in text per outcome), ESM fig. 1, ESM table 4
29	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Fig. 2-4
31 32	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Fig. 2-4
33 34 35 36 37	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	9-10, ESM table 4, ESM fig 2
38 39 40 41 42 43 44 45 46 47		23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-11 (reported in text per outcome), ESM table 3, ESM Fig

47

		3
24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13
25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	16
26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13-17
27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17
-	25	key groups (e.g., healthcare providers, users, and policy makers). 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). 26 Provide a general interpretation of the results in the context of other evidence, and implications for future research. 27 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the

19 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 20 doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org.

Page 2 of 2

Page 2 or ∠

Supplementary table 2: List of excluded studies (assessed by full-text)

Study		Reason for exclusion
1.	Albarran NB, Ballesteros MN, Morales GG, Ortega MI. Dietary behavior and type 2 diabetes care. <i>Patient Education And Counseling</i> . 2006;61(2):191-199.	Did not address the main objective of the study
2.	Al-Shookri A, Khor GL, Chan YM, Loke SC, Al-Maskari M. Effectiveness of medical nutrition treatment delivered by dietitians on glycaemic outcomes and lipid profiles of Arab, Omani patients with Type 2 diabetes. <i>Diabetic Medicine: A Journal Of The British Diabetic Association.</i> 2012;29(2):236-244.	Did not address the main objective of the study
3.	Andersén E, Hellström P, Kindstedt K, Hellström K. Effects of a high- protein and low-fat diet vs a low-protein and high-fat diet on blood glucose, serum lipoproteins, and cholesterol metabolism in noninsulin- dependent diabetics. <i>The American Journal Of Clinical Nutrition</i> . 1987;45(2):406-413.	Participants in the control-group consisted of individuals without type 2 diabetes
4.	Andrews RC, Cooper AR, Montgomery AA, et al. Diet or diet plus physical activity versus usual care in patients with newly diagnosed type 2 diabetes: the Early ACTID randomised controlled trial. <i>Lancet</i> . 2011;378(9786):129-139.	Diet intervention not low-carbohydrate; Physical activity advice provided
5.	Ash S, Reeves MM, Yeo S, Morrison G, Carey D, Capra S. Effect of intensive dietetic interventions on weight and glycaemic control in overweight men with Type II diabetes: a randomised trial. <i>International</i> <i>Journal Of Obesity And Related Metabolic Disorders: Journal Of The</i> <i>International Association For The Study Of Obesity.</i> 2003;27(7):797-802.	Diet intervention not low-carbohydrate
6.	Azadbakht L, Fard NRP, Karimi M, et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. <i>Diabetes</i> <i>care</i> . 2011;34(1):55-57.	Duration less than 3 moths
7.	Barakatun Nisak MY, Ruzita AT, Norimah AK, Gilbertson H, Nor Azmi K. Improvement of dietary quality with the aid of a low glycemic index diet in Asian patients with type 2 diabetes mellitus. <i>Journal Of The American</i>	Diet intervention not low-carbohydrate

	College Of Nutrition. 2010;29(3):161-170.	
8.	Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. <i>Diabetes Care</i> . 2006;29(8):1777-1783.	Diet intervention not low-carbohydrate
9.	Barnard ND, Cohen J, Jenkins DJA, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. <i>The American Journal Of Clinical Nutrition</i> . 2009;89(5):1588S-1596S.	Diet intervention not low-carbohydrate
10.	Barnard ND, Gloede L, Cohen J, et al. A low-fat vegan diet elicits greater macronutrient changes, but is comparable in adherence and acceptability, compared with a more conventional diabetes diet among individuals with type 2 diabetes. <i>Journal Of The American Dietetic</i> <i>Association.</i> 2009;109(2):263-272.	Diet intervention not low-carbohydrate
11.	Beattie VA, Edwards CA, Hosker JP, Cullen DR, Ward JD, Read NW. Does adding fibre to a low energy, high carbohydrate, low fat diet confer any benefit to the management of newly diagnosed overweight type II diabetics? <i>British Medical Journal (Clinical Research Ed).</i> 1988;296(6630):1147-1149.	Diet intervention not low-carbohydrate
12.	Ben-Avraham S, Harman-Boehm I, Schwarzfuchs D, Shai I. Dietary strategies for patients with type 2 diabetes in the era of multi- approaches; review and results from the Dietary Intervention Randomized Controlled Trial (DIRECT). <i>Diabetes Research And Clinical</i> <i>Practice</i> . 2009;86 Suppl 1:S41-S48.	The DIRECT-trial is included in the review, but with another publication
13.	Blaak EE, Glatz JF, Saris WH. Increase in skeletal muscle fatty acid binding protein (FABPC) content is directly related to weight loss and to changes in fat oxidation following a very low calorie diet. <i>Diabetologia</i> . 2001;44(11):2013-2017.	Did not address the main objective of the study
14.	Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low- carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. <i>Annals Of Internal Medicine</i> . 2005;142(6):403-411.	Duration less than 3 moths

15.	Booth FW, Chakravarthy MV. Physical activity and dietary intervention for	Editorial
	chronic diseases: a quick fix after all? Journal Of Applied Physiology	
	(Bethesda, Md: 1985). 2006;100(5):1439-1440.	
16.	Boyce VL, Swinburn BA. The traditional Pima Indian diet. Composition and	Did not address the main objective of the study
	adaptation for use in a dietary intervention study. Diabetes care.	
	1993;16(1):369-371.	
17.	Bradley U, Spence M, Courtney CH, et al. Low-fat versus low-	Study population without type 2 diabetes
	carbohydrate weight reduction diets: effects on weight loss, insulin	
	resistance, and cardiovascular risk: a randomized control trial. Diabetes.	
	2009;58(12):2741-2748.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/771/CN-	
	<u>00733771/frame.html</u> .	
18.	Brehm BJ, Lattin BL, Summer SS, et al. One-year comparison of a high-	Diet intervention not low-carbohydrate
	monounsaturated fat diet with a high-carbohydrate diet in type 2	
	diabetes. <i>Diabetes care.</i> 2009;32(2):215-220.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/715/CN-	
	<u>00686715/frame.html</u> .	
19.	Burani J, Longo PJ. Low-glycemic index carbohydrates: an effective	Not a randomized controlled trial; Did not address the main objective of the
	behavioral change for glycemic control and weight management in	study
	patients with type 1 and 2 diabetes. The Diabetes Educator.	
	2006;32(1):78-88.	
20.	Cardot JM, Saffar F, Aiache JM. Influence of food on glycemia, insulin, C-	Did not address the main objective of the study
	peptide and glucagon levels in diabetic patients treated with antidiabetic	
	metformin at steady-state. Methods And Findings In Experimental And	
	Clinical Pharmacology. 1997;19(10):715-721.	
21.	Carty CL, Kooperberg C, Neuhouser ML, et al. Low-fat dietary pattern and	Diet intervention not low-carbohydrate
	change in body-composition traits in the Women's Health Initiative	
	Dietary Modification Trial. The American Journal Of Clinical Nutrition.	
	2011;93(3):516-524.	
22.	Christensen AS, Viggers L, Hasselström K, Gregersen S. Effect of fruit	Diet intervention not low-carbohydrate
	restriction on glycemic control in patients with type 2 diabetesa	
	randomized trial. Nutrition Journal. 2013;12:29-29.	
23.	Chung HK, Chae JS, Hyun YJ, et al. Influence of adiponectin gene	Did not address the main objective of the study

3	
4 5	
6	
7 8	
8 9	
10	
11 12	
13	
12 13 14 15	
16	
17	
18 19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
44 45	
46	
47	

	polymorphisms on adiponectin level and insulin resistance index in	
	response to dietary intervention in overweight-obese patients with	
	impaired fasting glucose or newly diagnosed type 2 diabetes. Diabetes	
	<i>care.</i> 2009;32(4):552-558.	
24.	Clifton P. Effects of a high protein diet on body weight and comorbidities	Did not address the main objective of the study; Not a randomized controlled
	associated with obesity. The British Journal Of Nutrition. 2012;108 Suppl	trial
	2:S122-S129.	
25.	Coles LT, Fletcher EA, Galbraith CE, Clifton PM. Patient freedom to choose	Did not address the main objective of the study
	a weight loss diet in the treatment of overweight and obesity: a	
	randomized dietary intervention in type 2 diabetes and pre-diabetes.	
	International Journal of Behavioral Nutrition and Physical Activity.	
	2014;11(1):64.	
26.	Coppell KJ, Kataoka M, Williams SM, Chisholm AW, Vorgers SM, Mann JI.	Diet intervention not low-carbohydrate
	Nutritional intervention in patients with type 2 diabetes who are	
	hyperglycaemic despite optimised drug treatmentLifestyle Over and	
	Above Drugs in Diabetes (LOADD) study: randomised controlled trial. BMJ	
	(Clinical Research Ed). 2010;341:c3337-c3337.	
27.	Craig LD, Nicholson S, SilVerstone FA, Kennedy RD. Use of a reduced-	Excluded due to enteral nutrition
	carbohydrate, modified-fat enteral formula for improving metabolic	
	control and clinical outcomes in long-term care residents with type 2	
	diabetes: results of a pilot trial. Nutrition (Burbank, Los Angeles County,	
	<i>Calif).</i> 1998;14(6):529-534.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/480/CN-	
	<u>00688480/frame.html</u> .	
28.	Culling KS, Neil HAW, Gilbert M, Frayn KN. Effects of short-term low- and	Duration less than 3 moths
	high-carbohydrate diets on postprandial metabolism in non-diabetic and	
	diabetic subjects. Nutrition, Metabolism, And Cardiovascular Diseases:	
	NMCD. 2009;19(5):345-351.	
29.	Davies MJ, Metcalfe J, Day JL, Grenfell A, Hales CN, Gray IP. Improved	Did not address the main objective of the study
	beta cell function, with reduction in secretion of intact and 32/33 split	
	proinsulin, after dietary intervention in subjects with type 2 diabetes	
	mellitus. Diabetic Medicine: A Journal Of The British Diabetic Association.	
	1994;11(1):71-78.	

30.	Davis JN, Ventura EE, Alexander KE, et al. Feasibility of a home-based	Did not address the main objective of the study
	versus classroom-based nutrition intervention to reduce obesity and type	
	2 diabetes in Latino youth. <i>International Journal Of Pediatric Obesity:</i>	
	IJPO: An Official Journal Of The International Association For The Study Of	
~ .	Obesity. 2007;2(1):22-30.	
31.	Davis NJ, Cohen HW, Wylie-Rosett J, Stein D. Serum potassium changes	Duration less than 3 moths
	with initiating low-carbohydrate compared to a low-fat weight loss diet in	
	type 2 diabetes. Southern Medical Journal. 2008;101(1):46-49.	
32.	Davis NJ, Crandall JP, Gajavelli S, et al. Differential effects of low-	The study is included in the review with another publication
	carbohydrate and low-fat diets on inflammation and endothelial function	
	in diabetes. Journal Of Diabetes And Its Complications. 2011;25(6):371-	
	376.	
33.	Davis NJ, Tomuta N, Isasi CR, Leung V, Wylie-Rosett J. Diabetes-specific	The study is included in the review with another publication
	quality of life after a low-carbohydrate and low-fat dietary intervention.	
	The Diabetes Educator. 2012;38(2):250-255.	
34.	de Bont AJ, Baker IA, St Leger AS, et al. A randomised controlled trial of	Published prior to 1983
	the effect of low fat diet advice on dietary response in insulin	
	independent diabetic women. <i>Diabetologia</i> . 1981;21(6):529-533.	<u></u>
35.	de Luis Román D, Izaola O, Aller R. [Assessment of the compliance of a	Not a randomized controlled trial
	1,500 calorie diet in a population of overweight type-2 diabetics].	
	Nutrición Hospitalaria. 2001;16(4):122-125.	
36.	De Natale C, Annuzzi G, Bozzetto L, et al. Effects of a plant-based high-	Did not address the main objective of the study
	carbohydrate/high-fiber diet versus high-monounsaturated fat/low-	
	carbohydrate diet on postprandial lipids in type 2 diabetic patients.	
	Diabetes Care. 2009;32(12):2168-2173.	
37.	Dimitriadis E, Griffin M, Collins P, Johnson A, Owens D, Tomkin GH.	Did not address the main objective of the study
	Lipoprotein composition in NIDDM: effects of dietary oleic acid on the	
	composition, oxidisability and function of low and high density	
	lipoproteins. Diabetologia. 1996;39(6):667-676.	
38.	Dunstan DW, Mori TA, Puddey IB, et al. The independent and combined	Multiple interventions (i.e. exercise)
	effects of aerobic exercise and dietary fish intake on serum lipids and	
	glycemic control in NIDDM. A randomized controlled study. Diabetes	
	Care. 1997;20(6):913-921.	

39.	Dussol B, Iovanna C, Raccah D, et al. A randomized trial of low-protein diet in type 1 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. <i>Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation.</i> 2005;15(4):398-406.	Did not address the main objective of the study
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/220/CN-00561220/frame.html	
40.	Dyson PA, Beatty S, Matthews DR. A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects. <i>Diabetic Medicine: A Journal Of The British Diabetic</i> <i>Association.</i> 2007;24(12):1430-1435.	Study included individuals without type 2 diabetes
41.	Eakin E, Reeves M, Winkler E, Lawler S, Owen N. Maintenance of physical activity and dietary change following a telephone-delivered intervention. <i>Health Psychology: Official Journal Of The Division Of Health Psychology, American Psychological Association.</i> 2010;29(6):566-573.	Did not address the main objective of the study
42.	Educators AAoD. <i>Diabetes-specific Quality of Life After a Low-carbohydrate and Low-fat Dietary Intervention</i> . Sage CA: Los Angeles, CA: Sage Publications, Inc;2012. 0145-7217.	The study is included in the review with another publication
43.	Escalante-Pulido M, Escalante-Herrera A, Milke-Najar ME, Alpizar-Salazar M. Effects of weight loss on insulin secretion and in vivo insulin sensitivity in obese diabetic and non-diabetic subjects. <i>Diabetes, Nutrition & Metabolism.</i> 2003;16(5-6):277-283.	Did not address the main objective of the study
44.	Esposito K, Ciotola M, Maiorino MI, Giugliano D. Lifestyle approach for type 2 diabetes and metabolic syndrome. <i>Current Atherosclerosis Reports.</i> 2008;10(6):523-528.	Not a randomized controlled trial
45.	Esposito K, Ida Maiorino M, Ciotola M, et al. Effects of a mediterranean- style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: A randomized trial. <i>Obstetrical and</i> <i>Gynecological Survey</i> . 2010;65(6):379-380.	Did not address the main objective of the study
46.	Esposito K, Maiorino MI, Petrizzo M, Bellastella G, Giugliano D. The effects of a Mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: follow-up of a randomized trial. <i>Diabetes care</i> . 2014;37(7):1824-1830.	Did not address the main objective of the study

47.	Fabricatore AN, Wadden TA, Ebbeling CB, et al. Targeting dietary fat or glycemic load in the treatment of obesity and type 2 diabetes: a randomized controlled trial. <i>Diabetes Research And Clinical Practice</i> . 2011;92(1):37-45.	Diet intervention not low-carbohydrate
48.	Faridi Z, Shuval K, Njike VY, et al. Partners reducing effects of diabetes (PREDICT): a diabetes prevention physical activity and dietary intervention through African-American churches. <i>Health Education Research.</i> 2010;25(2):306-315.	Did not address the main objective of the study
49.	Feinman RD, Volek JS. Carbohydrate restriction as the default treatment for type 2 diabetes and metabolic syndrome. <i>Scandinavian Cardiovascular Journal: SCJ.</i> 2008;42(4):256-263.	Not a randomized controlled trial
50.	Ferdowsian HR, Barnard ND, Hoover VJ, et al. A multicomponent intervention reduces body weight and cardiovascular risk at a GEICO corporate site. <i>American Journal Of Health Promotion: AJHP</i> . 2010;24(6):384-387.	Diet intervention not low-carbohydrate
51.	Fitzgerald N, Damio G, Segura-Pérez S, Pérez-Escamilla R. Nutrition knowledge, food label use, and food intake patterns among Latinas with and without type 2 diabetes. <i>Journal Of The American Dietetic</i> <i>Association.</i> 2008;108(6):960-967.	Did not address the main objective of the study
52.	Fransen MP, von Wagner C, Essink-Bot M-L. Diabetes self-management in patients with low health literacy: ordering findings from literature in a health literacy framework. <i>Patient Education And Counseling</i> . 2012;88(1):44-53.	Did not address the main objective of the study
53.	Franz MJ, Monk A, Barry B, et al. Effectiveness of Medical Nutrition Therapy Provided by Dietitians in the Management of Non–Insulin- Dependent Diabetes Mellitus: A Randomized, Controlled Clinical Trial. <i>Journal of the American Dietetic Association</i> . 1995;95(9):1009-1017.	Information on dietary composition is not provided
54.	Fraser A, Abel R, Lawlor DA, Fraser D, Elhayany A. A modified Mediterranean diet is associated with the greatest reduction in alanine aminotransferase levels in obese type 2 diabetes patients: Results of a quasi-randomised controlled trial. <i>Diabetologia</i> . 2008;51(9):1616-1622.	The study is included in the review with another publication
55.	Gaede P, Beck M, Vedel P, Pedersen O. Limited impact of lifestyle education in patients with Type 2 diabetes mellitus and	Diet intervention not low-carbohydrate

1 2 3	
5 4 5	
6 7	
8 9	
10 11	
12 13 14	
15 16	
17 18	
19 20	
21 22	
23 24 25	
26 27	
28 29	
30 31	
32 33 34	
35 36	
37 38	
39 40	
41 42 43	
43 44 45	
46 47	

	microalbuminuria: results from a randomized intervention study. <i>Diabetic Medicine: A Journal Of The British Diabetic Association</i> . 2001;18(2):104-108.	
56.	Gaetke LM, Stuart MA, Truszczynska H. A single nutrition counseling session with a registered dietitian improves short-term clinical outcomes for rural Kentucky patients with chronic diseases. <i>Journal Of The</i> <i>American Dietetic Association</i> . 2006;106(1):109-112.	Did not address the main objective of the study
57.	Gallagher A, Henderson W, Abraira C. Dietary patterns and metabolic control in diabetic diets: a prospective study. <i>Journal Of The American College Of Nutrition</i> . 1987;6(6):525-532.	Did not address the main objective of the study
58.	Gannon MC, Nuttall FQ. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. <i>Diabetes</i> . 2004;53(9):2375-2382.	Duration less than 3 moths
59.	Garg A, Grundy SM, Unger RH. Comparison of effects of high and low carbohydrate diets on plasma lipoproteins and insulin sensitivity in patients with mild NIDDM. <i>Diabetes.</i> 1992;41(10):1278-1285.	Duration less than 3 moths
60.	Gerhard GT, Ahmann A, Meeuws K, McMurry MP, Duell PB, Connor WE. Effects of a low-fat diet compared with those of a high-monounsaturated fat diet on body weight, plasma lipids and lipoproteins, and glycemic control in type 2 diabetes. <i>The American Journal Of Clinical Nutrition</i> . 2004;80(3):668-673.	Duration less than 3 moths
61.	Gibb AL, Welfare W. Low carbohydrate diets and diabetes control. <i>The</i> <i>British Journal Of General Practice: The Journal Of The Royal College Of</i> <i>General Practitioners.</i> 2006;56(522):57-58.	Not a randomized controlled trial
62.	Gillen LJ, Tapsell LC, Patch CS, Owen A, Batterham M. Structured dietary advice incorporating walnuts achieves optimal fat and energy balance in patients with type 2 diabetes mellitus. <i>Journal Of The American Dietetic</i> <i>Association.</i> 2005;105(7):1087-1096.	Diet intervention not low-carbohydrate
63.	Golan R, Tirosh A, Schwarzfuchs D, et al. Dietary intervention induces flow of changes within biomarkers of lipids, inflammation, liver enzymes, and glycemic control. <i>Nutrition (Burbank, Los Angeles County, Calif)</i> . 2012;28(2):131-137.	The study is included in the review with another publication
64.	Goode AD, Winkler EAH, Lawler SP, Reeves MM, Owen N, Eakin EG. A	Did not address the main objective of the study

	telephone-delivered physical activity and dietary intervention for type 2 diabetes and hypertension: does intervention dose influence outcomes? <i>American Journal Of Health Promotion: AJHP.</i> 2011;25(4):257-263.	
65.	Gougeon R, Carrington M, Field CJ. The impact of low-carbohydrate diets on glycemic control and weight management in patients with type 2 diabetes. <i>Canadian Journal of Diabetes.</i> 2006;30(3):269-277.	Not a randomized controlled trial
66.	Guldbrand H, Lindström T, Dizdar B, et al. Randomization to a low- carbohydrate diet advice improves health related quality of life compared with a low-fat diet at similar weight-loss in Type 2 diabetes mellitus. <i>Diabetes research and clinical practice</i> . 2014;106(2):221-227.	The study is included in the review with another publication
67.	Günther ALB, Liese AD, Bell RA, et al. Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. <i>Hypertension</i> . 2009;53(1):6-12.	Did not address the main objective of the study
68.	Gustafson C. Curing TYPE 2 DIABETES WITH FOOD. <i>Natural Solutions.</i> 2011(139):44-48.	Not a randomized controlled trial
69.	Gutierrez M, Akhavan M, Jovanovic L, Peterson CM. Utility of a short-term 25% carbohydrate diet on improving glycemic control in type 2 diabetes mellitus. <i>Journal Of The American College Of Nutrition</i> . 1998;17(6):595-600.	Duration less than 3 moths
70.	Haimoto H, Iwata M, Wakai K, Umegaki H. Long-term effects of a diet loosely restricting carbohydrates on HbA1c levels, BMI and tapering of sulfonylureas in type 2 diabetes: a 2-year follow-up study. <i>Diabetes</i> <i>Research And Clinical Practice</i> . 2008;79(2):350-356.	Diet intervention not low-carbohydrate
71.	Haimoto H, Sasakabe T, Wakai K, Umegaki H. Effects of a low- carbohydrate diet on glycemic control in outpatients with severe type 2 diabetes. <i>Nutrition & Metabolism</i> . 2009;6:1-5.	Not a randomized controlled trial
72.	He YN, Feskens E, Li YP, et al. Association between high fat-low carbohydrate diet score and newly diagnosed type 2 diabetes in Chinese population. <i>Biomedical And Environmental Sciences: BES.</i> 2012;25(4):373- 382.	Not a randomized controlled trial
73.	Heilbronn LK, Noakes M, Clifton PM. Effect of energy restriction, weight loss, and diet composition on plasma lipids and glucose in patients with type 2 diabetes. <i>Diabetes care</i> . 1999;22(6):889-895.	Diet intervention not low-carbohydrate

	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/386/CN-	
	00164386/frame.html.	
74.	Helge JW, Tobin L, Drachmann T, Hellgren LI, Dela F, Galbo H. Muscle ceramide content is similar after 3 weeks' consumption of fat or carbohydrate diet in a crossover design in patients with type 2 diabetes. <i>European Journal Of Applied Physiology</i> . 2012;112(3):911-918.	Duration less than 3 moths
75.	Higashi K, Shige H, Ito T, et al. Effect of a low-fat diet enriched with oleic acid on postprandial lipemia in patients with type 2 diabetes mellitus. <i>Lipids.</i> 2001;36(1):1-6.	Did not address the main objective of the study
76.	Hite AH, Zamora D. Low-carbohydrate diet scores and risk of type 2 diabetes in men Am J Clin Nutr. 2011 Apr;93(4):844-50. American Journal of Clinical Nutrition. 2011;94(2):611-612.	Not a randomized controlled trial
77.	Hjøllund E, Pedersen O, Richelsen B, Beck-Nielsen H, Sørensen NS. Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet. <i>Metabolism: Clinical And Experimental.</i> 1983;32(11):1067-1075.	Duration less than 3 moths
78.	Hockaday TD, Hockaday JM, Mann JI, Turner RC. Prospective comparison of modified fat-high-carbohydrate with standard low-carbohydrate dietary advice in the treatment of diabetes: one year follow-up study. <i>The British Journal Of Nutrition</i> . 1978;39(2):357-362.	Published prior to 1983
79.	Hsieh CJ, Wang PW. Effectiveness of weight loss in the elderly with type 2 diabetes mellitus. <i>Journal Of Endocrinological Investigation</i> . 2005;28(11):973-977.	Multiple interventions (i.e. exercise)
80.	Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. <i>Nutrition (Burbank, Los Angeles County, Calif)</i> . 2012;28(10):1016-1021.	Not a randomized controlled trial
81.	Imai S, Matsuda M, Hasegawa G, et al. A simple meal plan of 'eating vegetables before carbohydrate' was more effective for achieving glycemic control than an exchange-based meal plan in Japanese patients with type 2 diabetes. <i>Asia Pacific journal of clinical nutrition.</i> 2011;20(2):161-168.	Did not address the main objective of the study

	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/342/CN-	
	<u>00799342/frame.html</u> .	
82.	Iqbal N, Vetter ML, Moore RH, et al. Effects of a low-intensity intervention	The control-diet contains 40% of energy from carbohydrates
	that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic	
	participants. Obesity (Silver Spring, Md). 2010;18(9):1733-1738.	
83.	Jenkins DJ, Kendall CW, Banach MS, et al. Nuts as a replacement for	Information on dietary composition is not provided
	carbohydrates in the diabetic diet. <i>Diabetes care</i> . 2011;34(8):1706-1711.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/022/CN-	
	<u>00811022/frame.html</u> .	
84.	Jenkins DJ, Kendall CW, McKeown-Eyssen G, et al. Effect of a low-glycemic	Diet intervention not low-carbohydrate
	index or a high-cereal fiber diet on type 2 diabetes: a randomized trial.	
	JAMA : the journal of the American Medical Association.	
	2008;300(23):2742-2753.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/306/CN-	
	<u>00667306/frame.html</u> .	
85.	Johnson EQ, Valera S. Medical nutrition therapy in non-insulin-dependent	Did not address the main objective of the study
	diabetes mellitus improves clinical outcome. Journal Of The American	
	Dietetic Association. 1995;95(6):700-701.	1
86.	Khoo J, Piantadosi C, Duncan R, et al. Comparing effects of a low-energy	Did not address the main objective of the study
	diet and a high-protein low-fat diet on sexual and endothelial function,	
	urinary tract symptoms, and inflammation in obese diabetic men. The	
	Journal Of Sexual Medicine. 2011;8(10):2868-2875.	
87.	Komiyama N, Saito T, Hosaka Y, et al. Effects of a 4-week 70% high	Did not address the main objective of the study
	carbohydrate/15% low fat diet on glucose tolerance and on lipid profiles.	
	Diabetes Research And Clinical Practice. 2004;64(1):11-18.	
88.	Koutsovasilis A, Vlachos D, Diakoumopoulou E, et al. A very low	Conference paper
	carbohydrate ketogenic diet compared with a low glycemic index reduced	
	calorie diet in obese type 2 diabetic patients. <i>Obesity Facts</i> . 2012;5:196.	
89.	Kozłowska L, Rydzewski A, Fiderkiewicz B, Wasińska-Krawczyk A,	Did not address the main objective of the study
	Grzechnik A, Rosołowska-Huszcz D. Adiponectin, resistin and leptin	
	response to dietary intervention in diabetic nephropathy. Journal Of	
	Renal Nutrition: The Official Journal Of The Council On Renal Nutrition Of	
	The National Kidney Foundation. 2010;20(4):255-262.	

90.	Krebs JD, Bell D, Hall R, et al. Improvements in glucose metabolism and insulin sensitivity with a low-carbohydrate diet in obese patients with type 2 diabetes. <i>Journal of the American College of Nutrition</i> . 2013;32(1):11-17.	Not a randomized controlled trial
91.	Laferrère B, Reilly D, Arias S, et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. <i>Science Translational Medicine</i> . 2011;3(80):80re82-80re82.	Did not address the main objective of the study
92.	Lankinen M, Schwab U, Kolehmainen M, et al. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study. <i>Plos One</i> . 2011;6(8):e22646-e22646.	Did not address the main objective of the study
93.	Lapik IA, sharafetdinov KK, Plotnikova OA, Semenchenko II. [Influence of dietotherapy on body composition in patients with obesity and diabetes mellitus type 2]. <i>Voprosy Pitaniia</i> . 2013;82(1):53-58.	Did not address the main objective of the study
94.	Lemon CC, Lacey K, Lohse B, Hubacher DO, Klawitter B, Palta M. Outcomes monitoring of health, behavior, and quality of life after nutrition intervention in adults with type 2 diabetes. <i>Journal Of The</i> <i>American Dietetic Association</i> . 2004;104(12):1805-1815.	Did not address the main objective of the study
95.	Levin SM, Ferdowsian HR, Hoover VJ, Green AA, Barnard ND. A worksite programme significantly alters nutrient intakes. <i>Public Health Nutrition</i> . 2010;13(10):1629-1635.	Did not address the main objective of the study
96.	Lim JH, Lee Y-S, Chang HC, Moon MK, Song Y. Association between dietary patterns and blood lipid profiles in Korean adults with type 2 diabetes. <i>Journal Of Korean Medical Science</i> . 2011;26(9):1201-1208.	Not a randomized controlled trial; Did not address the main objective of the study
97.	Lousley SE, Jones DB, Slaughter P. High carbohydrate-high fibre diets in poorly controlled diabetes. <i>Diabetic Medicine</i> . 1984;1(1):21-25.	Duration less than 3 moths
98.	Luscombe ND, Parker B, Clifton PM, Noakes M, Wittert G. Effects of Energy-Restricted Diets Containing Increased Protein on Weight Loss, Resting Energy Expenditure, and the Thermic Effect of Feeding in Type 2 Diabetes. <i>Diabetes Care</i> . 2002;25(4):652.	Diet intervention not low-carbohydrate
99.	Ma Y, Olendzki BC, Chiriboga D, et al. PDA-assisted low glycemic index dietary intervention for type II diabetes: a pilot study. <i>European Journal Of Clinical Nutrition.</i> 2006;60(10):1235-1243.	Did not address the main objective of the study

100.	Markovic TP, Jenkins AB, Campbell LV, Furler SM, Kraegen EW, Chisholm	Duration less than 3 moths
	DJ. The determinants of glycemic responses to diet restriction and weight	
	loss in obesity and NIDDM. Diabetes Care. 1998;21(5):687-694.	
101.	McAuley KA, Hopkins CM, Smith KJ, et al. Comparison of high-fat and	Study population without type 2 diabetes
	high-protein diets with a high-carbohydrate diet in insulin-resistant obese	
	women. <i>Diabetologia</i> . 2005;48(1):8-16.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/033/CN-	
	00514033/frame.html.	
102.	McCarron DA. Nutritional management of cardiovascular risk factors. A	Diet intervention not low-carbohydrate
	randomized clinical trial. Archives of internal medicine. 1997;157(2):169-	
	177.	
103.	McVay MA, Voils CI, Coffman CJ, et al. Factors associated with choice of a	Did not address the main objective of the study
	low-fat or low-carbohydrate diet during a behavioral weight loss	
	intervention. Appetite. 2014;83:117-124.	
104.	Merino J, Kones R, Ferré R, et al. Negative effect of a low-carbohydrate,	Not a randomized controlled trial; Did not address the main objective of the
	high-protein, high-fat diet on small peripheral artery reactivity in patients	study
	with increased cardiovascular risk. British Journal of Nutrition.	
	2013;109(7):1241-1247.	<u></u>
105.	Milne RM, Mann JI, Chisholm AW, Williams SM. Long-Term Comparison of	Diet intervention not low-carbohydrate
	Three Dietary Prescriptions in the Treatment of NIDDM. Diabetes Care.	
	1994;17(1):74-80.	
106.	Moreno B, Bellido D, Sajoux I, et al. Comparison of a very low-calorie-	Study population without type 2 diabetes
	ketogenic diet with a standard low-calorie diet in the treatment of	
	obesity. Endocrine. 2014;47(3):793-805.	
107.	Mori TA, Dunstan DW, Burke V, et al. Effect of dietary fish and exercise	Did not address the main objective of the study
	training on urinary F2-isoprostane excretion in non-insulin-dependent	
	diabetic patients. Metabolism: Clinical And Experimental.	
	1999;48(11):1402-1408.	
108.	Mraz M, Lacinova Z, Drapalova J, et al. The effect of very-low-calorie diet	Did not address the main objective of the study
	on mRNA expression of inflammation-related genes in subcutaneous	
	adipose tissue and peripheral monocytes of obese patients with type 2	
	diabetes mellitus. The Journal Of Clinical Endocrinology And Metabolism.	
	2011;96(4):E606-E613.	

109.	Nicholson AS, Sklar M, Barnard ND, Gore S, Sullivan R, Browning S.	Diet intervention not low-carbohydrate
	Toward improved management of NIDDM: A randomized, controlled,	
	pilot intervention using a lowfat, vegetarian diet. Preventive Medicine.	
	1999;29(2):87-91.	
110.	Nielsen JV, Joensson E. Low-carbohydrate diet in type 2 diabetes. Stable	Not a randomized controlled trial
	improvement of bodyweight and glycemic control during 22 months	
	follow-up. Nutrition & Metabolism. 2006;3:22-25.	
111.	Nielsen JV, Jönsson E, Nilsson A-K. Lasting improvement of	Not a randomized controlled trial
	hyperglycaemia and bodyweight: low-carbohydrate diet in type 2	
	diabetes. A brief report. Upsala Journal Of Medical Sciences.	
	2005;110(2):179-183.	
112.	Nnadi IM, Fasanmade AA, Adeleye J, Nnoka KO, Keshinro OO. Low	Diet intervention not low-carbohydrate
	Carbohydrate Diet Lowers Blood Glucose in Type II Diabetes Mellitus	
	Subjects. Journal of the Academy of Nutrition & Dietetics. 2012;112:A34-	
	A34.	
113.	Nuttall FQ. The high-carbohydrate diet in diabetes management.	Not a randomized controlled trial
	Advances In Internal Medicine. 1988;33:165-183.	
114.	Nuttall FQ, Gannon MC. Effect of a LoBAG30 diet on protein metabolism	Duration less than 3 moths
	in men with type 2 diabetes. A Randomized Controlled Trial. Nutrition and	
	Metabolism. 2012;9(43).	
115.	Oberg EB, Bradley RD, Allen J, McCrory MA. CAM: naturopathic dietary	Not a randomized controlled trial
	interventions for patients with type 2 diabetes. Complementary Therapies	
	In Clinical Practice. 2011;17(3):157-161.	
116.	O'Brien T, Nguyen TT, Buithieu J, Kottke BA. Lipoprotein compositional	Duration less than 3 moths
	changes in the fasting and postprandial state on a high-carbohydrate low-	
	fat and a high-fat diet in subjects with noninsulin-dependent diabetes	
	mellitus. The Journal Of Clinical Endocrinology And Metabolism.	
	1993;77(5):1345-1351.	
117.	O'Dea K, Traianedes K, Ireland P, et al. The effects of diet differing in fat,	Duration less than 3 moths
	carbohydrate, and fiber on carbohydrate and lipid metabolism in type II	
	diabetes. Journal Of The American Dietetic Association. 1989;89(8):1076-	
110	1086.	Distintervention not law earhebydrate
118.	Oldroyd JC, Unwin NC, White M, Mathers JC, Alberti KGMM. Randomised	Diet intervention not low-carbohydrate

	controlled trial evaluating lifestyle interventions in people with impaired	
	glucose tolerance. <i>Diabetes Research And Clinical Practice.</i> 2006;72(2):117-127.	
119.	Pacy PJ, Dodson PM, Fletcher RF. Effect of a high carbohydrate, low sodium and low fat diet in type 2 diabetics with moderate hypertension. <i>International Journal Of Obesity.</i> 1986;10(1):43-52.	Diet intervention not low-carbohydrate
120.	Pacy PJ, Dodson PM, Kubicki AJ, Fletcher RF, Taylor KG. Comparison of the hypotensive and metabolic effects of metoprolol therapy with a high fibre, low sodium, low fat diet in hypertensive type 2 diabetic subjects. <i>Diabetes Research (Edinburgh, Scotland).</i> 1984;1(4):201-207.	Did not address the main objective of the study
121.	Pacy PJ, Dodson PM, Kubicki AJ, Fletcher RF, Taylor KG. High fibre, low sodium and low fat diet in white and black type 2 diabetics with mild hypertension. <i>Diabetes Research (Edinburgh, Scotland)</i> . 1986;3(6):287-292.	Did not address the main objective of the study
122.	Papakonstantinou E, Triantafillidou D, Panagiotakos DB, et al. A high- protein low-fat diet is more effective in improving blood pressure and triglycerides in calorie-restricted obese individuals with newly diagnosed type 2 diabetes. <i>European Journal of Clinical Nutrition</i> . 2010;64(6):595- 602.	Did not address the main objective of the study
123.	Parker B, Noakes M, Luscombe N, Clifton P. Effect of a high-protein, high- monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes. <i>Diabetes Care</i> . 2002;25(3):425-430.	The study is included in the review with another publication
124.	Pawlak R. Low-carbohydrate, high-protein diets for management of type 2 diabetes. <i>The American journal of clinical nutrition</i> . 2013;98(1):247-248.	Not a randomized controlled trial
125.	Petersen KF DS. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. 2005.	Did not address the main objective of the study
126.	Peterson DB, Lambert J, Gerring S, et al. Sucrose in the diet of diabetic patientsjust another carbohydrate? <i>Diabetologia</i> . 1986;29(4):216-220.	Did not address the main objective of the study
127.	Pfeiffer A. High-fat diets in diabetes. <i>Deutsche medizinische Wochenschrift (1946).</i> 2013;138(18):964-966.	Not a randomized controlled trial
128.	Pohl M, Mayr P, Mertl-Roetzer M, et al. Glycemic control in patients with type 2 diabetes mellitus with a disease-specific enteral formula: stage II of	Excluded due to enteral nutrition

	a randomized, controlled multicenter trial. JPEN Journal Of Parenteral	
	And Enteral Nutrition. 2009;33(1):37-49.	
129.	Pohl M, Mayr P, Mertl-Roetzer M, et al. Glycaemic control in type II diabetic tube-fed patients with a new enteral formula low in carbohydrates and high in monounsaturated fatty acids: a randomised controlled trial. <i>European Journal of Clinical Nutrition</i> . 2005;59(11):1221- 1232.	Excluded due to enteral nutrition
130.	Quandt SA, Bell RA, Snively BM, Vitolins MZ, Wetmore-Arkader LK, Arcury TA. Dietary fat reduction behaviors among African American, American Indian, and white older adults with diabetes. <i>Journal Of Nutrition For The Elderly.</i> 2009;28(2):143-157.	Not a randomized controlled trial
131.	Radulian G, Rusu E, Dragomir AD, Stoian M, Vladica M. The Effects of Low Carbohydrate Diet as Compared with a Low Fat Diet in Elderly Patients with Type 2 Diabetes Mellitus. <i>Diabetes.</i> 2007;56:A448-A448.	Poster
132.	Ramadas A, Quek KF, Chan CKY, Oldenburg B, Hussein Z. Randomised- controlled trial of a web-based dietary intervention for patients with type 2 diabetes mellitus: study protocol of myDIDeA. <i>BMC Public Health</i> . 2011;11:359-359.	Diet intervention not low-carbohydrate
133.	Rivellese AA, Giacco R, Genovese S, et al. Effects of changing amount of carbohydrate in diet on plasma lipoproteins and apolipoproteins in type II diabetic patients. <i>Diabetes Care</i> . 1990;13(4):446-448.	Duration less than 3 moths
134.	Rodríguez-Villar C, Manzanares JM, Casals E, et al. High-monounsaturated fat, olive oil-rich diet has effects similar to a high-carbohydrate diet on fasting and postprandial state and metabolic profiles of patients with type 2 diabetes. <i>Metabolism: Clinical And Experimental.</i> 2000;49(12):1511-1517.	Duration less than 3 moths
135.	Root MM, Dawson HR. DASH-like diets high in protein or monounsaturated fats improve metabolic syndrome and calculated vascular risk. <i>Int J Vitam Nutr Res.</i> 2013;83(4):224-231.	Did not address the main objective of the study
136.	Ruth MR, Port AM, Shah M, et al. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. <i>Metabolism-Clinical and Experimental.</i> 2013;62(12):1779-1787.	Study population without type 2 diabetes

137.	Salas-Salvadó J, Bulló M, Babio N, et al. Reduction in the incidence of type	Diet intervention not low-carbohydrate
	2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus	
	nutrition intervention randomized trial. <i>Diabetes Care</i> . 2011;34(1):14-19.	
138.	Sanders TAB. High- versus low-fat diets in human diseases. Current	Not a randomized controlled trial
	Opinion In Clinical Nutrition And Metabolic Care. 2003;6(2):151-155.	
139.	Sanz-París A, Calvo L, Guallard A, Salazar I, Albero R. High-fat versus high-	Duration less than 3 moths
	carbohydrate enteral formulae: effect on blood glucose, C-peptide, and	
	ketones in patients with type 2 diabetes treated with insulin or	
	sulfonylurea. Nutrition (Burbank, Los Angeles County, Calif). 1998;14(11-	
	12):840-845.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/433/CN-	
	<u>00157433/frame.html</u> .	
140.	Saslow LR, Kim S, Daubenmier JJ, et al. A randomized pilot trial of a	Study population with pre-diabetes and diabetes (separate data for participant
	moderate carbohydrate diet compared to a very low carbohydrate diet in	with type 2 diabetes was not provided)
	overweight or obese individuals with type 2 diabetes mellitus or	
	prediabetes. PloS one. 2014;9(4):e91027.	
141.	Saslow LR, Kim S, Daubenmier JJ, et al. A randomized pilot trial of a	Duplicate
	moderate carbohydrate diet compared to a very low carbohydrate diet in	
	overweight or obese individuals with type 2 diabetes mellitus or	
	prediabetes. <i>PloS one.</i> 2014;9(4):e91027.	
142.	Schrauwen P, Schaart G, Saris WH, et al. The effect of weight reduction on	Did not address the main objective of the study
	skeletal muscle UCP2 and UCP3 mRNA expression and UCP3 protein	
	content in Type II diabetic subjects. <i>Diabetologia</i> . 2000;43(11):1408-1416.	
143.	Sears B, Kahl P, Rapier G. The San Antonio Type 2 Diabetic Study.	Not a randomized controlled trial
	International Journal of Applied Kinesiology & Kinesiologic Medicine.	
	2006(21):66-67.	
144.	Shahar DR, Abel R, Elhayany A, Vardi H, Fraser D. Does dairy calcium	The study is included in the review with another publication
	intake enhance weight loss among overweight diabetic patients? Diabetes	
	Care. 2007;30(3):485-489.	
145.	Sharafetdinov KK, Plotnikova OA, Kulakova SN, Alekseeva RI,	Not a randomized controlled trial; Diet intervention not low-carbohydrate
	Meshcheriakova VA, Mal'tsev GI. [Effect of a monounsaturated fatty	
	acids-enriched diet on the clinical and metabolic parameters in type 2	
	diabetic patients]. Voprosy Pitaniia. 2003;72(4):20-24.	

146.	Shige H, Nestel P, Sviridov D, Noakes M, Clifton P. Effect of weight	Diet intervention not low-carbohydrate
	reduction on the distribution of apolipoprotein A-I in high-density	
	lipoprotein subfractions in obese non-insulin-dependent diabetic	
	subjects. Metabolism: Clinical And Experimental. 2000;49(11):1453-1459.	
147.	Spritzler F. A Low-Carbohydrate, Whole-Foods Approach to Managing	Not a randomized controlled trial
	Diabetes and Prediabetes. Diabetes Spectrum. 2012;25(4):238-243.	
148.	Stacpoole PW. Should NIDDM patients be on high-carbohydrate, low-fat	Did not address the main objective of the study
	diets? Affirmative. Hospital Practice (Office Ed). 1992;27 Suppl 1:6-10.	
149.	Swinburn BA, Metcalf PA, Ley SJ. Long-term (5-year) effects of a reduced-	Did not address the main objective of the study
	fat diet intervention in individuals with glucose intolerance. Diabetes	
	<i>Care.</i> 2001;24(4):619-624.	
150.	Tapsell LC, Gillen LJ, Patch CS, et al. Including walnuts in a low-	Diet intervention not low-carbohydrate
	fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios	
	in patients with type 2 diabetes. <i>Diabetes Care</i> . 2004;27(12):2777-2783.	
151.	Tirosh A, Golan R, Harman-Boehm I, et al. Renal function following three	The study is included in the review with another publication
	distinct weight loss dietary strategies during 2 years of a randomized	
	controlled trial. <i>Diabetes care.</i> 2013;36(8):2225-2232.	
152.	Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, 📃 🔪	Diet intervention not low-carbohydrate; Did not address the main objective of
	sulfonylurea, metformin, or insulin in patients with type 2 diabetes	the study
	mellitus: progressive requirement for multiple therapies (UKPDS 49). UK	
	Prospective Diabetes Study (UKPDS) Group. JAMA: The Journal Of The	
	American Medical Association. 1999;281(21):2005-2012.	
153.	Vadstrup ES, Frølich A, Perrild H, Borg E, Røder M. Lifestyle intervention	Multiple interventions implemented
	for type 2 diabetes patients: trial protocol of The Copenhagen Type 2	
	Diabetes Rehabilitation Project. BMC Public Health. 2009;9:166-166.	
154.	Vestli-Nielsen J. Ett logiskt val vid typ 2 diabetes - protein och fett i stället	Did not address the main objective of the study
	för kolhydrat? Tidskr Medikam. 2004;9:9-10.	
155.	Viviani GL, Carta G, Berri F, et al. Effects of normoglycemia after a low	Did not address the main objective of the study
	carbohydrate diet in NIDDM. Insulin secretion and effectiveness. Minerva	
	Endocrinologica. 1984;9(2):229-232.	
156.	Vlachos D, Ganotopoulou A, Stathi C, et al. A low-carbohydrate protein	Conference abstract
	sparing modified fast diet compared with a low glycaemic index reduced	
	calorie diet in obese type 2 diabetic patients. <i>Diabetologia</i> . 2011;54:S355.	

157.	Vuksan V, Jenkins DJ, Spadafora P, et al. Konjac-mannan (glucomannan)	Did not address the main objective of the study
	improves glycemia and other associated risk factors for coronary heart	
	disease in type 2 diabetes. A randomized controlled metabolic trial.	
	Diabetes Care. 1999;22(6):913-919.	
158.	Wolever T, Gibbs A, Chiasson J-L, et al. Altering source or amount of	The study is included in the review with another publication
	dietary carbohydrate has acute and chronic effects on postprandial	
	glucose and triglycerides in type 2 diabetes: Canadian trial of	
	Carbohydrates in Diabetes (CCD). Nutrition, Metabolism and	
	Cardiovascular Diseases. 2013;23(3):227-234.	
159.	Wolever T, Mehling C, Chiasson JL, et al. Low glycaemic index diet and	The study is included in the review with another publication
	disposition index in type 2 diabetes (the Canadian trial of Carbohydrates	
	in Diabetes): a randomised controlled trial. <i>Diabetologia</i> .	
	2008;51(9):1607-1615.	
160.	Wolever TM, Chiasson JL, Josse RG, et al. No relationship between	Diet intervention not low-carbohydrate
	carbohydrate intake and effect of acarbose on HbA1c or gastrointestinal	
	symptoms in type 2 diabetic subjects consuming 30-60% of energy from	
	carbohydrate. <i>Diabetes care</i> . 1998;21(10):1612-1618.	
	http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/642/CN-	
	<u>00155642/frame.html</u> .	
161.	Wycherley TP, Noakes M, Clifton PM, Cleanthous X, Keogh JB, Brinkworth	Multiple interventions (i.e. exercise)
	GD. A high-protein diet with resistance exercise training improves weight	
	loss and body composition in overweight and obese patients with type 2	
	diabetes. Diabetes Care. 2010;33(5):969-976.	
162.	Yancy Jr WS, Foy M, Chalecki AM, Vernon MC, Westman EC. A low-	Not a randomized controlled trial
	carbohydrate, ketogenic diet to treat type 2 diabetes. Nutrition &	
	Metabolism. 2005;2:34-37.	
163.	Yancy Jr WS, Westman EC, McDuffie JR, et al. A randomized trial of a low-	Multiple interventions (i.e. orlistat)
	carbohydrate diet vs orlistat plus a low-fat diet for weight loss. Archives of	
	internal medicine. 2010;170(2):136-145.	
164.	Ziemer DC, Berkowitz KJ, Panayioto RM, et al. A simple meal plan	Diet intervention not low-carbohydrate
	emphasizing healthy food choices is as effective as an exchange-based	
	meal plan for urban African Americans with type 2 diabetes. Diabetes	
	Care. 2003;26(6):1719-1724.	

Page 54 of 71

 For Review Only

Supplementary table 3A Subgroup-analysis based on study duration ≤ 6 months (short term) vs ≥ 12 moths (long term)

Outcome	Short term	Long term	Test for subgroup effect	
	MD (95 % CI)	MD (95 % CI)	p-value	I^2
Weight [kg]	-0.87 [-1.88, 0.15]	0.14 [-0.29, 0.57]	0.07*	69.0%
BMI [kg/m2]	-1.21 [-2.73, 0.32]	-0.69 [-1.51, 0.13]	0.56	0%
HbA1c [%]	-0.17 [-0.27, -0.08]	-0.00 [-0.10, 0.09]	0.01*	83.7%
LDL [mmol/l]	-0.08 [-0.29, 0.14]	0.03 [-0.10, 0.16]	0.40	0%
HDL [mmol/l]	-0.01 [-0.07, 0.04]	0.06 [-0.01, 0.13]	0.10*	64.1%
Total cholesterol [mmol/l]	-0.06 [-0.41, 0.30]	0.07 [-0.04, 0.19]	0.49	0%
Triacylglycerol [mmol/l]	-0.18 [-0.36, 0.00]	-0.10 [-0.23, 0.03]	0.48	0%
SBP [mmHg]	-0.33 [-2.31, 1.65]	-1.39 [-3.20, 0.43]	0.44	0%
DBP [mmHg]	-0.06 [-1.46, 1.34]	-0.55 [-2.17, 1.06]	0.65	0%

Supplementary table 3B: Subgroup-analysis based on the amount of carbohydrates in the LCD group, LCD (21-70 g CHO) vs LCD (30-40% TE CHO)

	,				
Outcome	Moderate LCD	VLCD	Test for subg	Test for subgroup effect	
	MD (95 % CI)	MD (95 % CI)	p-value	I^2	
Weight [kg]	-0.10 (-0.46, 0.26)	-0.66 (-1.99, 0.68)	0.43	0%	
BMI [kg/m2]	-0.68 (-1.81, 0.44)	-1.82 (-3.51, -0.13)	0.27	16.9%	
HbA1c [%]	-0.07 (-0.17, 0.04)	-0.23 (-0.48, 0.02)	0.23	31.6%	
LDL [mmol/l]	-0.06 (-0.19, 0.07)	0.16 (-0.02, 0.34)	0.05*	73.8%	
HDL [mmol/l]	0.03 (-0.03, 0.10)	0.07 (0.00, 0.13)	0.46	0%	
Total cholesterol [mmol/l]	-0.01 (-0.20, 0.17)	0.17 (-0.02, 0.37)	0.17	45.7%	
Triacylglycerol [mmol/l]	-0.10 (-0.23, 0.03)	-0.23 (-0.45, -0.02)	0.29	10.1%	
SBP [mmHg]	-0.92 (-2.32, 0.47)	-0.99 (-4.77, 2.79)	0.98	0%	
DBP [mmHg]	-0.06 (-1.13, 1.01)	-1.19 (-3.90, 1.52)	0.44	0%	

Outcome	Low RoB	High RoB	P-value	I^2
Weight	0.86 [-1.86, 3.57]	-1.75 [-2.82, -0.69]	0,08	67,5
HbA1c	0.12 [-0.12, 0.35]	-0.30 [-0.54, -0.07]	0,01	83,6
LDL	0.10 [-0.11, 0.31]	-0.05 [-0.25, 0.16]	0,34	0
HDL	0.04 [-0.02, 0.09]	-0.12 [-0.23, -0.01]	0,01	83,2
TC	0.10 [-0.14, 0.33]	0.07 [-0.13, 0.27]	0,86	0
Triglyc	0.06 [0.00, 0.12]	-0.26 [-0.41, -0.12]	<0,0001	93,8
SBP	-2.57 [-7.21, 2.07]	-2.69 [-6.93, 1.55]	0,97	0
DBP	-0.48 [-2.51, 1.55]	-2.38 [-6.04, 1.28]	0,37	0
Compliance	1.08 [0.83, 1.42]	1.03 [0.80, 1.33]	0,79	0

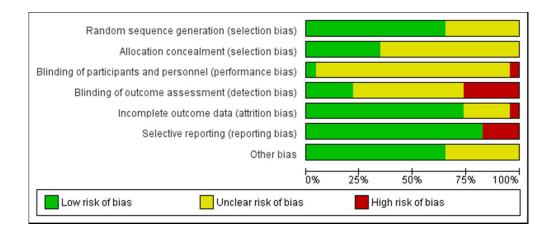
[0.83, 1.42]

Page 57 of 71

Carbohydrate quantity in the dietary management of type 2 diabetes

Outcomes	Nº of	· · · · · · · · · · · · · · · · · ·	Anticipated abs	olute effects
	participants (studies) Follow-up	the evidence (GRADE)	Risk with HCD	Risk difference with LCD
Weight follow up: 3 months to 3 ± 1.8 years	1587 (17 RCTs)	⊕⊕⊕⊖ MODERATE ª	The mean weight was 86.4 kg	MD 0.35 kg lower (0.91 lower to 0.21 higher)
HbA1c follow up: 3 months to 24 months	1425 (16 RCTs)	⊕⊕⊕⊖ MODERATE ^ª	The mean HbA1c was 7.2 %	MD 0.09 % lower (0.17 lower to 0.01 lower)
LDL-cholesterol follow up: 3 months to 3 ± 1.8 years	1409 (15 RCTs)	⊕⊕⊖⊖ LOW ^{a,b}	The mean LDL- cholesterol was 2.68 mmol/l	MD 0.01 mmol/l lower (0.13 lower to 0.11 higher)
HDL-cholesterol follow up: 3 months to 3 ± 1.8 years	1438 (16 RCTs)	⊕⊕⊖⊖ LOW ^{a,c}	The mean HDL- cholesterol was 1.17 mmol/l	MD 0.04 mmol/l higher (0.01 lower to 0.1 higher)

Outcomes	№ of	Certainty of	Anticipated abs	solute effects
	participants (studies) Follow-up	the evidence (GRADE)	Risk with HCD	Risk difference with LCD
Total cholesterol follow up: 3 months to 3 ± 1.8 years	1373 (14 RCTs)	⊕⊕⊖⊖ LOW ^{a,d}	The mean total cholesterol was 4.62 mmol/l	MD 0.04 mmol/l higher (0.12 lower to 0.2 higher)
Triacylglycerol follow up: 3 months to 24 months	1391 (16 RCTs)	⊕⊕⊖⊖ LOW ^{a,e}	The mean triacylglycerol was 1.59 mmol/l	MD 0.13 mmol/l lower (0.24 lower to 0.02 lower)
Systolic blood pressure follow up: 3 months to 24 months	1179 (14 RCTs)	⊕⊕⊕⊖ MODERATE ^a	The mean systolic blood pressure was 129.7 mmHg	MD 0.93 mmHg lower (2.24 lower to 0.37 higher)
Diastolic blood pressure follow up: 3 months to 24 months	944 (12 RCTs)	⊕⊕⊕⊖ MODERATE ^ª	The mean diastolic blood pressure was 75.4 mmHg	MD 0.21 mmHg lower (1.2 lower to 0.79 higher)


Explanations

a. Downgraded by one level due to risk of bias: The majority of evidence is from studies at high- or unclear risk of bias

b. Downgraded by one level due to inconsistency: Substantial heterogeneity (I2 statistics 64%, p < 0.001) and limited overlap of CI

c. Downgraded by one level due to inconsistency: Substantial heterogeneity (I2 statistics 72%, p < 0.001) and limited overlap of CI
d. Downgraded by one level due to inconsistency: Substantial heterogeneity (I2 statistics 71%, p < 0.001) and limited overlap of CI
e. Downgraded by one level due to inconsistency: Substantial heterogeneity (I2 statistics 57%, p = 0.003) and limited overlap of CI

For Review Only

213x90mm (72 x 72 DPI)

3 4

5 6

7 8

9

10 11

12

20 21 22

23 24

25

26 27

28

29 30

31

32 33

34

35 36

37

38

39

40

41 42

43

44 45

46

47 48

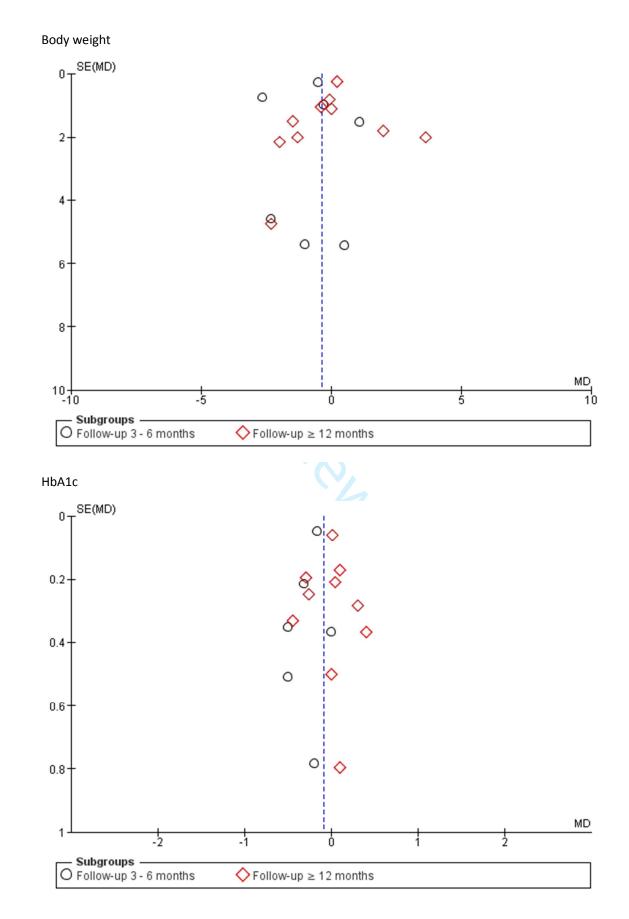
49

50

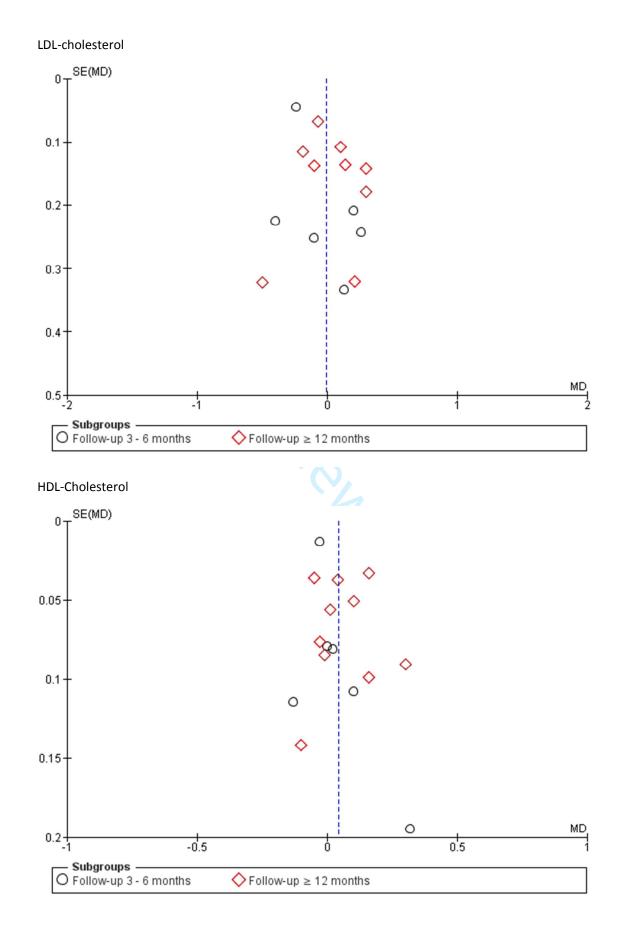
51

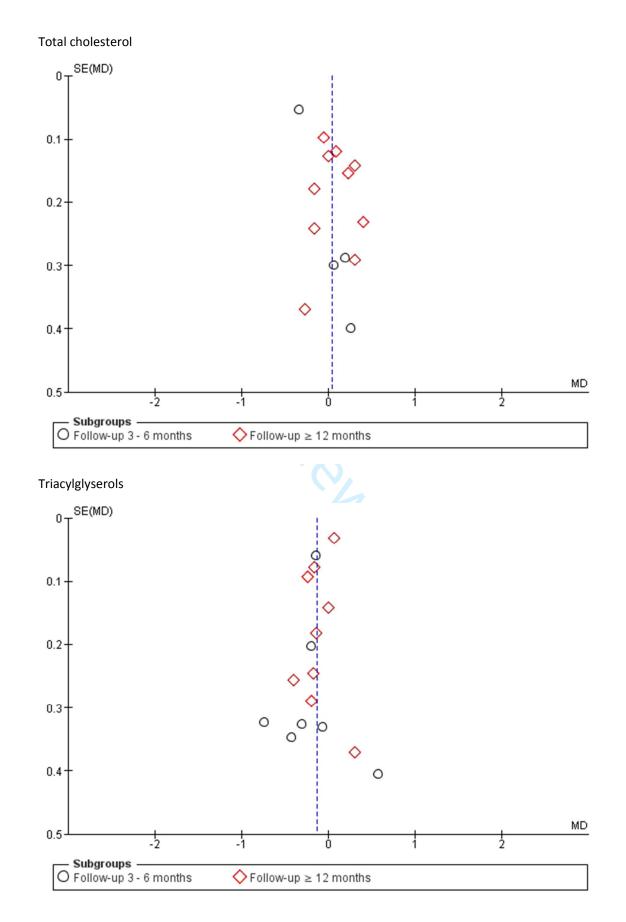
52

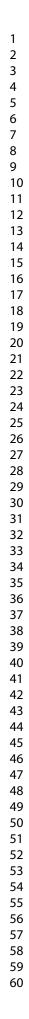
53

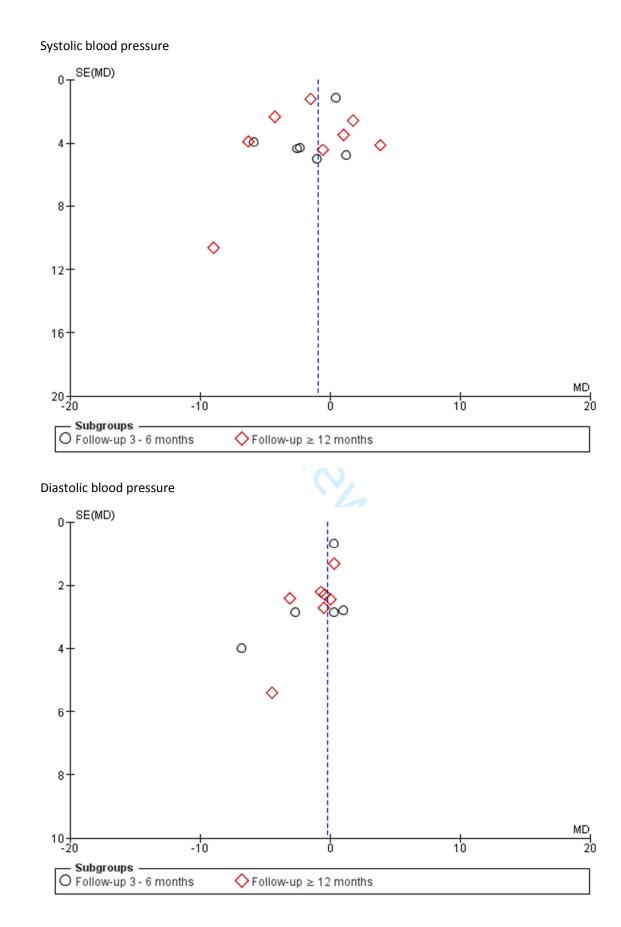

54

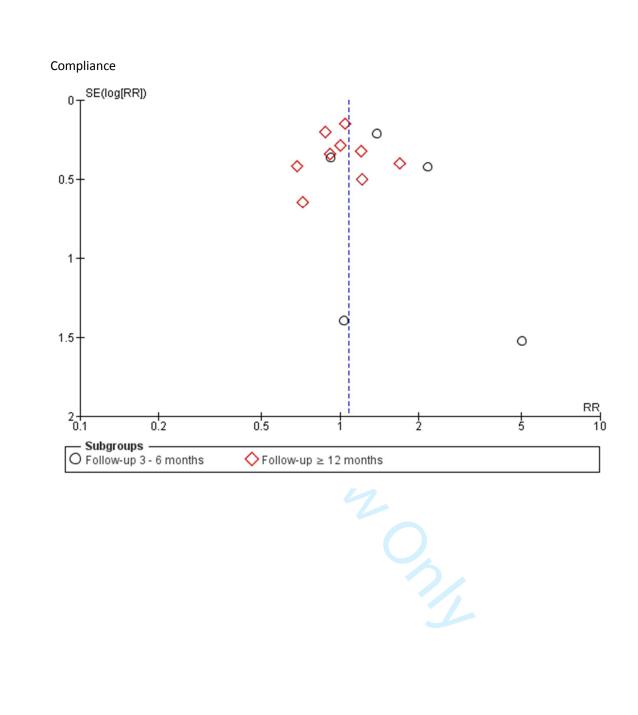
55


56 57


Blinding of participants and personnel (performance bias) Blinding of outcome assessment (detection bias) Random sequence generation (selection bias) Incomplete outcome data (attrition bias) Allocation concealment (selection bias) Selective reporting (reporting bias) Other bias Brinkworth et al., 2004 [44] Đ ? ? ? Ŧ Đ Daly et al., 2006 [32] ? ? Đ Đ Đ Đ Davis et al., 2009 [37] ? ? ? Đ Đ Đ • ? Elhayany et al., 2010 [39] ? ? ? Đ Đ ? ? Facchini et al., 2003 [30] ? ? ? Đ Đ ? Garg et al., 1994 [27] Đ ? ? ? Đ Goldstein et al., 2011 [40] ? ? ? Đ Đ Đ Đ Guldbrand et al., 2012 [42] Đ Đ Đ ? Đ Đ • Jenkins et al., 2014 [46] ? ? ? Đ Đ Đ Jonasson et al., 2014 [47] Đ Đ ? ? Đ Đ Jönsson et al., 2009 [38] Đ Đ Đ ? Đ Œ Krebs et al., 2012 [43] Đ Đ ? Đ Đ Đ œ ? Larsen et al., 2011 [41] Đ ? Đ Đ Đ Đ Luger et al., 2013 [45] ? ? ? ? Đ ? Œ McLaughlin et al., 2007 [33] ? ? ? ? Đ Đ Đ Pedersen et al., 2014 [48] Đ • Đ ? Đ Đ Đ Samaha et al., 2003 [31] ? ? Đ Đ Đ Đ Shai et al., 2008 [34] ? ? ? Đ Đ Đ Đ ? Walker et al., 1995 [28] ? ? ? ? ? Đ ? ? Walker et al., 1999 [29] ? ? ? ? ? Westman et al., 2008 [35] ? ? Đ æ Wolever et al., 2008 [36] ? ? Đ ? Đ Đ ? Yamada et al., 2014 [49] ? Đ


Risk of bias summary: review authors' judgements about each risk of bias item for each included study.





Supplementary figure 3

Subgroup analysis based on carbohydrate restriction in the LCD group (moderate LCD: 30-40% TE CHO and VLCD: 21-70 g CHO)

Body weight

			Low-carbohydrate	Higher carbohydrate		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Moderate LCD							
Brinkworth '04	-1.5	1.4847	19	19	3.3%	-1.50 [-4.41, 1.41]	
Elhayany '10	-1.3	1.9884	61	118	1.9%	-1.30 [-5.20, 2.60]	
Facchini '03	-2	2.1529	91	79	1.7%	-2.00 [-6.22, 2.22]	
Jenkins '14	-0.5	0.2838	70	71	23.5%	-0.50 [-1.06, 0.06]	-
<rebs '12<="" td=""><td>3.6</td><td>2.001</td><td>144</td><td>150</td><td>1.9%</td><td>3.60 [-0.32, 7.52]</td><td></td></rebs>	3.6	2.001	144	150	1.9%	3.60 [-0.32, 7.52]	
_arsen '11	-0.07	0.8163	53	46	8.7%	-0.07 [-1.67, 1.53]	
uger '13	0.5	5.4251	20	22	0.3%	0.50 [-10.13, 11.13]	· · · · · · · · · · · · · · · · · · ·
IcLaughlin '07	1.1	1.5322	14	15	3.1%	1.10 [-1.90, 4.10]	
'edersen '14	-2.3	4.743	21	24	0.4%	-2.30 [-11.60, 7.00]	· · · · · · · · · · · · · · · · · · ·
Volever '08	0.21	0.2474	53	103	24.9%	0.21 [-0.27, 0.69]	+
'amada '14	-2.3	4.5702	12	12	0.4%	-2.30 [-11.26, 6.66]	·
ubtotal (95% CI)			558	659	70.0%	-0.10 [-0.46, 0.26]	♦
'est for overall effect: . .1.2 VLCD	Z = 0.56 (P = 0.58)						
Daly '06	2.62	0.7458	40	39	9.9%	-2.63 [-4.09, -1.17]	
) avis '09		1.1202	40		5.3%	0.00 [-2.20, 2.20]	
Goldstein '11		1.7814	14		2.4%	2.00 [-1.49, 5.49]	
Suldbrand '12		1.0629	30		5.8%	-0.40 [-2.48, 1.68]	
lonasson '14		1.0025	29		6.4%	-0.30 [-2.27, 1.67]	
Vestman '08		5.3815	25	29	0.4%	-1.00 [-11.55, 9.55]	•
Subtotal (95% CI)	-1	5.5615	181		30.0%	-0.66 [-1.99, 0.68]	· •
Heterogeneity: Tau² = Test for overall effect: .		lf = 5 (P =					
Total (95% CI)			739	848	100.0%	-0.35 [-0.91, 0.21]	•
Heterogeneity: Tau ² =	0.26 Chi ² = 22.64	df = 16 (l)	P = 0 12); I ² = 29%				
Fest for overall effect: .		ui - 10 (i	- 0.12/,1 - 20/0				-10 -5 0 5 10
Fest for subaroup diffe		2 df = 1 (P = 0.43) P = 0%				Favours LCD Favours HCD
estion subgroup unit	51611063. Offi = 0.0	2, ui – 1 (, = 0.437, 1 = 0.30				
lb1Ac							
			LCD I		an Diffe		Mean Difference

Hb1Ac

b1Ac							
			LCD	HCD		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.3.1 Moderate LCD							
Brinkworth '04	-	0.4997	19	19	0.7%	0.00 [-0.98, 0.98]	
Elhayany '10		0.1956	61	118	4.3%	-0.29 [-0.67, 0.09]	
lenkins '14		0.0497	70	71	39.7%	-0.16 [-0.26, -0.06]	-
<rebs '12<="" td=""><td></td><td>0.1694</td><td>144</td><td>150</td><td>5.6%</td><td>0.10 [-0.23, 0.43]</td><td></td></rebs>		0.1694	144	150	5.6%	0.10 [-0.23, 0.43]	
arsen '11		0.2092	53	46	3.7%	0.04 [-0.37, 0.45]	
Luger '13		0.3672	20	22	1.2%	0.00 [-0.72, 0.72]	
Pedersen '14		0.2834	21	24	2.1%	0.30 [-0.26, 0.86]	
Volever '08		0.0605	54	103	31.1%	0.01 [-0.11, 0.13]	T
/amada '14	-0.5	0.3524	12	12			
Subtotal (95% CI)		0.5524	454	565	1.4% 89.7%	-0.50 [-1.19, 0.19] -0.07 [-0.17, 0.04]	•
Subtotal (95% CI) Heterogeneity: Tau² = Fest for overall effect:			454	565	89.7%		•
Heterogeneity: Tau ² =			454	565	89.7%		•
Heterogeneity: Tau ² = Test for overall effect:	: Z = 1.21 (P = 0.23)		454	565	89.7%		•
Heterogeneity: Tau ² = Fest for overall effect: I.3.2 VLCD	Z = 1.21 (P = 0.23)	df = 8 (P	454 = 0.22)	<mark>565</mark> ; I ² = 25	89.7% 5%	-0.07 [-0.17, 0.04]	
Heterogeneity: Tau ² = Fest for overall effect: I. 3.2 VLCD Daly '06	Z = 1.21 (P = 0.23)	df = 8 (P 0.2144	454 = 0.22) 40	<mark>565</mark> ; I ² = 26 39	89.7% 5% 3.6%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10]	
Heterogeneity: Tau ² = Fest for overall effect: I .3.2 VLCD Daly '06 Davis '09	Z = 1.21 (P = 0.23) -0.32 -0.26 0.4	df = 8 (P 0.2144 0.2478	454 = 0.22) 40 47	565 ; I ² = 25 39 44	89.7% 5% 3.6% 2.7%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23]	
Heterogeneity: Tau ^a = Fest for overall effect: 1.3.2 VLCD Daly '06 Davis '09 Goldstein '11	Z = 1.21 (P = 0.23) -0.32 -0.26 0.4 0.1	df = 8 (P 0.2144 0.2478 0.366	454 = 0.22) 40 47 14	565 ; I ² = 25 39 44 16	89.7% 5% 3.6% 2.7% 1.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12]	
Heterogeneity: Tau ² = Fest for overall effect: Daiy '06 Davis '09 Soldstein '11 Suldbrand '12	-0.32 -0.32 -0.26 0.4 0.1 -0.2	df = 8 (P 0.2144 0.2478 0.366 0.7939	454 = 0.22) 40 47 14 30	565 ; ² = 26 39 44 16 31	89.7% 5% 3.6% 2.7% 1.3% 0.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12] 0.10 [-1.46, 1.66]	
Heterogeneity: Tau ² = Fest for overall effect: 1.3.2 VLCD Daly '06 Davis '09 Soldstein '11 Suldbrand '12 Ionasson '14	-0.32 -0.32 -0.26 0.4 0.1 -0.2 -0.45	df = 8 (P 0.2144 0.2478 0.366 0.7939 0.7812	454 = 0.22) 40 47 14 30 29	565 ; ²= 26 39 44 16 31 30	89.7% 5% 3.6% 2.7% 1.3% 0.3% 0.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12] 0.10 [-1.46, 1.66] -0.20 [-1.73, 1.33]	
Heterogeneity: Tau ² = Fest for overall effect: Daty '06 Daty '06 Daty's '09 Boldstein '11 Buldbrand '12 Jonasson '14 Bhai '08 Westman '08 Subtotal (95% CI)	Z = 1.21 (P = 0.23) -0.32 -0.26 0.4 0.1 -0.2 -0.45 -0.5	df = 8 (P 0.2144 0.2478 0.366 0.7939 0.7812 0.3322 0.5091	454 = 0.22) 40 47 14 30 29 12 21 21 193	565 ; ² = 25 39 44 16 31 30 24 29 213	89.7% 3.6% 2.7% 1.3% 0.3% 0.3% 1.5% 0.7% 10.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12] 0.10 [-1.46, 1.66] -0.20 [-1.73, 1.33] -0.45 [-1.10, 0.20]	
Heterogeneity: Tau ² = Fest for overall effect: 1.3.2 VLCD Daly '06 Davis '09 Boldstein '11 Boldstein '11 Jonasson '14 Shai '08	Z = 1.21 (P = 0.23) -0.32 -0.26 0.4 0.1 -0.2 -0.45 -0.5	df = 8 (P 0.2144 0.2478 0.366 0.7939 0.7812 0.3322 0.5091	454 = 0.22) 40 47 14 30 29 12 21 21 193	565 ; ² = 25 39 44 16 31 30 24 29 213	89.7% 3.6% 2.7% 1.3% 0.3% 0.3% 1.5% 0.7% 10.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12] 0.10 [-1.46, 1.66] -0.20 [-1.73, 1.33] -0.45 [-1.10, 0.20] -0.50 [-1.50, 0.50]	
Heterogeneity: Tau ² = Fest for overall effect: Daty '06 Daty '06 Daty's '09 Boldstein '11 Buldbrand '12 Jonasson '14 Bhai '08 Westman '08 Subtotal (95% CI)	: Z = 1.21 (P = 0.23) -0.32 -0.26 0.4 0.1 -0.2 -0.45 -0.5 = 0.00; Chi ² = 4.05, c	df = 8 (P 0.2144 0.2478 0.366 0.7939 0.7812 0.3322 0.5091	454 = 0.22) 40 47 14 30 29 12 21 21 193	565 ; ² = 25 39 44 16 31 30 24 29 213	89.7% 3.6% 2.7% 1.3% 0.3% 0.3% 1.5% 0.7% 10.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12] 0.10 [-1.46, 1.66] -0.20 [-1.73, 1.33] -0.45 [-1.10, 0.20] -0.50 [-1.50, 0.50]	
Heterogeneity: Tau ² = Fest for overall effect: Daiy '06 Daiy '06 Davis '09 Boldstein '11 Buldbrand '12 Jonasson '14 Bhai '08 Westman '08 Subtotal (95% CI) Heterogeneity: Tau ² =	: Z = 1.21 (P = 0.23) -0.32 -0.26 0.4 0.1 -0.2 -0.45 -0.5 = 0.00; Chi ² = 4.05, c	df = 8 (P 0.2144 0.2478 0.366 0.7939 0.7812 0.3322 0.5091	454 = 0.22) 40 47 14 30 29 12 21 21 193	565 ; ² = 26 39 44 16 31 30 24 29 213 ² = 0%	89.7% 3.6% 2.7% 1.3% 0.3% 0.3% 1.5% 0.7% 10.3%	-0.07 [-0.17, 0.04] -0.32 [-0.74, 0.10] -0.26 [-0.75, 0.23] 0.40 [-0.32, 1.12] 0.10 [-1.46, 1.66] -0.20 [-1.73, 1.33] -0.45 [-1.10, 0.20] -0.50 [-1.50, 0.50]	

LDL-cholesterol

			Low-carbohydrate Higher carbol			Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.4.1 Moderate LCD							
Brinkworth '04		0.3217	19	19	2.9%	-0.50 [-1.13, 0.13]	
Elhayany '10		0.1152	61	118	9.1%	-0.19 [-0.42, 0.04]	
Facchini '03		0.319	53	48	2.9%	0.21 [-0.42, 0.84]	
Jenkins '14		0.0456	70	71	12.6%	-0.24 [-0.33, -0.15]	• .
Krebs '12		0.1079	144	150	9.5%	0.10 [-0.11, 0.31]	
Larsen '11		0.1378	53	46	8.0%	-0.10 [-0.37, 0.17]	
Luger '13		0.2421	20	22	4.3%	0.26 [-0.21, 0.73]	
McLaughlin '07	0.13	0.3324	14	15	2.7%	0.13 [-0.52, 0.78]	
Pedersen '14	0.3	0.1417	21	24	7.8%	0.30 [0.02, 0.58]	
Wolever '08	-0.07	0.0671	53	103	11.6%	-0.07 [-0.20, 0.06]	
Yamada '14	-0.4	0.2246	12	12	4.8%	-0.40 [-0.84, 0.04]	
Subtotal (95% CI)			520	628	76.2%	-0.06 [-0.19, 0.07]	•
Heterogeneity: Tau ² =	= 0.02; Chi ² = 27.80,	df = 10 (F	= 0.002); I ² = 64%				
Test for overall effect:	Z = 0.87 (P = 0.38)						
1.4.2 VLCD							
Davis '09	0.14	0.1354	47	44	8.1%	0.14 [-0.13, 0.41]	
Guldbrand '12	0.3	0.1793	30	31	6.3%	0.30 [-0.05, 0.65]	
Jonasson '14	0.2	0.2083	29	30	5.3%	0.20 [-0.21, 0.61]	
Westman '08	-0.1	0.251	21	29	4.1%	-0.10 [-0.59, 0.39]	
Subtotal (95% CI)			127	134	23.8%	0.16 [-0.02, 0.34]	•
Heterogeneity: Tau² = Test for overall effect:		lf = 3 (P =	0.63); I ² = 0%				
Total (95% CI)			647	762	100.0%	-0.01 [-0.13, 0.11]	•
Heterogeneity: Tau ² =	0.03 ⁻ Chi ² = 38.79	df = 14 (F)	r = 0.0004) $r = 64%$				
Test for overall effect:		a	- 0.000 (),1 - 01 %				-2 -1 0 1 2
Test for subgroup diff		2 df = 1 /	2 - 0.05) IZ - 73.9%				Favours LCD Favours HCD
restror subgroup un	lerences. onr = 5.6	2, 01 - 1 1	- 0.00%1 - 10.0%				
IDL-choleste	rol						
			LCD HCD	Me	an Diffe	rence	Mean Difference
						0.54 01	BI Danie OFNI OL

HDL-cholesterol

				HCD		Mean Difference	Mean Difference
Study or Subgroup		SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.5.1 Moderate LCD)						
Brinkworth '04	0.01	0.0844	19	19	5.4%	0.01 [-0.16, 0.18]	
Elhayany '10	-0.16	0.0331	61	118	9.8%	-0.16 [-0.22, -0.10]	-
Facchini '03	-0.3	0.0907	53	48	5.0%	-0.30 [-0.48, -0.12]	
Jenkins '14		0.0135	70	71	11.2%	0.03 [0.00, 0.06]	-
Krebs '12	0.05	0.0362	144	150	9.5%	0.05 [-0.02, 0.12]	+-
Larsen '11	-0.01	0.0561	53	46	7.7%	-0.01 [-0.12, 0.10]	
Luger '13	0.13	0.1144	20	22	3.7%	0.13 [-0.09, 0.35]	
McLaughlin '07	0	0.0792	14	15	5.7%	0.00 [-0.16, 0.16]	_ _
Pedersen '14	0.1	0.1417	21	24	2.7%	0.10 [-0.18, 0.38]	
Wolever '08	-0.04	0.0372	53	103	9.4%	-0.04 [-0.11, 0.03]	-+
Yamada '14	-0.32	0.1946	12	12	1.6%	-0.32 [-0.70, 0.06]	
Subtotal (95% CI)			520	628	71.8%	-0.03 [-0.10, 0.03]	•
Heterogeneity: Tau ²	= 0.01; Chi ² = 46.85,	df = 10 (P < 0.0	0001); I	²= 79%		
Test for overall effec	t: Z = 1.02 (P = 0.31)						
1.5.2 VLCD							
Davis '09	-0.1	0.0505	47	44	8.2%	-0.10 [-0.20, -0.00]	
Goldstein '11	0.03	0.0764	14	15	5.9%	0.03 [-0.12, 0.18]	-
Guldbrand '12	-0.16	0.0988	30	31	4.5%	-0.16 [-0.35, 0.03]	
Jonasson '14	-0.1	0.1078	29	30	4.0%	-0.10 [-0.31, 0.11]	
Westman '08	-0.02	0.0813	21	29	5.6%	-0.02 [-0.18, 0.14]	-
Subtotal (95% CI)			141	149	28.2%	-0.07 [-0.13, -0.00]	•
Heterogeneity: Tau ²	= 0.00; Chi ² = 3.35, d	f= 4 (P =	0.50);	I ² = 0%			
	t: Z = 2.07 (P = 0.04)	,					
Total (95% CI)			661	777	100.0%	-0.04 [-0.10, 0.01]	•
Heterogeneity: Tau ²	= 0.01; Chi ² = 54.02,	df = 15 (P < 0.0	0001):	² = 72%		
- /	zt: Z = 1.60 (P = 0.11)						-1 -0.5 0 0.5 1
	ifferences: Chi ² = 0.5	4 $df = 1$	P = 0.4	6) I ² =	0%		Favours LCD Favours HCD
		., so = 1 (0.4	-01 -			

1	
1	
2	
3	
4	
5	
2	
6	
7	
, ,	
8	
9	
1	0
-	-
1	1
1	2
1	3
1	4
1	5
1	6
1	/
1	8
	9
2	0
	1
2	2
2	3
2	4
2	5
	6
2	7
2	8
2	9
	0
3	1
3	2
3	3
З	4
_	5
	6
3	0
_	_
3 3	7
3	
3 3	8
3 3 3	8 9
3 3 3	8
3 3 3 4	8 9 0
3 3 4 4	8 9 0
3 3 3 4	8 9 0
3 3 4 4 4	8 9 0 1 2
3 3 4 4 4	8 9 0 1 2 3
3 3 3 4 4 4 4 4 4	8 9 0 1 2 3 4
3 3 3 4 4 4 4 4 4	8 9 0 1 2 3 4
3 3 4 4 4 4 4 4	8 9 0 1 2 3 4 5
3 3 4 4 4 4 4 4 4 4	890123456
3 3 4 4 4 4 4 4	890123456
3 3 4 4 4 4 4 4 4 4 4	8901234567
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	89012345678
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	8901234567
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	890123456789
3 3 4 4 4 4 4 4 4 4 4 4 5	8901234567890
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	89012345678901
3 3 4 4 4 4 4 4 4 4 4 5 5	89012345678901
3 3 4 4 4 4 4 4 4 4 4 4 5 5 5	890123456789012
3 3 4 4 4 4 4 4 4 4 5 5 5 5 5	8901234567890123
3 3 4 4 4 4 4 4 4 4 5 5 5 5 5	890123456789012
3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	89012345678901234
334444444445555555555555555555555555555	890123456789012345
334444444445555555555555555555555555555	89012345678901234
334444444445555555555555	8901234567890123456
3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	8901234567890123456

Total cholesterol

Study or Subgroup	Mean Difference	SE		HCD	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% Cl
1.6.1 Moderate LCD		JL	Total	Total	Weight	14, Randolli, 35% Cl	14, Randoni, 55% Ci
Brinkworth '04		0.3685	19	19	3.5%	-0.27 [-0.99, 0.45]	
Elhayany '10		0.1265	61	118	9.5%	0.00 [-0.25, 0.25]	_ _
Facchini '03			53	48	4.8%	0.30 [-0.27, 0.87]	
Jenkins '14	-0.34	0.054	70	71	11.8%	-0.34 [-0.45, -0.23]	-
Krebs '12		0.1196	144	150	9.8%	0.09 [-0.14, 0.32]	
Larsen '11	-0.16	0.1786	53	46	7.8%	-0.16 [-0.51, 0.19]	
McLaughlin '07		0.3984	14	15	3.1%	0.26 [-0.52, 1.04]	
Pedersen '14		0.1417	21	24	9.0%	0.30 [0.02, 0.58]	
Wolever '08	-0.05	0.0975	53	103	10.5%	-0.05 [-0.24, 0.14]	-
Subtotal (95% CI)			488	594	69.8%	-0.01 [-0.20, 0.17]	♦
Heterogeneity: Tau ² :	= 0.05; Chi ² = 32.53,	df = 8 (P	< 0.000	01); I ² =	75%		
Test for overall effect	t: Z = 0.14 (P = 0.89)						
1.6.2 VLCD							
Davis '09	0.23	0.1531	47	44	8.6%	0.23 [-0.07, 0.53]	
Goldstein '11	0.46	0.0447	14	16	5.9%		
	-0.10	0.2417	14			-0.101-0.03.0.311	
Guldbrand '12		0.2417	14 30	31	6.2%	-0.16 [-0.63, 0.31] 0.40 [-0.05, 0.85]	
	0.4						
Guldbrand '12	0.4 0.2	0.2305	30	31	6.2%	0.40 [-0.05, 0.85]	
Guldbrand '12 Jonasson '14	0.4 0.2	0.2305 0.2865	30 29	31 30	6.2% 4.9%	0.40 [-0.05, 0.85] 0.20 [-0.36, 0.76]	
Guldbrand '12 Jonasson '14 Westman '08 Subtotal (95% CI)	0.4 0.2	0.2305 0.2865 0.2987	30 29 21 141	31 30 29 150	6.2% 4.9% 4.6%	0.40 [-0.05, 0.85] 0.20 [-0.36, 0.76] 0.06 [-0.53, 0.65]	•
Guldbrand '12 Jonasson '14 Westman '08 Subtotal (95% CI) Heterogeneity: Tau ²	0.4 0.2 0.06	0.2305 0.2865 0.2987	30 29 21 141	31 30 29 150	6.2% 4.9% 4.6%	0.40 [-0.05, 0.85] 0.20 [-0.36, 0.76] 0.06 [-0.53, 0.65]	•
Guldbrand '12 Jonasson '14 Westman '08 Subtotal (95% CI) Heterogeneity: Tau ²	0.4 0.2 0.06 = 0.00; Chi ² = 3.16, d	0.2305 0.2865 0.2987	30 29 21 141	31 30 29 150 I [*] = 0%	6.2% 4.9% 4.6%	0.40 [-0.05, 0.85] 0.20 [-0.36, 0.76] 0.06 [-0.53, 0.65]	
Guldbrand '12 Jonasson '14 Westman '08 Subtotal (95% CI) Heterogeneity: Tau* Test for overall effect Total (95% CI)	0.4 0.2 0.06 = 0.00; Chi² = 3.16, d t Z = 1.75 (P = 0.08)	0.2305 0.2865 0.2987 If = 4 (P =	30 29 21 141 0.53); 629	31 30 29 150 I ² = 0%	6.2% 4.9% 4.6% 30.2%	0.40 [-0.05 0.85] 0.20 [-0.36, 0.76] 0.06 [-0.53, 0.65] 0.17 [-0.02, 0.37]	
Guldbrand '12 Jonasson '14 Westman '08 Subtotal (95% CI) Heterogeneity: Tau ² Tost for overall effect Total (95% CI) Heterogeneity: Tau ²	0.4 0.2 0.06 = 0.00; Chi ² = 3.16, d	0.2305 0.2865 0.2987 If = 4 (P =	30 29 21 141 0.53); 629	31 30 29 150 I ² = 0%	6.2% 4.9% 4.6% 30.2%	0.40 [-0.05 0.85] 0.20 [-0.36, 0.76] 0.06 [-0.53, 0.65] 0.17 [-0.02, 0.37]	-2 -1 0 1 2 Favours LCD Favours HCD

Triacylglycerol

in a dalua a ral							
iacylglycerol							
			LCD	HCD		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
.7.1 Moderate LCD							
Brinkworth '04	0.3	0.3707	19	19	2.0%	0.30 [-0.43, 1.03]	
Elhayany '10	-0.24	0.0924	61	118	11.8%	-0.24 [-0.42, -0.06]	-
Jenkins '14		0.0608	70	71	14.5%	-0.14 [-0.26, -0.02]	-
<rebs '12<="" td=""><td></td><td>0.0321</td><td>144</td><td>150</td><td>16.6%</td><td>0.07 [0.01, 0.13]</td><td>•</td></rebs>		0.0321	144	150	16.6%	0.07 [0.01, 0.13]	•
arsen '11	-0.17	0.2449	53	46	4.0%	-0.17 [-0.65, 0.31]	
uger '13_	-0.19	0.2021	20	22	5.3%	-0.19 [-0.59, 0.21]	
AcLaughlin '07	0.58	0.4043	14	15	1.7%	0.58 [-0.21, 1.37]	
Pedersen '14		0.1417	21	24	8.2%	0.00 [-0.28, 0.28]	
Volever '08	-0.16	0.0786	53	103	13.0%	-0.16 [-0.31, -0.01]	-
′amada '14	-0.74	0.323	12	12	2.6%	-0.74 [-1.37, -0.11]	
Subtotal (95% CI)			467		79.8%	-0.10 [-0.23, 0.03]	•
Heterogeneity: Tau² =		df = 9 (P	= 0.00	05); I² =	70%		
Fest for overall effect:	Z = 1.49 (P = 0.14)						
1.7.2 VLCD							
Daly '06	-0.42	0.3462	40	39	2.3%	-0.42 [-1.10, 0.26]	
Davis '09	-0.14	0.1824	47	44	6.1%	-0.14 [-0.50, 0.22]	
Goldstein '11	-0.4	0.2555	14	16	3.8%	-0.40 [-0.90, 0.10]	
∂uldbrand '12	-0.2	0.2884	18	17	3.1%	-0.20 [-0.77, 0.37]	
lonasson '14	-0.3	0.3256	29	30	2.5%	-0.30 [-0.94, 0.34]	
Westman '08	-0.06	0.3295	21	29	2.5%	-0.06 [-0.71, 0.59]	
Subtotal (95% CI)			169	175	20.2%	-0.23 [-0.45, -0.02]	•
Heterogeneity: Tau² =		f= 5 (P =	0.93);	l² = 0%			
Fest for overall effect:	Z = 2.14 (P = 0.03)						
Total (95% CI)			636	755	100.0%	-0.13 [-0.24, -0.02]	•

Systolic blood pressure

01 J				HCD		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	lotal	Total	weight	IV, Random, 95% CI	IV, Random, 95% CI
1.8.1 Moderate LCD							
Brinkworth '04	-0.6	4.4399	19	19	2.3%	-0.60 [-9.30, 8.10]	
Jenkins '14	0.4	1.1704	70	71	32.4%	0.40 [-1.89, 2.69]	
Krebs '12	1.7	2.5923	144	150	6.6%	1.70 [-3.38, 6.78]	
Larsen '11	-4.26	2.3164	53	46	8.3%	-4.26 [-8.80, 0.28]	
Luger '13	-2.5	4.3413	20	22	2.4%	-2.50 [-11.01, 6.01]	
McLaughlin '07	-1	4.9952	14	15	1.8%	-1.00 [-10.79, 8.79]	· · · · · · · · · · · · · · · · · · ·
Pedersen '14	-6.3	3.8899	21	24	2.9%	-6.30 [-13.92, 1.32]	
Wolever '08	-1.53	1.2249	53	103	29.6%	-1.53 [-3.93, 0.87]	
Yamada '14	1.2	4.7973	12	12	1.9%	1.20 [-8.20, 10.60]	
Subtotal (95% CI)			406	462	88.1%	-0.92 [-2.32, 0.47]	◆
Heterogeneity: Tau ² =	0.00; Chi ² = 6.87, d	f = 8 (P = 1	0.55); lª	'= 0%			
Test for overall effect: .	Z = 1.30 (P = 0.19)						
1.8.2 VLCD							
Daly '06	-5.85	3.9665	40	39	2.8%	-5.85 [-13.62, 1.92]	
Davis '09	3.8	4.0971	47	44	2.6%	3.80 [-4.23, 11.83]	
Goldstein '11	-9		14	16		-9.00 [-29.76, 11.76]	· · · · · · · · · · · · · · · · · · ·
Guldbrand '12	ĩ	3.4619	30	31	3.7%	1.00 [-5.79, 7.79]	
Westman '08	-2.3	4.3167	21	29	2.4%	-2.30 [-10.76, 6.16]	
Subtotal (95% CI)	2.0	4.0101	152	159	11.9%	-0.99 [-4.77, 2.79]	-
Heterogeneity: Tau ² =	0.00° Chi ² = 3.86 d	f=4 (P=1	1 42) [·] I ²	= 0%			
Test for overall effect:				• .•			
	2 - 0.01 (i - 0.01)						
Total (95% CI)			558	621	100.0%	-0.93 [-2.24, 0.37]	•
Heterogeneity: Tau ² =	0.00: Chi ² = 10.73.	df = 13 (P	= 0.63)	$ ^{2} = 0$	86		
							-20 -10 0 10 20
Test for overall effect: .	7 = 1.400 (P = 0.16)						Favours LCD Favours HCD

c blood pressure Diastolic blood pressure

astolic blood _l	oressure						
	or coour c						
			LCD	HCD		Mean Difference	Mean Difference
tudy or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
.9.1 Moderate LCD							
rinkworth '04	-0.5	2.7012	19	19	3.5%	-0.50 [-5.79, 4.79]	
enkins '14	0.3	0.712	70	71	50.9%	0.30 [-1.10, 1.70]	+
írebs '12	0.3	1.3239	144	150	14.7%	0.30 [-2.29, 2.89]	_ _
arsen '11	-0.44	2.3011	53	46	4.9%	-0.44 [-4.95, 4.07]	
uger '13	0.3	2.8548	20	22	3.2%	0.30 [-5.30, 5.90]	
lcLaughlin '07	1	2.7997	14	15	3.3%	1.00 [-4.49, 6.49]	
'edersen '14		2.4044	21	24	4.5%	-3.10 [-7.81, 1.61]	
'amada '14	-6.8	3.983	12	12	1.6%	-6.80 [-14.61, 1.01]	
ubtotal (95% CI)			353	359	86.5%	-0.06 [-1.13, 1.01]	•
leterogeneity: Tau² =		f= 7 (P=	: 0.66);	I ² = 0%			
est for overall effect:	Z = 0.10 (P = 0.92)						
.9.2 VLCD							
	-0.7	2.2222	47	44	5.2%	-0.70 [-5.06, 3.66]	
avis '09		5.3711	14		0.9%	-4.50 [-15.03, 6.03]	
)avis '09 Indistein '11	-4.5						
oldstein '11			30	31	4 3%	111111-487 487	
oldstein '11 Fuldbrand '12	0	2.4569	30 21	31 29	4.3% 3.1%	0.00 [-4.82, 4.82] -2.70 [-8.34, 2.94]	
oldstein '11	0		30 21 112	29	4.3% 3.1% 13.5%	-2.70 [-8.34, 2.94] -1.19 [-3.90, 1.52]	
oldstein '11 Suldbrand '12 Vestman '08 Subtotal (95% CI)	0 -2.7	2.4569 2.8753	21 112	29 120	3.1% 13.5%	-2.70 [-8.34, 2.94]	•
oldstein '11 Suldbrand '12 Vestman '08	0 -2.7 : 0.00; Chi ² = 0.94, d	2.4569 2.8753	21 112	29 120	3.1% 13.5%	-2.70 [-8.34, 2.94]	•
ooldstein '11 Suldbrand '12 Vestman '08 Subtotal (95% CI) Ieterogeneity: Tau ² =	0 -2.7 : 0.00; Chi ² = 0.94, d	2.4569 2.8753	21 112	29 120	3.1% 13.5%	-2.70 [-8.34, 2.94]	•

Attrition rate

	LCD		HCD			Risk Ratio	Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.10.1 Moderate LCD							
Brinkworth '04	14	33	14	33	8.0%	1.00 [0.57, 1.75]	
Elhayany '10	24	85	56	174	15.6%	0.88 [0.59, 1.31]	
Facchini '03	9	100	12	91	3.8%	0.68 [0.30, 1.54]	
Jenkins '14	15	70	7	71	3.6%	2.17 [0.94, 5.01]	
Krebs '12	63	207	62	212	29.2%	1.04 [0.78, 1.40]	
Larsen '11	4	57	5	51	1.6%	0.72 [0.20, 2.52]	
Luger '13	2	22	0	22	0.3%	5.00 [0.25, 98.52]	
McLaughlin '07	0	14	0	15		Not estimable	
Pedersen '14	13	34	7	31	4.1%	1.69 [0.78, 3.69]	
Wolever '08	10	54	22	108	5.6%	0.91 [0.46, 1.78]	
Yamada '14	0	12	0	12		Not estimable	
Subtotal (95% CI)		688	-	820	71.7%	1.03 [0.85, 1.24]	★
Total events	154		185				Ĭ
Heterogeneity: Tau ² =		r = 7.79		P = 0.4	5): F = 0%	6	
Test for overall effect: 2				0.4	-//. = 0/	•	
restion overall ellect.	L = 0.00 (, = 0.1	0,				
1.10.2 VLCD							
Daly '06	11	51	12	51	4.9%	0.92 [0.45, 1.88]	
Davis '09	8	55	6	50	2.6%	1.21 [0.45, 3.25]	
Goldstein '11	12	26	10	26	6.2%	1.20 [0.63, 2.27]	
Guldbrand '12	0	30	0	31	0.2 %	Not estimable	
Jonasson '14	1	30	1	31	0.3%	1.03 [0.07, 15.78]	•
Westman '08	27	48	20	49	14.3%	1.38 [0.91, 2.10]	
Subtotal (95% CI)	27	240	20	238	28.3%	1.23 [0.91, 1.66]	-
Total events	59	240	49	250	20.070	1.20 [0.01, 1.00]	
Heterogeneity: Tau ² = 1		Z - 0 0		0 - 0 0	11.12 - 0.00		
Test for overall effect: 2				r = 0.9	1),1 = 0 %	0	
restion overall effect. 2	2-1.55((r = 0.1	0)				
Total (95% CI)		928		1058	100.0%	1.08 [0.92, 1.27]	•
	04.0		234				
Total events	213						
		² = 9.6	3, df = 13	(P = 0.	72); I ² = 0	%	
Heterogeneity: Tau² =	0.00; Chi			(P = 0.	72); I² = 0	%	0.1 0.2 0.5 1 2 5
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)				0.1 0.2 0.5 1 2 5 Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)				
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)				
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)				
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)				
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)				
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD
Total events Heterogeneity: Tau ² = Test for overall effect: J Test for subgroup diffe	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	
Heterogeneity: Tau ² = Test for overall effect: 2	0.00; Chi Z = 0.97 ((P = 0.3	3)			0%	Favours LCD Favours HCD