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ARTICLE INFO ABSTRACT

Keywords: The role of Physiologically Based Kinetic (PBK) modelling in assessing mixture toxicology has been growing for
Physiologically based pharmacokinetic the last three decades. It has been widely used to investigate and address interactions in mixtures. This review
modelling describes the current state-of-the-art of PBK models for chemical mixtures and to evaluate the applications of
PFPK PBK modelling for mixtures with emphasis on their role in chemical risk assessment. A total of 35 mixture PBK
xiﬁzﬁiion models were included after searching web resources (Scopus, PubMed, Web of Science, and Google Scholar),
Toxicokinetic interaction screening for duplicates, and excluding articles based on eligibility criteria. Binary mixtures and volatile organic
Pharmacokinetics compounds accounted for two-thirds of the chemical mixtures identified. The most common exposure route and
Biokinetics modelled system were found to be inhalation and rats respectively. Twenty two (22) models were for binary

mixtures, 5 for ternary mixtures, 3 for quaternary mixtures, and 5 for complex mixtures. Both bottom-up and
top-down PBK modelling approaches are described. Whereas bottom-up approaches are based on a series of
binary interactions, top-down approaches are based on the lumping of mixture components. Competitive in-
hibition is the most common type of interaction among the various types of mixtures, and usually becomes a
concern at concentrations higher than environmental exposure levels. It leads to reduced biotransformation that
either means a decrease in the amount of toxic metabolite formation or an increase in toxic parent chemical
accumulation. The consequence is either lower or higher toxicity compared to that estimated for the mixture
based on the additivity principle. Therefore, PBK modelling can play a central role in predicting interactions in

chemical mixture risk assessment.

1. Introduction

Humans and the environment are exposed to an ever-increasing
number of anthropogenic chemicals and to mixtures of chemicals via
food, water, air, consumer products etc. However, chemical risk as-
sessment is usually performed for individual substances [1]. The risk
assessment of chemical mixtures is particularly challenging due to the
(often large) number of chemicals combined in mixtures, limited
knowledge on mixture composition, the toxicokinetics and tox-
icodynamics of mixture components, and the (large) number of po-
tential interactions within a chemical mixture [1,2].

The legal requirements for risk assessment of mixtures depend on
the type of mixture and sector. A prospective risk assessment is required
for intentional mixtures, e.g., pesticide formulations and multi-com-
ponent food additives, while it is generally not required for uninten-
tional mixtures [1]. There are growing numbers of methods and novel
tools under development that enable understanding of the underlying

mechanisms of action and interactions in a mixture. Integrated use of
these novel tools (omics, in silico approaches, Adverse Outcome Path-
ways (AOPs), TK modelling) has been shown to hold high potential to
support risk assessment of mixtures [1,3].

Two main models are currently used to assess chemical mixtures in
a component-based way. These are Concentration addition (CA) and
Independent action (IA). These models are the default approaches in
regulatory risk assessment [3,4]. CA is applicable to mixtures composed
of chemicals with a similar mode of action, where the overall mixture
toxicity equals the sum of the potency-corrected exposure concentra-
tions of individual chemicals. On the other hand, IA (also known as
response addition) is applicable to chemicals with dissimilar modes of
action. In IA-based approaches, the mixture toxicity will not occur if the
individual chemicals are all present at sub-toxic levels, whereas in CA-
based approaches all components contribute to the total toxicity de-
pending on their concentration and potency. Both CA and IA are based
on the assumption that the components within a mixture have no
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Fig. 1. Schematic representation of exposure to chemical mixtures and consequences of toxicokinetic and toxicodynamic interactions.

interactions with each other [5].

The magnitude of toxicity of some mixtures cannon be explained by
CA or IA. In such cases, the components of the mixture influence one
another so that the overall toxicity of a mixture is higher or lower than
predicted based on additivity. This phenomenon, known as an inter-
action, can affect both the toxicokinetics (TK) and toxicodynamics (TD)
of chemical mixtures in the body. TK interactions are assumed to in-
fluence chemicals during the absorption, distribution, metabolism and
excretion (ADME) phase within the body, i.e., due to alteration of ab-
sorption, induction/inhibition of metabolising enzymes, alteration of
physiological barriers, and factors affecting plasma protein binding or
excretion. The consequences of TK interactions are usually either an
increased or decreased concentration of one or more chemicals at the
site of action, which affects the overall toxicity of the mixture (Fig. 1).
In general, interactions in a mixture lead to either greater effect (sy-
nergism, potentiation) or lower effects (antagonism, inhibition) com-
pared to predictions based on CA or IA (Fig. 1) [3,5,6].

Various approaches have been developed to address the role of in-
teractions in predicting combined effects of mixtures. Adjusted/Weight
of evidence Hazard Index (HI) and Physiologically Based Kinetic (PBK)
modelling are two of the methodologies that can be used to assess in-
teractions in chemical mixtures [5].

PBK models are represented by set of mass-balance differential
equations describing the biokinetic processes of a chemical in the body
as a function of physicochemical parameters (e.g., partition coefficient),
biochemical parameters (e.g., Michaelis-Menten kinetics: metabolic
rate constant, Vmax, and constant, Km), and physiological parameters
(e.g., flow, volume). A PBK model has several advantages compared to
classical PK modelling approaches, and may be used for various pur-
poses, such as more reliable prediction of the internal dose, supporting
biological monitoring, species extrapolation, route-route extrapolation,
estimation of response from varying exposure conditions, and estima-
tion of human variability [7-9]. Numerous PBK models have been de-
veloped by the scientific community in the last 30 years, as reviewed by
Lu et al. [10]. Guidance documents have been developed on best

practices on how to build, report, and use these models [7,9].

The role of PBK modelling in assessing mixture toxicity has evolved
over the last three decades, by increasingly taking into account the
individual responses of mixture constituents and their interactions. The
chemicals present in a mixture interact with each other via different
mechanisms. In this review, most of the interactions identified take
place at the level of toxicokinetics of two or more chemicals. PBK
modelling has been widely used to investigate mechanisms of interac-
tions of chemicals in mixtures [5,6]. The purpose of this review is to
identify the present state-the-of-the art of PBK models for mixtures and
to highlight their role in assessing interactions between environmental
chemicals. This review also highlights opportunities and challenges
associated with the use of PBK models in the assessment of mixtures.

2. Methodology

The literature search strategy aimed at finding literature published
in English on mixture PBK models. For this, a two-step search strategy
was carried out to find relevant articles until December 15, 2016. First,
a search was conducted on Scopus, PubMed, Web of Sciences, and
Google Scholar for titles and abstracts using combination of the fol-
lowing key words, i.e., mixtures, combinations, Physiological Based
Pharmacokinetic/Toxicokinetic/Biokinetic modelling, and interactions.
Hits obtained in the first step were complemented using bibliographies
of relevant literature to add studies missed during the initial phase. The
identified articles were further screened for duplicates, and full-text
articles were retrieved. Then, exclusion criteria were applied to further
screen articles that did not contain PBK model structures or equations,
and PBK models that did not apply to two or more chemicals. In the
final step, data were extracted following an excel template prepared to
collect relevant information, such as class of chemicals, lists of chemi-
cals, number of compartments, types of interaction. The complete list of
the relevant articles and extracted information used in this review can
be found in the Supplementary material 1 while Fig. 2 summarises the
steps followed to implement the search strategy.
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Fig. 2. Flow chart depicting the procedure for selection of studies to include for the review.

3. Results

In this section, the results of the search are presented and a review
and a discussion of the state-of-the-art of PBK modelling will follow.

3.1. Main characteristics of identified PBK mixture models

A total of 35 PBK mixture models were included for this review
following the search strategy described in the methods section. Binary
mixtures and volatile organic compounds accounted for two-thirds of
the mixtures reviewed. The most common route of exposure and
modelled system in the studies were found to be inhalation and rats,
respectively (Fig. 3).

3.2. List of relevant PBK mixture models

A summary of relevant articles for 22 PBK models for binary mix-
tures is presented in Table 1, whereas Table 2 summarises studies for 5
ternary mixtures, 3 quaternary mixtures, and 5 complex mixtures
containing 5 or more defined chemicals. The summary tables describe
the type of modelled organism/system, routes of exposure, number of
compartments in the PBK model, types of interactions captured in the
PBK models, as well as the basis for interaction and development of PBK
model for various types and classes of mixtures. Competitive inhibition
was found to be the most common type of interaction among the var-
ious types of mixtures modelled by the PBK models.

4. Discussion

Various types of mixture PBK models have been developed in the
last three decades including models for simultaneous or sequential ex-
posure to two or more defined chemicals involving different species and
exposure scenarios. The first PBK model for chemical mixtures was
reported to be a type of “one-chemical mixture”. The mixture consisted
of the parent chemical, benzene, and its metabolites according to
Mumtaz et al. [11] and Yang and Andersen [12]. This was followed by
numerous examples of binary mixtures [12,13], ternary [14,15], qua-
ternary [16-18], and complex mixtures [19-22].

The most common type of PBK model applied for mixtures is based
on inhalation of binary combinations of volatile organic compounds
investigated in rats [23,24]. More than 60% percent of mixture PBK
models in this review involve binary mixture interactions at the tox-
icokinetic level, i.e., metabolic inhibition [25-29].

PBK models for binary or higher order mixtures were constructed by
first developing models for each chemical separately, and then con-
necting the individual models via mass balance equations for metabo-
lism in the liver. The equation for the liver was modified to account for
various mechanisms of metabolic interaction. In general, three as-
sumptions were used to account for interactions, i.e., competitive in-
hibition, uncompetitive inhibition, and non-competitive inhibition. The
category of interaction was evaluated by observing how well the PBK
simulation curve gives an optimal fit after adjusting the hypothesised
interaction terms for each chemical.
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Fig. 3. Summary of the types and classes of mixtures, modeled system, and routes of exposure in the reviewed PBK models.

The interaction in a binary mixture usually occurs via competitive
inhibition. The chemical which has the higher concentration in the
mixture as a result of either higher dosing or greater blood-air partition
coefficient usually acts as an inhibitor compared to the other [30], but
inhibition is mostly evident at higher exposure conditions [26,30].
Competitive inhibition was the most common mechanism of interaction
during co-exposure of volatile organic compounds probably because
most of them are substrates for the same enzyme, CYP 2E1 [27].
Competitive types of interaction usually become a concern at higher
concentrations compared to environmental or occupational exposure
levels [15].

The common mixture PBK modelling approaches fall into two major
categories: bottom-up and top-down.

4.1. Bottom-up PBK modelling of mixtures

The bottom-up PBK modelling methodology for mixtures is based on
one or more interactions at a binary level [6,31]. The possible number
of interaction increases as the number of chemicals (N) in a mixture
increases by N* (N — 1)/2. This approach has been referred as
“bottom-up” mixture modelling methodology as it involves applying
binary interactions to predict complex mixtures [6].

There are numerous examples of the “bottom-up" mixture modelling
methodology [12,13]. To develop such PBK models, PBK models for
each constituent of the mixture first need to be developed and vali-
dated. Then linking them together at the binary level (Fig. 4A) based on
the mechanism of interaction should follow, and a network of binary
metabolic interactions is created (Fig. 4B).

The bottom-up PBK modelling approach is evident in binary,
ternary, quaternary and five chemical mixtures reviewed in this paper.
In principle, this methodology should be applicable to any mixture as
long as information on each interacting pair is available. However,
considering the complex mixtures humans are exposed to, character-
ising every binary interaction in a mixture is difficult since the number
of possible interaction increases by N(N — 1)/2 as the number of che-
micals (N) in a mixture increases [13]. Besides, it is impractical or
impossible to find data on the increasing number of possible binary

combinations in mixtures of increasingly complex compostion. In such
cases, a “top-down” or lumping approach is more practical where
chemicals with similar characteristics are lumped together and de-
scribed by a central estimate [6,19].

4.2. Top-down PBK modelling of mixtures

Top-down PBK modelling of mixtures is also referred to as lumping.
Lumping simplifies complex mixtures to a level where quantitative
study of interactions can be successfully implemented using PBK
models. This approach is applicable to more complex, multi-component
chemical mixtures where characterisation of every possible binary in-
teraction is impractical or unavailable [6,19,32]. Fig. 5 depicts the
approach employed in top-down PBK modelling.

PBK model parameters are employed to lump chemicals in mixtures
to enable their description by average parameter values. For example,
Dennison et al. [19] used this approach to describe the kinetics of a
gasoline mixture. The methodology simplifies the problem by isolating
target components for which description is required and treating the
rest as a single lump chemical. The gasoline mixture was therefore
treated as composed of six chemicals with five target chemicals (ben-
zene, toluene, ethylbenzene, o-xylenee, n-hexane) and a lumped che-
mical group representing the whole gasoline mixture (both for the
summer and winter blend). Then using a binary interaction metho-
dology for the six chemicals, it was possible to describe the pharma-
cokinetics of the five target chemicals as well as the lump using a
central estimate value.

The individual PBK models for each chemical and the lump were
linked by competitive inhibition of hepatic metabolism at a binary level
[19,32]. Similarly, Jasper et al. [21] have evaluated the role of lumping
within the target organ in PBK modelling to describe the toxicokinetics
of a complex gasoline mixture following inhalation exposure in rats. A
total of 109 chemicals were identified and quantified after inhalation
exposure, and the mixture was then simplified to 10 target chemicals
and various numbers of lumps. The PBK model simulated well the blood
concentration for 10 target chemicals compared to the experimental
data when enzymatic interaction was incorporated to the PBK model
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4.4.2. Consequences of interactions

Interactions at the level of toxicokinetics (absorption, distribution,
metabolism, excretion) of chemicals affect the concentration reaching
the target site, and thereby result in a reduced or increased response/
toxicity. Competitive inhibition decreases metabolism of the parent
compound, which leads to increased toxicity if the parent compound is
more toxic, and reduced toxicity if the toxicity results from the meta-
bolite (Fig. 7).

Some examples of the consequences of toxicokinetic and tox-
icodynamic interactions are given in Table 4. The inhibitor is usually
the one with the higher concentration, e.g., trichloroethylene is a more
effective inhibitor in a binary mixture of vinyl chloride and tri-
chloroethylene co-exposure. The relatively higher concentration of
trichloroethylene compared to vinyl chloride even in a similar exposure
situation is attributed to a larger blood-air partition coefficient for tri-
chloroethylene which leads to an increased concentration in blood

Complex mixtures
(e.g.. Gasoline mixture)

- Identification

- Quantification

A

Target chemicals

Remaining chemicals

- PBK model parameters
- Kmeans Algorithm

A

Target chemicals

Chemical 1
Chemical 2
Chemical 3
Chemical 4
Chemical N

Lumps
— ~ on < Z
A E RN
Al Al sl A 3

Fig. 5. Flow chart depicting the top-down PBK modelling approach to evaluate interactions in complex gasoline mixtures. The complex gasoline mixture is simplified
into ‘N’ number of target chemicals and sets of chemical lumps using biologically based lumping methodology as described by Jasper and colleagues [21].
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Fig. 6. Schematic diagram of the PBK model for (A) esragole and (B) nevadensin, as reported in Alhusainy et al. [34] and adapted in this figure.

Table 3
Types of inhibition and their corresponding equations used for PBK modelling of a ternary mixture.
Hypothesis tested for interaction in ternary mixture Chemical 1 Chemical 2 Chemical 3
Equation for rate of metabolism (RAM) for Competitive inhibition Vmax) = CVy Vmax = CVa Vmax3 * CV3
Kmy o« (14 924+ B4 ony kmy (14 AL EB) 4 o, Kmz e [14+ S22 4 4 cvy
Ki3 Kip Ki3 Kip Kip
Equation for RAM for Uncompetitive inhibition Vmaxy = CV1 Vmaxy * CVa Vmax3 * CV3
K+ vy s 14 S22 4 €83 Kmy+Cvyx[14 14 E5 Kmz+Cvys 14524 N
Kip Kiz Kip Kiz Kip Kip

Inhibition results in
increased toxicity

//

Parent tox >
metabolite tox

Parent
compound
//

N—
/4

Inhibition results in
decreased toxicity

Metabolite

parent tox <
metabolite tox

Fig. 7. Consequence of inhibition on toxicity depending on whether the parent
compound or metabolite is toxic.

[30]. However, it is also important to note that competitive types of
interactions usually become a concern only at higher concentrations
than environmental or occupational exposure levels [15].

4.4.3. Relevance of interactions

Evidence in the literature indicates that interactions occur in che-
mical mixtures, but are observed mainly at higher exposure con-
centrations. Boobis et al. [39] performed a literature review, identifying
90 studies demonstrating synergisms in mammalian test systems per-
formed at low doses (i.e. close to the point of departure, POD) for in-
dividual chemicals. Only 6 of the 90 studies reported useful

quantitative information on the magnitude of synergy. In those six
studies the difference between observed synergisms and predictions by
CA did not deviate by more than a factor of 4. Cedergreen [40] per-
formed a systematic literature review for binary mixtures within three
groups of environmentally relevant chemicals (pesticides, metals, an-
tifouling agents). Synergy was defined as a minimum two-fold deviation
from CA predictions. Synergy was found in 7%, 3% and 26% of the
pesticide, metal and antifoulant mixtures, respectively. The extent of
synergy was rarely more than a factor of 10. Based on an in-depth
analysis, Cedergreen concluded that true synergistic interactions be-
tween chemicals are rare and often occur at high concentrations. Using
standard models such as CA is regarded as the most important step in
the risk assessment of chemical mixtures.

Our review of PBK models confirmed that interactions mainly oc-
curred at concentrations higher than common environmental or occu-
pational exposure levels. However, there are examples where interac-
tions might be relevant to consider, such as in the context of food safety
(reviewed by [41]).

4.5. Challenges and opportunities for PBK modelling of mixtures

One of the major challenges of PBK modelling is the requirement for
a large amount of data to build the model. This challenge is even more
obvious in mixture PBK modelling since there are more chemicals and
interactions to consider in addition to the vast amounts of data for
physicochemical and biochemical parameters. A solution to this chal-
lenge can be the application of quantitative structure activity re-
lationship (QSAR) modelling. Table 5 shows examples of the chemical
kinetic parameters determined using QSAR modelling. Another chal-
lenge is the need for trained specialists to develop and validate the
models. However, PBK modelling also has several advantages and could
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Table 4
Examples of the consequences of toxicokinetic and toxicodynamic interactions.
Mixtures Toxicokinetic interaction Toxicodynamic interaction References
Reduced concentration of  Increased target Reduced toxicity from Increased toxicity from parent
metabolite concentration of metabolite chemicals
substrate
Vinyl chloride and Vinyl chloride Significant neurobehavioural [30,64]
Trichloroethylene effect in workers within TLV
Toluene and Trichloroethylene Hippuric acid Toluene [38]
Benzene and Toluene Phenol and hippuric acid Benzene Leukopenia or other toxicities [28,64-66]
from metabolite of benzene
Toluene and m-xylene Toluene [26]
Trichloroethylene and metabolite of [15]
Tetrachloroethylene Trichloroethylene
Trichloroethylene and 1,1- Metabolite of 1,1- Reduced 1,1-dichloroethylene [25]
dichloroethylene dichloroethylene hepatotoxicity
Table 5

Some of the QSAR models used to determine toxicokinetics parameters for PBK modelling.

Reference  Toxicokinetics Parameters predicted  Objective/Target compounds QSAR modelling Method employed
[68] Modelling of CYP 450 metabolism of chlorinated organic volatile compounds

[69] Metabolism Vmax/Km Organophosphorus compounds

[70] Metabolism Km 59 substrates of CYP 3A4 e-state descriptors

[71] Metabolism Km (app) CYP 3A4 inhibitors Pharmacophore modelling

[72] Absorption, Elimination P, Clint, CLh Volatile compounds Group combination method

[73] TD Toxicity 53 Volatile Organic Compounds Group combination method

[74] Metabolism Km/Vmax VOCs Group contribution method

support risk assessment of mixtures since it can account for interactions
in a mixture. PBK modelling of mixtures may be relevant in addressing
risks from co-exposure of both humans and environmental organisms to
multiple chemicals in integrated mixture hazard and risk assessments
[42].

Both bottom-up and top-down of PBK modelling approaches are
based on binary interactions of parent chemicals whereas in reality
interactions could occur between the parent and metabolite, as well as
between metabolites. The models assume binary interactions, while in a
reality humans are exposed to two or more chemicals at the same time,
which is a more complex situation. Published models of mixtures of
greater complexity are derived from information on binary interactions
to simulate the interactions between all mixture components simulta-
neously.

Conventional types of PBK modelling can benefit from incorpora-
tion of relevant physiological processes. For example, metabolism by a
single enzyme is assumed in the conventional bottom-up and top-down
PBK modelling approaches for mixtures. However, usually there are
different iso-enzymes and enzymes metabolising chemicals during
phase 1 and phase 2 biotransformation. Moreover, in most of the PBK
models reviewed the assumption was that metabolism and interactions
occurred mainly in the liver. Even though on one hand such assump-
tions are important to simplify the model, on the other hand this is also
limiting information, since other key organs could play a role in the
mode of action of mixtures. Furthermore, relevant interactions in the
absorption, distribution, metabolism and clearance phases should at
least be added for some relevant chemicals to make the mixture PBK
models more relevant and applicable in the future.

Capturing mixture interactions in the development of PBK model
platforms (freely available tools, such as, MeGEN, COSMOS-KNIME,
IndusChemFate, PLETHEM, R-httk) is another challenge. To our
knowledge the above-mentioned platforms do not take into considera-
tion environmental chemical co-exposure and mixture interactions, al-
though some commercial platforms such as SimCyp and Gastroplus
address drug to drug interactions.

5. Conclusions

PBK modelling can support the risk assessment of mixtures by in-
cluding information on kinetics and ADME, thus describing the me-
chanisms of interaction occurring in mixtures. The risk assessment of
mixtures currently relies mostly on concentration addition based ap-
proaches, thus neglecting possible interactions. We lay down two ap-
proaches that could be implemented in several PBK model software and
packages. These approaches, are termed bottom-up and top-down, de-
pending on whether the interactions are described in terms of a series of
binary interactions, or by lumping mixture components and using re-
presentative parameter values. The choice of approach depends on the
complexity of the mixture and availability of binary interaction data.
These PBK modelling approaches should be further investigated for
their applicability in mixture risk assessment.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.comtox.2018.09.001.
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